[go: nahoru, domu]

1/*
2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86.  There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/spinlock.h>
36#include <linux/platform_device.h>
37#include <linux/log2.h>
38#include <linux/pm.h>
39#include <linux/of.h>
40#include <linux/of_platform.h>
41#include <linux/dmi.h>
42
43/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44#include <asm-generic/rtc.h>
45
46struct cmos_rtc {
47	struct rtc_device	*rtc;
48	struct device		*dev;
49	int			irq;
50	struct resource		*iomem;
51
52	void			(*wake_on)(struct device *);
53	void			(*wake_off)(struct device *);
54
55	u8			enabled_wake;
56	u8			suspend_ctrl;
57
58	/* newer hardware extends the original register set */
59	u8			day_alrm;
60	u8			mon_alrm;
61	u8			century;
62};
63
64/* both platform and pnp busses use negative numbers for invalid irqs */
65#define is_valid_irq(n)		((n) > 0)
66
67static const char driver_name[] = "rtc_cmos";
68
69/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
74
75static inline int is_intr(u8 rtc_intr)
76{
77	if (!(rtc_intr & RTC_IRQF))
78		return 0;
79	return rtc_intr & RTC_IRQMASK;
80}
81
82/*----------------------------------------------------------------*/
83
84/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode.  The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94#ifdef CONFIG_HPET_EMULATE_RTC
95#include <asm/hpet.h>
96#else
97
98static inline int is_hpet_enabled(void)
99{
100	return 0;
101}
102
103static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104{
105	return 0;
106}
107
108static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109{
110	return 0;
111}
112
113static inline int
114hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115{
116	return 0;
117}
118
119static inline int hpet_set_periodic_freq(unsigned long freq)
120{
121	return 0;
122}
123
124static inline int hpet_rtc_dropped_irq(void)
125{
126	return 0;
127}
128
129static inline int hpet_rtc_timer_init(void)
130{
131	return 0;
132}
133
134extern irq_handler_t hpet_rtc_interrupt;
135
136static inline int hpet_register_irq_handler(irq_handler_t handler)
137{
138	return 0;
139}
140
141static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142{
143	return 0;
144}
145
146#endif
147
148/*----------------------------------------------------------------*/
149
150#ifdef RTC_PORT
151
152/* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM.  Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156#define can_bank2	true
157
158static inline unsigned char cmos_read_bank2(unsigned char addr)
159{
160	outb(addr, RTC_PORT(2));
161	return inb(RTC_PORT(3));
162}
163
164static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165{
166	outb(addr, RTC_PORT(2));
167	outb(val, RTC_PORT(3));
168}
169
170#else
171
172#define can_bank2	false
173
174static inline unsigned char cmos_read_bank2(unsigned char addr)
175{
176	return 0;
177}
178
179static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180{
181}
182
183#endif
184
185/*----------------------------------------------------------------*/
186
187static int cmos_read_time(struct device *dev, struct rtc_time *t)
188{
189	/* REVISIT:  if the clock has a "century" register, use
190	 * that instead of the heuristic in get_rtc_time().
191	 * That'll make Y3K compatility (year > 2070) easy!
192	 */
193	get_rtc_time(t);
194	return 0;
195}
196
197static int cmos_set_time(struct device *dev, struct rtc_time *t)
198{
199	/* REVISIT:  set the "century" register if available
200	 *
201	 * NOTE: this ignores the issue whereby updating the seconds
202	 * takes effect exactly 500ms after we write the register.
203	 * (Also queueing and other delays before we get this far.)
204	 */
205	return set_rtc_time(t);
206}
207
208static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209{
210	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
211	unsigned char	rtc_control;
212
213	if (!is_valid_irq(cmos->irq))
214		return -EIO;
215
216	/* Basic alarms only support hour, minute, and seconds fields.
217	 * Some also support day and month, for alarms up to a year in
218	 * the future.
