[go: nahoru, domu]

1/*
2 * Written for linux by Johan Myreen as a translation from
3 * the assembly version by Linus (with diacriticals added)
4 *
5 * Some additional features added by Christoph Niemann (ChN), March 1993
6 *
7 * Loadable keymaps by Risto Kankkunen, May 1993
8 *
9 * Diacriticals redone & other small changes, aeb@cwi.nl, June 1993
10 * Added decr/incr_console, dynamic keymaps, Unicode support,
11 * dynamic function/string keys, led setting,  Sept 1994
12 * `Sticky' modifier keys, 951006.
13 *
14 * 11-11-96: SAK should now work in the raw mode (Martin Mares)
15 *
16 * Modified to provide 'generic' keyboard support by Hamish Macdonald
17 * Merge with the m68k keyboard driver and split-off of the PC low-level
18 * parts by Geert Uytterhoeven, May 1997
19 *
20 * 27-05-97: Added support for the Magic SysRq Key (Martin Mares)
21 * 30-07-98: Dead keys redone, aeb@cwi.nl.
22 * 21-08-02: Converted to input API, major cleanup. (Vojtech Pavlik)
23 */
24
25#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
26
27#include <linux/consolemap.h>
28#include <linux/module.h>
29#include <linux/sched.h>
30#include <linux/tty.h>
31#include <linux/tty_flip.h>
32#include <linux/mm.h>
33#include <linux/string.h>
34#include <linux/init.h>
35#include <linux/slab.h>
36
37#include <linux/kbd_kern.h>
38#include <linux/kbd_diacr.h>
39#include <linux/vt_kern.h>
40#include <linux/input.h>
41#include <linux/reboot.h>
42#include <linux/notifier.h>
43#include <linux/jiffies.h>
44#include <linux/uaccess.h>
45
46#include <asm/irq_regs.h>
47
48extern void ctrl_alt_del(void);
49
50/*
51 * Exported functions/variables
52 */
53
54#define KBD_DEFMODE ((1 << VC_REPEAT) | (1 << VC_META))
55
56#if defined(CONFIG_X86) || defined(CONFIG_PARISC)
57#include <asm/kbdleds.h>
58#else
59static inline int kbd_defleds(void)
60{
61	return 0;
62}
63#endif
64
65#define KBD_DEFLOCK 0
66
67/*
68 * Handler Tables.
69 */
70
71#define K_HANDLERS\
72	k_self,		k_fn,		k_spec,		k_pad,\
73	k_dead,		k_cons,		k_cur,		k_shift,\
74	k_meta,		k_ascii,	k_lock,		k_lowercase,\
75	k_slock,	k_dead2,	k_brl,		k_ignore
76
77typedef void (k_handler_fn)(struct vc_data *vc, unsigned char value,
78			    char up_flag);
79static k_handler_fn K_HANDLERS;
80static k_handler_fn *k_handler[16] = { K_HANDLERS };
81
82#define FN_HANDLERS\
83	fn_null,	fn_enter,	fn_show_ptregs,	fn_show_mem,\
84	fn_show_state,	fn_send_intr,	fn_lastcons,	fn_caps_toggle,\
85	fn_num,		fn_hold,	fn_scroll_forw,	fn_scroll_back,\
86	fn_boot_it,	fn_caps_on,	fn_compose,	fn_SAK,\
87	fn_dec_console, fn_inc_console, fn_spawn_con,	fn_bare_num
88
89typedef void (fn_handler_fn)(struct vc_data *vc);
90static fn_handler_fn FN_HANDLERS;
91static fn_handler_fn *fn_handler[] = { FN_HANDLERS };
92
93/*
94 * Variables exported for vt_ioctl.c
95 */
96
97struct vt_spawn_console vt_spawn_con = {
98	.lock = __SPIN_LOCK_UNLOCKED(vt_spawn_con.lock),
99	.pid  = NULL,
100	.sig  = 0,
101};
102
103
104/*
105 * Internal Data.
106 */
107
108static struct kbd_struct kbd_table[MAX_NR_CONSOLES];
109static struct kbd_struct *kbd = kbd_table;
110
111/* maximum values each key_handler can handle */
112static const int max_vals[] = {
113	255, ARRAY_SIZE(func_table) - 1, ARRAY_SIZE(fn_handler) - 1, NR_PAD - 1,
114	NR_DEAD - 1, 255, 3, NR_SHIFT - 1, 255, NR_ASCII - 1, NR_LOCK - 1,
115	255, NR_LOCK - 1, 255, NR_BRL - 1
116};
117
118static const int NR_TYPES = ARRAY_SIZE(max_vals);
119
120static struct input_handler kbd_handler;
121static DEFINE_SPINLOCK(kbd_event_lock);
122static DEFINE_SPINLOCK(led_lock);
123static unsigned long key_down[BITS_TO_LONGS(KEY_CNT)];	/* keyboard key bitmap */
124static unsigned char shift_down[NR_SHIFT];		/* shift state counters.. */
125static bool dead_key_next;
126static int npadch = -1;					/* -1 or number assembled on pad */
127static unsigned int diacr;
128static char rep;					/* flag telling character repeat */
129
130static int shift_state = 0;
131
132static unsigned char ledstate = 0xff;			/* undefined */
133static unsigned char ledioctl;
134
135/*
136 * Notifier list for console keyboard events
137 */
138static ATOMIC_NOTIFIER_HEAD(keyboard_notifier_list);
139
140int register_keyboard_notifier(struct notifier_block *nb)
141{
142	return atomic_notifier_chain_register(&keyboard_notifier_list, nb);
143}
144EXPORT_SYMBOL_GPL(register_keyboard_notifier);
145
146int unregister_keyboard_notifier(struct notifier_block *nb)
147{
148	return atomic_notifier_chain_unregister(&keyboard_notifier_list, nb);
149}
150EXPORT_SYMBOL_GPL(unregister_keyboard_notifier);
151
152/*
153 * Translation of scancodes to keycodes. We set them on only the first
154 * keyboard in the list that accepts the scancode and keycode.
155 * Explanation for not choosing the first attached keyboard anymore:
156 *  USB keyboards for example have two event devices: one for all "normal"
157 *  keys and one for extra function keys (like "volume up", "make coffee",
158 *  etc.). So this means that scancodes for the extra function keys won't
159 *  be valid for the first event device, but will be for the second.
