[go: nahoru, domu]

1/*
2 * drivers/pci/pci-driver.c
3 *
4 * (C) Copyright 2002-2004, 2007 Greg Kroah-Hartman <greg@kroah.com>
5 * (C) Copyright 2007 Novell Inc.
6 *
7 * Released under the GPL v2 only.
8 *
9 */
10
11#include <linux/pci.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/device.h>
15#include <linux/mempolicy.h>
16#include <linux/string.h>
17#include <linux/slab.h>
18#include <linux/sched.h>
19#include <linux/cpu.h>
20#include <linux/pm_runtime.h>
21#include <linux/suspend.h>
22#include <linux/kexec.h>
23#include "pci.h"
24
25struct pci_dynid {
26	struct list_head node;
27	struct pci_device_id id;
28};
29
30/**
31 * pci_add_dynid - add a new PCI device ID to this driver and re-probe devices
32 * @drv: target pci driver
33 * @vendor: PCI vendor ID
34 * @device: PCI device ID
35 * @subvendor: PCI subvendor ID
36 * @subdevice: PCI subdevice ID
37 * @class: PCI class
38 * @class_mask: PCI class mask
39 * @driver_data: private driver data
40 *
41 * Adds a new dynamic pci device ID to this driver and causes the
42 * driver to probe for all devices again.  @drv must have been
43 * registered prior to calling this function.
44 *
45 * CONTEXT:
46 * Does GFP_KERNEL allocation.
47 *
48 * RETURNS:
49 * 0 on success, -errno on failure.
50 */
51int pci_add_dynid(struct pci_driver *drv,
52		  unsigned int vendor, unsigned int device,
53		  unsigned int subvendor, unsigned int subdevice,
54		  unsigned int class, unsigned int class_mask,
55		  unsigned long driver_data)
56{
57	struct pci_dynid *dynid;
58
59	dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
60	if (!dynid)
61		return -ENOMEM;
62
63	dynid->id.vendor = vendor;
64	dynid->id.device = device;
65	dynid->id.subvendor = subvendor;
66	dynid->id.subdevice = subdevice;
67	dynid->id.class = class;
68	dynid->id.class_mask = class_mask;
69	dynid->id.driver_data = driver_data;
70
71	spin_lock(&drv->dynids.lock);
72	list_add_tail(&dynid->node, &drv->dynids.list);
73	spin_unlock(&drv->dynids.lock);
74
75	return driver_attach(&drv->driver);
76}
77EXPORT_SYMBOL_GPL(pci_add_dynid);
78
79static void pci_free_dynids(struct pci_driver *drv)
80{
81	struct pci_dynid *dynid, *n;
82
83	spin_lock(&drv->dynids.lock);
84	list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
85		list_del(&dynid->node);
86		kfree(dynid);
87	}
88	spin_unlock(&drv->dynids.lock);
89}
90
91/**
92 * store_new_id - sysfs frontend to pci_add_dynid()
93 * @driver: target device driver
94 * @buf: buffer for scanning device ID data
95 * @count: input size
96 *
97 * Allow PCI IDs to be added to an existing driver via sysfs.
98 */
99static ssize_t store_new_id(struct device_driver *driver, const char *buf,
100			    size_t count)
101{
102	struct pci_driver *pdrv = to_pci_driver(driver);
103	const struct pci_device_id *ids = pdrv->id_table;
104	__u32 vendor, device, subvendor = PCI_ANY_ID,
105		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
106	unsigned long driver_data = 0;
107	int fields = 0;
108	int retval = 0;
109
110	fields = sscanf(buf, "%x %x %x %x %x %x %lx",
111			&vendor, &device, &subvendor, &subdevice,
112			&class, &class_mask, &driver_data);
113	if (fields < 2)
114		return -EINVAL;
115
116	if (fields != 7) {
117		struct pci_dev *pdev = kzalloc(sizeof(*pdev), GFP_KERNEL);
118		if (!pdev)
119			return -ENOMEM;
120
121		pdev->vendor = vendor;
122		pdev->device = device;
123		pdev->subsystem_vendor = subvendor;
124		pdev->subsystem_device = subdevice;
125		pdev->class = class;
126
127		if (pci_match_id(pdrv->id_table, pdev))
128			retval = -EEXIST;
129
130		kfree(pdev);
131
132		if (retval)
133			return retval;
134	}
135
136	/* Only accept driver_data values that match an existing id_table
137	   entry */
138	if (ids) {
139		retval = -EINVAL;
140		while (ids->vendor || ids->subvendor || ids->class_mask) {
141			if (driver_data == ids->driver_data) {
142				retval = 0;
143				break;
144			}
145			ids++;
146		}
147		if (retval)	/* No match */
148			return retval;
149	}
150
151	retval = pci_add_dynid(pdrv, vendor, device, subvendor, subdevice,
152			       class, class_mask, driver_data);
153	if (retval)
154		return retval;
155	return count;
156}
157static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
158
159/**
160 * store_remove_id - remove a PCI device ID from this driver
161 * @driver: target device driver
162 * @buf: buffer for scanning device ID data
163 * @count: input size
164 *
165 * Removes a dynamic pci device ID to this driver.