219	 */
220	t->time.tm_mday = -1;
221	t->time.tm_mon = -1;
222
223	spin_lock_irq(&rtc_lock);
224	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228	if (cmos->day_alrm) {
229		/* ignore upper bits on readback per ACPI spec */
230		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
231		if (!t->time.tm_mday)
232			t->time.tm_mday = -1;
233
234		if (cmos->mon_alrm) {
235			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236			if (!t->time.tm_mon)
237				t->time.tm_mon = -1;
238		}
239	}
240
241	rtc_control = CMOS_READ(RTC_CONTROL);
242	spin_unlock_irq(&rtc_lock);
243
244	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245		if (((unsigned)t->time.tm_sec) < 0x60)
246			t->time.tm_sec = bcd2bin(t->time.tm_sec);
247		else
248			t->time.tm_sec = -1;
249		if (((unsigned)t->time.tm_min) < 0x60)
250			t->time.tm_min = bcd2bin(t->time.tm_min);
251		else
252			t->time.tm_min = -1;
253		if (((unsigned)t->time.tm_hour) < 0x24)
254			t->time.tm_hour = bcd2bin(t->time.tm_hour);
255		else
256			t->time.tm_hour = -1;
257
258		if (cmos->day_alrm) {
259			if (((unsigned)t->time.tm_mday) <= 0x31)
260				t->time.tm_mday = bcd2bin(t->time.tm_mday);
261			else
262				t->time.tm_mday = -1;
263
264			if (cmos->mon_alrm) {
265				if (((unsigned)t->time.tm_mon) <= 0x12)
266					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267				else
268					t->time.tm_mon = -1;
269			}
270		}
271	}
272	t->time.tm_year = -1;
273
274	t->enabled = !!(rtc_control & RTC_AIE);
275	t->pending = 0;
276
277	return 0;
278}
279
280static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281{
282	unsigned char	rtc_intr;
283
284	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285	 * allegedly some older rtcs need that to handle irqs properly
286	 */
287	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289	if (is_hpet_enabled())
290		return;
291
292	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293	if (is_intr(rtc_intr))
294		rtc_update_irq(cmos->rtc, 1, rtc_intr);
295}
296
297static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298{
299	unsigned char	rtc_control;
300
301	/* flush any pending IRQ status, notably for update irqs,
302	 * before we enable new IRQs
303	 */
304	rtc_control = CMOS_READ(RTC_CONTROL);
305	cmos_checkintr(cmos, rtc_control);
306
307	rtc_control |= mask;
308	CMOS_WRITE(rtc_control, RTC_CONTROL);
309	hpet_set_rtc_irq_bit(mask);
310
311	cmos_checkintr(cmos, rtc_control);
312}
313
314static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315{
316	unsigned char	rtc_control;
317
318	rtc_control = CMOS_READ(RTC_CONTROL);
319	rtc_control &= ~mask;
320	CMOS_WRITE(rtc_control, RTC_CONTROL);
321	hpet_mask_rtc_irq_bit(mask);
322
323	cmos_checkintr(cmos, rtc_control);
324}
325
326static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327{
328	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
329	unsigned char mon, mday, hrs, min, sec, rtc_control;
330
331	if (!is_valid_irq(cmos->irq))
332		return -EIO;
333
334	mon = t->time.tm_mon + 1;
335	mday = t->time.tm_mday;
336	hrs = t->time.tm_hour;
337	min = t->time.tm_min;
338	sec = t->time.tm_sec;
339
340	rtc_control = CMOS_READ(RTC_CONTROL);
341	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342		/* Writing 0xff means "don't care" or "match all".  */
343		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346		min = (min < 60) ? bin2bcd(min) : 0xff;
347		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348	}
349
350	spin_lock_irq(&rtc_lock);
351
352	/* next rtc irq must not be from previous alarm setting */
353	cmos_irq_disable(cmos, RTC_AIE);
354
355	/* update alarm */
356	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357	CMOS_WRITE(min, RTC_MINUTES_ALARM);
358	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360	/* the system may support an "enhanced" alarm */
361	if (cmos->day_alrm) {
362		CMOS_WRITE(mday, cmos->day_alrm);
363		if (cmos->mon_alrm)
364			CMOS_WRITE(mon, cmos->mon_alrm);
365	}
366
367	/* FIXME the HPET alarm glue currently ignores day_alrm
368	 * and mon_alrm ...