160 */
161
162struct getset_keycode_data {
163	struct input_keymap_entry ke;
164	int error;
165};
166
167static int getkeycode_helper(struct input_handle *handle, void *data)
168{
169	struct getset_keycode_data *d = data;
170
171	d->error = input_get_keycode(handle->dev, &d->ke);
172
173	return d->error == 0; /* stop as soon as we successfully get one */
174}
175
176static int getkeycode(unsigned int scancode)
177{
178	struct getset_keycode_data d = {
179		.ke	= {
180			.flags		= 0,
181			.len		= sizeof(scancode),
182			.keycode	= 0,
183		},
184		.error	= -ENODEV,
185	};
186
187	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
188
189	input_handler_for_each_handle(&kbd_handler, &d, getkeycode_helper);
190
191	return d.error ?: d.ke.keycode;
192}
193
194static int setkeycode_helper(struct input_handle *handle, void *data)
195{
196	struct getset_keycode_data *d = data;
197
198	d->error = input_set_keycode(handle->dev, &d->ke);
199
200	return d->error == 0; /* stop as soon as we successfully set one */
201}
202
203static int setkeycode(unsigned int scancode, unsigned int keycode)
204{
205	struct getset_keycode_data d = {
206		.ke	= {
207			.flags		= 0,
208			.len		= sizeof(scancode),
209			.keycode	= keycode,
210		},
211		.error	= -ENODEV,
212	};
213
214	memcpy(d.ke.scancode, &scancode, sizeof(scancode));
215
216	input_handler_for_each_handle(&kbd_handler, &d, setkeycode_helper);
217
218	return d.error;
219}
220
221/*
222 * Making beeps and bells. Note that we prefer beeps to bells, but when
223 * shutting the sound off we do both.
224 */
225
226static int kd_sound_helper(struct input_handle *handle, void *data)
227{
228	unsigned int *hz = data;
229	struct input_dev *dev = handle->dev;
230
231	if (test_bit(EV_SND, dev->evbit)) {
232		if (test_bit(SND_TONE, dev->sndbit)) {
233			input_inject_event(handle, EV_SND, SND_TONE, *hz);
234			if (*hz)
235				return 0;
236		}
237		if (test_bit(SND_BELL, dev->sndbit))
238			input_inject_event(handle, EV_SND, SND_BELL, *hz ? 1 : 0);
239	}
240
241	return 0;
242}
243
244static void kd_nosound(unsigned long ignored)
245{
246	static unsigned int zero;
247
248	input_handler_for_each_handle(&kbd_handler, &zero, kd_sound_helper);
249}
250
251static DEFINE_TIMER(kd_mksound_timer, kd_nosound, 0, 0);
252
253void kd_mksound(unsigned int hz, unsigned int ticks)
254{
255	del_timer_sync(&kd_mksound_timer);
256
257	input_handler_for_each_handle(&kbd_handler, &hz, kd_sound_helper);
258
259	if (hz && ticks)
260		mod_timer(&kd_mksound_timer, jiffies + ticks);
261}
262EXPORT_SYMBOL(kd_mksound);
263
264/*
265 * Setting the keyboard rate.
266 */
267
268static int kbd_rate_helper(struct input_handle *handle, void *data)
269{
270	struct input_dev *dev = handle->dev;
271	struct kbd_repeat *rpt = data;
272
273	if (test_bit(EV_REP, dev->evbit)) {
274
275		if (rpt[0].delay > 0)
276			input_inject_event(handle,
277					   EV_REP, REP_DELAY, rpt[0].delay);
278		if (rpt[0].period > 0)
279			input_inject_event(handle,
280					   EV_REP, REP_PERIOD, rpt[0].period);
281
282		rpt[1].delay = dev->rep[REP_DELAY];
283		rpt[1].period = dev->rep[REP_PERIOD];
284	}
285
286	return 0;
287}
288
289int kbd_rate(struct kbd_repeat *rpt)
290{
291	struct kbd_repeat data[2] = { *rpt };
292
293	input_handler_for_each_handle(&kbd_handler, data, kbd_rate_helper);
294	*rpt = data[1];	/* Copy currently used settings */
295
296	return 0;
297}
298
299/*
300 * Helper Functions.
301 */
302static void put_queue(struct vc_data *vc, int ch)
303{
304	tty_insert_flip_char(&vc->port, ch, 0);
305	tty_schedule_flip(&vc->port);
306}
307
308static void puts_queue(struct vc_data *vc, char *cp)
309{
310	while (*cp) {
311		tty_insert_flip_char(&vc->port, *cp, 0);
312		cp++;
313	}
314	tty_schedule_flip(&vc->port);
315}
316
317static void applkey(struct vc_data *vc, int key, char mode)
318{
319	static char buf[] = { 0x1b, 'O', 0x00, 0x00 };
320
321	buf[1] = (mode ? 'O' : '[');
322	buf[2] = key;
323	puts_queue(vc, buf);
324}
325
326/*
327 * Many other routines do put_queue, but I think either
328 * they produce ASCII, or they produce some user-assigned
329 * string, and in both cases we might assume that it is
330 * in utf-8 already.
331 */
332static void to_utf8(struct vc_data *vc, uint c)
333{
334	if (c < 0x80)
335		/*  0******* */
336		put_queue(vc, c);
337	else if (c < 0x800) {
338		/* 110***** 10****** */
339		put_queue(vc, 0xc0 | (c >> 6));
340		put_queue(vc, 0x80 | (c & 0x3f));
341	} else if (c < 0x10000) {
342		if (c >= 0xD800 && c < 0xE000)
343			return;
344		if (c == 0xFFFF)
345			return;
346		/* 1110**** 10****** 10****** */
347		put_queue(vc, 0xe0 | (c >> 12));
348		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
349		put_queue(vc, 0x80 | (c & 0x3f));
350	} else if (c < 0x110000) {
351		/* 11110*** 10****** 10****** 10****** */
352		put_queue(vc, 0xf0 | (c >> 18));
353		put_queue(vc, 0x80 | ((c >> 12) & 0x3f));
354		put_queue(vc, 0x80 | ((c >> 6) & 0x3f));
355		put_queue(vc, 0x80 | (c & 0x3f));
356	}
357}
358
359/*
360 * Called after returning from RAW mode or when changing consoles - recompute
361 * shift_down[] and shift_state from key_down[] maybe called when keymap is
362 * undefined, so that shiftkey release is seen. The caller must hold the
363 * kbd_event_lock.
364 */
365
366static void do_compute_shiftstate(void)
367{
368	unsigned int i, j, k, sym, val;
369
370	shift_state = 0;
371	memset(shift_down, 0, sizeof(shift_down));
372
373	for (i = 0; i < ARRAY_SIZE(key_down); i++) {
374
375		if (!key_down[i])
376			continue;
377
378		k = i * BITS_PER_LONG;
379
380		for (j = 0; j < BITS_PER_LONG; j++, k++) {
381
382			if (!test_bit(k, key_down))
383				continue;
384
385			sym = U(key_maps[0][k]);
386			if (KTYP(sym) != KT_SHIFT && KTYP(sym) != KT_SLOCK)
387				continue;
388
389			val = KVAL(sym);
390			if (val == KVAL(K_CAPSSHIFT))
391				val = KVAL(K_SHIFT);
392
393			shift_down[val]++;
394			shift_state |= (1 << val);
395		}
396	}
397}
398
399/* We still have to export this method to vt.c */
400void compute_shiftstate(void)
401{
402	unsigned long flags;
403	spin_lock_irqsave(&kbd_event_lock, flags);
404	do_compute_shiftstate();
405	spin_unlock_irqrestore(&kbd_event_lock, flags);
406}
407
408/*
409 * We have a combining character DIACR here, followed by the character CH.
