[go: nahoru, domu]

1/* Low-level parallel port routines for built-in port on SGI IP32
2 *
3 * Author: Arnaud Giersch <arnaud.giersch@free.fr>
4 *
5 * Based on parport_pc.c by
6 *	Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7 *	Andrea Arcangeli, et al.
8 *
9 * Thanks to Ilya A. Volynets-Evenbakh for his help.
10 *
11 * Copyright (C) 2005, 2006 Arnaud Giersch.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 * This program is distributed in the hope that it will be useful, but WITHOUT
19 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
21 * more details.
22 *
23 * You should have received a copy of the GNU General Public License along
24 * with this program; if not, write to the Free Software Foundation, Inc., 59
25 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26 */
27
28/* Current status:
29 *
30 *	Basic SPP and PS2 modes are supported.
31 *	Support for parallel port IRQ is present.
32 *	Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33 *	supported.
34 *	SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
35 *	or without interrupt support.
36 *
37 *	Hardware ECP mode is not fully implemented (ecp_read_data and
38 *	ecp_write_addr are actually missing).
39 *
40 * To do:
41 *
42 *	Fully implement ECP mode.
43 *	EPP and ECP mode need to be tested.  I currently do not own any
44 *	peripheral supporting these extended mode, and cannot test them.
45 *	If DMA mode works well, decide if support for PIO FIFO modes should be
46 *	dropped.
47 *	Use the io{read,write} family functions when they become available in
48 *	the linux-mips.org tree.  Note: the MIPS specific functions readsb()
49 *	and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50 *	respectively.
51 */
52
53/* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54 * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55 * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
56 * FIFO buffer and supports DMA transfers.
57 *
58 * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
59 *
60 * Theoretically, we could simply use the parport_pc module.  It is however
61 * not so simple.  The parport_pc code assumes that the parallel port
62 * registers are port-mapped.  On the O2, they are memory-mapped.
63 * Furthermore, each register is replicated on 256 consecutive addresses (as
64 * it is for the built-in serial ports on the same chip).
65 */
66
67/*--- Some configuration defines ---------------------------------------*/
68
69/* DEBUG_PARPORT_IP32
70 *	0	disable debug
71 *	1	standard level: pr_debug1 is enabled
72 *	2	parport_ip32_dump_state is enabled
73 *	>=3	verbose level: pr_debug is enabled
74 */
75#if !defined(DEBUG_PARPORT_IP32)
76#	define DEBUG_PARPORT_IP32  0	/* 0 (disabled) for production */
77#endif
78
79/*----------------------------------------------------------------------*/
80
81/* Setup DEBUG macros.  This is done before any includes, just in case we
82 * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
83 */
84#if DEBUG_PARPORT_IP32 == 1
85#	warning DEBUG_PARPORT_IP32 == 1
86#elif DEBUG_PARPORT_IP32 == 2
87#	warning DEBUG_PARPORT_IP32 == 2
88#elif DEBUG_PARPORT_IP32 >= 3
89#	warning DEBUG_PARPORT_IP32 >= 3
90#	if !defined(DEBUG)
91#		define DEBUG /* enable pr_debug() in kernel.h */
92#	endif
93#endif
94
95#include <linux/completion.h>
96#include <linux/delay.h>
97#include <linux/dma-mapping.h>
98#include <linux/err.h>
99#include <linux/init.h>
100#include <linux/interrupt.h>
101#include <linux/jiffies.h>
102#include <linux/kernel.h>
103#include <linux/module.h>
104#include <linux/parport.h>
105#include <linux/sched.h>
106#include <linux/slab.h>
107#include <linux/spinlock.h>
108#include <linux/stddef.h>
109#include <linux/types.h>
110#include <asm/io.h>
111#include <asm/ip32/ip32_ints.h>
112#include <asm/ip32/mace.h>
113
114/*--- Global variables -------------------------------------------------*/
115
116/* Verbose probing on by default for debugging. */
117#if DEBUG_PARPORT_IP32 >= 1
118#	define DEFAULT_VERBOSE_PROBING	1
119#else
120#	define DEFAULT_VERBOSE_PROBING	0
121#endif
122
123/* Default prefix for printk */
124#define PPIP32 "parport_ip32: "
125
126/*
127 * These are the module parameters:
128 * @features:		bit mask of features to enable/disable
129 *			(all enabled by default)
130 * @verbose_probing:	log chit-chat during initialization
131 */
132#define PARPORT_IP32_ENABLE_IRQ	(1U << 0)
133#define PARPORT_IP32_ENABLE_DMA	(1U << 1)
134#define PARPORT_IP32_ENABLE_SPP	(1U << 2)
135#define PARPORT_IP32_ENABLE_EPP	(1U << 3)
136#define PARPORT_IP32_ENABLE_ECP	(1U << 4)
137static unsigned int features =	~0U;
138static bool verbose_probing =	DEFAULT_VERBOSE_PROBING;
139
140/* We do not support more than one port. */
141static struct parport *this_port = NULL;
142
143/* Timing constants for FIFO modes.  */
144#define FIFO_NFAULT_TIMEOUT	100	/* milliseconds */
145#define FIFO_POLLING_INTERVAL	50	/* microseconds */
146
147/*--- I/O register definitions -----------------------------------------*/
148
149/**
150 * struct parport_ip32_regs - virtual addresses of parallel port registers
151 * @data:	Data Register
152 * @dsr:	Device Status Register
153 * @dcr:	Device Control Register
154 * @eppAddr:	EPP Address Register
155 * @eppData0:	EPP Data Register 0
156 * @eppData1:	EPP Data Register 1
157 * @eppData2:	EPP Data Register 2
158 * @eppData3:	EPP Data Register 3
159 * @ecpAFifo:	ECP Address FIFO
160 * @fifo:	General FIFO register.  The same address is used for:
161 *		- cFifo, the Parallel Port DATA FIFO
162 *		- ecpDFifo, the ECP Data FIFO
163 *		- tFifo, the ECP Test FIFO
164 * @cnfgA:	Configuration Register A
165 * @cnfgB:	Configuration Register B
166 * @ecr:	Extended Control Register
167 */
168struct parport_ip32_regs {
169	void __iomem *data;
170	void __iomem *dsr;
171	void __iomem *dcr;
172	void __iomem *eppAddr;
173	void __iomem *eppData0;
174	void __iomem *eppData1;
175	void __iomem *eppData2;
176	void __iomem *eppData3;
177	void __iomem *ecpAFifo;
178	void __iomem *fifo;
179	void __iomem *cnfgA;
180	void __iomem *cnfgB;
181	void __iomem *ecr;
182};
183
184/* Device Status Register */
185#define DSR_nBUSY		(1U << 7)	/* PARPORT_STATUS_BUSY */
186#define DSR_nACK		(1U << 6)	/* PARPORT_STATUS_ACK */
187#define DSR_PERROR		(1U << 5)	/* PARPORT_STATUS_PAPEROUT */
188#define DSR_SELECT		(1U << 4)	/* PARPORT_STATUS_SELECT */
189#define DSR_nFAULT		(1U << 3)	/* PARPORT_STATUS_ERROR */
190#define DSR_nPRINT		(1U << 2)	/* specific to TL16PIR552 */
191/* #define DSR_reserved		(1U << 1) */
192#define DSR_TIMEOUT		(1U << 0)	/* EPP timeout */
193
194/* Device Control Register */
195/* #define DCR_reserved		(1U << 7) | (1U <<  6) */
196#define DCR_DIR			(1U << 5)	/* direction */
197#define DCR_IRQ			(1U << 4)	/* interrupt on nAck */
198#define DCR_SELECT		(1U << 3)	/* PARPORT_CONTROL_SELECT */
199#define DCR_nINIT		(1U << 2)	/* PARPORT_CONTROL_INIT */
200#define DCR_AUTOFD		(1U << 1)	/* PARPORT_CONTROL_AUTOFD */
201#define DCR_STROBE		(1U << 0)	/* PARPORT_CONTROL_STROBE */
202
203/* ECP Configuration Register A */
204#define CNFGA_IRQ		(1U << 7)
205#define CNFGA_ID_MASK		((1U << 6) | (1U << 5) | (1U << 4))
206#define CNFGA_ID_SHIFT		4
207#define CNFGA_ID_16		(00U << CNFGA_ID_SHIFT)
208#define CNFGA_ID_8		(01U << CNFGA_ID_SHIFT)
209#define CNFGA_ID_32		(02U << CNFGA_ID_SHIFT)
210/* #define CNFGA_reserved	(1U << 3) */
211#define CNFGA_nBYTEINTRANS	(1U << 2)
212#define CNFGA_PWORDLEFT		((1U << 1) | (1U << 0))
213
214/* ECP Configuration Register B */
215#define CNFGB_COMPRESS		(1U << 7)
216#define CNFGB_INTRVAL		(1U << 6)
217#define CNFGB_IRQ_MASK		((1U << 5) | (1U << 4) | (1U << 3))
218#define CNFGB_IRQ_SHIFT		3
219#define CNFGB_DMA_MASK		((1U << 2) | (1U << 1) | (1U << 0))
220#define CNFGB_DMA_SHIFT		0
221
222/* Extended Control Register */
223#define ECR_MODE_MASK		((1U << 7) | (1U << 6) | (1U << 5))
224#define ECR_MODE_SHIFT		5
225#define ECR_MODE_SPP		(00U << ECR_MODE_SHIFT)
226#define ECR_MODE_PS2		(01U << ECR_MODE_SHIFT)
227#define ECR_MODE_PPF		(02U << ECR_MODE_SHIFT)
228#define ECR_MODE_ECP		(03U << ECR_MODE_SHIFT)
229#define ECR_MODE_EPP		(04U << ECR_MODE_SHIFT)
230/* #define ECR_MODE_reserved	(05U << ECR_MODE_SHIFT) */
231#define ECR_MODE_TST		(06U << ECR_MODE_SHIFT)
232#define ECR_MODE_CFG		(07U << ECR_MODE_SHIFT)
233#define ECR_nERRINTR		(1U << 4)
234#define ECR_DMAEN		(1U << 3)
235#define ECR_SERVINTR		(1U << 2)
236#define ECR_F_FULL		(1U << 1)