369	 */
370	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
372	if (t->enabled)
373		cmos_irq_enable(cmos, RTC_AIE);
374
375	spin_unlock_irq(&rtc_lock);
376
377	return 0;
378}
379
380/*
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382 */
383static bool alarm_disable_quirk;
384
385static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386{
387	alarm_disable_quirk = true;
388	pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389	pr_info("RTC alarms disabled\n");
390	return 0;
391}
392
393static const struct dmi_system_id rtc_quirks[] __initconst = {
394	/* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395	{
396		.callback = set_alarm_disable_quirk,
397		.ident    = "IBM Truman",
398		.matches  = {
399			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400			DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401		},
402	},
403	/* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404	{
405		.callback = set_alarm_disable_quirk,
406		.ident    = "Gigabyte GA-990XA-UD3",
407		.matches  = {
408			DMI_MATCH(DMI_SYS_VENDOR,
409					"Gigabyte Technology Co., Ltd."),
410			DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411		},
412	},
413	/* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414	{
415		.callback = set_alarm_disable_quirk,
416		.ident    = "Toshiba Satellite L300",
417		.matches  = {
418			DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419			DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420		},
421	},
422	{}
423};
424
425static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
426{
427	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
428	unsigned long	flags;
429
430	if (!is_valid_irq(cmos->irq))
431		return -EINVAL;
432
433	if (alarm_disable_quirk)
434		return 0;
435
436	spin_lock_irqsave(&rtc_lock, flags);
437
438	if (enabled)
439		cmos_irq_enable(cmos, RTC_AIE);
440	else
441		cmos_irq_disable(cmos, RTC_AIE);
442
443	spin_unlock_irqrestore(&rtc_lock, flags);
444	return 0;
445}
446
447#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
449static int cmos_procfs(struct device *dev, struct seq_file *seq)
450{
451	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
452	unsigned char	rtc_control, valid;
453
454	spin_lock_irq(&rtc_lock);
455	rtc_control = CMOS_READ(RTC_CONTROL);
456	valid = CMOS_READ(RTC_VALID);
457	spin_unlock_irq(&rtc_lock);
458
459	/* NOTE:  at least ICH6 reports battery status using a different
460	 * (non-RTC) bit; and SQWE is ignored on many current systems.
461	 */
462	return seq_printf(seq,
463			"periodic_IRQ\t: %s\n"
464			"update_IRQ\t: %s\n"
465			"HPET_emulated\t: %s\n"
466			// "square_wave\t: %s\n"
467			"BCD\t\t: %s\n"
468			"DST_enable\t: %s\n"
469			"periodic_freq\t: %d\n"
470			"batt_status\t: %s\n",
471			(rtc_control & RTC_PIE) ? "yes" : "no",
472			(rtc_control & RTC_UIE) ? "yes" : "no",
473			is_hpet_enabled() ? "yes" : "no",
474			// (rtc_control & RTC_SQWE) ? "yes" : "no",
475			(rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476			(rtc_control & RTC_DST_EN) ? "yes" : "no",
477			cmos->rtc->irq_freq,
478			(valid & RTC_VRT) ? "okay" : "dead");
479}
480
481#else
482#define	cmos_procfs	NULL
483#endif
484
485static const struct rtc_class_ops cmos_rtc_ops = {
486	.read_time		= cmos_read_time,
487	.set_time		= cmos_set_time,
488	.read_alarm		= cmos_read_alarm,
489	.set_alarm		= cmos_set_alarm,
490	.proc			= cmos_procfs,
491	.alarm_irq_enable	= cmos_alarm_irq_enable,
492};
493
494/*----------------------------------------------------------------*/
495
496/*
497 * All these chips have at least 64 bytes of address space, shared by
498 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
499 * by boot firmware.  Modern chips have 128 or 256 bytes.
500 */
501
502#define NVRAM_OFFSET	(RTC_REG_D + 1)
503
504static ssize_t
505cmos_nvram_read(struct file *filp, struct kobject *kobj,
506		struct bin_attribute *attr,
507		char *buf, loff_t off, size_t count)
508{
509	int	retval;
510
511	if (unlikely(off >= attr->size))
512		return 0;
513	if (unlikely(off < 0))
514		return -EINVAL;
515	if ((off + count) > attr->size)
516		count = attr->size - off;
517
518	off += NVRAM_OFFSET;
519	spin_lock_irq(&rtc_lock);
520	for (retval = 0; count; count--, off++, retval++) {
521		if (off < 128)
522			*buf++ = CMOS_READ(off);
523		else if (can_bank2)
524			*buf++ = cmos_read_bank2(off);
525		else
526			break;
527	}
528	spin_unlock_irq(&rtc_lock);
529
530	return retval;
531}
532
533static ssize_t
534cmos_nvram_write(struct file *filp, struct kobject *kobj,
535		struct bin_attribute *attr,
536		char *buf, loff_t off, size_t count)
537{
538	struct cmos_rtc	*cmos;
539	int		retval;
540
541	cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
542	if (unlikely(off >= attr->size))
543		return -EFBIG;
544	if (unlikely(off < 0))
545		return -EINVAL;
546	if ((off + count) > attr->size)
547		count = attr->size - off;
548
549	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
550	 * checksum on part of the NVRAM data.  That's currently ignored
551	 * here.  If userspace is smart enough to know what fields of
552	 * NVRAM to update, updating checksums is also part of its job.
