[go: nahoru, domu]

exynos_tmu.c revision 8131a246600f0c34a71cbe1a2e4a19af7e9bc887
1/*
2 * exynos_tmu.c - Samsung EXYNOS TMU (Thermal Management Unit)
3 *
4 *  Copyright (C) 2011 Samsung Electronics
5 *  Donggeun Kim <dg77.kim@samsung.com>
6 *  Amit Daniel Kachhap <amit.kachhap@linaro.org>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 *
22 */
23
24#include <linux/clk.h>
25#include <linux/io.h>
26#include <linux/interrupt.h>
27#include <linux/module.h>
28#include <linux/of.h>
29#include <linux/of_address.h>
30#include <linux/of_irq.h>
31#include <linux/platform_device.h>
32#include <linux/regulator/consumer.h>
33
34#include "exynos_thermal_common.h"
35#include "exynos_tmu.h"
36#include "exynos_tmu_data.h"
37
38/**
39 * struct exynos_tmu_data : A structure to hold the private data of the TMU
40	driver
41 * @id: identifier of the one instance of the TMU controller.
42 * @pdata: pointer to the tmu platform/configuration data
43 * @base: base address of the single instance of the TMU controller.
44 * @base_second: base address of the common registers of the TMU controller.
45 * @irq: irq number of the TMU controller.
46 * @soc: id of the SOC type.
47 * @irq_work: pointer to the irq work structure.
48 * @lock: lock to implement synchronization.
49 * @clk: pointer to the clock structure.
50 * @clk_sec: pointer to the clock structure for accessing the base_second.
51 * @temp_error1: fused value of the first point trim.
52 * @temp_error2: fused value of the second point trim.
53 * @regulator: pointer to the TMU regulator structure.
54 * @reg_conf: pointer to structure to register with core thermal.
55 */
56struct exynos_tmu_data {
57	int id;
58	struct exynos_tmu_platform_data *pdata;
59	void __iomem *base;
60	void __iomem *base_second;
61	int irq;
62	enum soc_type soc;
63	struct work_struct irq_work;
64	struct mutex lock;
65	struct clk *clk, *clk_sec;
66	u8 temp_error1, temp_error2;
67	struct regulator *regulator;
68	struct thermal_sensor_conf *reg_conf;
69};
70
71/*
72 * TMU treats temperature as a mapped temperature code.
73 * The temperature is converted differently depending on the calibration type.
74 */
75static int temp_to_code(struct exynos_tmu_data *data, u8 temp)
76{
77	struct exynos_tmu_platform_data *pdata = data->pdata;
78	int temp_code;
79
80	if (data->soc == SOC_ARCH_EXYNOS4210)
81		/* temp should range between 25 and 125 */
82		if (temp < 25 || temp > 125) {
83			temp_code = -EINVAL;
84			goto out;
85		}
86
87	switch (pdata->cal_type) {
88	case TYPE_TWO_POINT_TRIMMING:
89		temp_code = (temp - pdata->first_point_trim) *
90			(data->temp_error2 - data->temp_error1) /
91			(pdata->second_point_trim - pdata->first_point_trim) +
92			data->temp_error1;
93		break;
94	case TYPE_ONE_POINT_TRIMMING:
95		temp_code = temp + data->temp_error1 - pdata->first_point_trim;
96		break;
97	default:
98		temp_code = temp + pdata->default_temp_offset;
99		break;
100	}
101out:
102	return temp_code;
103}
104
105/*
106 * Calculate a temperature value from a temperature code.
107 * The unit of the temperature is degree Celsius.