237#define ECR_F_EMPTY		(1U << 0)
238
239/*--- Private data -----------------------------------------------------*/
240
241/**
242 * enum parport_ip32_irq_mode - operation mode of interrupt handler
243 * @PARPORT_IP32_IRQ_FWD:	forward interrupt to the upper parport layer
244 * @PARPORT_IP32_IRQ_HERE:	interrupt is handled locally
245 */
246enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
247
248/**
249 * struct parport_ip32_private - private stuff for &struct parport
250 * @regs:		register addresses
251 * @dcr_cache:		cached contents of DCR
252 * @dcr_writable:	bit mask of writable DCR bits
253 * @pword:		number of bytes per PWord
254 * @fifo_depth:		number of PWords that FIFO will hold
255 * @readIntrThreshold:	minimum number of PWords we can read
256 *			if we get an interrupt
257 * @writeIntrThreshold:	minimum number of PWords we can write
258 *			if we get an interrupt
259 * @irq_mode:		operation mode of interrupt handler for this port
260 * @irq_complete:	mutex used to wait for an interrupt to occur
261 */
262struct parport_ip32_private {
263	struct parport_ip32_regs	regs;
264	unsigned int			dcr_cache;
265	unsigned int			dcr_writable;
266	unsigned int			pword;
267	unsigned int			fifo_depth;
268	unsigned int			readIntrThreshold;
269	unsigned int			writeIntrThreshold;
270	enum parport_ip32_irq_mode	irq_mode;
271	struct completion		irq_complete;
272};
273
274/*--- Debug code -------------------------------------------------------*/
275
276/*
277 * pr_debug1 - print debug messages
278 *
279 * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
280 */
281#if DEBUG_PARPORT_IP32 >= 1
282#	define pr_debug1(...)	printk(KERN_DEBUG __VA_ARGS__)
283#else /* DEBUG_PARPORT_IP32 < 1 */
284#	define pr_debug1(...)	do { } while (0)
285#endif
286
287/*
288 * pr_trace, pr_trace1 - trace function calls
289 * @p:		pointer to &struct parport
290 * @fmt:	printk format string
291 * @...:	parameters for format string
292 *
293 * Macros used to trace function calls.  The given string is formatted after
294 * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
295 * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
296 * directly.
297 */
298#define __pr_trace(pr, p, fmt, ...)					\
299	pr("%s: %s" fmt "\n",						\
300	   ({ const struct parport *__p = (p);				\
301		   __p ? __p->name : "parport_ip32"; }),		\
302	   __func__ , ##__VA_ARGS__)
303#define pr_trace(p, fmt, ...)	__pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
304#define pr_trace1(p, fmt, ...)	__pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
305
306/*
307 * __pr_probe, pr_probe - print message if @verbose_probing is true
308 * @p:		pointer to &struct parport
309 * @fmt:	printk format string
310 * @...:	parameters for format string
311 *
312 * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
313 */
314#define __pr_probe(...)							\
315	do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
316#define pr_probe(p, fmt, ...)						\
317	__pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
318
319/*
320 * parport_ip32_dump_state - print register status of parport
321 * @p:		pointer to &struct parport
322 * @str:	string to add in message
323 * @show_ecp_config:	shall we dump ECP configuration registers too?
324 *
325 * This function is only here for debugging purpose, and should be used with
326 * care.  Reading the parallel port registers may have undesired side effects.
327 * Especially if @show_ecp_config is true, the parallel port is resetted.
328 * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
329 */
330#if DEBUG_PARPORT_IP32 >= 2
331static void parport_ip32_dump_state(struct parport *p, char *str,
332				    unsigned int show_ecp_config)
333{
334	struct parport_ip32_private * const priv = p->physport->private_data;
335	unsigned int i;
336
337	printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
338	{
339		static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
340						     "ECP", "EPP", "???",
341						     "TST", "CFG"};
342		unsigned int ecr = readb(priv->regs.ecr);
343		printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
344		printk(" %s",
345		       ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
346		if (ecr & ECR_nERRINTR)
347			printk(",nErrIntrEn");
348		if (ecr & ECR_DMAEN)
349			printk(",dmaEn");
350		if (ecr & ECR_SERVINTR)
351			printk(",serviceIntr");
352		if (ecr & ECR_F_FULL)
353			printk(",f_full");
354		if (ecr & ECR_F_EMPTY)
355			printk(",f_empty");
356		printk("\n");
357	}
358	if (show_ecp_config) {
359		unsigned int oecr, cnfgA, cnfgB;
360		oecr = readb(priv->regs.ecr);
361		writeb(ECR_MODE_PS2, priv->regs.ecr);
362		writeb(ECR_MODE_CFG, priv->regs.ecr);
363		cnfgA = readb(priv->regs.cnfgA);
364		cnfgB = readb(priv->regs.cnfgB);
365		writeb(ECR_MODE_PS2, priv->regs.ecr);
366		writeb(oecr, priv->regs.ecr);
367		printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
368		printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
369		switch (cnfgA & CNFGA_ID_MASK) {
370		case CNFGA_ID_8:
371			printk(",8 bits");
372			break;
373		case CNFGA_ID_16:
374			printk(",16 bits");
375			break;
376		case CNFGA_ID_32:
377			printk(",32 bits");
378			break;
379		default:
380			printk(",unknown ID");
381			break;
382		}
383		if (!(cnfgA & CNFGA_nBYTEINTRANS))
384			printk(",ByteInTrans");
385		if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
386			printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
387			       ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
388		printk("\n");
389		printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
390		printk(" irq=%u,dma=%u",
391		       (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
392		       (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
393		printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
394		if (cnfgB & CNFGB_COMPRESS)
395			printk(",compress");
396		printk("\n");
397	}
398	for (i = 0; i < 2; i++) {
399		unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
400		printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
401		       i ? "soft" : "hard", dcr);
402		printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
403		if (dcr & DCR_IRQ)
404			printk(",ackIntEn");
405		if (!(dcr & DCR_SELECT))
406			printk(",nSelectIn");
407		if (dcr & DCR_nINIT)
408			printk(",nInit");
409		if (!(dcr & DCR_AUTOFD))
410			printk(",nAutoFD");
411		if (!(dcr & DCR_STROBE))
412			printk(",nStrobe");
413		printk("\n");
414	}
415#define sep (f++ ? ',' : ' ')
416	{
417		unsigned int f = 0;
418		unsigned int dsr = readb(priv->regs.dsr);
419		printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
420		if (!(dsr & DSR_nBUSY))
421			printk("%cBusy", sep);
422		if (dsr & DSR_nACK)
423			printk("%cnAck", sep);
424		if (dsr & DSR_PERROR)
425			printk("%cPError", sep);
426		if (dsr & DSR_SELECT)
427			printk("%cSelect", sep);
428		if (dsr & DSR_nFAULT)
429			printk("%cnFault", sep);
430		if (!(dsr & DSR_nPRINT))
431			printk("%c(Print)", sep);
432		if (dsr & DSR_TIMEOUT)
433			printk("%cTimeout", sep);
434		printk("\n");
435	}
436#undef sep
437}
438#else /* DEBUG_PARPORT_IP32 < 2 */
439#define parport_ip32_dump_state(...)	do { } while (0)
440#endif
441
442/*
443 * CHECK_EXTRA_BITS - track and log extra bits
444 * @p:		pointer to &struct parport
445 * @b:		byte to inspect
446 * @m:		bit mask of authorized bits
447 *
448 * This is used to track and log extra bits that should not be there in
449 * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
450 * defined if %DEBUG_PARPORT_IP32 >= 1.
451 */
452#if DEBUG_PARPORT_IP32 >= 1
453#define CHECK_EXTRA_BITS(p, b, m)					\
454	do {								\
455		unsigned int __b = (b), __m = (m);			\
456		if (__b & ~__m)						\
457			pr_debug1(PPIP32 "%s: extra bits in %s(%s): "	\
458				  "0x%02x/0x%02x\n",			\
459				  (p)->name, __func__, #b, __b, __m);	\
460	} while (0)
461#else /* DEBUG_PARPORT_IP32 < 1 */
462#define CHECK_EXTRA_BITS(...)	do { } while (0)
463#endif
464
465/*--- IP32 parallel port DMA operations --------------------------------*/
466
467/**
468 * struct parport_ip32_dma_data - private data needed for DMA operation
469 * @dir:	DMA direction (from or to device)
470 * @buf:	buffer physical address
471 * @len:	buffer length
472 * @next:	address of next bytes to DMA transfer
473 * @left:	number of bytes remaining
474 * @ctx:	next context to write (0: context_a; 1: context_b)
475 * @irq_on:	are the DMA IRQs currently enabled?