553	 */
554	off += NVRAM_OFFSET;
555	spin_lock_irq(&rtc_lock);
556	for (retval = 0; count; count--, off++, retval++) {
557		/* don't trash RTC registers */
558		if (off == cmos->day_alrm
559				|| off == cmos->mon_alrm
560				|| off == cmos->century)
561			buf++;
562		else if (off < 128)
563			CMOS_WRITE(*buf++, off);
564		else if (can_bank2)
565			cmos_write_bank2(*buf++, off);
566		else
567			break;
568	}
569	spin_unlock_irq(&rtc_lock);
570
571	return retval;
572}
573
574static struct bin_attribute nvram = {
575	.attr = {
576		.name	= "nvram",
577		.mode	= S_IRUGO | S_IWUSR,
578	},
579
580	.read	= cmos_nvram_read,
581	.write	= cmos_nvram_write,
582	/* size gets set up later */
583};
584
585/*----------------------------------------------------------------*/
586
587static struct cmos_rtc	cmos_rtc;
588
589static irqreturn_t cmos_interrupt(int irq, void *p)
590{
591	u8		irqstat;
592	u8		rtc_control;
593
594	spin_lock(&rtc_lock);
595
596	/* When the HPET interrupt handler calls us, the interrupt
597	 * status is passed as arg1 instead of the irq number.  But
598	 * always clear irq status, even when HPET is in the way.
599	 *
600	 * Note that HPET and RTC are almost certainly out of phase,
601	 * giving different IRQ status ...
602	 */
603	irqstat = CMOS_READ(RTC_INTR_FLAGS);
604	rtc_control = CMOS_READ(RTC_CONTROL);
605	if (is_hpet_enabled())
606		irqstat = (unsigned long)irq & 0xF0;
607
608	/* If we were suspended, RTC_CONTROL may not be accurate since the
609	 * bios may have cleared it.
610	 */
611	if (!cmos_rtc.suspend_ctrl)
612		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
613	else
614		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
615
616	/* All Linux RTC alarms should be treated as if they were oneshot.
617	 * Similar code may be needed in system wakeup paths, in case the
618	 * alarm woke the system.
619	 */
620	if (irqstat & RTC_AIE) {
621		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
622		rtc_control &= ~RTC_AIE;
623		CMOS_WRITE(rtc_control, RTC_CONTROL);
624		hpet_mask_rtc_irq_bit(RTC_AIE);
625		CMOS_READ(RTC_INTR_FLAGS);
626	}
627	spin_unlock(&rtc_lock);
628
629	if (is_intr(irqstat)) {
630		rtc_update_irq(p, 1, irqstat);
631		return IRQ_HANDLED;
632	} else
633		return IRQ_NONE;
634}
635
636#ifdef	CONFIG_PNP
637#define	INITSECTION
638
639#else
640#define	INITSECTION	__init
641#endif
642
643static int INITSECTION
644cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
645{
646	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
647	int				retval = 0;
648	unsigned char			rtc_control;
649	unsigned			address_space;
650	u32				flags = 0;
651
652	/* there can be only one ... */
653	if (cmos_rtc.dev)
654		return -EBUSY;
655
656	if (!ports)
657		return -ENODEV;
658
659	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
660	 *
661	 * REVISIT non-x86 systems may instead use memory space resources
662	 * (needing ioremap etc), not i/o space resources like this ...
663	 */
664	if (RTC_IOMAPPED)
665		ports = request_region(ports->start, resource_size(ports),
666				       driver_name);
667	else
668		ports = request_mem_region(ports->start, resource_size(ports),
669					   driver_name);
670	if (!ports) {
671		dev_dbg(dev, "i/o registers already in use\n");
672		return -EBUSY;
673	}
674
675	cmos_rtc.irq = rtc_irq;
676	cmos_rtc.iomem = ports;
677
678	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
679	 * driver did, but don't reject unknown configs.   Old hardware
680	 * won't address 128 bytes.  Newer chips have multiple banks,
681	 * though they may not be listed in one I/O resource.
