[go: nahoru, domu]

1/*
2 * PCI Virtual Channel support
3 *
4 * Copyright (C) 2013 Red Hat, Inc.  All rights reserved.
5 *     Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#include <linux/device.h>
13#include <linux/kernel.h>
14#include <linux/module.h>
15#include <linux/pci.h>
16#include <linux/pci_regs.h>
17#include <linux/types.h>
18
19/**
20 * pci_vc_save_restore_dwords - Save or restore a series of dwords
21 * @dev: device
22 * @pos: starting config space position
23 * @buf: buffer to save to or restore from
24 * @dwords: number of dwords to save/restore
25 * @save: whether to save or restore
26 */
27static void pci_vc_save_restore_dwords(struct pci_dev *dev, int pos,
28				       u32 *buf, int dwords, bool save)
29{
30	int i;
31
32	for (i = 0; i < dwords; i++, buf++) {
33		if (save)
34			pci_read_config_dword(dev, pos + (i * 4), buf);
35		else
36			pci_write_config_dword(dev, pos + (i * 4), *buf);
37	}
38}
39
40/**
41 * pci_vc_load_arb_table - load and wait for VC arbitration table
42 * @dev: device
43 * @pos: starting position of VC capability (VC/VC9/MFVC)
44 *
45 * Set Load VC Arbitration Table bit requesting hardware to apply the VC
46 * Arbitration Table (previously loaded).  When the VC Arbitration Table
47 * Status clears, hardware has latched the table into VC arbitration logic.
48 */
49static void pci_vc_load_arb_table(struct pci_dev *dev, int pos)
50{
51	u16 ctrl;
52
53	pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL, &ctrl);
54	pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
55			      ctrl | PCI_VC_PORT_CTRL_LOAD_TABLE);
56	if (pci_wait_for_pending(dev, pos + PCI_VC_PORT_STATUS,
57				 PCI_VC_PORT_STATUS_TABLE))
58		return;
59
60	dev_err(&dev->dev, "VC arbitration table failed to load\n");
61}
62
63/**
64 * pci_vc_load_port_arb_table - Load and wait for VC port arbitration table
65 * @dev: device
66 * @pos: starting position of VC capability (VC/VC9/MFVC)
67 * @res: VC resource number, ie. VCn (0-7)
68 *
69 * Set Load Port Arbitration Table bit requesting hardware to apply the Port
70 * Arbitration Table (previously loaded).  When the Port Arbitration Table
71 * Status clears, hardware has latched the table into port arbitration logic.
72 */
73static void pci_vc_load_port_arb_table(struct pci_dev *dev, int pos, int res)
74{
75	int ctrl_pos, status_pos;
76	u32 ctrl;
77
78	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
79	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
80
81	pci_read_config_dword(dev, ctrl_pos, &ctrl);
82	pci_write_config_dword(dev, ctrl_pos,
83			       ctrl | PCI_VC_RES_CTRL_LOAD_TABLE);
84
85	if (pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_TABLE))
86		return;
87
88	dev_err(&dev->dev, "VC%d port arbitration table failed to load\n", res);
89}
90
91/**
92 * pci_vc_enable - Enable virtual channel
93 * @dev: device
94 * @pos: starting position of VC capability (VC/VC9/MFVC)
95 * @res: VC res number, ie. VCn (0-7)
96 *
97 * A VC is enabled by setting the enable bit in matching resource control
98 * registers on both sides of a link.  We therefore need to find the opposite
99 * end of the link.  To keep this simple we enable from the downstream device.
100 * RC devices do not have an upstream device, nor does it seem that VC9 do
101 * (spec is unclear).  Once we find the upstream device, match the VC ID to
102 * get the correct resource, disable and enable on both ends.