476 * @lock:	spinlock to protect access to the structure
477 */
478struct parport_ip32_dma_data {
479	enum dma_data_direction		dir;
480	dma_addr_t			buf;
481	dma_addr_t			next;
482	size_t				len;
483	size_t				left;
484	unsigned int			ctx;
485	unsigned int			irq_on;
486	spinlock_t			lock;
487};
488static struct parport_ip32_dma_data parport_ip32_dma;
489
490/**
491 * parport_ip32_dma_setup_context - setup next DMA context
492 * @limit:	maximum data size for the context
493 *
494 * The alignment constraints must be verified in caller function, and the
495 * parameter @limit must be set accordingly.
496 */
497static void parport_ip32_dma_setup_context(unsigned int limit)
498{
499	unsigned long flags;
500
501	spin_lock_irqsave(&parport_ip32_dma.lock, flags);
502	if (parport_ip32_dma.left > 0) {
503		/* Note: ctxreg is "volatile" here only because
504		 * mace->perif.ctrl.parport.context_a and context_b are
505		 * "volatile".  */
506		volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
507			&mace->perif.ctrl.parport.context_a :
508			&mace->perif.ctrl.parport.context_b;
509		u64 count;
510		u64 ctxval;
511		if (parport_ip32_dma.left <= limit) {
512			count = parport_ip32_dma.left;
513			ctxval = MACEPAR_CONTEXT_LASTFLAG;
514		} else {
515			count = limit;
516			ctxval = 0;
517		}
518
519		pr_trace(NULL,
520			 "(%u): 0x%04x:0x%04x, %u -> %u%s",
521			 limit,
522			 (unsigned int)parport_ip32_dma.buf,
523			 (unsigned int)parport_ip32_dma.next,
524			 (unsigned int)count,
525			 parport_ip32_dma.ctx, ctxval ? "*" : "");
526
527		ctxval |= parport_ip32_dma.next &
528			MACEPAR_CONTEXT_BASEADDR_MASK;
529		ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
530			MACEPAR_CONTEXT_DATALEN_MASK;
531		writeq(ctxval, ctxreg);
532		parport_ip32_dma.next += count;
533		parport_ip32_dma.left -= count;
534		parport_ip32_dma.ctx ^= 1U;
535	}
536	/* If there is nothing more to send, disable IRQs to avoid to
537	 * face an IRQ storm which can lock the machine.  Disable them
538	 * only once. */
539	if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
540		pr_debug(PPIP32 "IRQ off (ctx)\n");
541		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
542		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
543		parport_ip32_dma.irq_on = 0;
544	}
545	spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
546}
547
548/**
549 * parport_ip32_dma_interrupt - DMA interrupt handler
550 * @irq:	interrupt number
551 * @dev_id:	unused
552 */
553static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
554{
555	if (parport_ip32_dma.left)
556		pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
557	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
558	return IRQ_HANDLED;
559}
560
561#if DEBUG_PARPORT_IP32
562static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
563{
564	pr_trace1(NULL, "(%d)", irq);
565	return IRQ_HANDLED;
566}
567#endif
568
569/**
570 * parport_ip32_dma_start - begins a DMA transfer
571 * @dir:	DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
572 * @addr:	pointer to data buffer
573 * @count:	buffer size
574 *
575 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
576 * correctly balanced.
577 */
578static int parport_ip32_dma_start(enum dma_data_direction dir,
579				  void *addr, size_t count)
580{
581	unsigned int limit;
582	u64 ctrl;
583
584	pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
585
586	/* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
587	 * be 64 bytes aligned. */
588	BUG_ON(dir != DMA_TO_DEVICE);
589
590	/* Reset DMA controller */
591	ctrl = MACEPAR_CTLSTAT_RESET;
592	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
593
594	/* DMA IRQs should normally be enabled */
595	if (!parport_ip32_dma.irq_on) {
596		WARN_ON(1);
597		enable_irq(MACEISA_PAR_CTXA_IRQ);
598		enable_irq(MACEISA_PAR_CTXB_IRQ);
599		parport_ip32_dma.irq_on = 1;
600	}
601
602	/* Prepare DMA pointers */
603	parport_ip32_dma.dir = dir;
604	parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
605	parport_ip32_dma.len = count;
606	parport_ip32_dma.next = parport_ip32_dma.buf;
607	parport_ip32_dma.left = parport_ip32_dma.len;
608	parport_ip32_dma.ctx = 0;
609
610	/* Setup DMA direction and first two contexts */
611	ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
612	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
613	/* Single transfer should not cross a 4K page boundary */
614	limit = MACEPAR_CONTEXT_DATA_BOUND -
615		(parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
616	parport_ip32_dma_setup_context(limit);
617	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
618
619	/* Real start of DMA transfer */
620	ctrl |= MACEPAR_CTLSTAT_ENABLE;
621	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
622
623	return 0;
624}
625
626/**
627 * parport_ip32_dma_stop - ends a running DMA transfer
628 *
629 * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
630 * correctly balanced.
631 */
632static void parport_ip32_dma_stop(void)
633{
634	u64 ctx_a;
635	u64 ctx_b;
636	u64 ctrl;
637	u64 diag;
638	size_t res[2];	/* {[0] = res_a, [1] = res_b} */
639
640	pr_trace(NULL, "()");
641
642	/* Disable IRQs */
643	spin_lock_irq(&parport_ip32_dma.lock);
644	if (parport_ip32_dma.irq_on) {
645		pr_debug(PPIP32 "IRQ off (stop)\n");
646		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
647		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
648		parport_ip32_dma.irq_on = 0;
649	}
650	spin_unlock_irq(&parport_ip32_dma.lock);
651	/* Force IRQ synchronization, even if the IRQs were disabled
652	 * elsewhere. */
653	synchronize_irq(MACEISA_PAR_CTXA_IRQ);
654	synchronize_irq(MACEISA_PAR_CTXB_IRQ);
655
656	/* Stop DMA transfer */
657	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
658	ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
659	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
660
661	/* Adjust residue (parport_ip32_dma.left) */
662	ctx_a = readq(&mace->perif.ctrl.parport.context_a);
663	ctx_b = readq(&mace->perif.ctrl.parport.context_b);
664	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
665	diag = readq(&mace->perif.ctrl.parport.diagnostic);
666	res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
667		1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
668		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
669		0;
670	res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
671		1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
672		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
673		0;
674	if (diag & MACEPAR_DIAG_DMACTIVE)
675		res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
676			1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
677			     MACEPAR_DIAG_CTRSHIFT);
678	parport_ip32_dma.left += res[0] + res[1];
679
680	/* Reset DMA controller, and re-enable IRQs */
681	ctrl = MACEPAR_CTLSTAT_RESET;
682	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
683	pr_debug(PPIP32 "IRQ on (stop)\n");
684	enable_irq(MACEISA_PAR_CTXA_IRQ);
685	enable_irq(MACEISA_PAR_CTXB_IRQ);
686	parport_ip32_dma.irq_on = 1;
687
688	dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
689			 parport_ip32_dma.dir);
690}
691
692/**
693 * parport_ip32_dma_get_residue - get residue from last DMA transfer
694 *
695 * Returns the number of bytes remaining from last DMA transfer.
696 */
697static inline size_t parport_ip32_dma_get_residue(void)
698{
699	return parport_ip32_dma.left;
700}
701
702/**
703 * parport_ip32_dma_register - initialize DMA engine
704 *
705 * Returns zero for success.
706 */
707static int parport_ip32_dma_register(void)
708{
709	int err;
710
711	spin_lock_init(&parport_ip32_dma.lock);
712	parport_ip32_dma.irq_on = 1;
713
714	/* Reset DMA controller */
715	writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
716
717	/* Request IRQs */
718	err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
719			  0, "parport_ip32", NULL);
720	if (err)
721		goto fail_a;
722	err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
723			  0, "parport_ip32", NULL);
724	if (err)
725		goto fail_b;
726#if DEBUG_PARPORT_IP32
727	/* FIXME - what is this IRQ for? */
728	err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
729			  0, "parport_ip32", NULL);
730	if (err)
731		goto fail_merr;
732#endif
733	return 0;
734
735#if DEBUG_PARPORT_IP32
736fail_merr:
737	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
738#endif
739fail_b:
740	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
741fail_a:
742	return err;
743}
744
745/**
746 * parport_ip32_dma_unregister - release and free resources for DMA engine
747 */
748static void parport_ip32_dma_unregister(void)
749{
750#if DEBUG_PARPORT_IP32
751	free_irq(MACEISA_PAR_MERR_IRQ, NULL);
752#endif
753	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
754	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
755}
756
757/*--- Interrupt handlers and associates --------------------------------*/
758
759/**
760 * parport_ip32_wakeup - wakes up code waiting for an interrupt
761 * @p:		pointer to &struct parport
762 */
763static inline void parport_ip32_wakeup(struct parport *p)
764{
765	struct parport_ip32_private * const priv = p->physport->private_data;
766	complete(&priv->irq_complete);
767}
768
769/**
770 * parport_ip32_interrupt - interrupt handler
771 * @irq:	interrupt number
772 * @dev_id:	pointer to &struct parport
773 *
774 * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
775 * %PARPORT_IP32_IRQ_FWD.