682	 */
683#if	defined(CONFIG_ATARI)
684	address_space = 64;
685#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
686			|| defined(__sparc__) || defined(__mips__) \
687			|| defined(__powerpc__)
688	address_space = 128;
689#else
690#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
691	address_space = 128;
692#endif
693	if (can_bank2 && ports->end > (ports->start + 1))
694		address_space = 256;
695
696	/* For ACPI systems extension info comes from the FADT.  On others,
697	 * board specific setup provides it as appropriate.  Systems where
698	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
699	 * some almost-clones) can provide hooks to make that behave.
700	 *
701	 * Note that ACPI doesn't preclude putting these registers into
702	 * "extended" areas of the chip, including some that we won't yet
703	 * expect CMOS_READ and friends to handle.
704	 */
705	if (info) {
706		if (info->flags)
707			flags = info->flags;
708		if (info->address_space)
709			address_space = info->address_space;
710
711		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
712			cmos_rtc.day_alrm = info->rtc_day_alarm;
713		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
714			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
715		if (info->rtc_century && info->rtc_century < 128)
716			cmos_rtc.century = info->rtc_century;
717
718		if (info->wake_on && info->wake_off) {
719			cmos_rtc.wake_on = info->wake_on;
720			cmos_rtc.wake_off = info->wake_off;
721		}
722	}
723
724	cmos_rtc.dev = dev;
725	dev_set_drvdata(dev, &cmos_rtc);
726
727	cmos_rtc.rtc = rtc_device_register(driver_name, dev,
728				&cmos_rtc_ops, THIS_MODULE);
729	if (IS_ERR(cmos_rtc.rtc)) {
730		retval = PTR_ERR(cmos_rtc.rtc);
731		goto cleanup0;
732	}
733
734	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
735
736	spin_lock_irq(&rtc_lock);
737
738	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
739		/* force periodic irq to CMOS reset default of 1024Hz;
740		 *
741		 * REVISIT it's been reported that at least one x86_64 ALI
742		 * mobo doesn't use 32KHz here ... for portability we might
743		 * need to do something about other clock frequencies.
744		 */
745		cmos_rtc.rtc->irq_freq = 1024;
746		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
747		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
748	}
749
750	/* disable irqs */
751	if (is_valid_irq(rtc_irq))
752		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
753
754	rtc_control = CMOS_READ(RTC_CONTROL);
755
756	spin_unlock_irq(&rtc_lock);
757
758	/* FIXME:
759	 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
760	 */
761	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
762		dev_warn(dev, "only 24-hr supported\n");
763		retval = -ENXIO;
764		goto cleanup1;
765	}
766
767	if (is_valid_irq(rtc_irq)) {
768		irq_handler_t rtc_cmos_int_handler;
769
770		if (is_hpet_enabled()) {
771			rtc_cmos_int_handler = hpet_rtc_interrupt;
772			retval = hpet_register_irq_handler(cmos_interrupt);
773			if (retval) {
774				dev_warn(dev, "hpet_register_irq_handler "
775						" failed in rtc_init().");
776				goto cleanup1;
777			}
778		} else
779			rtc_cmos_int_handler = cmos_interrupt;
780
781		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
782				0, dev_name(&cmos_rtc.rtc->dev),
783				cmos_rtc.rtc);
784		if (retval < 0) {
785			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
786			goto cleanup1;
787		}
788	}
789	hpet_rtc_timer_init();
790
791	/* export at least the first block of NVRAM */
792	nvram.size = address_space - NVRAM_OFFSET;
793	retval = sysfs_create_bin_file(&dev->kobj, &nvram);
794	if (retval < 0) {
795		dev_dbg(dev, "can't create nvram file? %d\n", retval);
796		goto cleanup2;
797	}
798
799	dev_info(dev, "%s%s, %zd bytes nvram%s\n",
800		!is_valid_irq(rtc_irq) ? "no alarms" :
801			cmos_rtc.mon_alrm ? "alarms up to one year" :
802			cmos_rtc.day_alrm ? "alarms up to one month" :
803			"alarms up to one day",
804		cmos_rtc.century ? ", y3k" : "",
805		nvram.size,
806		is_hpet_enabled() ? ", hpet irqs" : "");
807
808	return 0;
809
810cleanup2:
811	if (is_valid_irq(rtc_irq))
812		free_irq(rtc_irq, cmos_rtc.rtc);
813cleanup1:
814	cmos_rtc.dev = NULL;