410 * If the combination occurs in the table, return the corresponding value.
411 * Otherwise, if CH is a space or equals DIACR, return DIACR.
412 * Otherwise, conclude that DIACR was not combining after all,
413 * queue it and return CH.
414 */
415static unsigned int handle_diacr(struct vc_data *vc, unsigned int ch)
416{
417	unsigned int d = diacr;
418	unsigned int i;
419
420	diacr = 0;
421
422	if ((d & ~0xff) == BRL_UC_ROW) {
423		if ((ch & ~0xff) == BRL_UC_ROW)
424			return d | ch;
425	} else {
426		for (i = 0; i < accent_table_size; i++)
427			if (accent_table[i].diacr == d && accent_table[i].base == ch)
428				return accent_table[i].result;
429	}
430
431	if (ch == ' ' || ch == (BRL_UC_ROW|0) || ch == d)
432		return d;
433
434	if (kbd->kbdmode == VC_UNICODE)
435		to_utf8(vc, d);
436	else {
437		int c = conv_uni_to_8bit(d);
438		if (c != -1)
439			put_queue(vc, c);
440	}
441
442	return ch;
443}
444
445/*
446 * Special function handlers
447 */
448static void fn_enter(struct vc_data *vc)
449{
450	if (diacr) {
451		if (kbd->kbdmode == VC_UNICODE)
452			to_utf8(vc, diacr);
453		else {
454			int c = conv_uni_to_8bit(diacr);
455			if (c != -1)
456				put_queue(vc, c);
457		}
458		diacr = 0;
459	}
460
461	put_queue(vc, 13);
462	if (vc_kbd_mode(kbd, VC_CRLF))
463		put_queue(vc, 10);
464}
465
466static void fn_caps_toggle(struct vc_data *vc)
467{
468	if (rep)
469		return;
470
471	chg_vc_kbd_led(kbd, VC_CAPSLOCK);
472}
473
474static void fn_caps_on(struct vc_data *vc)
475{
476	if (rep)
477		return;
478
479	set_vc_kbd_led(kbd, VC_CAPSLOCK);
480}
481
482static void fn_show_ptregs(struct vc_data *vc)
483{
484	struct pt_regs *regs = get_irq_regs();
485
486	if (regs)
487		show_regs(regs);
488}
489
490static void fn_hold(struct vc_data *vc)
491{
492	struct tty_struct *tty = vc->port.tty;
493
494	if (rep || !tty)
495		return;
496
497	/*
498	 * Note: SCROLLOCK will be set (cleared) by stop_tty (start_tty);
499	 * these routines are also activated by ^S/^Q.
500	 * (And SCROLLOCK can also be set by the ioctl KDSKBLED.)
501	 */
502	if (tty->stopped)
503		start_tty(tty);
504	else
505		stop_tty(tty);
506}
507
508static void fn_num(struct vc_data *vc)
509{
510	if (vc_kbd_mode(kbd, VC_APPLIC))
511		applkey(vc, 'P', 1);
512	else
513		fn_bare_num(vc);
514}
515
516/*
517 * Bind this to Shift-NumLock if you work in application keypad mode
518 * but want to be able to change the NumLock flag.
519 * Bind this to NumLock if you prefer that the NumLock key always
520 * changes the NumLock flag.
521 */
522static void fn_bare_num(struct vc_data *vc)
523{
524	if (!rep)
525		chg_vc_kbd_led(kbd, VC_NUMLOCK);
526}
527
528static void fn_lastcons(struct vc_data *vc)
529{
530	/* switch to the last used console, ChN */
531	set_console(last_console);
532}
533
534static void fn_dec_console(struct vc_data *vc)
535{
536	int i, cur = fg_console;
537
538	/* Currently switching?  Queue this next switch relative to that. */
539	if (want_console != -1)
540		cur = want_console;
541
542	for (i = cur - 1; i != cur; i--) {
543		if (i == -1)
544			i = MAX_NR_CONSOLES - 1;
545		if (vc_cons_allocated(i))
546			break;
547	}
548	set_console(i);
549}
550
551static void fn_inc_console(struct vc_data *vc)
552{
553	int i, cur = fg_console;
554
555	/* Currently switching?  Queue this next switch relative to that. */
556	if (want_console != -1)
557		cur = want_console;
558
559	for (i = cur+1; i != cur; i++) {
560		if (i == MAX_NR_CONSOLES)
561			i = 0;
562		if (vc_cons_allocated(i))
563			break;
564	}
565	set_console(i);
566}
567
568static void fn_send_intr(struct vc_data *vc)
569{
570	tty_insert_flip_char(&vc->port, 0, TTY_BREAK);
571	tty_schedule_flip(&vc->port);
572}
573
574static void fn_scroll_forw(struct vc_data *vc)
575{
576	scrollfront(vc, 0);
577}
578
579static void fn_scroll_back(struct vc_data *vc)
580{
581	scrollback(vc, 0);
582}
583
584static void fn_show_mem(struct vc_data *vc)
585{
586	show_mem(0);
587}
588
589static void fn_show_state(struct vc_data *vc)
590{
591	show_state();
592}
593
594static void fn_boot_it(struct vc_data *vc)
595{
596	ctrl_alt_del();
597}
598
599static void fn_compose(struct vc_data *vc)
600{
601	dead_key_next = true;
602}
603
604static void fn_spawn_con(struct vc_data *vc)
605{
606	spin_lock(&vt_spawn_con.lock);
607	if (vt_spawn_con.pid)
608		if (kill_pid(vt_spawn_con.pid, vt_spawn_con.sig, 1)) {
609			put_pid(vt_spawn_con.pid);
610			vt_spawn_con.pid = NULL;
611		}
612	spin_unlock(&vt_spawn_con.lock);
613}
614
615static void fn_SAK(struct vc_data *vc)
616{
617	struct work_struct *SAK_work = &vc_cons[fg_console].SAK_work;
618	schedule_work(SAK_work);
619}
620
621static void fn_null(struct vc_data *vc)
622{
623	do_compute_shiftstate();
624}
625
626/*
627 * Special key handlers
628 */
629static void k_ignore(struct vc_data *vc, unsigned char value, char up_flag)
630{
631}
632
633static void k_spec(struct vc_data *vc, unsigned char value, char up_flag)
634{
635	if (up_flag)
636		return;
637	if (value >= ARRAY_SIZE(fn_handler))
638		return;
639	if ((kbd->kbdmode == VC_RAW ||
640	     kbd->kbdmode == VC_MEDIUMRAW ||
641	     kbd->kbdmode == VC_OFF) &&
642	     value != KVAL(K_SAK))
643		return;		/* SAK is allowed even in raw mode */
644	fn_handler[value](vc);
645}
646
647static void k_lowercase(struct vc_data *vc, unsigned char value, char up_flag)
648{
649	pr_err("k_lowercase was called - impossible\n");
650}
651
652static void k_unicode(struct vc_data *vc, unsigned int value, char up_flag)
653{
654	if (up_flag)
655		return;		/* no action, if this is a key release */
656
657	if (diacr)
658		value = handle_diacr(vc, value);
659
660	if (dead_key_next) {
661		dead_key_next = false;
662		diacr = value;
663		return;
664	}
665	if (kbd->kbdmode == VC_UNICODE)
666		to_utf8(vc, value);
667	else {
668		int c = conv_uni_to_8bit(value);
669		if (c != -1)
670			put_queue(vc, c);
671	}
672}
673
674/*
675 * Handle dead key. Note that we now may have several
676 * dead keys modifying the same character. Very useful
677 * for Vietnamese.