776 */
777static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
778{
779	struct parport * const p = dev_id;
780	struct parport_ip32_private * const priv = p->physport->private_data;
781	enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
782
783	switch (irq_mode) {
784	case PARPORT_IP32_IRQ_FWD:
785		return parport_irq_handler(irq, dev_id);
786
787	case PARPORT_IP32_IRQ_HERE:
788		parport_ip32_wakeup(p);
789		break;
790	}
791
792	return IRQ_HANDLED;
793}
794
795/*--- Some utility function to manipulate ECR register -----------------*/
796
797/**
798 * parport_ip32_read_econtrol - read contents of the ECR register
799 * @p:		pointer to &struct parport
800 */
801static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
802{
803	struct parport_ip32_private * const priv = p->physport->private_data;
804	return readb(priv->regs.ecr);
805}
806
807/**
808 * parport_ip32_write_econtrol - write new contents to the ECR register
809 * @p:		pointer to &struct parport
810 * @c:		new value to write
811 */
812static inline void parport_ip32_write_econtrol(struct parport *p,
813					       unsigned int c)
814{
815	struct parport_ip32_private * const priv = p->physport->private_data;
816	writeb(c, priv->regs.ecr);
817}
818
819/**
820 * parport_ip32_frob_econtrol - change bits from the ECR register
821 * @p:		pointer to &struct parport
822 * @mask:	bit mask of bits to change
823 * @val:	new value for changed bits
824 *
825 * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
826 * in @val, and write the result to the ECR.
827 */
828static inline void parport_ip32_frob_econtrol(struct parport *p,
829					      unsigned int mask,
830					      unsigned int val)
831{
832	unsigned int c;
833	c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
834	parport_ip32_write_econtrol(p, c);
835}
836
837/**
838 * parport_ip32_set_mode - change mode of ECP port
839 * @p:		pointer to &struct parport
840 * @mode:	new mode to write in ECR
841 *
842 * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
843 * mode @mode.  Go through PS2 mode if needed.
844 */
845static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
846{
847	unsigned int omode;
848
849	mode &= ECR_MODE_MASK;
850	omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
851
852	if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
853	      || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
854		/* We have to go through PS2 mode */
855		unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
856		parport_ip32_write_econtrol(p, ecr);
857	}
858	parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
859}
860
861/*--- Basic functions needed for parport -------------------------------*/
862
863/**
864 * parport_ip32_read_data - return current contents of the DATA register
865 * @p:		pointer to &struct parport
866 */
867static inline unsigned char parport_ip32_read_data(struct parport *p)
868{
869	struct parport_ip32_private * const priv = p->physport->private_data;
870	return readb(priv->regs.data);
871}
872
873/**
874 * parport_ip32_write_data - set new contents for the DATA register
875 * @p:		pointer to &struct parport
876 * @d:		new value to write
877 */
878static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
879{
880	struct parport_ip32_private * const priv = p->physport->private_data;
881	writeb(d, priv->regs.data);
882}
883
884/**
885 * parport_ip32_read_status - return current contents of the DSR register
886 * @p:		pointer to &struct parport
887 */
888static inline unsigned char parport_ip32_read_status(struct parport *p)
889{
890	struct parport_ip32_private * const priv = p->physport->private_data;
891	return readb(priv->regs.dsr);
892}
893
894/**
895 * __parport_ip32_read_control - return cached contents of the DCR register
896 * @p:		pointer to &struct parport
897 */
898static inline unsigned int __parport_ip32_read_control(struct parport *p)
899{
900	struct parport_ip32_private * const priv = p->physport->private_data;
901	return priv->dcr_cache; /* use soft copy */
902}
903
904/**
905 * __parport_ip32_write_control - set new contents for the DCR register
906 * @p:		pointer to &struct parport
907 * @c:		new value to write
908 */
909static inline void __parport_ip32_write_control(struct parport *p,
910						unsigned int c)
911{
912	struct parport_ip32_private * const priv = p->physport->private_data;
913	CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
914	c &= priv->dcr_writable; /* only writable bits */
915	writeb(c, priv->regs.dcr);
916	priv->dcr_cache = c;		/* update soft copy */
917}
918
919/**
920 * __parport_ip32_frob_control - change bits from the DCR register
921 * @p:		pointer to &struct parport
922 * @mask:	bit mask of bits to change
923 * @val:	new value for changed bits
924 *
925 * This is equivalent to read from the DCR, mask out the bits in @mask,
926 * exclusive-or with the bits in @val, and write the result to the DCR.
927 * Actually, the cached contents of the DCR is used.
928 */
929static inline void __parport_ip32_frob_control(struct parport *p,
930					       unsigned int mask,
931					       unsigned int val)
932{
933	unsigned int c;
934	c = (__parport_ip32_read_control(p) & ~mask) ^ val;
935	__parport_ip32_write_control(p, c);
936}
937
938/**
939 * parport_ip32_read_control - return cached contents of the DCR register
940 * @p:		pointer to &struct parport
941 *
942 * The return value is masked so as to only return the value of %DCR_STROBE,
943 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
944 */
945static inline unsigned char parport_ip32_read_control(struct parport *p)
946{
947	const unsigned int rm =
948		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
949	return __parport_ip32_read_control(p) & rm;
950}
951
952/**
953 * parport_ip32_write_control - set new contents for the DCR register
954 * @p:		pointer to &struct parport
955 * @c:		new value to write
956 *
957 * The value is masked so as to only change the value of %DCR_STROBE,
958 * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
959 */
960static inline void parport_ip32_write_control(struct parport *p,
961					      unsigned char c)
962{
963	const unsigned int wm =
964		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
965	CHECK_EXTRA_BITS(p, c, wm);
966	__parport_ip32_frob_control(p, wm, c & wm);
967}
968
969/**
970 * parport_ip32_frob_control - change bits from the DCR register
971 * @p:		pointer to &struct parport
972 * @mask:	bit mask of bits to change
973 * @val:	new value for changed bits
974 *
975 * This differs from __parport_ip32_frob_control() in that it only allows to
976 * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
977 */
978static inline unsigned char parport_ip32_frob_control(struct parport *p,
979						      unsigned char mask,
980						      unsigned char val)
981{
982	const unsigned int wm =
983		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
984	CHECK_EXTRA_BITS(p, mask, wm);
985	CHECK_EXTRA_BITS(p, val, wm);
986	__parport_ip32_frob_control(p, mask & wm, val & wm);
987	return parport_ip32_read_control(p);
988}
989
990/**
991 * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
992 * @p:		pointer to &struct parport
993 */
994static inline void parport_ip32_disable_irq(struct parport *p)
995{
996	__parport_ip32_frob_control(p, DCR_IRQ, 0);
997}
998
999/**
1000 * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1001 * @p:		pointer to &struct parport
1002 */
1003static inline void parport_ip32_enable_irq(struct parport *p)
1004{
1005	__parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1006}
1007
1008/**
1009 * parport_ip32_data_forward - enable host-to-peripheral communications
1010 * @p:		pointer to &struct parport
1011 *
1012 * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1013 */
1014static inline void parport_ip32_data_forward(struct parport *p)
1015{
1016	__parport_ip32_frob_control(p, DCR_DIR, 0);
1017}
1018
1019/**
1020 * parport_ip32_data_reverse - enable peripheral-to-host communications
1021 * @p:		pointer to &struct parport
1022 *
1023 * Place the data bus in a high impedance state, if @p->modes has the
1024 * PARPORT_MODE_TRISTATE bit set.