815	rtc_device_unregister(cmos_rtc.rtc);
816cleanup0:
817	if (RTC_IOMAPPED)
818		release_region(ports->start, resource_size(ports));
819	else
820		release_mem_region(ports->start, resource_size(ports));
821	return retval;
822}
823
824static void cmos_do_shutdown(int rtc_irq)
825{
826	spin_lock_irq(&rtc_lock);
827	if (is_valid_irq(rtc_irq))
828		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
829	spin_unlock_irq(&rtc_lock);
830}
831
832static void __exit cmos_do_remove(struct device *dev)
833{
834	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
835	struct resource *ports;
836
837	cmos_do_shutdown(cmos->irq);
838
839	sysfs_remove_bin_file(&dev->kobj, &nvram);
840
841	if (is_valid_irq(cmos->irq)) {
842		free_irq(cmos->irq, cmos->rtc);
843		hpet_unregister_irq_handler(cmos_interrupt);
844	}
845
846	rtc_device_unregister(cmos->rtc);
847	cmos->rtc = NULL;
848
849	ports = cmos->iomem;
850	if (RTC_IOMAPPED)
851		release_region(ports->start, resource_size(ports));
852	else
853		release_mem_region(ports->start, resource_size(ports));
854	cmos->iomem = NULL;
855
856	cmos->dev = NULL;
857}
858
859#ifdef CONFIG_PM
860
861static int cmos_suspend(struct device *dev)
862{
863	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
864	unsigned char	tmp;
865
866	/* only the alarm might be a wakeup event source */
867	spin_lock_irq(&rtc_lock);
868	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
869	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
870		unsigned char	mask;
871
872		if (device_may_wakeup(dev))
873			mask = RTC_IRQMASK & ~RTC_AIE;
874		else
875			mask = RTC_IRQMASK;
876		tmp &= ~mask;
877		CMOS_WRITE(tmp, RTC_CONTROL);
878		hpet_mask_rtc_irq_bit(mask);
879
880		cmos_checkintr(cmos, tmp);
881	}
882	spin_unlock_irq(&rtc_lock);
883
884	if (tmp & RTC_AIE) {
885		cmos->enabled_wake = 1;
886		if (cmos->wake_on)
887			cmos->wake_on(dev);
888		else
889			enable_irq_wake(cmos->irq);
890	}
891
892	dev_dbg(dev, "suspend%s, ctrl %02x\n",
893			(tmp & RTC_AIE) ? ", alarm may wake" : "",
894			tmp);
895
896	return 0;
897}
898
899/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
900 * after a detour through G3 "mechanical off", although the ACPI spec
901 * says wakeup should only work from G1/S4 "hibernate".  To most users,
902 * distinctions between S4 and S5 are pointless.  So when the hardware
903 * allows, don't draw that distinction.
904 */
905static inline int cmos_poweroff(struct device *dev)
906{
907	return cmos_suspend(dev);
908}
909
910#ifdef	CONFIG_PM_SLEEP
911
912static int cmos_resume(struct device *dev)
913{
914	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
915	unsigned char tmp;
916
917	if (cmos->enabled_wake) {
918		if (cmos->wake_off)
919			cmos->wake_off(dev);
920		else
921			disable_irq_wake(cmos->irq);
922		cmos->enabled_wake = 0;
923	}
924
925	spin_lock_irq(&rtc_lock);
926	tmp = cmos->suspend_ctrl;
927	cmos->suspend_ctrl = 0;
928	/* re-enable any irqs previously active */
929	if (tmp & RTC_IRQMASK) {
930		unsigned char	mask;
931
932		if (device_may_wakeup(dev))
933			hpet_rtc_timer_init();
934
935		do {
936			CMOS_WRITE(tmp, RTC_CONTROL);
937			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
938
939			mask = CMOS_READ(RTC_INTR_FLAGS);
940			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
941			if (!is_hpet_enabled() || !is_intr(mask))
942				break;
943
944			/* force one-shot behavior if HPET blocked
945			 * the wake alarm's irq
946			 */
947			rtc_update_irq(cmos->rtc, 1, mask);
948			tmp &= ~RTC_AIE;
949			hpet_mask_rtc_irq_bit(RTC_AIE);
950		} while (mask & RTC_AIE);
951	}
952	spin_unlock_irq(&rtc_lock);
953
954	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
955
956	return 0;
957}
958
959#endif
960#else
961
962static inline int cmos_poweroff(struct device *dev)
963{
964	return -ENOSYS;
965}
966
967#endif
968
969static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
970
971/*----------------------------------------------------------------*/
972
973/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
974 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
975 * probably list them in similar PNPBIOS tables; so PNP is more common.