103 */
104static void pci_vc_enable(struct pci_dev *dev, int pos, int res)
105{
106	int ctrl_pos, status_pos, id, pos2, evcc, i, ctrl_pos2, status_pos2;
107	u32 ctrl, header, cap1, ctrl2;
108	struct pci_dev *link = NULL;
109
110	/* Enable VCs from the downstream device */
111	if (pci_pcie_type(dev) == PCI_EXP_TYPE_ROOT_PORT ||
112	    pci_pcie_type(dev) == PCI_EXP_TYPE_DOWNSTREAM)
113		return;
114
115	ctrl_pos = pos + PCI_VC_RES_CTRL + (res * PCI_CAP_VC_PER_VC_SIZEOF);
116	status_pos = pos + PCI_VC_RES_STATUS + (res * PCI_CAP_VC_PER_VC_SIZEOF);
117
118	pci_read_config_dword(dev, ctrl_pos, &ctrl);
119	id = ctrl & PCI_VC_RES_CTRL_ID;
120
121	pci_read_config_dword(dev, pos, &header);
122
123	/* If there is no opposite end of the link, skip to enable */
124	if (PCI_EXT_CAP_ID(header) == PCI_EXT_CAP_ID_VC9 ||
125	    pci_is_root_bus(dev->bus))
126		goto enable;
127
128	pos2 = pci_find_ext_capability(dev->bus->self, PCI_EXT_CAP_ID_VC);
129	if (!pos2)
130		goto enable;
131
132	pci_read_config_dword(dev->bus->self, pos2 + PCI_VC_PORT_CAP1, &cap1);
133	evcc = cap1 & PCI_VC_CAP1_EVCC;
134
135	/* VC0 is hardwired enabled, so we can start with 1 */
136	for (i = 1; i < evcc + 1; i++) {
137		ctrl_pos2 = pos2 + PCI_VC_RES_CTRL +
138				(i * PCI_CAP_VC_PER_VC_SIZEOF);
139		status_pos2 = pos2 + PCI_VC_RES_STATUS +
140				(i * PCI_CAP_VC_PER_VC_SIZEOF);
141		pci_read_config_dword(dev->bus->self, ctrl_pos2, &ctrl2);
142		if ((ctrl2 & PCI_VC_RES_CTRL_ID) == id) {
143			link = dev->bus->self;
144			break;
145		}
146	}
147
148	if (!link)
149		goto enable;
150
151	/* Disable if enabled */
152	if (ctrl2 & PCI_VC_RES_CTRL_ENABLE) {
153		ctrl2 &= ~PCI_VC_RES_CTRL_ENABLE;
154		pci_write_config_dword(link, ctrl_pos2, ctrl2);
155	}
156
157	/* Enable on both ends */
158	ctrl2 |= PCI_VC_RES_CTRL_ENABLE;
159	pci_write_config_dword(link, ctrl_pos2, ctrl2);
160enable:
161	ctrl |= PCI_VC_RES_CTRL_ENABLE;
162	pci_write_config_dword(dev, ctrl_pos, ctrl);
163
164	if (!pci_wait_for_pending(dev, status_pos, PCI_VC_RES_STATUS_NEGO))
165		dev_err(&dev->dev, "VC%d negotiation stuck pending\n", id);
166
167	if (link && !pci_wait_for_pending(link, status_pos2,
168					  PCI_VC_RES_STATUS_NEGO))
169		dev_err(&link->dev, "VC%d negotiation stuck pending\n", id);
170}
171
172/**
173 * pci_vc_do_save_buffer - Size, save, or restore VC state
174 * @dev: device
175 * @pos: starting position of VC capability (VC/VC9/MFVC)
176 * @save_state: buffer for save/restore
177 * @name: for error message
178 * @save: if provided a buffer, this indicates what to do with it
179 *
180 * Walking Virtual Channel config space to size, save, or restore it
181 * is complicated, so we do it all from one function to reduce code and
182 * guarantee ordering matches in the buffer.  When called with NULL
183 * @save_state, return the size of the necessary save buffer.  When called
184 * with a non-NULL @save_state, @save determines whether we save to the
185 * buffer or restore from it.