1025 */
1026static inline void parport_ip32_data_reverse(struct parport *p)
1027{
1028	__parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1029}
1030
1031/**
1032 * parport_ip32_init_state - for core parport code
1033 * @dev:	pointer to &struct pardevice
1034 * @s:		pointer to &struct parport_state to initialize
1035 */
1036static void parport_ip32_init_state(struct pardevice *dev,
1037				    struct parport_state *s)
1038{
1039	s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1040	s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1041}
1042
1043/**
1044 * parport_ip32_save_state - for core parport code
1045 * @p:		pointer to &struct parport
1046 * @s:		pointer to &struct parport_state to save state to
1047 */
1048static void parport_ip32_save_state(struct parport *p,
1049				    struct parport_state *s)
1050{
1051	s->u.ip32.dcr = __parport_ip32_read_control(p);
1052	s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1053}
1054
1055/**
1056 * parport_ip32_restore_state - for core parport code
1057 * @p:		pointer to &struct parport
1058 * @s:		pointer to &struct parport_state to restore state from
1059 */
1060static void parport_ip32_restore_state(struct parport *p,
1061				       struct parport_state *s)
1062{
1063	parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1064	parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1065	__parport_ip32_write_control(p, s->u.ip32.dcr);
1066}
1067
1068/*--- EPP mode functions -----------------------------------------------*/
1069
1070/**
1071 * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1072 * @p:		pointer to &struct parport
1073 *
1074 * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1075 */
1076static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1077{
1078	struct parport_ip32_private * const priv = p->physport->private_data;
1079	unsigned int cleared;
1080
1081	if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1082		cleared = 1;
1083	else {
1084		unsigned int r;
1085		/* To clear timeout some chips require double read */
1086		parport_ip32_read_status(p);
1087		r = parport_ip32_read_status(p);
1088		/* Some reset by writing 1 */
1089		writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1090		/* Others by writing 0 */
1091		writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1092
1093		r = parport_ip32_read_status(p);
1094		cleared = !(r & DSR_TIMEOUT);
1095	}
1096
1097	pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1098	return cleared;
1099}
1100
1101/**
1102 * parport_ip32_epp_read - generic EPP read function
1103 * @eppreg:	I/O register to read from
1104 * @p:		pointer to &struct parport
1105 * @buf:	buffer to store read data
1106 * @len:	length of buffer @buf
1107 * @flags:	may be PARPORT_EPP_FAST
1108 */
1109static size_t parport_ip32_epp_read(void __iomem *eppreg,
1110				    struct parport *p, void *buf,
1111				    size_t len, int flags)
1112{
1113	struct parport_ip32_private * const priv = p->physport->private_data;
1114	size_t got;
1115	parport_ip32_set_mode(p, ECR_MODE_EPP);
1116	parport_ip32_data_reverse(p);
1117	parport_ip32_write_control(p, DCR_nINIT);
1118	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1119		readsb(eppreg, buf, len);
1120		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1121			parport_ip32_clear_epp_timeout(p);
1122			return -EIO;
1123		}
1124		got = len;
1125	} else {
1126		u8 *bufp = buf;
1127		for (got = 0; got < len; got++) {
1128			*bufp++ = readb(eppreg);
1129			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1130				parport_ip32_clear_epp_timeout(p);
1131				break;
1132			}
1133		}
1134	}
1135	parport_ip32_data_forward(p);
1136	parport_ip32_set_mode(p, ECR_MODE_PS2);
1137	return got;
1138}
1139
1140/**
1141 * parport_ip32_epp_write - generic EPP write function
1142 * @eppreg:	I/O register to write to
1143 * @p:		pointer to &struct parport
1144 * @buf:	buffer of data to write
1145 * @len:	length of buffer @buf
1146 * @flags:	may be PARPORT_EPP_FAST
1147 */
1148static size_t parport_ip32_epp_write(void __iomem *eppreg,
1149				     struct parport *p, const void *buf,
1150				     size_t len, int flags)
1151{
1152	struct parport_ip32_private * const priv = p->physport->private_data;
1153	size_t written;
1154	parport_ip32_set_mode(p, ECR_MODE_EPP);
1155	parport_ip32_data_forward(p);
1156	parport_ip32_write_control(p, DCR_nINIT);
1157	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1158		writesb(eppreg, buf, len);
1159		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1160			parport_ip32_clear_epp_timeout(p);
1161			return -EIO;
1162		}
1163		written = len;
1164	} else {
1165		const u8 *bufp = buf;
1166		for (written = 0; written < len; written++) {
1167			writeb(*bufp++, eppreg);
1168			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1169				parport_ip32_clear_epp_timeout(p);
1170				break;
1171			}
1172		}
1173	}
1174	parport_ip32_set_mode(p, ECR_MODE_PS2);
1175	return written;
1176}
1177
1178/**
1179 * parport_ip32_epp_read_data - read a block of data in EPP mode
1180 * @p:		pointer to &struct parport
1181 * @buf:	buffer to store read data
1182 * @len:	length of buffer @buf
1183 * @flags:	may be PARPORT_EPP_FAST
1184 */
1185static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1186					 size_t len, int flags)
1187{
1188	struct parport_ip32_private * const priv = p->physport->private_data;
1189	return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1190}
1191
1192/**
1193 * parport_ip32_epp_write_data - write a block of data in EPP mode
1194 * @p:		pointer to &struct parport
1195 * @buf:	buffer of data to write
1196 * @len:	length of buffer @buf
1197 * @flags:	may be PARPORT_EPP_FAST
1198 */
1199static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1200					  size_t len, int flags)
1201{
1202	struct parport_ip32_private * const priv = p->physport->private_data;
1203	return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1204}
1205
1206/**
1207 * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1208 * @p:		pointer to &struct parport
1209 * @buf:	buffer to store read data
1210 * @len:	length of buffer @buf
1211 * @flags:	may be PARPORT_EPP_FAST
1212 */
1213static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1214					 size_t len, int flags)
1215{
1216	struct parport_ip32_private * const priv = p->physport->private_data;
1217	return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1218}
1219
1220/**
1221 * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1222 * @p:		pointer to &struct parport
1223 * @buf:	buffer of data to write
1224 * @len:	length of buffer @buf
1225 * @flags:	may be PARPORT_EPP_FAST
1226 */
1227static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1228					  size_t len, int flags)
1229{
1230	struct parport_ip32_private * const priv = p->physport->private_data;
1231	return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1232}
1233
1234/*--- ECP mode functions (FIFO) ----------------------------------------*/
1235
1236/**
1237 * parport_ip32_fifo_wait_break - check if the waiting function should return
1238 * @p:		pointer to &struct parport
1239 * @expire:	timeout expiring date, in jiffies
1240 *
1241 * parport_ip32_fifo_wait_break() checks if the waiting function should return
1242 * immediately or not.  The break conditions are:
1243 *	- expired timeout;
1244 *	- a pending signal;
1245 *	- nFault asserted low.
1246 * This function also calls cond_resched().
1247 */
1248static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1249						 unsigned long expire)
1250{
1251	cond_resched();
1252	if (time_after(jiffies, expire)) {
1253		pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1254		return 1;
1255	}
1256	if (signal_pending(current)) {
1257		pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1258		return 1;
1259	}
1260	if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1261		pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1262		return 1;
1263	}
1264	return 0;
1265}
1266
1267/**
1268 * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1269 * @p:		pointer to &struct parport
1270 *
1271 * Returns the number of bytes that can safely be written in the FIFO.  A
1272 * return value of zero means that the calling function should terminate as
1273 * fast as possible.
1274 */
1275static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1276{
1277	struct parport_ip32_private * const priv = p->physport->private_data;
1278	struct parport * const physport = p->physport;
1279	unsigned long expire;
1280	unsigned int count;
1281	unsigned int ecr;
1282
1283	expire = jiffies + physport->cad->timeout;
1284	count = 0;
1285	while (1) {
1286		if (parport_ip32_fifo_wait_break(p, expire))
1287			break;
1288
1289		/* Check FIFO state.  We do nothing when the FIFO is nor full,
1290		 * nor empty.  It appears that the FIFO full bit is not always
1291		 * reliable, the FIFO state is sometimes wrongly reported, and
1292		 * the chip gets confused if we give it another byte. */
1293		ecr = parport_ip32_read_econtrol(p);
1294		if (ecr & ECR_F_EMPTY) {
1295			/* FIFO is empty, fill it up */
1296			count = priv->fifo_depth;
1297			break;
1298		}
1299
1300		/* Wait a moment... */
1301		udelay(FIFO_POLLING_INTERVAL);
1302	} /* while (1) */
1303
1304	return count;
1305}
1306
1307/**
1308 * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1309 * @p:		pointer to &struct parport
1310 *
1311 * Returns the number of bytes that can safely be written in the FIFO.  A
1312 * return value of zero means that the calling function should terminate as
1313 * fast as possible.
1314 */
1315static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1316{
1317	static unsigned int lost_interrupt = 0;
1318	struct parport_ip32_private * const priv = p->physport->private_data;
1319	struct parport * const physport = p->physport;
1320	unsigned long nfault_timeout;
1321	unsigned long expire;
1322	unsigned int count;
1323	unsigned int ecr;
1324
1325	nfault_timeout = min((unsigned long)physport->cad->timeout,
1326			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1327	expire = jiffies + physport->cad->timeout;
1328	count = 0;
1329	while (1) {
1330		if (parport_ip32_fifo_wait_break(p, expire))
1331			break;
1332
1333		/* Initialize mutex used to take interrupts into account */
1334		reinit_completion(&priv->irq_complete);
1335
1336		/* Enable serviceIntr */
1337		parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1338
1339		/* Enabling serviceIntr while the FIFO is empty does not
1340		 * always generate an interrupt, so check for emptiness
1341		 * now. */
1342		ecr = parport_ip32_read_econtrol(p);
1343		if (!(ecr & ECR_F_EMPTY)) {
1344			/* FIFO is not empty: wait for an interrupt or a
1345			 * timeout to occur */
1346			wait_for_completion_interruptible_timeout(
1347				&priv->irq_complete, nfault_timeout);
1348			ecr = parport_ip32_read_econtrol(p);
1349			if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1350			    && !lost_interrupt) {
1351				printk(KERN_WARNING PPIP32
1352				       "%s: lost interrupt in %s\n",
1353				       p->name, __func__);
1354				lost_interrupt = 1;
1355			}
1356		}
1357
1358		/* Disable serviceIntr */
1359		parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1360
1361		/* Check FIFO state */
1362		if (ecr & ECR_F_EMPTY) {
1363			/* FIFO is empty, fill it up */
1364			count = priv->fifo_depth;
1365			break;
1366		} else if (ecr & ECR_SERVINTR) {
1367			/* FIFO is not empty, but we know that can safely push
1368			 * writeIntrThreshold bytes into it */
1369			count = priv->writeIntrThreshold;
1370			break;
1371		}
1372		/* FIFO is not empty, and we did not get any interrupt.
1373		 * Either it's time to check for nFault, or a signal is
1374		 * pending.  This is verified in
1375		 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1376	} /* while (1) */
1377
1378	return count;
1379}
1380
1381/**
1382 * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1383 * @p:		pointer to &struct parport
1384 * @buf:	buffer of data to write
1385 * @len:	length of buffer @buf
1386 *
1387 * Uses PIO to write the contents of the buffer @buf into the parallel port
1388 * FIFO.  Returns the number of bytes that were actually written.  It can work
1389 * with or without the help of interrupts.  The parallel port must be
1390 * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1391 */
1392static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1393						const void *buf, size_t len)
1394{
1395	struct parport_ip32_private * const priv = p->physport->private_data;
1396	const u8 *bufp = buf;
1397	size_t left = len;
1398
1399	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1400
1401	while (left > 0) {
1402		unsigned int count;
1403
1404		count = (p->irq == PARPORT_IRQ_NONE) ?