678 */
679static void k_deadunicode(struct vc_data *vc, unsigned int value, char up_flag)
680{
681	if (up_flag)
682		return;
683
684	diacr = (diacr ? handle_diacr(vc, value) : value);
685}
686
687static void k_self(struct vc_data *vc, unsigned char value, char up_flag)
688{
689	k_unicode(vc, conv_8bit_to_uni(value), up_flag);
690}
691
692static void k_dead2(struct vc_data *vc, unsigned char value, char up_flag)
693{
694	k_deadunicode(vc, value, up_flag);
695}
696
697/*
698 * Obsolete - for backwards compatibility only
699 */
700static void k_dead(struct vc_data *vc, unsigned char value, char up_flag)
701{
702	static const unsigned char ret_diacr[NR_DEAD] = {'`', '\'', '^', '~', '"', ',' };
703
704	k_deadunicode(vc, ret_diacr[value], up_flag);
705}
706
707static void k_cons(struct vc_data *vc, unsigned char value, char up_flag)
708{
709	if (up_flag)
710		return;
711
712	set_console(value);
713}
714
715static void k_fn(struct vc_data *vc, unsigned char value, char up_flag)
716{
717	if (up_flag)
718		return;
719
720	if ((unsigned)value < ARRAY_SIZE(func_table)) {
721		if (func_table[value])
722			puts_queue(vc, func_table[value]);
723	} else
724		pr_err("k_fn called with value=%d\n", value);
725}
726
727static void k_cur(struct vc_data *vc, unsigned char value, char up_flag)
728{
729	static const char cur_chars[] = "BDCA";
730
731	if (up_flag)
732		return;
733
734	applkey(vc, cur_chars[value], vc_kbd_mode(kbd, VC_CKMODE));
735}
736
737static void k_pad(struct vc_data *vc, unsigned char value, char up_flag)
738{
739	static const char pad_chars[] = "0123456789+-*/\015,.?()#";
740	static const char app_map[] = "pqrstuvwxylSRQMnnmPQS";
741
742	if (up_flag)
743		return;		/* no action, if this is a key release */
744
745	/* kludge... shift forces cursor/number keys */
746	if (vc_kbd_mode(kbd, VC_APPLIC) && !shift_down[KG_SHIFT]) {
747		applkey(vc, app_map[value], 1);
748		return;
749	}
750
751	if (!vc_kbd_led(kbd, VC_NUMLOCK)) {
752
753		switch (value) {
754		case KVAL(K_PCOMMA):
755		case KVAL(K_PDOT):
756			k_fn(vc, KVAL(K_REMOVE), 0);
757			return;
758		case KVAL(K_P0):
759			k_fn(vc, KVAL(K_INSERT), 0);
760			return;
761		case KVAL(K_P1):
762			k_fn(vc, KVAL(K_SELECT), 0);
763			return;
764		case KVAL(K_P2):
765			k_cur(vc, KVAL(K_DOWN), 0);
766			return;
767		case KVAL(K_P3):
768			k_fn(vc, KVAL(K_PGDN), 0);
769			return;
770		case KVAL(K_P4):
771			k_cur(vc, KVAL(K_LEFT), 0);
772			return;
773		case KVAL(K_P6):
774			k_cur(vc, KVAL(K_RIGHT), 0);
775			return;
776		case KVAL(K_P7):
777			k_fn(vc, KVAL(K_FIND), 0);
778			return;
779		case KVAL(K_P8):
780			k_cur(vc, KVAL(K_UP), 0);
781			return;
782		case KVAL(K_P9):
783			k_fn(vc, KVAL(K_PGUP), 0);
784			return;
785		case KVAL(K_P5):
786			applkey(vc, 'G', vc_kbd_mode(kbd, VC_APPLIC));
787			return;
788		}
789	}
790
791	put_queue(vc, pad_chars[value]);
792	if (value == KVAL(K_PENTER) && vc_kbd_mode(kbd, VC_CRLF))
793		put_queue(vc, 10);
794}
795
796static void k_shift(struct vc_data *vc, unsigned char value, char up_flag)
797{
798	int old_state = shift_state;
799
800	if (rep)
801		return;
802	/*
803	 * Mimic typewriter:
804	 * a CapsShift key acts like Shift but undoes CapsLock
805	 */
806	if (value == KVAL(K_CAPSSHIFT)) {
807		value = KVAL(K_SHIFT);
808		if (!up_flag)
809			clr_vc_kbd_led(kbd, VC_CAPSLOCK);
810	}
811
812	if (up_flag) {
813		/*
814		 * handle the case that two shift or control
815		 * keys are depressed simultaneously
816		 */
817		if (shift_down[value])
818			shift_down[value]--;
819	} else
820		shift_down[value]++;
821
822	if (shift_down[value])
823		shift_state |= (1 << value);
824	else
825		shift_state &= ~(1 << value);
826
827	/* kludge */
828	if (up_flag && shift_state != old_state && npadch != -1) {
829		if (kbd->kbdmode == VC_UNICODE)
830			to_utf8(vc, npadch);
831		else
832			put_queue(vc, npadch & 0xff);
833		npadch = -1;
834	}
835}
836
837static void k_meta(struct vc_data *vc, unsigned char value, char up_flag)
838{
839	if (up_flag)
840		return;
841
842	if (vc_kbd_mode(kbd, VC_META)) {
843		put_queue(vc, '\033');
844		put_queue(vc, value);
845	} else
846		put_queue(vc, value | 0x80);
847}
848
849static void k_ascii(struct vc_data *vc, unsigned char value, char up_flag)
850{
851	int base;
852
853	if (up_flag)
854		return;
855
856	if (value < 10) {
857		/* decimal input of code, while Alt depressed */
858		base = 10;
859	} else {
860		/* hexadecimal input of code, while AltGr depressed */
861		value -= 10;
862		base = 16;
863	}
864
865	if (npadch == -1)
866		npadch = value;
867	else
868		npadch = npadch * base + value;
869}
870
871static void k_lock(struct vc_data *vc, unsigned char value, char up_flag)
872{
873	if (up_flag || rep)
874		return;
875
876	chg_vc_kbd_lock(kbd, value);
877}
878
879static void k_slock(struct vc_data *vc, unsigned char value, char up_flag)
880{
881	k_shift(vc, value, up_flag);
882	if (up_flag || rep)
883		return;
884
885	chg_vc_kbd_slock(kbd, value);
886	/* try to make Alt, oops, AltGr and such work */
887	if (!key_maps[kbd->lockstate ^ kbd->slockstate]) {
888		kbd->slockstate = 0;
889		chg_vc_kbd_slock(kbd, value);
890	}
891}
892
893/* by default, 300ms interval for combination release */
894static unsigned brl_timeout = 300;
895MODULE_PARM_DESC(brl_timeout, "Braille keys release delay in ms (0 for commit on first key release)");
896module_param(brl_timeout, uint, 0644);
897
898static unsigned brl_nbchords = 1;
899MODULE_PARM_DESC(brl_nbchords, "Number of chords that produce a braille pattern (0 for dead chords)");