166 */
167static ssize_t store_remove_id(struct device_driver *driver, const char *buf,
168			       size_t count)
169{
170	struct pci_dynid *dynid, *n;
171	struct pci_driver *pdrv = to_pci_driver(driver);
172	__u32 vendor, device, subvendor = PCI_ANY_ID,
173		subdevice = PCI_ANY_ID, class = 0, class_mask = 0;
174	int fields = 0;
175	int retval = -ENODEV;
176
177	fields = sscanf(buf, "%x %x %x %x %x %x",
178			&vendor, &device, &subvendor, &subdevice,
179			&class, &class_mask);
180	if (fields < 2)
181		return -EINVAL;
182
183	spin_lock(&pdrv->dynids.lock);
184	list_for_each_entry_safe(dynid, n, &pdrv->dynids.list, node) {
185		struct pci_device_id *id = &dynid->id;
186		if ((id->vendor == vendor) &&
187		    (id->device == device) &&
188		    (subvendor == PCI_ANY_ID || id->subvendor == subvendor) &&
189		    (subdevice == PCI_ANY_ID || id->subdevice == subdevice) &&
190		    !((id->class ^ class) & class_mask)) {
191			list_del(&dynid->node);
192			kfree(dynid);
193			retval = 0;
194			break;
195		}
196	}
197	spin_unlock(&pdrv->dynids.lock);
198
199	if (retval)
200		return retval;
201	return count;
202}
203static DRIVER_ATTR(remove_id, S_IWUSR, NULL, store_remove_id);
204
205static struct attribute *pci_drv_attrs[] = {
206	&driver_attr_new_id.attr,
207	&driver_attr_remove_id.attr,
208	NULL,
209};
210ATTRIBUTE_GROUPS(pci_drv);
211
212/**
213 * pci_match_id - See if a pci device matches a given pci_id table
214 * @ids: array of PCI device id structures to search in
215 * @dev: the PCI device structure to match against.
216 *
217 * Used by a driver to check whether a PCI device present in the
218 * system is in its list of supported devices.  Returns the matching
219 * pci_device_id structure or %NULL if there is no match.
220 *
221 * Deprecated, don't use this as it will not catch any dynamic ids
222 * that a driver might want to check for.
223 */
224const struct pci_device_id *pci_match_id(const struct pci_device_id *ids,
225					 struct pci_dev *dev)
226{
227	if (ids) {
228		while (ids->vendor || ids->subvendor || ids->class_mask) {
229			if (pci_match_one_device(ids, dev))
230				return ids;
231			ids++;
232		}
233	}
234	return NULL;
235}
236EXPORT_SYMBOL(pci_match_id);
237
238static const struct pci_device_id pci_device_id_any = {
239	.vendor = PCI_ANY_ID,
240	.device = PCI_ANY_ID,
241	.subvendor = PCI_ANY_ID,
242	.subdevice = PCI_ANY_ID,
243};
244
245/**
246 * pci_match_device - Tell if a PCI device structure has a matching PCI device id structure
247 * @drv: the PCI driver to match against
248 * @dev: the PCI device structure to match against
249 *
250 * Used by a driver to check whether a PCI device present in the
251 * system is in its list of supported devices.  Returns the matching
252 * pci_device_id structure or %NULL if there is no match.
253 */
254static const struct pci_device_id *pci_match_device(struct pci_driver *drv,
255						    struct pci_dev *dev)
256{
257	struct pci_dynid *dynid;
258	const struct pci_device_id *found_id = NULL;
259
260	/* When driver_override is set, only bind to the matching driver */
261	if (dev->driver_override && strcmp(dev->driver_override, drv->name))
262		return NULL;
263
264	/* Look at the dynamic ids first, before the static ones */
265	spin_lock(&drv->dynids.lock);
266	list_for_each_entry(dynid, &drv->dynids.list, node) {
267		if (pci_match_one_device(&dynid->id, dev)) {
268			found_id = &dynid->id;
269			break;
270		}
271	}
272	spin_unlock(&drv->dynids.lock);
273
274	if (!found_id)
275		found_id = pci_match_id(drv->id_table, dev);
276
277	/* driver_override will always match, send a dummy id */
278	if (!found_id && dev->driver_override)
279		found_id = &pci_device_id_any;
280
281	return found_id;
282}
283
284struct drv_dev_and_id {
285	struct pci_driver *drv;
286	struct pci_dev *dev;
287	const struct pci_device_id *id;
288};
289
290static long local_pci_probe(void *_ddi)
291{
292	struct drv_dev_and_id *ddi = _ddi;
293	struct pci_dev *pci_dev = ddi->dev;
294	struct pci_driver *pci_drv = ddi->drv;
295	struct device *dev = &pci_dev->dev;
296	int rc;
297
298	/*
299	 * Unbound PCI devices are always put in D0, regardless of
300	 * runtime PM status.  During probe, the device is set to
301	 * active and the usage count is incremented.  If the driver
302	 * supports runtime PM, it should call pm_runtime_put_noidle()
303	 * in its probe routine and pm_runtime_get_noresume() in its
304	 * remove routine.
305	 */
306	pm_runtime_get_sync(dev);
307	pci_dev->driver = pci_drv;
308	rc = pci_drv->probe(pci_dev, ddi->id);
309	if (!rc)
310		return rc;
311	if (rc < 0) {
312		pci_dev->driver = NULL;
313		pm_runtime_put_sync(dev);
314		return rc;
315	}
316	/*
317	 * Probe function should return < 0 for failure, 0 for success
318	 * Treat values > 0 as success, but warn.
319	 */
320	dev_warn(dev, "Driver probe function unexpectedly returned %d\n", rc);
321	return 0;
322}
323
324static int pci_call_probe(struct pci_driver *drv, struct pci_dev *dev,
325			  const struct pci_device_id *id)
326{
327	int error, node;
328	struct drv_dev_and_id ddi = { drv, dev, id };
329
330	/*
331	 * Execute driver initialization on node where the device is
332	 * attached.  This way the driver likely allocates its local memory
333	 * on the right node.
334	 */
335	node = dev_to_node(&dev->dev);
336
337	/*
338	 * On NUMA systems, we are likely to call a PF probe function using
339	 * work_on_cpu().  If that probe calls pci_enable_sriov() (which
340	 * adds the VF devices via pci_bus_add_device()), we may re-enter
341	 * this function to call the VF probe function.  Calling
342	 * work_on_cpu() again will cause a lockdep warning.  Since VFs are
343	 * always on the same node as the PF, we can work around this by
344	 * avoiding work_on_cpu() when we're already on the correct node.