108 */
109static int code_to_temp(struct exynos_tmu_data *data, u8 temp_code)
110{
111	struct exynos_tmu_platform_data *pdata = data->pdata;
112	int temp;
113
114	if (data->soc == SOC_ARCH_EXYNOS4210)
115		/* temp_code should range between 75 and 175 */
116		if (temp_code < 75 || temp_code > 175) {
117			temp = -ENODATA;
118			goto out;
119		}
120
121	switch (pdata->cal_type) {
122	case TYPE_TWO_POINT_TRIMMING:
123		temp = (temp_code - data->temp_error1) *
124			(pdata->second_point_trim - pdata->first_point_trim) /
125			(data->temp_error2 - data->temp_error1) +
126			pdata->first_point_trim;
127		break;
128	case TYPE_ONE_POINT_TRIMMING:
129		temp = temp_code - data->temp_error1 + pdata->first_point_trim;
130		break;
131	default:
132		temp = temp_code - pdata->default_temp_offset;
133		break;
134	}
135out:
136	return temp;
137}
138
139static int exynos_tmu_initialize(struct platform_device *pdev)
140{
141	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
142	struct exynos_tmu_platform_data *pdata = data->pdata;
143	const struct exynos_tmu_registers *reg = pdata->registers;
144	unsigned int status, trim_info = 0, con;
145	unsigned int rising_threshold = 0, falling_threshold = 0;
146	int ret = 0, threshold_code, i, trigger_levs = 0;
147
148	mutex_lock(&data->lock);
149	clk_enable(data->clk);
150	if (!IS_ERR(data->clk_sec))
151		clk_enable(data->clk_sec);
152
153	if (TMU_SUPPORTS(pdata, READY_STATUS)) {
154		status = readb(data->base + reg->tmu_status);
155		if (!status) {
156			ret = -EBUSY;
157			goto out;
158		}
159	}
160
161	if (TMU_SUPPORTS(pdata, TRIM_RELOAD))
162		__raw_writel(1, data->base + reg->triminfo_ctrl);
163
164	/* Save trimming info in order to perform calibration */
165	if (data->soc == SOC_ARCH_EXYNOS5440) {
166		/*
167		 * For exynos5440 soc triminfo value is swapped between TMU0 and
168		 * TMU2, so the below logic is needed.
169		 */
170		switch (data->id) {
171		case 0:
172			trim_info = readl(data->base +
173			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
174			break;
175		case 1:
176			trim_info = readl(data->base + reg->triminfo_data);
177			break;
178		case 2:
179			trim_info = readl(data->base -
180			EXYNOS5440_EFUSE_SWAP_OFFSET + reg->triminfo_data);
181		}
182	} else {
183		/* On exynos5420 the triminfo register is in the shared space */
184		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO)
185			trim_info = readl(data->base_second +
186							reg->triminfo_data);
187		else
188			trim_info = readl(data->base + reg->triminfo_data);
189	}
190	data->temp_error1 = trim_info & EXYNOS_TMU_TEMP_MASK;
191	data->temp_error2 = ((trim_info >> reg->triminfo_85_shift) &
192				EXYNOS_TMU_TEMP_MASK);
193
194	if (!data->temp_error1 ||
195		(pdata->min_efuse_value > data->temp_error1) ||
196		(data->temp_error1 > pdata->max_efuse_value))
197		data->temp_error1 = pdata->efuse_value & EXYNOS_TMU_TEMP_MASK;
198
199	if (!data->temp_error2)
200		data->temp_error2 =
201			(pdata->efuse_value >> reg->triminfo_85_shift) &
202			EXYNOS_TMU_TEMP_MASK;
203
204	for (i = 0; i < pdata->max_trigger_level; i++) {
205		if (!pdata->trigger_levels[i])
206			continue;
207
208		/* Count trigger levels except the HW trip*/
209		if (!(pdata->trigger_type[i] == HW_TRIP))
210			trigger_levs++;
211	}
212
213	rising_threshold = readl(data->base + reg->threshold_th0);
214
215	if (data->soc == SOC_ARCH_EXYNOS4210) {
216		/* Write temperature code for threshold */
217		threshold_code = temp_to_code(data, pdata->threshold);