900module_param(brl_nbchords, uint, 0644);
901
902static void k_brlcommit(struct vc_data *vc, unsigned int pattern, char up_flag)
903{
904	static unsigned long chords;
905	static unsigned committed;
906
907	if (!brl_nbchords)
908		k_deadunicode(vc, BRL_UC_ROW | pattern, up_flag);
909	else {
910		committed |= pattern;
911		chords++;
912		if (chords == brl_nbchords) {
913			k_unicode(vc, BRL_UC_ROW | committed, up_flag);
914			chords = 0;
915			committed = 0;
916		}
917	}
918}
919
920static void k_brl(struct vc_data *vc, unsigned char value, char up_flag)
921{
922	static unsigned pressed, committing;
923	static unsigned long releasestart;
924
925	if (kbd->kbdmode != VC_UNICODE) {
926		if (!up_flag)
927			pr_warning("keyboard mode must be unicode for braille patterns\n");
928		return;
929	}
930
931	if (!value) {
932		k_unicode(vc, BRL_UC_ROW, up_flag);
933		return;
934	}
935
936	if (value > 8)
937		return;
938
939	if (!up_flag) {
940		pressed |= 1 << (value - 1);
941		if (!brl_timeout)
942			committing = pressed;
943	} else if (brl_timeout) {
944		if (!committing ||
945		    time_after(jiffies,
946			       releasestart + msecs_to_jiffies(brl_timeout))) {
947			committing = pressed;
948			releasestart = jiffies;
949		}
950		pressed &= ~(1 << (value - 1));
951		if (!pressed && committing) {
952			k_brlcommit(vc, committing, 0);
953			committing = 0;
954		}
955	} else {
956		if (committing) {
957			k_brlcommit(vc, committing, 0);
958			committing = 0;
959		}
960		pressed &= ~(1 << (value - 1));
961	}
962}
963
964/*
965 * The leds display either (i) the status of NumLock, CapsLock, ScrollLock,
966 * or (ii) whatever pattern of lights people want to show using KDSETLED,
967 * or (iii) specified bits of specified words in kernel memory.
968 */
969static unsigned char getledstate(void)
970{
971	return ledstate;
972}
973
974void setledstate(struct kbd_struct *kb, unsigned int led)
975{
976        unsigned long flags;
977        spin_lock_irqsave(&led_lock, flags);
978	if (!(led & ~7)) {
979		ledioctl = led;
980		kb->ledmode = LED_SHOW_IOCTL;
981	} else
982		kb->ledmode = LED_SHOW_FLAGS;
983
984	set_leds();
985	spin_unlock_irqrestore(&led_lock, flags);
986}
987
988static inline unsigned char getleds(void)
989{
990	struct kbd_struct *kb = kbd_table + fg_console;
991
992	if (kb->ledmode == LED_SHOW_IOCTL)
993		return ledioctl;
994
995	return kb->ledflagstate;
996}
997
998static int kbd_update_leds_helper(struct input_handle *handle, void *data)
999{
1000	unsigned char leds = *(unsigned char *)data;
1001
1002	if (test_bit(EV_LED, handle->dev->evbit)) {
1003		input_inject_event(handle, EV_LED, LED_SCROLLL, !!(leds & 0x01));
1004		input_inject_event(handle, EV_LED, LED_NUML,    !!(leds & 0x02));
1005		input_inject_event(handle, EV_LED, LED_CAPSL,   !!(leds & 0x04));
1006		input_inject_event(handle, EV_SYN, SYN_REPORT, 0);
1007	}
1008
1009	return 0;
1010}
1011
1012/**
1013 *	vt_get_leds	-	helper for braille console
1014 *	@console: console to read
1015 *	@flag: flag we want to check
1016 *
1017 *	Check the status of a keyboard led flag and report it back
1018 */
1019int vt_get_leds(int console, int flag)
1020{
1021	struct kbd_struct *kb = kbd_table + console;
1022	int ret;
1023	unsigned long flags;
1024
1025	spin_lock_irqsave(&led_lock, flags);
1026	ret = vc_kbd_led(kb, flag);
1027	spin_unlock_irqrestore(&led_lock, flags);
1028
1029	return ret;
1030}
1031EXPORT_SYMBOL_GPL(vt_get_leds);
1032
1033/**
1034 *	vt_set_led_state	-	set LED state of a console
1035 *	@console: console to set
1036 *	@leds: LED bits
1037 *
1038 *	Set the LEDs on a console. This is a wrapper for the VT layer
1039 *	so that we can keep kbd knowledge internal
1040 */
1041void vt_set_led_state(int console, int leds)
1042{
1043	struct kbd_struct *kb = kbd_table + console;
1044	setledstate(kb, leds);
1045}
1046
1047/**
1048 *	vt_kbd_con_start	-	Keyboard side of console start
1049 *	@console: console
1050 *
1051 *	Handle console start. This is a wrapper for the VT layer
1052 *	so that we can keep kbd knowledge internal
1053 *
1054 *	FIXME: We eventually need to hold the kbd lock here to protect
1055 *	the LED updating. We can't do it yet because fn_hold calls stop_tty
1056 *	and start_tty under the kbd_event_lock, while normal tty paths
1057 *	don't hold the lock. We probably need to split out an LED lock
1058 *	but not during an -rc release!
1059 */
1060void vt_kbd_con_start(int console)
1061{
1062	struct kbd_struct *kb = kbd_table + console;
1063	unsigned long flags;
1064	spin_lock_irqsave(&led_lock, flags);
1065	clr_vc_kbd_led(kb, VC_SCROLLOCK);
1066	set_leds();
1067	spin_unlock_irqrestore(&led_lock, flags);
1068}
1069
1070/**
1071 *	vt_kbd_con_stop		-	Keyboard side of console stop
1072 *	@console: console
1073 *
1074 *	Handle console stop. This is a wrapper for the VT layer
1075 *	so that we can keep kbd knowledge internal
1076 */
1077void vt_kbd_con_stop(int console)
1078{
1079	struct kbd_struct *kb = kbd_table + console;
1080	unsigned long flags;
1081	spin_lock_irqsave(&led_lock, flags);
1082	set_vc_kbd_led(kb, VC_SCROLLOCK);
1083	set_leds();
1084	spin_unlock_irqrestore(&led_lock, flags);
1085}
1086
1087/*
1088 * This is the tasklet that updates LED state on all keyboards
1089 * attached to the box. The reason we use tasklet is that we
1090 * need to handle the scenario when keyboard handler is not
1091 * registered yet but we already getting updates from the VT to
1092 * update led state.