1405			parport_ip32_fwp_wait_polling(p) :
1406			parport_ip32_fwp_wait_interrupt(p);
1407		if (count == 0)
1408			break;	/* Transmission should be stopped */
1409		if (count > left)
1410			count = left;
1411		if (count == 1) {
1412			writeb(*bufp, priv->regs.fifo);
1413			bufp++, left--;
1414		} else {
1415			writesb(priv->regs.fifo, bufp, count);
1416			bufp += count, left -= count;
1417		}
1418	}
1419
1420	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1421
1422	return len - left;
1423}
1424
1425/**
1426 * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1427 * @p:		pointer to &struct parport
1428 * @buf:	buffer of data to write
1429 * @len:	length of buffer @buf
1430 *
1431 * Uses DMA to write the contents of the buffer @buf into the parallel port
1432 * FIFO.  Returns the number of bytes that were actually written.  The
1433 * parallel port must be correctly initialized before calling
1434 * parport_ip32_fifo_write_block_dma().
1435 */
1436static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1437						const void *buf, size_t len)
1438{
1439	struct parport_ip32_private * const priv = p->physport->private_data;
1440	struct parport * const physport = p->physport;
1441	unsigned long nfault_timeout;
1442	unsigned long expire;
1443	size_t written;
1444	unsigned int ecr;
1445
1446	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1447
1448	parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1449	reinit_completion(&priv->irq_complete);
1450	parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1451
1452	nfault_timeout = min((unsigned long)physport->cad->timeout,
1453			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1454	expire = jiffies + physport->cad->timeout;
1455	while (1) {
1456		if (parport_ip32_fifo_wait_break(p, expire))
1457			break;
1458		wait_for_completion_interruptible_timeout(&priv->irq_complete,
1459							  nfault_timeout);
1460		ecr = parport_ip32_read_econtrol(p);
1461		if (ecr & ECR_SERVINTR)
1462			break;	/* DMA transfer just finished */
1463	}
1464	parport_ip32_dma_stop();
1465	written = len - parport_ip32_dma_get_residue();
1466
1467	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1468
1469	return written;
1470}
1471
1472/**
1473 * parport_ip32_fifo_write_block - write a block of data
1474 * @p:		pointer to &struct parport
1475 * @buf:	buffer of data to write
1476 * @len:	length of buffer @buf
1477 *
1478 * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1479 * p FIFO.  Returns the number of bytes that were actually written.
1480 */
1481static size_t parport_ip32_fifo_write_block(struct parport *p,
1482					    const void *buf, size_t len)
1483{
1484	size_t written = 0;
1485	if (len)
1486		/* FIXME - Maybe some threshold value should be set for @len
1487		 * under which we revert to PIO mode? */
1488		written = (p->modes & PARPORT_MODE_DMA) ?
1489			parport_ip32_fifo_write_block_dma(p, buf, len) :
1490			parport_ip32_fifo_write_block_pio(p, buf, len);
1491	return written;
1492}
1493
1494/**
1495 * parport_ip32_drain_fifo - wait for FIFO to empty
1496 * @p:		pointer to &struct parport
1497 * @timeout:	timeout, in jiffies
1498 *
1499 * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1500 * 0 if the timeout @timeout is reached before, or if a signal is pending.
1501 */
1502static unsigned int parport_ip32_drain_fifo(struct parport *p,
1503					    unsigned long timeout)
1504{
1505	unsigned long expire = jiffies + timeout;
1506	unsigned int polling_interval;
1507	unsigned int counter;
1508
1509	/* Busy wait for approx. 200us */
1510	for (counter = 0; counter < 40; counter++) {
1511		if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1512			break;
1513		if (time_after(jiffies, expire))
1514			break;
1515		if (signal_pending(current))
1516			break;
1517		udelay(5);
1518	}
1519	/* Poll slowly.  Polling interval starts with 1 millisecond, and is
1520	 * increased exponentially until 128.  */
1521	polling_interval = 1; /* msecs */
1522	while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1523		if (time_after_eq(jiffies, expire))
1524			break;
1525		msleep_interruptible(polling_interval);
1526		if (signal_pending(current))
1527			break;
1528		if (polling_interval < 128)
1529			polling_interval *= 2;
1530	}
1531
1532	return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1533}
1534
1535/**
1536 * parport_ip32_get_fifo_residue - reset FIFO
1537 * @p:		pointer to &struct parport
1538 * @mode:	current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1539 *
1540 * This function resets FIFO, and returns the number of bytes remaining in it.
1541 */
1542static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1543						  unsigned int mode)
1544{
1545	struct parport_ip32_private * const priv = p->physport->private_data;
1546	unsigned int residue;
1547	unsigned int cnfga;
1548
1549	/* FIXME - We are missing one byte if the printer is off-line.  I
1550	 * don't know how to detect this.  It looks that the full bit is not
1551	 * always reliable.  For the moment, the problem is avoided in most
1552	 * cases by testing for BUSY in parport_ip32_compat_write_data().
1553	 */
1554	if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1555		residue = 0;
1556	else {
1557		pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1558
1559		/* Stop all transfers.
1560		 *
1561		 * Microsoft's document instructs to drive DCR_STROBE to 0,
1562		 * but it doesn't work (at least in Compatibility mode, not
1563		 * tested in ECP mode).  Switching directly to Test mode (as
1564		 * in parport_pc) is not an option: it does confuse the port,
1565		 * ECP service interrupts are no more working after that.  A
1566		 * hard reset is then needed to revert to a sane state.
1567		 *
1568		 * Let's hope that the FIFO is really stuck and that the
1569		 * peripheral doesn't wake up now.
1570		 */
1571		parport_ip32_frob_control(p, DCR_STROBE, 0);
1572
1573		/* Fill up FIFO */
1574		for (residue = priv->fifo_depth; residue > 0; residue--) {
1575			if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1576				break;
1577			writeb(0x00, priv->regs.fifo);
1578		}
1579	}
1580	if (residue)
1581		pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1582			  p->name, residue,
1583			  (residue == 1) ? " was" : "s were");
1584
1585	/* Now reset the FIFO */
1586	parport_ip32_set_mode(p, ECR_MODE_PS2);
1587
1588	/* Host recovery for ECP mode */
1589	if (mode == ECR_MODE_ECP) {
1590		parport_ip32_data_reverse(p);
1591		parport_ip32_frob_control(p, DCR_nINIT, 0);
1592		if (parport_wait_peripheral(p, DSR_PERROR, 0))
1593			pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1594				  p->name, __func__);
1595		parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1596		parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1597		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1598			pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1599				  p->name, __func__);
1600	}
1601
1602	/* Adjust residue if needed */
1603	parport_ip32_set_mode(p, ECR_MODE_CFG);
1604	cnfga = readb(priv->regs.cnfgA);
1605	if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1606		pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1607			  p->name, cnfga);
1608		pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1609			  p->name);
1610		residue++;
1611	}
1612
1613	/* Don't care about partial PWords since we do not support
1614	 * PWord != 1 byte. */
1615
1616	/* Back to forward PS2 mode. */
1617	parport_ip32_set_mode(p, ECR_MODE_PS2);
1618	parport_ip32_data_forward(p);
1619
1620	return residue;
1621}
1622
1623/**
1624 * parport_ip32_compat_write_data - write a block of data in SPP mode
1625 * @p:		pointer to &struct parport
1626 * @buf:	buffer of data to write
1627 * @len:	length of buffer @buf
1628 * @flags:	ignored
1629 */
1630static size_t parport_ip32_compat_write_data(struct parport *p,
1631					     const void *buf, size_t len,
1632					     int flags)
1633{
1634	static unsigned int ready_before = 1;
1635	struct parport_ip32_private * const priv = p->physport->private_data;
1636	struct parport * const physport = p->physport;
1637	size_t written = 0;
1638
1639	/* Special case: a timeout of zero means we cannot call schedule().
1640	 * Also if O_NONBLOCK is set then use the default implementation. */
1641	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1642		return parport_ieee1284_write_compat(p, buf, len, flags);
1643
1644	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1645	parport_ip32_set_mode(p, ECR_MODE_PS2);
1646	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1647	parport_ip32_data_forward(p);
1648	parport_ip32_disable_irq(p);
1649	parport_ip32_set_mode(p, ECR_MODE_PPF);
1650	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1651
1652	/* Wait for peripheral to become ready */
1653	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1654				       DSR_nBUSY | DSR_nFAULT)) {
1655		/* Avoid to flood the logs */
1656		if (ready_before)
1657			printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1658			       p->name, __func__);
1659		ready_before = 0;
1660		goto stop;
1661	}
1662	ready_before = 1;
1663
1664	written = parport_ip32_fifo_write_block(p, buf, len);
1665
1666	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1667	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1668
1669	/* Check for a potential residue */
1670	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1671
1672	/* Then, wait for BUSY to get low. */
1673	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1674		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1675		       p->name, __func__);
1676
1677stop:
1678	/* Reset FIFO */
1679	parport_ip32_set_mode(p, ECR_MODE_PS2);
1680	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1681
1682	return written;
1683}
1684
1685/*
1686 * FIXME - Insert here parport_ip32_ecp_read_data().
1687 */
1688
1689/**
1690 * parport_ip32_ecp_write_data - write a block of data in ECP mode
1691 * @p:		pointer to &struct parport
1692 * @buf:	buffer of data to write
1693 * @len:	length of buffer @buf
1694 * @flags:	ignored
1695 */
1696static size_t parport_ip32_ecp_write_data(struct parport *p,
1697					  const void *buf, size_t len,
1698					  int flags)
1699{
1700	static unsigned int ready_before = 1;
1701	struct parport_ip32_private * const priv = p->physport->private_data;
1702	struct parport * const physport = p->physport;
1703	size_t written = 0;
1704
1705	/* Special case: a timeout of zero means we cannot call schedule().