345	 *
346	 * Preemption is enabled, so it's theoretically unsafe to use
347	 * numa_node_id(), but even if we run the probe function on the
348	 * wrong node, it should be functionally correct.
349	 */
350	if (node >= 0 && node != numa_node_id()) {
351		int cpu;
352
353		get_online_cpus();
354		cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
355		if (cpu < nr_cpu_ids)
356			error = work_on_cpu(cpu, local_pci_probe, &ddi);
357		else
358			error = local_pci_probe(&ddi);
359		put_online_cpus();
360	} else
361		error = local_pci_probe(&ddi);
362
363	return error;
364}
365
366/**
367 * __pci_device_probe - check if a driver wants to claim a specific PCI device
368 * @drv: driver to call to check if it wants the PCI device
369 * @pci_dev: PCI device being probed
370 *
371 * returns 0 on success, else error.
372 * side-effect: pci_dev->driver is set to drv when drv claims pci_dev.
373 */
374static int __pci_device_probe(struct pci_driver *drv, struct pci_dev *pci_dev)
375{
376	const struct pci_device_id *id;
377	int error = 0;
378
379	if (!pci_dev->driver && drv->probe) {
380		error = -ENODEV;
381
382		id = pci_match_device(drv, pci_dev);
383		if (id)
384			error = pci_call_probe(drv, pci_dev, id);
385		if (error >= 0)
386			error = 0;
387	}
388	return error;
389}
390
391static int pci_device_probe(struct device *dev)
392{
393	int error = 0;
394	struct pci_driver *drv;
395	struct pci_dev *pci_dev;
396
397	drv = to_pci_driver(dev->driver);
398	pci_dev = to_pci_dev(dev);
399	pci_dev_get(pci_dev);
400	error = __pci_device_probe(drv, pci_dev);
401	if (error)
402		pci_dev_put(pci_dev);
403
404	return error;
405}
406
407static int pci_device_remove(struct device *dev)
408{
409	struct pci_dev *pci_dev = to_pci_dev(dev);
410	struct pci_driver *drv = pci_dev->driver;
411
412	if (drv) {
413		if (drv->remove) {
414			pm_runtime_get_sync(dev);
415			drv->remove(pci_dev);
416			pm_runtime_put_noidle(dev);
417		}
418		pci_dev->driver = NULL;
419	}
420
421	/* Undo the runtime PM settings in local_pci_probe() */
422	pm_runtime_put_sync(dev);
423
424	/*
425	 * If the device is still on, set the power state as "unknown",
426	 * since it might change by the next time we load the driver.
427	 */
428	if (pci_dev->current_state == PCI_D0)
429		pci_dev->current_state = PCI_UNKNOWN;
430
431	/*
432	 * We would love to complain here if pci_dev->is_enabled is set, that
433	 * the driver should have called pci_disable_device(), but the
434	 * unfortunate fact is there are too many odd BIOS and bridge setups
435	 * that don't like drivers doing that all of the time.
436	 * Oh well, we can dream of sane hardware when we sleep, no matter how
437	 * horrible the crap we have to deal with is when we are awake...
438	 */
439
440	pci_dev_put(pci_dev);
441	return 0;
442}
443
444static void pci_device_shutdown(struct device *dev)
445{
446	struct pci_dev *pci_dev = to_pci_dev(dev);
447	struct pci_driver *drv = pci_dev->driver;
448
449	pm_runtime_resume(dev);
450
451	if (drv && drv->shutdown)
452		drv->shutdown(pci_dev);
453	pci_msi_shutdown(pci_dev);
454	pci_msix_shutdown(pci_dev);
455
456#ifdef CONFIG_KEXEC
457	/*
458	 * If this is a kexec reboot, turn off Bus Master bit on the
459	 * device to tell it to not continue to do DMA. Don't touch
460	 * devices in D3cold or unknown states.
461	 * If it is not a kexec reboot, firmware will hit the PCI
462	 * devices with big hammer and stop their DMA any way.
463	 */
464	if (kexec_in_progress && (pci_dev->current_state <= PCI_D3hot))
465		pci_clear_master(pci_dev);
466#endif
467}
468
469#ifdef CONFIG_PM
470
471/* Auxiliary functions used for system resume and run-time resume. */
472
473/**
474 * pci_restore_standard_config - restore standard config registers of PCI device
475 * @pci_dev: PCI device to handle
476 */
477static int pci_restore_standard_config(struct pci_dev *pci_dev)
478{
479	pci_update_current_state(pci_dev, PCI_UNKNOWN);
480
481	if (pci_dev->current_state != PCI_D0) {
482		int error = pci_set_power_state(pci_dev, PCI_D0);
483		if (error)
484			return error;
485	}
486
487	pci_restore_state(pci_dev);
488	return 0;
489}
490
491#endif
492
493#ifdef CONFIG_PM_SLEEP
494
495static void pci_pm_default_resume_early(struct pci_dev *pci_dev)
496{
497	pci_power_up(pci_dev);
498	pci_restore_state(pci_dev);
499	pci_fixup_device(pci_fixup_resume_early, pci_dev);
500}
501
502/*
503 * Default "suspend" method for devices that have no driver provided suspend,
504 * or not even a driver at all (second part).
505 */
506static void pci_pm_set_unknown_state(struct pci_dev *pci_dev)
507{
508	/*
509	 * mark its power state as "unknown", since we don't know if
510	 * e.g. the BIOS will change its device state when we suspend.
511	 */
512	if (pci_dev->current_state == PCI_D0)
513		pci_dev->current_state = PCI_UNKNOWN;
514}
515
516/*
517 * Default "resume" method for devices that have no driver provided resume,
518 * or not even a driver at all (second part).