1093 */
1094static void kbd_bh(unsigned long dummy)
1095{
1096	unsigned char leds;
1097	unsigned long flags;
1098
1099	spin_lock_irqsave(&led_lock, flags);
1100	leds = getleds();
1101	spin_unlock_irqrestore(&led_lock, flags);
1102
1103	if (leds != ledstate) {
1104		input_handler_for_each_handle(&kbd_handler, &leds,
1105					      kbd_update_leds_helper);
1106		ledstate = leds;
1107	}
1108}
1109
1110DECLARE_TASKLET_DISABLED(keyboard_tasklet, kbd_bh, 0);
1111
1112#if defined(CONFIG_X86) || defined(CONFIG_IA64) || defined(CONFIG_ALPHA) ||\
1113    defined(CONFIG_MIPS) || defined(CONFIG_PPC) || defined(CONFIG_SPARC) ||\
1114    defined(CONFIG_PARISC) || defined(CONFIG_SUPERH) ||\
1115    (defined(CONFIG_ARM) && defined(CONFIG_KEYBOARD_ATKBD) && !defined(CONFIG_ARCH_RPC)) ||\
1116    defined(CONFIG_AVR32)
1117
1118#define HW_RAW(dev) (test_bit(EV_MSC, dev->evbit) && test_bit(MSC_RAW, dev->mscbit) &&\
1119			((dev)->id.bustype == BUS_I8042) && ((dev)->id.vendor == 0x0001) && ((dev)->id.product == 0x0001))
1120
1121static const unsigned short x86_keycodes[256] =
1122	{ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11, 12, 13, 14, 15,
1123	 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
1124	 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
1125	 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
1126	 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79,
1127	 80, 81, 82, 83, 84,118, 86, 87, 88,115,120,119,121,112,123, 92,
1128	284,285,309,  0,312, 91,327,328,329,331,333,335,336,337,338,339,
1129	367,288,302,304,350, 89,334,326,267,126,268,269,125,347,348,349,
1130	360,261,262,263,268,376,100,101,321,316,373,286,289,102,351,355,
1131	103,104,105,275,287,279,258,106,274,107,294,364,358,363,362,361,
1132	291,108,381,281,290,272,292,305,280, 99,112,257,306,359,113,114,
1133	264,117,271,374,379,265,266, 93, 94, 95, 85,259,375,260, 90,116,
1134	377,109,111,277,278,282,283,295,296,297,299,300,301,293,303,307,
1135	308,310,313,314,315,317,318,319,320,357,322,323,324,325,276,330,
1136	332,340,365,342,343,344,345,346,356,270,341,368,369,370,371,372 };
1137
1138#ifdef CONFIG_SPARC
1139static int sparc_l1_a_state;
1140extern void sun_do_break(void);
1141#endif
1142
1143static int emulate_raw(struct vc_data *vc, unsigned int keycode,
1144		       unsigned char up_flag)
1145{
1146	int code;
1147
1148	switch (keycode) {
1149
1150	case KEY_PAUSE:
1151		put_queue(vc, 0xe1);
1152		put_queue(vc, 0x1d | up_flag);
1153		put_queue(vc, 0x45 | up_flag);
1154		break;
1155
1156	case KEY_HANGEUL:
1157		if (!up_flag)
1158			put_queue(vc, 0xf2);
1159		break;
1160
1161	case KEY_HANJA:
1162		if (!up_flag)
1163			put_queue(vc, 0xf1);
1164		break;
1165
1166	case KEY_SYSRQ:
1167		/*
1168		 * Real AT keyboards (that's what we're trying
1169		 * to emulate here emit 0xe0 0x2a 0xe0 0x37 when
1170		 * pressing PrtSc/SysRq alone, but simply 0x54
1171		 * when pressing Alt+PrtSc/SysRq.
1172		 */
1173		if (test_bit(KEY_LEFTALT, key_down) ||
1174		    test_bit(KEY_RIGHTALT, key_down)) {
1175			put_queue(vc, 0x54 | up_flag);
1176		} else {
1177			put_queue(vc, 0xe0);
1178			put_queue(vc, 0x2a | up_flag);
1179			put_queue(vc, 0xe0);
1180			put_queue(vc, 0x37 | up_flag);
1181		}
1182		break;
1183
1184	default:
1185		if (keycode > 255)
1186			return -1;
1187
1188		code = x86_keycodes[keycode];
1189		if (!code)
1190			return -1;
1191
1192		if (code & 0x100)
1193			put_queue(vc, 0xe0);
1194		put_queue(vc, (code & 0x7f) | up_flag);
1195
1196		break;
1197	}
1198
1199	return 0;
1200}
1201
1202#else
1203
1204#define HW_RAW(dev)	0
1205
1206static int emulate_raw(struct vc_data *vc, unsigned int keycode, unsigned char up_flag)
1207{
1208	if (keycode > 127)
1209		return -1;
1210
1211	put_queue(vc, keycode | up_flag);
1212	return 0;
1213}
1214#endif
1215
1216static void kbd_rawcode(unsigned char data)
1217{
1218	struct vc_data *vc = vc_cons[fg_console].d;
1219
1220	kbd = kbd_table + vc->vc_num;
1221	if (kbd->kbdmode == VC_RAW)
1222		put_queue(vc, data);
1223}
1224
1225static void kbd_keycode(unsigned int keycode, int down, int hw_raw)
1226{
1227	struct vc_data *vc = vc_cons[fg_console].d;
1228	unsigned short keysym, *key_map;
1229	unsigned char type;
1230	bool raw_mode;
1231	struct tty_struct *tty;
1232	int shift_final;
1233	struct keyboard_notifier_param param = { .vc = vc, .value = keycode, .down = down };
1234	int rc;
1235
1236	tty = vc->port.tty;
1237
1238	if (tty && (!tty->driver_data)) {
1239		/* No driver data? Strange. Okay we fix it then. */
1240		tty->driver_data = vc;
1241	}
1242
1243	kbd = kbd_table + vc->vc_num;
1244
1245#ifdef CONFIG_SPARC
1246	if (keycode == KEY_STOP)
1247		sparc_l1_a_state = down;
1248#endif
1249
1250	rep = (down == 2);
1251
1252	raw_mode = (kbd->kbdmode == VC_RAW);
1253	if (raw_mode && !hw_raw)
1254		if (emulate_raw(vc, keycode, !down << 7))
1255			if (keycode < BTN_MISC && printk_ratelimit())
1256				pr_warning("can't emulate rawmode for keycode %d\n",
1257					   keycode);
1258
1259#ifdef CONFIG_SPARC
1260	if (keycode == KEY_A && sparc_l1_a_state) {
1261		sparc_l1_a_state = false;
1262		sun_do_break();
1263	}
1264#endif
1265
1266	if (kbd->kbdmode == VC_MEDIUMRAW) {
1267		/*
1268		 * This is extended medium raw mode, with keys above 127
1269		 * encoded as 0, high 7 bits, low 7 bits, with the 0 bearing
1270		 * the 'up' flag if needed. 0 is reserved, so this shouldn't
1271		 * interfere with anything else. The two bytes after 0 will
1272		 * always have the up flag set not to interfere with older
1273		 * applications. This allows for 16384 different keycodes,
1274		 * which should be enough.