218		writeb(threshold_code,
219			data->base + reg->threshold_temp);
220		for (i = 0; i < trigger_levs; i++)
221			writeb(pdata->trigger_levels[i], data->base +
222			reg->threshold_th0 + i * sizeof(reg->threshold_th0));
223
224		writel(reg->intclr_rise_mask, data->base + reg->tmu_intclear);
225	} else {
226		/* Write temperature code for rising and falling threshold */
227		for (i = 0;
228		i < trigger_levs && i < EXYNOS_MAX_TRIGGER_PER_REG; i++) {
229			threshold_code = temp_to_code(data,
230						pdata->trigger_levels[i]);
231			rising_threshold &= ~(0xff << 8 * i);
232			rising_threshold |= threshold_code << 8 * i;
233			if (pdata->threshold_falling) {
234				threshold_code = temp_to_code(data,
235						pdata->trigger_levels[i] -
236						pdata->threshold_falling);
237				falling_threshold |= threshold_code << 8 * i;
238			}
239		}
240
241		writel(rising_threshold,
242				data->base + reg->threshold_th0);
243		writel(falling_threshold,
244				data->base + reg->threshold_th1);
245
246		writel((reg->intclr_rise_mask << reg->intclr_rise_shift) |
247			(reg->intclr_fall_mask << reg->intclr_fall_shift),
248				data->base + reg->tmu_intclear);
249
250		/* if last threshold limit is also present */
251		i = pdata->max_trigger_level - 1;
252		if (pdata->trigger_levels[i] &&
253				(pdata->trigger_type[i] == HW_TRIP)) {
254			threshold_code = temp_to_code(data,
255						pdata->trigger_levels[i]);
256			if (i == EXYNOS_MAX_TRIGGER_PER_REG - 1) {
257				/* 1-4 level to be assigned in th0 reg */
258				rising_threshold &= ~(0xff << 8 * i);
259				rising_threshold |= threshold_code << 8 * i;
260				writel(rising_threshold,
261					data->base + reg->threshold_th0);
262			} else if (i == EXYNOS_MAX_TRIGGER_PER_REG) {
263				/* 5th level to be assigned in th2 reg */
264				rising_threshold =
265				threshold_code << reg->threshold_th3_l0_shift;
266				writel(rising_threshold,
267					data->base + reg->threshold_th2);
268			}
269			con = readl(data->base + reg->tmu_ctrl);
270			con |= (1 << reg->therm_trip_en_shift);
271			writel(con, data->base + reg->tmu_ctrl);
272		}
273	}
274	/*Clear the PMIN in the common TMU register*/
275	if (reg->tmu_pmin && !data->id)
276		writel(0, data->base_second + reg->tmu_pmin);
277out:
278	clk_disable(data->clk);
279	mutex_unlock(&data->lock);
280	if (!IS_ERR(data->clk_sec))
281		clk_disable(data->clk_sec);
282
283	return ret;
284}
285
286static void exynos_tmu_control(struct platform_device *pdev, bool on)
287{
288	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
289	struct exynos_tmu_platform_data *pdata = data->pdata;
290	const struct exynos_tmu_registers *reg = pdata->registers;
291	unsigned int con, interrupt_en;
292
293	mutex_lock(&data->lock);
294	clk_enable(data->clk);
295
296	con = readl(data->base + reg->tmu_ctrl);
297
298	if (pdata->test_mux)
299		con |= (pdata->test_mux << reg->test_mux_addr_shift);
300
301	if (pdata->reference_voltage) {
302		con &= ~(reg->buf_vref_sel_mask << reg->buf_vref_sel_shift);
303		con |= pdata->reference_voltage << reg->buf_vref_sel_shift;
304	}
305
306	if (pdata->gain) {
307		con &= ~(reg->buf_slope_sel_mask << reg->buf_slope_sel_shift);
308		con |= (pdata->gain << reg->buf_slope_sel_shift);
309	}
310
311	if (pdata->noise_cancel_mode) {
312		con &= ~(reg->therm_trip_mode_mask <<
313					reg->therm_trip_mode_shift);
314		con |= (pdata->noise_cancel_mode << reg->therm_trip_mode_shift);
315	}
316
317	if (on) {