519 */
520static int pci_pm_reenable_device(struct pci_dev *pci_dev)
521{
522	int retval;
523
524	/* if the device was enabled before suspend, reenable */
525	retval = pci_reenable_device(pci_dev);
526	/*
527	 * if the device was busmaster before the suspend, make it busmaster
528	 * again
529	 */
530	if (pci_dev->is_busmaster)
531		pci_set_master(pci_dev);
532
533	return retval;
534}
535
536static int pci_legacy_suspend(struct device *dev, pm_message_t state)
537{
538	struct pci_dev *pci_dev = to_pci_dev(dev);
539	struct pci_driver *drv = pci_dev->driver;
540
541	if (drv && drv->suspend) {
542		pci_power_t prev = pci_dev->current_state;
543		int error;
544
545		error = drv->suspend(pci_dev, state);
546		suspend_report_result(drv->suspend, error);
547		if (error)
548			return error;
549
550		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
551		    && pci_dev->current_state != PCI_UNKNOWN) {
552			WARN_ONCE(pci_dev->current_state != prev,
553				"PCI PM: Device state not saved by %pF\n",
554				drv->suspend);
555		}
556	}
557
558	pci_fixup_device(pci_fixup_suspend, pci_dev);
559
560	return 0;
561}
562
563static int pci_legacy_suspend_late(struct device *dev, pm_message_t state)
564{
565	struct pci_dev *pci_dev = to_pci_dev(dev);
566	struct pci_driver *drv = pci_dev->driver;
567
568	if (drv && drv->suspend_late) {
569		pci_power_t prev = pci_dev->current_state;
570		int error;
571
572		error = drv->suspend_late(pci_dev, state);
573		suspend_report_result(drv->suspend_late, error);
574		if (error)
575			return error;
576
577		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
578		    && pci_dev->current_state != PCI_UNKNOWN) {
579			WARN_ONCE(pci_dev->current_state != prev,
580				"PCI PM: Device state not saved by %pF\n",
581				drv->suspend_late);
582			goto Fixup;
583		}
584	}
585
586	if (!pci_dev->state_saved)
587		pci_save_state(pci_dev);
588
589	pci_pm_set_unknown_state(pci_dev);
590
591Fixup:
592	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
593
594	return 0;
595}
596
597static int pci_legacy_resume_early(struct device *dev)
598{
599	struct pci_dev *pci_dev = to_pci_dev(dev);
600	struct pci_driver *drv = pci_dev->driver;
601
602	return drv && drv->resume_early ?
603			drv->resume_early(pci_dev) : 0;
604}
605
606static int pci_legacy_resume(struct device *dev)
607{
608	struct pci_dev *pci_dev = to_pci_dev(dev);
609	struct pci_driver *drv = pci_dev->driver;
610
611	pci_fixup_device(pci_fixup_resume, pci_dev);
612
613	return drv && drv->resume ?
614			drv->resume(pci_dev) : pci_pm_reenable_device(pci_dev);
615}
616
617/* Auxiliary functions used by the new power management framework */
618
619static void pci_pm_default_resume(struct pci_dev *pci_dev)
620{
621	pci_fixup_device(pci_fixup_resume, pci_dev);
622
623	if (!pci_has_subordinate(pci_dev))
624		pci_enable_wake(pci_dev, PCI_D0, false);
625}
626
627static void pci_pm_default_suspend(struct pci_dev *pci_dev)
628{
629	/* Disable non-bridge devices without PM support */
630	if (!pci_has_subordinate(pci_dev))
631		pci_disable_enabled_device(pci_dev);
632}
633
634static bool pci_has_legacy_pm_support(struct pci_dev *pci_dev)
635{
636	struct pci_driver *drv = pci_dev->driver;
637	bool ret = drv && (drv->suspend || drv->suspend_late || drv->resume
638		|| drv->resume_early);
639
640	/*
641	 * Legacy PM support is used by default, so warn if the new framework is
642	 * supported as well.  Drivers are supposed to support either the
643	 * former, or the latter, but not both at the same time.
644	 */
645	WARN(ret && drv->driver.pm, "driver %s device %04x:%04x\n",
646		drv->name, pci_dev->vendor, pci_dev->device);
647
648	return ret;
649}
650
651/* New power management framework */
652
653static int pci_pm_prepare(struct device *dev)
654{
655	struct device_driver *drv = dev->driver;
656	int error = 0;
657
658	/*
659	 * Devices having power.ignore_children set may still be necessary for
660	 * suspending their children in the next phase of device suspend.
661	 */
662	if (dev->power.ignore_children)
663		pm_runtime_resume(dev);
664
665	if (drv && drv->pm && drv->pm->prepare)
666		error = drv->pm->prepare(dev);
667
668	return error;
669}
670
671
672#else /* !CONFIG_PM_SLEEP */
673
674#define pci_pm_prepare	NULL
675
676#endif /* !CONFIG_PM_SLEEP */
677
678#ifdef CONFIG_SUSPEND
679
680static int pci_pm_suspend(struct device *dev)
681{
682	struct pci_dev *pci_dev = to_pci_dev(dev);
683	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
684
685	if (pci_has_legacy_pm_support(pci_dev))
686		return pci_legacy_suspend(dev, PMSG_SUSPEND);
687
688	if (!pm) {
689		pci_pm_default_suspend(pci_dev);
690		goto Fixup;
691	}
692
693	/*
694	 * PCI devices suspended at run time need to be resumed at this point,
695	 * because in general it is necessary to reconfigure them for system
696	 * suspend.  Namely, if the device is supposed to wake up the system
697	 * from the sleep state, we may need to reconfigure it for this purpose.
698	 * In turn, if the device is not supposed to wake up the system from the
699	 * sleep state, we'll have to prevent it from signaling wake-up.