1275		 */
1276		if (keycode < 128) {
1277			put_queue(vc, keycode | (!down << 7));
1278		} else {
1279			put_queue(vc, !down << 7);
1280			put_queue(vc, (keycode >> 7) | 0x80);
1281			put_queue(vc, keycode | 0x80);
1282		}
1283		raw_mode = true;
1284	}
1285
1286	if (down)
1287		set_bit(keycode, key_down);
1288	else
1289		clear_bit(keycode, key_down);
1290
1291	if (rep &&
1292	    (!vc_kbd_mode(kbd, VC_REPEAT) ||
1293	     (tty && !L_ECHO(tty) && tty_chars_in_buffer(tty)))) {
1294		/*
1295		 * Don't repeat a key if the input buffers are not empty and the
1296		 * characters get aren't echoed locally. This makes key repeat
1297		 * usable with slow applications and under heavy loads.
1298		 */
1299		return;
1300	}
1301
1302	param.shift = shift_final = (shift_state | kbd->slockstate) ^ kbd->lockstate;
1303	param.ledstate = kbd->ledflagstate;
1304	key_map = key_maps[shift_final];
1305
1306	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1307					KBD_KEYCODE, &param);
1308	if (rc == NOTIFY_STOP || !key_map) {
1309		atomic_notifier_call_chain(&keyboard_notifier_list,
1310					   KBD_UNBOUND_KEYCODE, &param);
1311		do_compute_shiftstate();
1312		kbd->slockstate = 0;
1313		return;
1314	}
1315
1316	if (keycode < NR_KEYS)
1317		keysym = key_map[keycode];
1318	else if (keycode >= KEY_BRL_DOT1 && keycode <= KEY_BRL_DOT8)
1319		keysym = U(K(KT_BRL, keycode - KEY_BRL_DOT1 + 1));
1320	else
1321		return;
1322
1323	type = KTYP(keysym);
1324
1325	if (type < 0xf0) {
1326		param.value = keysym;
1327		rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1328						KBD_UNICODE, &param);
1329		if (rc != NOTIFY_STOP)
1330			if (down && !raw_mode)
1331				to_utf8(vc, keysym);
1332		return;
1333	}
1334
1335	type -= 0xf0;
1336
1337	if (type == KT_LETTER) {
1338		type = KT_LATIN;
1339		if (vc_kbd_led(kbd, VC_CAPSLOCK)) {
1340			key_map = key_maps[shift_final ^ (1 << KG_SHIFT)];
1341			if (key_map)
1342				keysym = key_map[keycode];
1343		}
1344	}
1345
1346	param.value = keysym;
1347	rc = atomic_notifier_call_chain(&keyboard_notifier_list,
1348					KBD_KEYSYM, &param);
1349	if (rc == NOTIFY_STOP)
1350		return;
1351
1352	if ((raw_mode || kbd->kbdmode == VC_OFF) && type != KT_SPEC && type != KT_SHIFT)
1353		return;
1354
1355	(*k_handler[type])(vc, keysym & 0xff, !down);
1356
1357	param.ledstate = kbd->ledflagstate;
1358	atomic_notifier_call_chain(&keyboard_notifier_list, KBD_POST_KEYSYM, &param);
1359
1360	if (type != KT_SLOCK)
1361		kbd->slockstate = 0;
1362}
1363
1364static void kbd_event(struct input_handle *handle, unsigned int event_type,
1365		      unsigned int event_code, int value)
1366{
1367	/* We are called with interrupts disabled, just take the lock */
1368	spin_lock(&kbd_event_lock);
1369
1370	if (event_type == EV_MSC && event_code == MSC_RAW && HW_RAW(handle->dev))
1371		kbd_rawcode(value);
1372	if (event_type == EV_KEY)
1373		kbd_keycode(event_code, value, HW_RAW(handle->dev));
1374
1375	spin_unlock(&kbd_event_lock);
1376
1377	tasklet_schedule(&keyboard_tasklet);
1378	do_poke_blanked_console = 1;
1379	schedule_console_callback();
1380}
1381
1382static bool kbd_match(struct input_handler *handler, struct input_dev *dev)
1383{
1384	int i;
1385
1386	if (test_bit(EV_SND, dev->evbit))
1387		return true;
1388
1389	if (test_bit(EV_KEY, dev->evbit)) {
1390		for (i = KEY_RESERVED; i < BTN_MISC; i++)
1391			if (test_bit(i, dev->keybit))
1392				return true;
1393		for (i = KEY_BRL_DOT1; i <= KEY_BRL_DOT10; i++)
1394			if (test_bit(i, dev->keybit))
1395				return true;
1396	}
1397
1398	return false;
1399}
1400
1401/*
1402 * When a keyboard (or other input device) is found, the kbd_connect
1403 * function is called. The function then looks at the device, and if it
1404 * likes it, it can open it and get events from it. In this (kbd_connect)
1405 * function, we should decide which VT to bind that keyboard to initially.
1406 */
1407static int kbd_connect(struct input_handler *handler, struct input_dev *dev,
1408			const struct input_device_id *id)
1409{
1410	struct input_handle *handle;
1411	int error;
1412
1413	handle = kzalloc(sizeof(struct input_handle), GFP_KERNEL);
1414	if (!handle)
1415		return -ENOMEM;
1416
1417	handle->dev = dev;
1418	handle->handler = handler;
1419	handle->name = "kbd";
1420
1421	error = input_register_handle(handle);
1422	if (error)
1423		goto err_free_handle;
1424
1425	error = input_open_device(handle);
1426	if (error)
1427		goto err_unregister_handle;
1428
1429	return 0;
1430
1431 err_unregister_handle:
1432	input_unregister_handle(handle);
1433 err_free_handle:
1434	kfree(handle);
1435	return error;
1436}
1437
1438static void kbd_disconnect(struct input_handle *handle)
1439{
1440	input_close_device(handle);
1441	input_unregister_handle(handle);
1442	kfree(handle);
1443}
1444
1445/*
1446 * Start keyboard handler on the new keyboard by refreshing LED state to
1447 * match the rest of the system.