976 *
977 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
978 * predate even PNPBIOS should set up platform_bus devices.
979 */
980
981#ifdef	CONFIG_ACPI
982
983#include <linux/acpi.h>
984
985static u32 rtc_handler(void *context)
986{
987	struct device *dev = context;
988
989	pm_wakeup_event(dev, 0);
990	acpi_clear_event(ACPI_EVENT_RTC);
991	acpi_disable_event(ACPI_EVENT_RTC, 0);
992	return ACPI_INTERRUPT_HANDLED;
993}
994
995static inline void rtc_wake_setup(struct device *dev)
996{
997	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
998	/*
999	 * After the RTC handler is installed, the Fixed_RTC event should
1000	 * be disabled. Only when the RTC alarm is set will it be enabled.
1001	 */
1002	acpi_clear_event(ACPI_EVENT_RTC);
1003	acpi_disable_event(ACPI_EVENT_RTC, 0);
1004}
1005
1006static void rtc_wake_on(struct device *dev)
1007{
1008	acpi_clear_event(ACPI_EVENT_RTC);
1009	acpi_enable_event(ACPI_EVENT_RTC, 0);
1010}
1011
1012static void rtc_wake_off(struct device *dev)
1013{
1014	acpi_disable_event(ACPI_EVENT_RTC, 0);
1015}
1016
1017/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1018 * its device node and pass extra config data.  This helps its driver use
1019 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1020 * that this board's RTC is wakeup-capable (per ACPI spec).
1021 */
1022static struct cmos_rtc_board_info acpi_rtc_info;
1023
1024static void cmos_wake_setup(struct device *dev)
1025{
1026	if (acpi_disabled)
1027		return;
1028
1029	rtc_wake_setup(dev);
1030	acpi_rtc_info.wake_on = rtc_wake_on;
1031	acpi_rtc_info.wake_off = rtc_wake_off;
1032
1033	/* workaround bug in some ACPI tables */
1034	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1035		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1036			acpi_gbl_FADT.month_alarm);
1037		acpi_gbl_FADT.month_alarm = 0;
1038	}
1039
1040	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1041	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1042	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1043
1044	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1045	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1046		dev_info(dev, "RTC can wake from S4\n");
1047
1048	dev->platform_data = &acpi_rtc_info;
1049
1050	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1051	device_init_wakeup(dev, 1);
1052}
1053
1054#else
1055
1056static void cmos_wake_setup(struct device *dev)
1057{
1058}
1059
1060#endif
1061
1062#ifdef	CONFIG_PNP
1063
1064#include <linux/pnp.h>
1065
1066static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1067{
1068	cmos_wake_setup(&pnp->dev);
1069
1070	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
1071		/* Some machines contain a PNP entry for the RTC, but
1072		 * don't define the IRQ. It should always be safe to
1073		 * hardcode it in these cases
1074		 */
1075		return cmos_do_probe(&pnp->dev,
1076				pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
1077	else
1078		return cmos_do_probe(&pnp->dev,
1079				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1080				pnp_irq(pnp, 0));
1081}
1082
1083static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1084{
1085	cmos_do_remove(&pnp->dev);
1086}
1087
1088static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1089{
1090	struct device *dev = &pnp->dev;
1091	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1092
1093	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1094		return;
1095
1096	cmos_do_shutdown(cmos->irq);
1097}
1098
1099static const struct pnp_device_id rtc_ids[] = {
1100	{ .id = "PNP0b00", },
1101	{ .id = "PNP0b01", },
1102	{ .id = "PNP0b02", },
1103	{ },
1104};
1105MODULE_DEVICE_TABLE(pnp, rtc_ids);
1106
1107static struct pnp_driver cmos_pnp_driver = {
1108	.name		= (char *) driver_name,
1109	.id_table	= rtc_ids,
1110	.probe		= cmos_pnp_probe,
1111	.remove		= __exit_p(cmos_pnp_remove),
1112	.shutdown	= cmos_pnp_shutdown,
1113
1114	/* flag ensures resume() gets called, and stops syslog spam */