186 */
187static int pci_vc_do_save_buffer(struct pci_dev *dev, int pos,
188				 struct pci_cap_saved_state *save_state,
189				 bool save)
190{
191	u32 cap1;
192	char evcc, lpevcc, parb_size;
193	int i, len = 0;
194	u8 *buf = save_state ? (u8 *)save_state->cap.data : NULL;
195
196	/* Sanity check buffer size for save/restore */
197	if (buf && save_state->cap.size !=
198	    pci_vc_do_save_buffer(dev, pos, NULL, save)) {
199		dev_err(&dev->dev,
200			"VC save buffer size does not match @0x%x\n", pos);
201		return -ENOMEM;
202	}
203
204	pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP1, &cap1);
205	/* Extended VC Count (not counting VC0) */
206	evcc = cap1 & PCI_VC_CAP1_EVCC;
207	/* Low Priority Extended VC Count (not counting VC0) */
208	lpevcc = (cap1 & PCI_VC_CAP1_LPEVCC) >> 4;
209	/* Port Arbitration Table Entry Size (bits) */
210	parb_size = 1 << ((cap1 & PCI_VC_CAP1_ARB_SIZE) >> 10);
211
212	/*
213	 * Port VC Control Register contains VC Arbitration Select, which
214	 * cannot be modified when more than one LPVC is in operation.  We
215	 * therefore save/restore it first, as only VC0 should be enabled
216	 * after device reset.
217	 */
218	if (buf) {
219		if (save)
220			pci_read_config_word(dev, pos + PCI_VC_PORT_CTRL,
221					     (u16 *)buf);
222		else
223			pci_write_config_word(dev, pos + PCI_VC_PORT_CTRL,
224					      *(u16 *)buf);
225		buf += 2;
226	}
227	len += 2;
228
229	/*
230	 * If we have any Low Priority VCs and a VC Arbitration Table Offset
231	 * in Port VC Capability Register 2 then save/restore it next.
232	 */
233	if (lpevcc) {
234		u32 cap2;
235		int vcarb_offset;
236
237		pci_read_config_dword(dev, pos + PCI_VC_PORT_CAP2, &cap2);
238		vcarb_offset = ((cap2 & PCI_VC_CAP2_ARB_OFF) >> 24) * 16;
239
240		if (vcarb_offset) {
241			int size, vcarb_phases = 0;
242
243			if (cap2 & PCI_VC_CAP2_128_PHASE)
244				vcarb_phases = 128;
245			else if (cap2 & PCI_VC_CAP2_64_PHASE)
246				vcarb_phases = 64;
247			else if (cap2 & PCI_VC_CAP2_32_PHASE)
248				vcarb_phases = 32;
249
250			/* Fixed 4 bits per phase per lpevcc (plus VC0) */
251			size = ((lpevcc + 1) * vcarb_phases * 4) / 8;
252
253			if (size && buf) {
254				pci_vc_save_restore_dwords(dev,
255							   pos + vcarb_offset,
256							   (u32 *)buf,
257							   size / 4, save);
258				/*
259				 * On restore, we need to signal hardware to
260				 * re-load the VC Arbitration Table.
261				 */
262				if (!save)
263					pci_vc_load_arb_table(dev, pos);
264
265				buf += size;
266			}
267			len += size;
268		}
269	}
270
271	/*
272	 * In addition to each VC Resource Control Register, we may have a
273	 * Port Arbitration Table attached to each VC.  The Port Arbitration
274	 * Table Offset in each VC Resource Capability Register tells us if
275	 * it exists.  The entry size is global from the Port VC Capability
276	 * Register1 above.  The number of phases is determined per VC.
277	 */
278	for (i = 0; i < evcc + 1; i++) {
279		u32 cap;
280		int parb_offset;
281
282		pci_read_config_dword(dev, pos + PCI_VC_RES_CAP +
283				      (i * PCI_CAP_VC_PER_VC_SIZEOF), &cap);
284		parb_offset = ((cap & PCI_VC_RES_CAP_ARB_OFF) >> 24) * 16;
285		if (parb_offset) {
286			int size, parb_phases = 0;
287
288			if (cap & PCI_VC_RES_CAP_256_PHASE)
289				parb_phases = 256;
290			else if (cap & (PCI_VC_RES_CAP_128_PHASE |
291					PCI_VC_RES_CAP_128_PHASE_TB))
292				parb_phases = 128;
293			else if (cap & PCI_VC_RES_CAP_64_PHASE)
294				parb_phases = 64;
295			else if (cap & PCI_VC_RES_CAP_32_PHASE)
296				parb_phases = 32;
297
298			size = (parb_size * parb_phases) / 8;
299
300			if (size && buf) {
301				pci_vc_save_restore_dwords(dev,
302							   pos + parb_offset,
303							   (u32 *)buf,
304							   size / 4, save);
305				buf += size;
306			}
307			len += size;
308		}
309
310		/* VC Resource Control Register */
311		if (buf) {
312			int ctrl_pos = pos + PCI_VC_RES_CTRL +
313						(i * PCI_CAP_VC_PER_VC_SIZEOF);
314			if (save)
315				pci_read_config_dword(dev, ctrl_pos,
316						      (u32 *)buf);
317			else {
318				u32 tmp, ctrl = *(u32 *)buf;
319				/*
320				 * For an FLR case, the VC config may remain.