318		con |= (1 << reg->core_en_shift);
319		interrupt_en =
320			pdata->trigger_enable[3] << reg->inten_rise3_shift |
321			pdata->trigger_enable[2] << reg->inten_rise2_shift |
322			pdata->trigger_enable[1] << reg->inten_rise1_shift |
323			pdata->trigger_enable[0] << reg->inten_rise0_shift;
324		if (TMU_SUPPORTS(pdata, FALLING_TRIP))
325			interrupt_en |=
326				interrupt_en << reg->inten_fall0_shift;
327	} else {
328		con &= ~(1 << reg->core_en_shift);
329		interrupt_en = 0; /* Disable all interrupts */
330	}
331	writel(interrupt_en, data->base + reg->tmu_inten);
332	writel(con, data->base + reg->tmu_ctrl);
333
334	clk_disable(data->clk);
335	mutex_unlock(&data->lock);
336}
337
338static int exynos_tmu_read(struct exynos_tmu_data *data)
339{
340	struct exynos_tmu_platform_data *pdata = data->pdata;
341	const struct exynos_tmu_registers *reg = pdata->registers;
342	u8 temp_code;
343	int temp;
344
345	mutex_lock(&data->lock);
346	clk_enable(data->clk);
347
348	temp_code = readb(data->base + reg->tmu_cur_temp);
349	temp = code_to_temp(data, temp_code);
350
351	clk_disable(data->clk);
352	mutex_unlock(&data->lock);
353
354	return temp;
355}
356
357#ifdef CONFIG_THERMAL_EMULATION
358static int exynos_tmu_set_emulation(void *drv_data, unsigned long temp)
359{
360	struct exynos_tmu_data *data = drv_data;
361	struct exynos_tmu_platform_data *pdata = data->pdata;
362	const struct exynos_tmu_registers *reg = pdata->registers;
363	unsigned int val;
364	int ret = -EINVAL;
365
366	if (!TMU_SUPPORTS(pdata, EMULATION))
367		goto out;
368
369	if (temp && temp < MCELSIUS)
370		goto out;
371
372	mutex_lock(&data->lock);
373	clk_enable(data->clk);
374
375	val = readl(data->base + reg->emul_con);
376
377	if (temp) {
378		temp /= MCELSIUS;
379
380		if (TMU_SUPPORTS(pdata, EMUL_TIME)) {
381			val &= ~(EXYNOS_EMUL_TIME_MASK << reg->emul_time_shift);
382			val |= (EXYNOS_EMUL_TIME << reg->emul_time_shift);
383		}
384		val &= ~(EXYNOS_EMUL_DATA_MASK << reg->emul_temp_shift);
385		val |= (temp_to_code(data, temp) << reg->emul_temp_shift) |
386			EXYNOS_EMUL_ENABLE;
387	} else {
388		val &= ~EXYNOS_EMUL_ENABLE;
389	}
390
391	writel(val, data->base + reg->emul_con);
392
393	clk_disable(data->clk);
394	mutex_unlock(&data->lock);
395	return 0;
396out:
397	return ret;
398}
399#else
400static int exynos_tmu_set_emulation(void *drv_data,	unsigned long temp)
401	{ return -EINVAL; }
402#endif/*CONFIG_THERMAL_EMULATION*/
403
404static void exynos_tmu_work(struct work_struct *work)
405{
406	struct exynos_tmu_data *data = container_of(work,
407			struct exynos_tmu_data, irq_work);
408	struct exynos_tmu_platform_data *pdata = data->pdata;
409	const struct exynos_tmu_registers *reg = pdata->registers;
410	unsigned int val_irq, val_type;
411
412	if (!IS_ERR(data->clk_sec))
413		clk_enable(data->clk_sec);
414	/* Find which sensor generated this interrupt */
415	if (reg->tmu_irqstatus) {
416		val_type = readl(data->base_second + reg->tmu_irqstatus);
417		if (!((val_type >> data->id) & 0x1))
418			goto out;
419	}
420	if (!IS_ERR(data->clk_sec))
421		clk_disable(data->clk_sec);
422
423	exynos_report_trigger(data->reg_conf);
424	mutex_lock(&data->lock);
425	clk_enable(data->clk);
426
427	/* TODO: take action based on particular interrupt */
428	val_irq = readl(data->base + reg->tmu_intstat);
429	/* clear the interrupts */
430	writel(val_irq, data->base + reg->tmu_intclear);
431
432	clk_disable(data->clk);
433	mutex_unlock(&data->lock);
434out:
435	enable_irq(data->irq);