1115	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1116	.driver		= {
1117			.pm = &cmos_pm_ops,
1118	},
1119};
1120
1121#endif	/* CONFIG_PNP */
1122
1123#ifdef CONFIG_OF
1124static const struct of_device_id of_cmos_match[] = {
1125	{
1126		.compatible = "motorola,mc146818",
1127	},
1128	{ },
1129};
1130MODULE_DEVICE_TABLE(of, of_cmos_match);
1131
1132static __init void cmos_of_init(struct platform_device *pdev)
1133{
1134	struct device_node *node = pdev->dev.of_node;
1135	struct rtc_time time;
1136	int ret;
1137	const __be32 *val;
1138
1139	if (!node)
1140		return;
1141
1142	val = of_get_property(node, "ctrl-reg", NULL);
1143	if (val)
1144		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1145
1146	val = of_get_property(node, "freq-reg", NULL);
1147	if (val)
1148		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1149
1150	get_rtc_time(&time);
1151	ret = rtc_valid_tm(&time);
1152	if (ret) {
1153		struct rtc_time def_time = {
1154			.tm_year = 1,
1155			.tm_mday = 1,
1156		};
1157		set_rtc_time(&def_time);
1158	}
1159}
1160#else
1161static inline void cmos_of_init(struct platform_device *pdev) {}
1162#endif
1163/*----------------------------------------------------------------*/
1164
1165/* Platform setup should have set up an RTC device, when PNP is
1166 * unavailable ... this could happen even on (older) PCs.
1167 */
1168
1169static int __init cmos_platform_probe(struct platform_device *pdev)
1170{
1171	struct resource *resource;
1172	int irq;
1173
1174	cmos_of_init(pdev);
1175	cmos_wake_setup(&pdev->dev);
1176
1177	if (RTC_IOMAPPED)
1178		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1179	else
1180		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1181	irq = platform_get_irq(pdev, 0);
1182	if (irq < 0)
1183		irq = -1;
1184
1185	return cmos_do_probe(&pdev->dev, resource, irq);
1186}
1187
1188static int __exit cmos_platform_remove(struct platform_device *pdev)
1189{
1190	cmos_do_remove(&pdev->dev);
1191	return 0;
1192}
1193
1194static void cmos_platform_shutdown(struct platform_device *pdev)
1195{
1196	struct device *dev = &pdev->dev;
1197	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1198
1199	if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
1200		return;
1201
1202	cmos_do_shutdown(cmos->irq);
1203}
1204
1205/* work with hotplug and coldplug */
1206MODULE_ALIAS("platform:rtc_cmos");
1207
1208static struct platform_driver cmos_platform_driver = {
1209	.remove		= __exit_p(cmos_platform_remove),
1210	.shutdown	= cmos_platform_shutdown,
1211	.driver = {
1212		.name		= driver_name,
1213#ifdef CONFIG_PM
1214		.pm		= &cmos_pm_ops,
1215#endif
1216		.of_match_table = of_match_ptr(of_cmos_match),
1217	}
1218};
1219
1220#ifdef CONFIG_PNP
1221static bool pnp_driver_registered;
1222#endif
1223static bool platform_driver_registered;
1224
1225static int __init cmos_init(void)
1226{
1227	int retval = 0;
1228
1229#ifdef	CONFIG_PNP
1230	retval = pnp_register_driver(&cmos_pnp_driver);
1231	if (retval == 0)
1232		pnp_driver_registered = true;
1233#endif
1234
1235	if (!cmos_rtc.dev) {
1236		retval = platform_driver_probe(&cmos_platform_driver,
1237					       cmos_platform_probe);
1238		if (retval == 0)
1239			platform_driver_registered = true;
1240	}
1241
1242	dmi_check_system(rtc_quirks);
1243
1244	if (retval == 0)
1245		return 0;
1246
1247#ifdef	CONFIG_PNP
1248	if (pnp_driver_registered)
1249		pnp_unregister_driver(&cmos_pnp_driver);
1250#endif
1251	return retval;
1252}
1253module_init(cmos_init);
1254
1255static void __exit cmos_exit(void)
1256{
1257#ifdef	CONFIG_PNP
1258	if (pnp_driver_registered)
1259		pnp_unregister_driver(&cmos_pnp_driver);
1260#endif
1261	if (platform_driver_registered)
1262		platform_driver_unregister(&cmos_platform_driver);
1263}
1264module_exit(cmos_exit);
1265
1266
1267MODULE_AUTHOR("David Brownell");
1268MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1269MODULE_LICENSE("GPL");
1270