700	 */
701	pm_runtime_resume(dev);
702
703	pci_dev->state_saved = false;
704	if (pm->suspend) {
705		pci_power_t prev = pci_dev->current_state;
706		int error;
707
708		error = pm->suspend(dev);
709		suspend_report_result(pm->suspend, error);
710		if (error)
711			return error;
712
713		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
714		    && pci_dev->current_state != PCI_UNKNOWN) {
715			WARN_ONCE(pci_dev->current_state != prev,
716				"PCI PM: State of device not saved by %pF\n",
717				pm->suspend);
718		}
719	}
720
721 Fixup:
722	pci_fixup_device(pci_fixup_suspend, pci_dev);
723
724	return 0;
725}
726
727static int pci_pm_suspend_noirq(struct device *dev)
728{
729	struct pci_dev *pci_dev = to_pci_dev(dev);
730	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
731
732	if (pci_has_legacy_pm_support(pci_dev))
733		return pci_legacy_suspend_late(dev, PMSG_SUSPEND);
734
735	if (!pm) {
736		pci_save_state(pci_dev);
737		goto Fixup;
738	}
739
740	if (pm->suspend_noirq) {
741		pci_power_t prev = pci_dev->current_state;
742		int error;
743
744		error = pm->suspend_noirq(dev);
745		suspend_report_result(pm->suspend_noirq, error);
746		if (error)
747			return error;
748
749		if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
750		    && pci_dev->current_state != PCI_UNKNOWN) {
751			WARN_ONCE(pci_dev->current_state != prev,
752				"PCI PM: State of device not saved by %pF\n",
753				pm->suspend_noirq);
754			goto Fixup;
755		}
756	}
757
758	if (!pci_dev->state_saved) {
759		pci_save_state(pci_dev);
760		if (!pci_has_subordinate(pci_dev))
761			pci_prepare_to_sleep(pci_dev);
762	}
763
764	pci_pm_set_unknown_state(pci_dev);
765
766	/*
767	 * Some BIOSes from ASUS have a bug: If a USB EHCI host controller's
768	 * PCI COMMAND register isn't 0, the BIOS assumes that the controller
769	 * hasn't been quiesced and tries to turn it off.  If the controller
770	 * is already in D3, this can hang or cause memory corruption.
771	 *
772	 * Since the value of the COMMAND register doesn't matter once the
773	 * device has been suspended, we can safely set it to 0 here.
774	 */
775	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
776		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
777
778Fixup:
779	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
780
781	return 0;
782}
783
784static int pci_pm_resume_noirq(struct device *dev)
785{
786	struct pci_dev *pci_dev = to_pci_dev(dev);
787	struct device_driver *drv = dev->driver;
788	int error = 0;
789
790	pci_pm_default_resume_early(pci_dev);
791
792	if (pci_has_legacy_pm_support(pci_dev))
793		return pci_legacy_resume_early(dev);
794
795	if (drv && drv->pm && drv->pm->resume_noirq)
796		error = drv->pm->resume_noirq(dev);
797
798	return error;
799}
800
801static int pci_pm_resume(struct device *dev)
802{
803	struct pci_dev *pci_dev = to_pci_dev(dev);
804	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
805	int error = 0;
806
807	/*
808	 * This is necessary for the suspend error path in which resume is
809	 * called without restoring the standard config registers of the device.
810	 */
811	if (pci_dev->state_saved)
812		pci_restore_standard_config(pci_dev);
813
814	if (pci_has_legacy_pm_support(pci_dev))
815		return pci_legacy_resume(dev);
816
817	pci_pm_default_resume(pci_dev);
818
819	if (pm) {
820		if (pm->resume)
821			error = pm->resume(dev);
822	} else {
823		pci_pm_reenable_device(pci_dev);
824	}
825
826	return error;
827}
828
829#else /* !CONFIG_SUSPEND */
830
831#define pci_pm_suspend		NULL
832#define pci_pm_suspend_noirq	NULL
833#define pci_pm_resume		NULL
834#define pci_pm_resume_noirq	NULL
835
836#endif /* !CONFIG_SUSPEND */
837
838#ifdef CONFIG_HIBERNATE_CALLBACKS
839
840
841/*
842 * pcibios_pm_ops - provide arch-specific hooks when a PCI device is doing
843 * a hibernate transition
844 */
845struct dev_pm_ops __weak pcibios_pm_ops;
846
847static int pci_pm_freeze(struct device *dev)
848{
849	struct pci_dev *pci_dev = to_pci_dev(dev);
850	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
851
852	if (pci_has_legacy_pm_support(pci_dev))
853		return pci_legacy_suspend(dev, PMSG_FREEZE);
854
855	if (!pm) {
856		pci_pm_default_suspend(pci_dev);
857		return 0;
858	}
859
860	/*
861	 * This used to be done in pci_pm_prepare() for all devices and some
862	 * drivers may depend on it, so do it here.  Ideally, runtime-suspended
863	 * devices should not be touched during freeze/thaw transitions,
864	 * however.