436}
437
438static irqreturn_t exynos_tmu_irq(int irq, void *id)
439{
440	struct exynos_tmu_data *data = id;
441
442	disable_irq_nosync(irq);
443	schedule_work(&data->irq_work);
444
445	return IRQ_HANDLED;
446}
447
448static const struct of_device_id exynos_tmu_match[] = {
449	{
450		.compatible = "samsung,exynos3250-tmu",
451		.data = (void *)EXYNOS3250_TMU_DRV_DATA,
452	},
453	{
454		.compatible = "samsung,exynos4210-tmu",
455		.data = (void *)EXYNOS4210_TMU_DRV_DATA,
456	},
457	{
458		.compatible = "samsung,exynos4412-tmu",
459		.data = (void *)EXYNOS4412_TMU_DRV_DATA,
460	},
461	{
462		.compatible = "samsung,exynos5250-tmu",
463		.data = (void *)EXYNOS5250_TMU_DRV_DATA,
464	},
465	{
466		.compatible = "samsung,exynos5260-tmu",
467		.data = (void *)EXYNOS5260_TMU_DRV_DATA,
468	},
469	{
470		.compatible = "samsung,exynos5420-tmu",
471		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
472	},
473	{
474		.compatible = "samsung,exynos5420-tmu-ext-triminfo",
475		.data = (void *)EXYNOS5420_TMU_DRV_DATA,
476	},
477	{
478		.compatible = "samsung,exynos5440-tmu",
479		.data = (void *)EXYNOS5440_TMU_DRV_DATA,
480	},
481	{},
482};
483MODULE_DEVICE_TABLE(of, exynos_tmu_match);
484
485static inline struct  exynos_tmu_platform_data *exynos_get_driver_data(
486			struct platform_device *pdev, int id)
487{
488	struct  exynos_tmu_init_data *data_table;
489	struct exynos_tmu_platform_data *tmu_data;
490	const struct of_device_id *match;
491
492	match = of_match_node(exynos_tmu_match, pdev->dev.of_node);
493	if (!match)
494		return NULL;
495	data_table = (struct exynos_tmu_init_data *) match->data;
496	if (!data_table || id >= data_table->tmu_count)
497		return NULL;
498	tmu_data = data_table->tmu_data;
499	return (struct exynos_tmu_platform_data *) (tmu_data + id);
500}
501
502static int exynos_map_dt_data(struct platform_device *pdev)
503{
504	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
505	struct exynos_tmu_platform_data *pdata;
506	struct resource res;
507	int ret;
508
509	if (!data || !pdev->dev.of_node)
510		return -ENODEV;
511
512	/*
513	 * Try enabling the regulator if found
514	 * TODO: Add regulator as an SOC feature, so that regulator enable
515	 * is a compulsory call.
516	 */
517	data->regulator = devm_regulator_get(&pdev->dev, "vtmu");
518	if (!IS_ERR(data->regulator)) {
519		ret = regulator_enable(data->regulator);
520		if (ret) {
521			dev_err(&pdev->dev, "failed to enable vtmu\n");
522			return ret;
523		}
524	} else {
525		dev_info(&pdev->dev, "Regulator node (vtmu) not found\n");
526	}
527
528	data->id = of_alias_get_id(pdev->dev.of_node, "tmuctrl");
529	if (data->id < 0)
530		data->id = 0;
531
532	data->irq = irq_of_parse_and_map(pdev->dev.of_node, 0);
533	if (data->irq <= 0) {
534		dev_err(&pdev->dev, "failed to get IRQ\n");
535		return -ENODEV;
536	}
537
538	if (of_address_to_resource(pdev->dev.of_node, 0, &res)) {
539		dev_err(&pdev->dev, "failed to get Resource 0\n");
540		return -ENODEV;
541	}
542
543	data->base = devm_ioremap(&pdev->dev, res.start, resource_size(&res));
544	if (!data->base) {
545		dev_err(&pdev->dev, "Failed to ioremap memory\n");
546		return -EADDRNOTAVAIL;
547	}
548
549	pdata = exynos_get_driver_data(pdev, data->id);
550	if (!pdata) {
551		dev_err(&pdev->dev, "No platform init data supplied.\n");
552		return -ENODEV;
553	}
554	data->pdata = pdata;
555	/*
556	 * Check if the TMU shares some registers and then try to map the
557	 * memory of common registers.