1706	 * Also if O_NONBLOCK is set then use the default implementation. */
1707	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1708		return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1709
1710	/* Negotiate to forward mode if necessary. */
1711	if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1712		/* Event 47: Set nInit high. */
1713		parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1714					     DCR_nINIT | DCR_AUTOFD);
1715
1716		/* Event 49: PError goes high. */
1717		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1718			printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1719			       p->name, __func__);
1720			physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1721			return 0;
1722		}
1723	}
1724
1725	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1726	parport_ip32_set_mode(p, ECR_MODE_PS2);
1727	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1728	parport_ip32_data_forward(p);
1729	parport_ip32_disable_irq(p);
1730	parport_ip32_set_mode(p, ECR_MODE_ECP);
1731	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1732
1733	/* Wait for peripheral to become ready */
1734	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1735				       DSR_nBUSY | DSR_nFAULT)) {
1736		/* Avoid to flood the logs */
1737		if (ready_before)
1738			printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1739			       p->name, __func__);
1740		ready_before = 0;
1741		goto stop;
1742	}
1743	ready_before = 1;
1744
1745	written = parport_ip32_fifo_write_block(p, buf, len);
1746
1747	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1748	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1749
1750	/* Check for a potential residue */
1751	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1752
1753	/* Then, wait for BUSY to get low. */
1754	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1755		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1756		       p->name, __func__);
1757
1758stop:
1759	/* Reset FIFO */
1760	parport_ip32_set_mode(p, ECR_MODE_PS2);
1761	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1762
1763	return written;
1764}
1765
1766/*
1767 * FIXME - Insert here parport_ip32_ecp_write_addr().
1768 */
1769
1770/*--- Default parport operations ---------------------------------------*/
1771
1772static __initdata struct parport_operations parport_ip32_ops = {
1773	.write_data		= parport_ip32_write_data,
1774	.read_data		= parport_ip32_read_data,
1775
1776	.write_control		= parport_ip32_write_control,
1777	.read_control		= parport_ip32_read_control,
1778	.frob_control		= parport_ip32_frob_control,
1779
1780	.read_status		= parport_ip32_read_status,
1781
1782	.enable_irq		= parport_ip32_enable_irq,
1783	.disable_irq		= parport_ip32_disable_irq,
1784
1785	.data_forward		= parport_ip32_data_forward,
1786	.data_reverse		= parport_ip32_data_reverse,
1787
1788	.init_state		= parport_ip32_init_state,
1789	.save_state		= parport_ip32_save_state,
1790	.restore_state		= parport_ip32_restore_state,
1791
1792	.epp_write_data		= parport_ieee1284_epp_write_data,
1793	.epp_read_data		= parport_ieee1284_epp_read_data,
1794	.epp_write_addr		= parport_ieee1284_epp_write_addr,
1795	.epp_read_addr		= parport_ieee1284_epp_read_addr,
1796
1797	.ecp_write_data		= parport_ieee1284_ecp_write_data,
1798	.ecp_read_data		= parport_ieee1284_ecp_read_data,
1799	.ecp_write_addr		= parport_ieee1284_ecp_write_addr,
1800
1801	.compat_write_data	= parport_ieee1284_write_compat,
1802	.nibble_read_data	= parport_ieee1284_read_nibble,
1803	.byte_read_data		= parport_ieee1284_read_byte,
1804
1805	.owner			= THIS_MODULE,
1806};
1807
1808/*--- Device detection -------------------------------------------------*/
1809
1810/**
1811 * parport_ip32_ecp_supported - check for an ECP port
1812 * @p:		pointer to the &parport structure
1813 *
1814 * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1815 * checks if an Extended Control Register seems to be present.  On successful
1816 * return, the port is placed in SPP mode.
1817 */
1818static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1819{
1820	struct parport_ip32_private * const priv = p->physport->private_data;
1821	unsigned int ecr;
1822
1823	ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1824	writeb(ecr, priv->regs.ecr);
1825	if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1826		goto fail;
1827
1828	pr_probe(p, "Found working ECR register\n");
1829	parport_ip32_set_mode(p, ECR_MODE_SPP);
1830	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1831	return 1;
1832
1833fail:
1834	pr_probe(p, "ECR register not found\n");
1835	return 0;
1836}
1837
1838/**
1839 * parport_ip32_fifo_supported - check for FIFO parameters
1840 * @p:		pointer to the &parport structure
1841 *
1842 * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1843 * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1844 * On return, the port is placed in SPP mode.
1845 */
1846static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1847{
1848	struct parport_ip32_private * const priv = p->physport->private_data;
1849	unsigned int configa, configb;
1850	unsigned int pword;
1851	unsigned int i;
1852
1853	/* Configuration mode */
1854	parport_ip32_set_mode(p, ECR_MODE_CFG);
1855	configa = readb(priv->regs.cnfgA);
1856	configb = readb(priv->regs.cnfgB);
1857
1858	/* Find out PWord size */
1859	switch (configa & CNFGA_ID_MASK) {
1860	case CNFGA_ID_8:
1861		pword = 1;
1862		break;
1863	case CNFGA_ID_16:
1864		pword = 2;
1865		break;
1866	case CNFGA_ID_32:
1867		pword = 4;
1868		break;
1869	default:
1870		pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1871			 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1872		goto fail;
1873		break;
1874	}
1875	if (pword != 1) {
1876		pr_probe(p, "Unsupported PWord size: %u\n", pword);
1877		goto fail;
1878	}
1879	priv->pword = pword;
1880	pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1881
1882	/* Check for compression support */
1883	writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1884	if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1885		pr_probe(p, "Hardware compression detected (unsupported)\n");
1886	writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1887
1888	/* Reset FIFO and go in test mode (no interrupt, no DMA) */
1889	parport_ip32_set_mode(p, ECR_MODE_TST);
1890
1891	/* FIFO must be empty now */
1892	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1893		pr_probe(p, "FIFO not reset\n");
1894		goto fail;
1895	}
1896
1897	/* Find out FIFO depth. */
1898	priv->fifo_depth = 0;
1899	for (i = 0; i < 1024; i++) {
1900		if (readb(priv->regs.ecr) & ECR_F_FULL) {
1901			/* FIFO full */
1902			priv->fifo_depth = i;
1903			break;
1904		}
1905		writeb((u8)i, priv->regs.fifo);
1906	}
1907	if (i >= 1024) {
1908		pr_probe(p, "Can't fill FIFO\n");
1909		goto fail;
1910	}
1911	if (!priv->fifo_depth) {
1912		pr_probe(p, "Can't get FIFO depth\n");
1913		goto fail;
1914	}
1915	pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1916
1917	/* Enable interrupts */
1918	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1919
1920	/* Find out writeIntrThreshold: number of PWords we know we can write
1921	 * if we get an interrupt. */
1922	priv->writeIntrThreshold = 0;
1923	for (i = 0; i < priv->fifo_depth; i++) {
1924		if (readb(priv->regs.fifo) != (u8)i) {
1925			pr_probe(p, "Invalid data in FIFO\n");
1926			goto fail;
1927		}
1928		if (!priv->writeIntrThreshold
1929		    && readb(priv->regs.ecr) & ECR_SERVINTR)
1930			/* writeIntrThreshold reached */
1931			priv->writeIntrThreshold = i + 1;
1932		if (i + 1 < priv->fifo_depth
1933		    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1934			/* FIFO empty before the last byte? */
1935			pr_probe(p, "Data lost in FIFO\n");
1936			goto fail;
1937		}
1938	}
1939	if (!priv->writeIntrThreshold) {
1940		pr_probe(p, "Can't get writeIntrThreshold\n");
1941		goto fail;
1942	}
1943	pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1944
1945	/* FIFO must be empty now */
1946	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1947		pr_probe(p, "Can't empty FIFO\n");
1948		goto fail;
1949	}
1950
1951	/* Reset FIFO */
1952	parport_ip32_set_mode(p, ECR_MODE_PS2);
1953	/* Set reverse direction (must be in PS2 mode) */
1954	parport_ip32_data_reverse(p);
1955	/* Test FIFO, no interrupt, no DMA */
1956	parport_ip32_set_mode(p, ECR_MODE_TST);
1957	/* Enable interrupts */
1958	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1959
1960	/* Find out readIntrThreshold: number of PWords we can read if we get
1961	 * an interrupt. */
1962	priv->readIntrThreshold = 0;
1963	for (i = 0; i < priv->fifo_depth; i++) {
1964		writeb(0xaa, priv->regs.fifo);
1965		if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1966			/* readIntrThreshold reached */
1967			priv->readIntrThreshold = i + 1;
1968			break;
1969		}
1970	}
1971	if (!priv->readIntrThreshold) {
1972		pr_probe(p, "Can't get readIntrThreshold\n");
1973		goto fail;
1974	}
1975	pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1976
1977	/* Reset ECR */
1978	parport_ip32_set_mode(p, ECR_MODE_PS2);
1979	parport_ip32_data_forward(p);
1980	parport_ip32_set_mode(p, ECR_MODE_SPP);
1981	return 1;
1982
1983fail:
1984	priv->fifo_depth = 0;
1985	parport_ip32_set_mode(p, ECR_MODE_SPP);
1986	return 0;
1987}
1988
1989/*--- Initialization code ----------------------------------------------*/
1990
1991/**
1992 * parport_ip32_make_isa_registers - compute (ISA) register addresses
1993 * @regs:	pointer to &struct parport_ip32_regs to fill
1994 * @base:	base address of standard and EPP registers
1995 * @base_hi:	base address of ECP registers
1996 * @regshift:	how much to shift register offset by
1997 *
1998 * Compute register addresses, according to the ISA standard.  The addresses
1999 * of the standard and EPP registers are computed from address @base.  The
2000 * addresses of the ECP registers are computed from address @base_hi.