865	 */
866	pm_runtime_resume(dev);
867
868	pci_dev->state_saved = false;
869	if (pm->freeze) {
870		int error;
871
872		error = pm->freeze(dev);
873		suspend_report_result(pm->freeze, error);
874		if (error)
875			return error;
876	}
877
878	if (pcibios_pm_ops.freeze)
879		return pcibios_pm_ops.freeze(dev);
880
881	return 0;
882}
883
884static int pci_pm_freeze_noirq(struct device *dev)
885{
886	struct pci_dev *pci_dev = to_pci_dev(dev);
887	struct device_driver *drv = dev->driver;
888
889	if (pci_has_legacy_pm_support(pci_dev))
890		return pci_legacy_suspend_late(dev, PMSG_FREEZE);
891
892	if (drv && drv->pm && drv->pm->freeze_noirq) {
893		int error;
894
895		error = drv->pm->freeze_noirq(dev);
896		suspend_report_result(drv->pm->freeze_noirq, error);
897		if (error)
898			return error;
899	}
900
901	if (!pci_dev->state_saved)
902		pci_save_state(pci_dev);
903
904	pci_pm_set_unknown_state(pci_dev);
905
906	if (pcibios_pm_ops.freeze_noirq)
907		return pcibios_pm_ops.freeze_noirq(dev);
908
909	return 0;
910}
911
912static int pci_pm_thaw_noirq(struct device *dev)
913{
914	struct pci_dev *pci_dev = to_pci_dev(dev);
915	struct device_driver *drv = dev->driver;
916	int error = 0;
917
918	if (pcibios_pm_ops.thaw_noirq) {
919		error = pcibios_pm_ops.thaw_noirq(dev);
920		if (error)
921			return error;
922	}
923
924	if (pci_has_legacy_pm_support(pci_dev))
925		return pci_legacy_resume_early(dev);
926
927	pci_update_current_state(pci_dev, PCI_D0);
928
929	if (drv && drv->pm && drv->pm->thaw_noirq)
930		error = drv->pm->thaw_noirq(dev);
931
932	return error;
933}
934
935static int pci_pm_thaw(struct device *dev)
936{
937	struct pci_dev *pci_dev = to_pci_dev(dev);
938	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
939	int error = 0;
940
941	if (pcibios_pm_ops.thaw) {
942		error = pcibios_pm_ops.thaw(dev);
943		if (error)
944			return error;
945	}
946
947	if (pci_has_legacy_pm_support(pci_dev))
948		return pci_legacy_resume(dev);
949
950	if (pm) {
951		if (pm->thaw)
952			error = pm->thaw(dev);
953	} else {
954		pci_pm_reenable_device(pci_dev);
955	}
956
957	pci_dev->state_saved = false;
958
959	return error;
960}
961
962static int pci_pm_poweroff(struct device *dev)
963{
964	struct pci_dev *pci_dev = to_pci_dev(dev);
965	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
966
967	if (pci_has_legacy_pm_support(pci_dev))
968		return pci_legacy_suspend(dev, PMSG_HIBERNATE);
969
970	if (!pm) {
971		pci_pm_default_suspend(pci_dev);
972		goto Fixup;
973	}
974
975	/* The reason to do that is the same as in pci_pm_suspend(). */
976	pm_runtime_resume(dev);
977
978	pci_dev->state_saved = false;
979	if (pm->poweroff) {
980		int error;
981
982		error = pm->poweroff(dev);
983		suspend_report_result(pm->poweroff, error);
984		if (error)
985			return error;
986	}
987
988 Fixup:
989	pci_fixup_device(pci_fixup_suspend, pci_dev);
990
991	if (pcibios_pm_ops.poweroff)
992		return pcibios_pm_ops.poweroff(dev);
993
994	return 0;
995}
996
997static int pci_pm_poweroff_noirq(struct device *dev)
998{
999	struct pci_dev *pci_dev = to_pci_dev(dev);
1000	struct device_driver *drv = dev->driver;
1001
1002	if (pci_has_legacy_pm_support(to_pci_dev(dev)))
1003		return pci_legacy_suspend_late(dev, PMSG_HIBERNATE);
1004
1005	if (!drv || !drv->pm) {
1006		pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1007		return 0;
1008	}
1009
1010	if (drv->pm->poweroff_noirq) {
1011		int error;
1012
1013		error = drv->pm->poweroff_noirq(dev);
1014		suspend_report_result(drv->pm->poweroff_noirq, error);
1015		if (error)
1016			return error;
1017	}
1018
1019	if (!pci_dev->state_saved && !pci_has_subordinate(pci_dev))
1020		pci_prepare_to_sleep(pci_dev);
1021
1022	/*
1023	 * The reason for doing this here is the same as for the analogous code
1024	 * in pci_pm_suspend_noirq().
1025	 */
1026	if (pci_dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1027		pci_write_config_word(pci_dev, PCI_COMMAND, 0);
1028
1029	pci_fixup_device(pci_fixup_suspend_late, pci_dev);
1030
1031	if (pcibios_pm_ops.poweroff_noirq)
1032		return pcibios_pm_ops.poweroff_noirq(dev);
1033
1034	return 0;
1035}
1036
1037static int pci_pm_restore_noirq(struct device *dev)
1038{
1039	struct pci_dev *pci_dev = to_pci_dev(dev);
1040	struct device_driver *drv = dev->driver;
1041	int error = 0;
1042
1043	if (pcibios_pm_ops.restore_noirq) {
1044		error = pcibios_pm_ops.restore_noirq(dev);
1045		if (error)
1046			return error;
1047	}
1048
1049	pci_pm_default_resume_early(pci_dev);
1050
1051	if (pci_has_legacy_pm_support(pci_dev))
1052		return pci_legacy_resume_early(dev);
1053
1054	if (drv && drv->pm && drv->pm->restore_noirq)
1055		error = drv->pm->restore_noirq(dev);
1056
1057	return error;
1058}
1059
1060static int pci_pm_restore(struct device *dev)
1061{
1062	struct pci_dev *pci_dev = to_pci_dev(dev);
1063	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1064	int error = 0;
1065
1066	if (pcibios_pm_ops.restore) {
1067		error = pcibios_pm_ops.restore(dev);
1068		if (error)
1069			return error;
1070	}
1071
1072	/*
1073	 * This is necessary for the hibernation error path in which restore is
1074	 * called without restoring the standard config registers of the device.