558	 */
559	if (!TMU_SUPPORTS(pdata, ADDRESS_MULTIPLE))
560		return 0;
561
562	if (of_address_to_resource(pdev->dev.of_node, 1, &res)) {
563		dev_err(&pdev->dev, "failed to get Resource 1\n");
564		return -ENODEV;
565	}
566
567	data->base_second = devm_ioremap(&pdev->dev, res.start,
568					resource_size(&res));
569	if (!data->base_second) {
570		dev_err(&pdev->dev, "Failed to ioremap memory\n");
571		return -ENOMEM;
572	}
573
574	return 0;
575}
576
577static int exynos_tmu_probe(struct platform_device *pdev)
578{
579	struct exynos_tmu_data *data;
580	struct exynos_tmu_platform_data *pdata;
581	struct thermal_sensor_conf *sensor_conf;
582	int ret, i;
583
584	data = devm_kzalloc(&pdev->dev, sizeof(struct exynos_tmu_data),
585					GFP_KERNEL);
586	if (!data)
587		return -ENOMEM;
588
589	platform_set_drvdata(pdev, data);
590	mutex_init(&data->lock);
591
592	ret = exynos_map_dt_data(pdev);
593	if (ret)
594		return ret;
595
596	pdata = data->pdata;
597
598	INIT_WORK(&data->irq_work, exynos_tmu_work);
599
600	data->clk = devm_clk_get(&pdev->dev, "tmu_apbif");
601	if (IS_ERR(data->clk)) {
602		dev_err(&pdev->dev, "Failed to get clock\n");
603		return  PTR_ERR(data->clk);
604	}
605
606	data->clk_sec = devm_clk_get(&pdev->dev, "tmu_triminfo_apbif");
607	if (IS_ERR(data->clk_sec)) {
608		if (data->soc == SOC_ARCH_EXYNOS5420_TRIMINFO) {
609			dev_err(&pdev->dev, "Failed to get triminfo clock\n");
610			return PTR_ERR(data->clk_sec);
611		}
612	} else {
613		ret = clk_prepare(data->clk_sec);
614		if (ret) {
615			dev_err(&pdev->dev, "Failed to get clock\n");
616			return ret;
617		}
618	}
619
620	ret = clk_prepare(data->clk);
621	if (ret) {
622		dev_err(&pdev->dev, "Failed to get clock\n");
623		goto err_clk_sec;
624	}
625
626	if (pdata->type == SOC_ARCH_EXYNOS3250 ||
627	    pdata->type == SOC_ARCH_EXYNOS4210 ||
628	    pdata->type == SOC_ARCH_EXYNOS4412 ||
629	    pdata->type == SOC_ARCH_EXYNOS5250 ||
630	    pdata->type == SOC_ARCH_EXYNOS5260 ||
631	    pdata->type == SOC_ARCH_EXYNOS5420_TRIMINFO ||
632	    pdata->type == SOC_ARCH_EXYNOS5440)
633		data->soc = pdata->type;
634	else {
635		ret = -EINVAL;
636		dev_err(&pdev->dev, "Platform not supported\n");
637		goto err_clk;
638	}
639
640	ret = exynos_tmu_initialize(pdev);
641	if (ret) {
642		dev_err(&pdev->dev, "Failed to initialize TMU\n");
643		goto err_clk;
644	}
645
646	exynos_tmu_control(pdev, true);
647
648	/* Allocate a structure to register with the exynos core thermal */
649	sensor_conf = devm_kzalloc(&pdev->dev,
650				sizeof(struct thermal_sensor_conf), GFP_KERNEL);
651	if (!sensor_conf) {
652		ret = -ENOMEM;
653		goto err_clk;
654	}
655	sprintf(sensor_conf->name, "therm_zone%d", data->id);
656	sensor_conf->read_temperature = (int (*)(void *))exynos_tmu_read;
657	sensor_conf->write_emul_temp =
658		(int (*)(void *, unsigned long))exynos_tmu_set_emulation;
659	sensor_conf->driver_data = data;
660	sensor_conf->trip_data.trip_count = pdata->trigger_enable[0] +