321				 * Preserve enable bit, restore the rest.
322				 */
323				pci_read_config_dword(dev, ctrl_pos, &tmp);
324				tmp &= PCI_VC_RES_CTRL_ENABLE;
325				tmp |= ctrl & ~PCI_VC_RES_CTRL_ENABLE;
326				pci_write_config_dword(dev, ctrl_pos, tmp);
327				/* Load port arbitration table if used */
328				if (ctrl & PCI_VC_RES_CTRL_ARB_SELECT)
329					pci_vc_load_port_arb_table(dev, pos, i);
330				/* Re-enable if needed */
331				if ((ctrl ^ tmp) & PCI_VC_RES_CTRL_ENABLE)
332					pci_vc_enable(dev, pos, i);
333			}
334			buf += 4;
335		}
336		len += 4;
337	}
338
339	return buf ? 0 : len;
340}
341
342static struct {
343	u16 id;
344	const char *name;
345} vc_caps[] = { { PCI_EXT_CAP_ID_MFVC, "MFVC" },
346		{ PCI_EXT_CAP_ID_VC, "VC" },
347		{ PCI_EXT_CAP_ID_VC9, "VC9" } };
348
349/**
350 * pci_save_vc_state - Save VC state to pre-allocate save buffer
351 * @dev: device
352 *
353 * For each type of VC capability, VC/VC9/MFVC, find the capability and
354 * save it to the pre-allocated save buffer.
355 */
356int pci_save_vc_state(struct pci_dev *dev)
357{
358	int i;
359
360	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
361		int pos, ret;
362		struct pci_cap_saved_state *save_state;
363
364		pos = pci_find_ext_capability(dev, vc_caps[i].id);
365		if (!pos)
366			continue;
367
368		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
369		if (!save_state) {
370			dev_err(&dev->dev, "%s buffer not found in %s\n",
371				vc_caps[i].name, __func__);
372			return -ENOMEM;
373		}
374
375		ret = pci_vc_do_save_buffer(dev, pos, save_state, true);
376		if (ret) {
377			dev_err(&dev->dev, "%s save unsuccessful %s\n",
378				vc_caps[i].name, __func__);
379			return ret;
380		}
381	}
382
383	return 0;
384}
385
386/**
387 * pci_restore_vc_state - Restore VC state from save buffer
388 * @dev: device
389 *
390 * For each type of VC capability, VC/VC9/MFVC, find the capability and
391 * restore it from the previously saved buffer.
392 */
393void pci_restore_vc_state(struct pci_dev *dev)
394{
395	int i;
396
397	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
398		int pos;
399		struct pci_cap_saved_state *save_state;
400
401		pos = pci_find_ext_capability(dev, vc_caps[i].id);
402		save_state = pci_find_saved_ext_cap(dev, vc_caps[i].id);
403		if (!save_state || !pos)
404			continue;
405
406		pci_vc_do_save_buffer(dev, pos, save_state, false);
407	}
408}
409
410/**
411 * pci_allocate_vc_save_buffers - Allocate save buffers for VC caps
412 * @dev: device
413 *
414 * For each type of VC capability, VC/VC9/MFVC, find the capability, size
415 * it, and allocate a buffer for save/restore.
416 */
417
418void pci_allocate_vc_save_buffers(struct pci_dev *dev)
419{
420	int i;
421
422	for (i = 0; i < ARRAY_SIZE(vc_caps); i++) {
423		int len, pos = pci_find_ext_capability(dev, vc_caps[i].id);
424
425		if (!pos)
426			continue;
427
428		len = pci_vc_do_save_buffer(dev, pos, NULL, false);
429		if (pci_add_ext_cap_save_buffer(dev, vc_caps[i].id, len))
430			dev_err(&dev->dev,
431				"unable to preallocate %s save buffer\n",
432				vc_caps[i].name);
433	}
434}
435