1075	 */
1076	if (pci_dev->state_saved)
1077		pci_restore_standard_config(pci_dev);
1078
1079	if (pci_has_legacy_pm_support(pci_dev))
1080		return pci_legacy_resume(dev);
1081
1082	pci_pm_default_resume(pci_dev);
1083
1084	if (pm) {
1085		if (pm->restore)
1086			error = pm->restore(dev);
1087	} else {
1088		pci_pm_reenable_device(pci_dev);
1089	}
1090
1091	return error;
1092}
1093
1094#else /* !CONFIG_HIBERNATE_CALLBACKS */
1095
1096#define pci_pm_freeze		NULL
1097#define pci_pm_freeze_noirq	NULL
1098#define pci_pm_thaw		NULL
1099#define pci_pm_thaw_noirq	NULL
1100#define pci_pm_poweroff		NULL
1101#define pci_pm_poweroff_noirq	NULL
1102#define pci_pm_restore		NULL
1103#define pci_pm_restore_noirq	NULL
1104
1105#endif /* !CONFIG_HIBERNATE_CALLBACKS */
1106
1107#ifdef CONFIG_PM_RUNTIME
1108
1109static int pci_pm_runtime_suspend(struct device *dev)
1110{
1111	struct pci_dev *pci_dev = to_pci_dev(dev);
1112	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1113	pci_power_t prev = pci_dev->current_state;
1114	int error;
1115
1116	/*
1117	 * If pci_dev->driver is not set (unbound), the device should
1118	 * always remain in D0 regardless of the runtime PM status
1119	 */
1120	if (!pci_dev->driver)
1121		return 0;
1122
1123	if (!pm || !pm->runtime_suspend)
1124		return -ENOSYS;
1125
1126	pci_dev->state_saved = false;
1127	pci_dev->no_d3cold = false;
1128	error = pm->runtime_suspend(dev);
1129	suspend_report_result(pm->runtime_suspend, error);
1130	if (error)
1131		return error;
1132	if (!pci_dev->d3cold_allowed)
1133		pci_dev->no_d3cold = true;
1134
1135	pci_fixup_device(pci_fixup_suspend, pci_dev);
1136
1137	if (!pci_dev->state_saved && pci_dev->current_state != PCI_D0
1138	    && pci_dev->current_state != PCI_UNKNOWN) {
1139		WARN_ONCE(pci_dev->current_state != prev,
1140			"PCI PM: State of device not saved by %pF\n",
1141			pm->runtime_suspend);
1142		return 0;
1143	}
1144
1145	if (!pci_dev->state_saved) {
1146		pci_save_state(pci_dev);
1147		pci_finish_runtime_suspend(pci_dev);
1148	}
1149
1150	return 0;
1151}
1152
1153static int pci_pm_runtime_resume(struct device *dev)
1154{
1155	int rc;
1156	struct pci_dev *pci_dev = to_pci_dev(dev);
1157	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1158
1159	/*
1160	 * If pci_dev->driver is not set (unbound), the device should
1161	 * always remain in D0 regardless of the runtime PM status
1162	 */
1163	if (!pci_dev->driver)
1164		return 0;
1165
1166	if (!pm || !pm->runtime_resume)
1167		return -ENOSYS;
1168
1169	pci_restore_standard_config(pci_dev);
1170	pci_fixup_device(pci_fixup_resume_early, pci_dev);
1171	__pci_enable_wake(pci_dev, PCI_D0, true, false);
1172	pci_fixup_device(pci_fixup_resume, pci_dev);
1173
1174	rc = pm->runtime_resume(dev);
1175
1176	pci_dev->runtime_d3cold = false;
1177
1178	return rc;
1179}
1180
1181static int pci_pm_runtime_idle(struct device *dev)
1182{
1183	struct pci_dev *pci_dev = to_pci_dev(dev);
1184	const struct dev_pm_ops *pm = dev->driver ? dev->driver->pm : NULL;
1185	int ret = 0;
1186
1187	/*
1188	 * If pci_dev->driver is not set (unbound), the device should
1189	 * always remain in D0 regardless of the runtime PM status
1190	 */
1191	if (!pci_dev->driver)
1192		return 0;
1193
1194	if (!pm)
1195		return -ENOSYS;
1196
1197	if (pm->runtime_idle)
1198		ret = pm->runtime_idle(dev);
1199
1200	return ret;
1201}
1202
1203#else /* !CONFIG_PM_RUNTIME */
1204
1205#define pci_pm_runtime_suspend	NULL
1206#define pci_pm_runtime_resume	NULL
1207#define pci_pm_runtime_idle	NULL
1208
1209#endif /* !CONFIG_PM_RUNTIME */
1210
1211#ifdef CONFIG_PM
1212
1213static const struct dev_pm_ops pci_dev_pm_ops = {
1214	.prepare = pci_pm_prepare,
1215	.suspend = pci_pm_suspend,
1216	.resume = pci_pm_resume,
1217	.freeze = pci_pm_freeze,
1218	.thaw = pci_pm_thaw,
1219	.poweroff = pci_pm_poweroff,
1220	.restore = pci_pm_restore,
1221	.suspend_noirq = pci_pm_suspend_noirq,
1222	.resume_noirq = pci_pm_resume_noirq,
1223	.freeze_noirq = pci_pm_freeze_noirq,
1224	.thaw_noirq = pci_pm_thaw_noirq,
1225	.poweroff_noirq = pci_pm_poweroff_noirq,
1226	.restore_noirq = pci_pm_restore_noirq,
1227	.runtime_suspend = pci_pm_runtime_suspend,
1228	.runtime_resume = pci_pm_runtime_resume,
1229	.runtime_idle = pci_pm_runtime_idle,
1230};
1231
1232#define PCI_PM_OPS_PTR	(&pci_dev_pm_ops)
1233
1234#else /* !COMFIG_PM_OPS */
1235
1236#define PCI_PM_OPS_PTR	NULL
1237
1238#endif /* !COMFIG_PM_OPS */
1239
1240/**
1241 * __pci_register_driver - register a new pci driver
1242 * @drv: the driver structure to register
1243 * @owner: owner module of drv
1244 * @mod_name: module name string
1245 *
1246 * Adds the driver structure to the list of registered drivers.
1247 * Returns a negative value on error, otherwise 0.
1248 * If no error occurred, the driver remains registered even if
1249 * no device was claimed during registration.