2001 */
2002static void __init
2003parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2004				void __iomem *base, void __iomem *base_hi,
2005				unsigned int regshift)
2006{
2007#define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
2008#define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2009	*regs = (struct parport_ip32_regs){
2010		.data		= r_base(0),
2011		.dsr		= r_base(1),
2012		.dcr		= r_base(2),
2013		.eppAddr	= r_base(3),
2014		.eppData0	= r_base(4),
2015		.eppData1	= r_base(5),
2016		.eppData2	= r_base(6),
2017		.eppData3	= r_base(7),
2018		.ecpAFifo	= r_base(0),
2019		.fifo		= r_base_hi(0),
2020		.cnfgA		= r_base_hi(0),
2021		.cnfgB		= r_base_hi(1),
2022		.ecr		= r_base_hi(2)
2023	};
2024#undef r_base_hi
2025#undef r_base
2026}
2027
2028/**
2029 * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2030 *
2031 * Returns the new allocated &parport structure.  On error, an error code is
2032 * encoded in return value with the ERR_PTR function.
2033 */
2034static __init struct parport *parport_ip32_probe_port(void)
2035{
2036	struct parport_ip32_regs regs;
2037	struct parport_ip32_private *priv = NULL;
2038	struct parport_operations *ops = NULL;
2039	struct parport *p = NULL;
2040	int err;
2041
2042	parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2043					&mace->isa.ecp1284, 8 /* regshift */);
2044
2045	ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2046	priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2047	p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2048	if (ops == NULL || priv == NULL || p == NULL) {
2049		err = -ENOMEM;
2050		goto fail;
2051	}
2052	p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2053	p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2054	p->private_data = priv;
2055
2056	*ops = parport_ip32_ops;
2057	*priv = (struct parport_ip32_private){
2058		.regs			= regs,
2059		.dcr_writable		= DCR_DIR | DCR_SELECT | DCR_nINIT |
2060					  DCR_AUTOFD | DCR_STROBE,
2061		.irq_mode		= PARPORT_IP32_IRQ_FWD,
2062	};
2063	init_completion(&priv->irq_complete);
2064
2065	/* Probe port. */
2066	if (!parport_ip32_ecp_supported(p)) {
2067		err = -ENODEV;
2068		goto fail;
2069	}
2070	parport_ip32_dump_state(p, "begin init", 0);
2071
2072	/* We found what looks like a working ECR register.  Simply assume
2073	 * that all modes are correctly supported.  Enable basic modes. */
2074	p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2075	p->modes |= PARPORT_MODE_TRISTATE;
2076
2077	if (!parport_ip32_fifo_supported(p)) {
2078		printk(KERN_WARNING PPIP32
2079		       "%s: error: FIFO disabled\n", p->name);
2080		/* Disable hardware modes depending on a working FIFO. */
2081		features &= ~PARPORT_IP32_ENABLE_SPP;
2082		features &= ~PARPORT_IP32_ENABLE_ECP;
2083		/* DMA is not needed if FIFO is not supported.  */
2084		features &= ~PARPORT_IP32_ENABLE_DMA;
2085	}
2086
2087	/* Request IRQ */
2088	if (features & PARPORT_IP32_ENABLE_IRQ) {
2089		int irq = MACEISA_PARALLEL_IRQ;
2090		if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2091			printk(KERN_WARNING PPIP32
2092			       "%s: error: IRQ disabled\n", p->name);
2093			/* DMA cannot work without interrupts. */
2094			features &= ~PARPORT_IP32_ENABLE_DMA;
2095		} else {
2096			pr_probe(p, "Interrupt support enabled\n");
2097			p->irq = irq;
2098			priv->dcr_writable |= DCR_IRQ;
2099		}
2100	}
2101
2102	/* Allocate DMA resources */
2103	if (features & PARPORT_IP32_ENABLE_DMA) {
2104		if (parport_ip32_dma_register())
2105			printk(KERN_WARNING PPIP32
2106			       "%s: error: DMA disabled\n", p->name);
2107		else {
2108			pr_probe(p, "DMA support enabled\n");
2109			p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2110			p->modes |= PARPORT_MODE_DMA;
2111		}
2112	}
2113
2114	if (features & PARPORT_IP32_ENABLE_SPP) {
2115		/* Enable compatibility FIFO mode */
2116		p->ops->compat_write_data = parport_ip32_compat_write_data;
2117		p->modes |= PARPORT_MODE_COMPAT;
2118		pr_probe(p, "Hardware support for SPP mode enabled\n");
2119	}
2120	if (features & PARPORT_IP32_ENABLE_EPP) {
2121		/* Set up access functions to use EPP hardware. */
2122		p->ops->epp_read_data = parport_ip32_epp_read_data;
2123		p->ops->epp_write_data = parport_ip32_epp_write_data;
2124		p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2125		p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2126		p->modes |= PARPORT_MODE_EPP;
2127		pr_probe(p, "Hardware support for EPP mode enabled\n");
2128	}
2129	if (features & PARPORT_IP32_ENABLE_ECP) {
2130		/* Enable ECP FIFO mode */
2131		p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2132		/* FIXME - not implemented */
2133/*		p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2134/*		p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2135		p->modes |= PARPORT_MODE_ECP;
2136		pr_probe(p, "Hardware support for ECP mode enabled\n");
2137	}
2138
2139	/* Initialize the port with sensible values */
2140	parport_ip32_set_mode(p, ECR_MODE_PS2);
2141	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2142	parport_ip32_data_forward(p);
2143	parport_ip32_disable_irq(p);
2144	parport_ip32_write_data(p, 0x00);
2145	parport_ip32_dump_state(p, "end init", 0);
2146
2147	/* Print out what we found */
2148	printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2149	       p->name, p->base, p->base_hi);
2150	if (p->irq != PARPORT_IRQ_NONE)
2151		printk(", irq %d", p->irq);
2152	printk(" [");
2153#define printmode(x)	if (p->modes & PARPORT_MODE_##x)		\
2154				printk("%s%s", f++ ? "," : "", #x)
2155	{
2156		unsigned int f = 0;
2157		printmode(PCSPP);
2158		printmode(TRISTATE);
2159		printmode(COMPAT);
2160		printmode(EPP);
2161		printmode(ECP);
2162		printmode(DMA);
2163	}
2164#undef printmode
2165	printk("]\n");
2166
2167	parport_announce_port(p);
2168	return p;
2169
2170fail:
2171	if (p)
2172		parport_put_port(p);
2173	kfree(priv);
2174	kfree(ops);
2175	return ERR_PTR(err);
2176}
2177
2178/**
2179 * parport_ip32_unregister_port - unregister a parallel port
2180 * @p:		pointer to the &struct parport
2181 *
2182 * Unregisters a parallel port and free previously allocated resources
2183 * (memory, IRQ, ...).
2184 */
2185static __exit void parport_ip32_unregister_port(struct parport *p)
2186{
2187	struct parport_ip32_private * const priv = p->physport->private_data;
2188	struct parport_operations *ops = p->ops;
2189
2190	parport_remove_port(p);
2191	if (p->modes & PARPORT_MODE_DMA)
2192		parport_ip32_dma_unregister();
2193	if (p->irq != PARPORT_IRQ_NONE)
2194		free_irq(p->irq, p);
2195	parport_put_port(p);
2196	kfree(priv);
2197	kfree(ops);
2198}
2199
2200/**
2201 * parport_ip32_init - module initialization function
2202 */
2203static int __init parport_ip32_init(void)
2204{
2205	pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2206	this_port = parport_ip32_probe_port();
2207	return PTR_ERR_OR_ZERO(this_port);
2208}
2209
2210/**
2211 * parport_ip32_exit - module termination function
2212 */
2213static void __exit parport_ip32_exit(void)
2214{
2215	parport_ip32_unregister_port(this_port);
2216}
2217
2218/*--- Module stuff -----------------------------------------------------*/
2219
2220MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222MODULE_LICENSE("GPL");
2223MODULE_VERSION("0.6");		/* update in parport_ip32_init() too */
2224
2225module_init(parport_ip32_init);
2226module_exit(parport_ip32_exit);
2227
2228module_param(verbose_probing, bool, S_IRUGO);
2229MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2230
2231module_param(features, uint, S_IRUGO);
2232MODULE_PARM_DESC(features,
2233		 "Bit mask of features to enable"
2234		 ", bit 0: IRQ support"
2235		 ", bit 1: DMA support"
2236		 ", bit 2: hardware SPP mode"
2237		 ", bit 3: hardware EPP mode"
2238		 ", bit 4: hardware ECP mode");
2239
2240/*--- Inform (X)Emacs about preferred coding style ---------------------*/
2241/*
2242 * Local Variables:
2243 * mode: c
2244 * c-file-style: "linux"
2245 * indent-tabs-mode: t
2246 * tab-width: 8
2247 * fill-column: 78
2248 * ispell-local-dictionary: "american"
2249 * End:
2250 */
2251