661			pdata->trigger_enable[1] + pdata->trigger_enable[2]+
662			pdata->trigger_enable[3];
663
664	for (i = 0; i < sensor_conf->trip_data.trip_count; i++) {
665		sensor_conf->trip_data.trip_val[i] =
666			pdata->threshold + pdata->trigger_levels[i];
667		sensor_conf->trip_data.trip_type[i] =
668					pdata->trigger_type[i];
669	}
670
671	sensor_conf->trip_data.trigger_falling = pdata->threshold_falling;
672
673	sensor_conf->cooling_data.freq_clip_count = pdata->freq_tab_count;
674	for (i = 0; i < pdata->freq_tab_count; i++) {
675		sensor_conf->cooling_data.freq_data[i].freq_clip_max =
676					pdata->freq_tab[i].freq_clip_max;
677		sensor_conf->cooling_data.freq_data[i].temp_level =
678					pdata->freq_tab[i].temp_level;
679	}
680	sensor_conf->dev = &pdev->dev;
681	/* Register the sensor with thermal management interface */
682	ret = exynos_register_thermal(sensor_conf);
683	if (ret) {
684		dev_err(&pdev->dev, "Failed to register thermal interface\n");
685		goto err_clk;
686	}
687	data->reg_conf = sensor_conf;
688
689	ret = devm_request_irq(&pdev->dev, data->irq, exynos_tmu_irq,
690		IRQF_TRIGGER_RISING | IRQF_SHARED, dev_name(&pdev->dev), data);
691	if (ret) {
692		dev_err(&pdev->dev, "Failed to request irq: %d\n", data->irq);
693		goto err_clk;
694	}
695
696	return 0;
697err_clk:
698	clk_unprepare(data->clk);
699err_clk_sec:
700	if (!IS_ERR(data->clk_sec))
701		clk_unprepare(data->clk_sec);
702	return ret;
703}
704
705static int exynos_tmu_remove(struct platform_device *pdev)
706{
707	struct exynos_tmu_data *data = platform_get_drvdata(pdev);
708
709	exynos_unregister_thermal(data->reg_conf);
710
711	exynos_tmu_control(pdev, false);
712
713	clk_unprepare(data->clk);
714	if (!IS_ERR(data->clk_sec))
715		clk_unprepare(data->clk_sec);
716
717	if (!IS_ERR(data->regulator))
718		regulator_disable(data->regulator);
719
720	return 0;
721}
722
723#ifdef CONFIG_PM_SLEEP
724static int exynos_tmu_suspend(struct device *dev)
725{
726	exynos_tmu_control(to_platform_device(dev), false);
727
728	return 0;
729}
730
731static int exynos_tmu_resume(struct device *dev)
732{
733	struct platform_device *pdev = to_platform_device(dev);
734
735	exynos_tmu_initialize(pdev);
736	exynos_tmu_control(pdev, true);
737
738	return 0;
739}
740
741static SIMPLE_DEV_PM_OPS(exynos_tmu_pm,
742			 exynos_tmu_suspend, exynos_tmu_resume);
743#define EXYNOS_TMU_PM	(&exynos_tmu_pm)
744#else
745#define EXYNOS_TMU_PM	NULL
746#endif
747
748static struct platform_driver exynos_tmu_driver = {
749	.driver = {
750		.name   = "exynos-tmu",
751		.owner  = THIS_MODULE,
752		.pm     = EXYNOS_TMU_PM,
753		.of_match_table = exynos_tmu_match,
754	},
755	.probe = exynos_tmu_probe,
756	.remove	= exynos_tmu_remove,
757};
758
759module_platform_driver(exynos_tmu_driver);
760
761MODULE_DESCRIPTION("EXYNOS TMU Driver");
762MODULE_AUTHOR("Donggeun Kim <dg77.kim@samsung.com>");
763MODULE_LICENSE("GPL");
764MODULE_ALIAS("platform:exynos-tmu");
765