1250 */
1251int __pci_register_driver(struct pci_driver *drv, struct module *owner,
1252			  const char *mod_name)
1253{
1254	/* initialize common driver fields */
1255	drv->driver.name = drv->name;
1256	drv->driver.bus = &pci_bus_type;
1257	drv->driver.owner = owner;
1258	drv->driver.mod_name = mod_name;
1259
1260	spin_lock_init(&drv->dynids.lock);
1261	INIT_LIST_HEAD(&drv->dynids.list);
1262
1263	/* register with core */
1264	return driver_register(&drv->driver);
1265}
1266EXPORT_SYMBOL(__pci_register_driver);
1267
1268/**
1269 * pci_unregister_driver - unregister a pci driver
1270 * @drv: the driver structure to unregister
1271 *
1272 * Deletes the driver structure from the list of registered PCI drivers,
1273 * gives it a chance to clean up by calling its remove() function for
1274 * each device it was responsible for, and marks those devices as
1275 * driverless.
1276 */
1277
1278void pci_unregister_driver(struct pci_driver *drv)
1279{
1280	driver_unregister(&drv->driver);
1281	pci_free_dynids(drv);
1282}
1283EXPORT_SYMBOL(pci_unregister_driver);
1284
1285static struct pci_driver pci_compat_driver = {
1286	.name = "compat"
1287};
1288
1289/**
1290 * pci_dev_driver - get the pci_driver of a device
1291 * @dev: the device to query
1292 *
1293 * Returns the appropriate pci_driver structure or %NULL if there is no
1294 * registered driver for the device.
1295 */
1296struct pci_driver *pci_dev_driver(const struct pci_dev *dev)
1297{
1298	if (dev->driver)
1299		return dev->driver;
1300	else {
1301		int i;
1302		for (i = 0; i <= PCI_ROM_RESOURCE; i++)
1303			if (dev->resource[i].flags & IORESOURCE_BUSY)
1304				return &pci_compat_driver;
1305	}
1306	return NULL;
1307}
1308EXPORT_SYMBOL(pci_dev_driver);
1309
1310/**
1311 * pci_bus_match - Tell if a PCI device structure has a matching PCI device id structure
1312 * @dev: the PCI device structure to match against
1313 * @drv: the device driver to search for matching PCI device id structures
1314 *
1315 * Used by a driver to check whether a PCI device present in the
1316 * system is in its list of supported devices. Returns the matching
1317 * pci_device_id structure or %NULL if there is no match.
1318 */
1319static int pci_bus_match(struct device *dev, struct device_driver *drv)
1320{
1321	struct pci_dev *pci_dev = to_pci_dev(dev);
1322	struct pci_driver *pci_drv;
1323	const struct pci_device_id *found_id;
1324
1325	if (!pci_dev->match_driver)
1326		return 0;
1327
1328	pci_drv = to_pci_driver(drv);
1329	found_id = pci_match_device(pci_drv, pci_dev);
1330	if (found_id)
1331		return 1;
1332
1333	return 0;
1334}
1335
1336/**
1337 * pci_dev_get - increments the reference count of the pci device structure
1338 * @dev: the device being referenced
1339 *
1340 * Each live reference to a device should be refcounted.
1341 *
1342 * Drivers for PCI devices should normally record such references in
1343 * their probe() methods, when they bind to a device, and release
1344 * them by calling pci_dev_put(), in their disconnect() methods.
1345 *
1346 * A pointer to the device with the incremented reference counter is returned.
1347 */
1348struct pci_dev *pci_dev_get(struct pci_dev *dev)
1349{
1350	if (dev)
1351		get_device(&dev->dev);
1352	return dev;
1353}
1354EXPORT_SYMBOL(pci_dev_get);
1355
1356/**
1357 * pci_dev_put - release a use of the pci device structure
1358 * @dev: device that's been disconnected
1359 *
1360 * Must be called when a user of a device is finished with it.  When the last
1361 * user of the device calls this function, the memory of the device is freed.
1362 */
1363void pci_dev_put(struct pci_dev *dev)
1364{
1365	if (dev)
1366		put_device(&dev->dev);
1367}
1368EXPORT_SYMBOL(pci_dev_put);
1369
1370static int pci_uevent(struct device *dev, struct kobj_uevent_env *env)
1371{
1372	struct pci_dev *pdev;
1373
1374	if (!dev)
1375		return -ENODEV;
1376
1377	pdev = to_pci_dev(dev);
1378
1379	if (add_uevent_var(env, "PCI_CLASS=%04X", pdev->class))
1380		return -ENOMEM;
1381
1382	if (add_uevent_var(env, "PCI_ID=%04X:%04X", pdev->vendor, pdev->device))
1383		return -ENOMEM;
1384
1385	if (add_uevent_var(env, "PCI_SUBSYS_ID=%04X:%04X", pdev->subsystem_vendor,
1386			   pdev->subsystem_device))
1387		return -ENOMEM;
1388
1389	if (add_uevent_var(env, "PCI_SLOT_NAME=%s", pci_name(pdev)))
1390		return -ENOMEM;
1391
1392	if (add_uevent_var(env, "MODALIAS=pci:v%08Xd%08Xsv%08Xsd%08Xbc%02Xsc%02Xi%02x",
1393			   pdev->vendor, pdev->device,
1394			   pdev->subsystem_vendor, pdev->subsystem_device,
1395			   (u8)(pdev->class >> 16), (u8)(pdev->class >> 8),
1396			   (u8)(pdev->class)))
1397		return -ENOMEM;
1398
1399	return 0;
1400}
1401
1402struct bus_type pci_bus_type = {
1403	.name		= "pci",
1404	.match		= pci_bus_match,
1405	.uevent		= pci_uevent,
1406	.probe		= pci_device_probe,
1407	.remove		= pci_device_remove,
1408	.shutdown	= pci_device_shutdown,
1409	.dev_groups	= pci_dev_groups,
1410	.bus_groups	= pci_bus_groups,
1411	.drv_groups	= pci_drv_groups,
1412	.pm		= PCI_PM_OPS_PTR,
1413};
1414EXPORT_SYMBOL(pci_bus_type);
1415
1416static int __init pci_driver_init(void)
1417{
1418	return bus_register(&pci_bus_type);
1419}
1420postcore_initcall(pci_driver_init);
1421