1448 */
1449static void kbd_start(struct input_handle *handle)
1450{
1451	tasklet_disable(&keyboard_tasklet);
1452
1453	if (ledstate != 0xff)
1454		kbd_update_leds_helper(handle, &ledstate);
1455
1456	tasklet_enable(&keyboard_tasklet);
1457}
1458
1459static const struct input_device_id kbd_ids[] = {
1460	{
1461		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1462		.evbit = { BIT_MASK(EV_KEY) },
1463	},
1464
1465	{
1466		.flags = INPUT_DEVICE_ID_MATCH_EVBIT,
1467		.evbit = { BIT_MASK(EV_SND) },
1468	},
1469
1470	{ },    /* Terminating entry */
1471};
1472
1473MODULE_DEVICE_TABLE(input, kbd_ids);
1474
1475static struct input_handler kbd_handler = {
1476	.event		= kbd_event,
1477	.match		= kbd_match,
1478	.connect	= kbd_connect,
1479	.disconnect	= kbd_disconnect,
1480	.start		= kbd_start,
1481	.name		= "kbd",
1482	.id_table	= kbd_ids,
1483};
1484
1485int __init kbd_init(void)
1486{
1487	int i;
1488	int error;
1489
1490	for (i = 0; i < MAX_NR_CONSOLES; i++) {
1491		kbd_table[i].ledflagstate = kbd_defleds();
1492		kbd_table[i].default_ledflagstate = kbd_defleds();
1493		kbd_table[i].ledmode = LED_SHOW_FLAGS;
1494		kbd_table[i].lockstate = KBD_DEFLOCK;
1495		kbd_table[i].slockstate = 0;
1496		kbd_table[i].modeflags = KBD_DEFMODE;
1497		kbd_table[i].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
1498	}
1499
1500	error = input_register_handler(&kbd_handler);
1501	if (error)
1502		return error;
1503
1504	tasklet_enable(&keyboard_tasklet);
1505	tasklet_schedule(&keyboard_tasklet);
1506
1507	return 0;
1508}
1509
1510/* Ioctl support code */
1511
1512/**
1513 *	vt_do_diacrit		-	diacritical table updates
1514 *	@cmd: ioctl request
1515 *	@udp: pointer to user data for ioctl
1516 *	@perm: permissions check computed by caller
1517 *
1518 *	Update the diacritical tables atomically and safely. Lock them
1519 *	against simultaneous keypresses
1520 */
1521int vt_do_diacrit(unsigned int cmd, void __user *udp, int perm)
1522{
1523	unsigned long flags;
1524	int asize;
1525	int ret = 0;
1526
1527	switch (cmd) {
1528	case KDGKBDIACR:
1529	{
1530		struct kbdiacrs __user *a = udp;
1531		struct kbdiacr *dia;
1532		int i;
1533
1534		dia = kmalloc(MAX_DIACR * sizeof(struct kbdiacr),
1535								GFP_KERNEL);
1536		if (!dia)
1537			return -ENOMEM;
1538
1539		/* Lock the diacriticals table, make a copy and then
1540		   copy it after we unlock */
1541		spin_lock_irqsave(&kbd_event_lock, flags);
1542
1543		asize = accent_table_size;
1544		for (i = 0; i < asize; i++) {
1545			dia[i].diacr = conv_uni_to_8bit(
1546						accent_table[i].diacr);
1547			dia[i].base = conv_uni_to_8bit(
1548						accent_table[i].base);
1549			dia[i].result = conv_uni_to_8bit(
1550						accent_table[i].result);
1551		}
1552		spin_unlock_irqrestore(&kbd_event_lock, flags);
1553
1554		if (put_user(asize, &a->kb_cnt))
1555			ret = -EFAULT;
1556		else  if (copy_to_user(a->kbdiacr, dia,
1557				asize * sizeof(struct kbdiacr)))
1558			ret = -EFAULT;
1559		kfree(dia);
1560		return ret;
1561	}
1562	case KDGKBDIACRUC:
1563	{
1564		struct kbdiacrsuc __user *a = udp;
1565		void *buf;
1566
1567		buf = kmalloc(MAX_DIACR * sizeof(struct kbdiacruc),
1568								GFP_KERNEL);
1569		if (buf == NULL)
1570			return -ENOMEM;
1571
1572		/* Lock the diacriticals table, make a copy and then
1573		   copy it after we unlock */
1574		spin_lock_irqsave(&kbd_event_lock, flags);
1575
1576		asize = accent_table_size;
1577		memcpy(buf, accent_table, asize * sizeof(struct kbdiacruc));
1578
1579		spin_unlock_irqrestore(&kbd_event_lock, flags);
1580
1581		if (put_user(asize, &a->kb_cnt))
1582			ret = -EFAULT;
1583		else if (copy_to_user(a->kbdiacruc, buf,
1584				asize*sizeof(struct kbdiacruc)))
1585			ret = -EFAULT;
1586		kfree(buf);
1587		return ret;
1588	}
1589
1590	case KDSKBDIACR:
1591	{
1592		struct kbdiacrs __user *a = udp;
1593		struct kbdiacr *dia = NULL;
1594		unsigned int ct;
1595		int i;
1596
1597		if (!perm)
1598			return -EPERM;
1599		if (get_user(ct, &a->kb_cnt))
1600			return -EFAULT;
1601		if (ct >= MAX_DIACR)
1602			return -EINVAL;
1603
1604		if (ct) {
1605			dia = kmalloc(sizeof(struct kbdiacr) * ct,
1606								GFP_KERNEL);
1607			if (!dia)
1608				return -ENOMEM;
1609
1610			if (copy_from_user(dia, a->kbdiacr,
1611					sizeof(struct kbdiacr) * ct)) {
1612				kfree(dia);
1613				return -EFAULT;
1614			}
1615		}
1616
1617		spin_lock_irqsave(&kbd_event_lock, flags);
1618		accent_table_size = ct;
1619		for (i = 0; i < ct; i++) {
1620			accent_table[i].diacr =
1621					conv_8bit_to_uni(dia[i].diacr);
1622			accent_table[i].base =
1623					conv_8bit_to_uni(dia[i].base);
1624			accent_table[i].result =
1625					conv_8bit_to_uni(dia[i].result);
1626		}
1627		spin_unlock_irqrestore(&kbd_event_lock, flags);
1628		kfree(dia);
1629		return 0;
1630	}
1631
1632	case KDSKBDIACRUC:
1633	{
1634		struct kbdiacrsuc __user *a = udp;
1635		unsigned int ct;
1636		void *buf = NULL;
1637
1638		if (!perm)
1639			return -EPERM;
1640
1641		if (get_user(ct, &a->kb_cnt))
1642			return -EFAULT;
1643
1644		if (ct >= MAX_DIACR)
1645			return -EINVAL;
1646
1647		if (ct) {
1648			buf = kmalloc(ct * sizeof(struct kbdiacruc),
1649								GFP_KERNEL);
1650			if (buf == NULL)
1651				return -ENOMEM;
1652
1653			if (copy_from_user(buf, a->kbdiacruc,
1654					ct * sizeof(struct kbdiacruc))) {
1655				kfree(buf);
1656				return -EFAULT;
1657			}
1658		}
1659		spin_lock_irqsave(&kbd_event_lock, flags);
1660		if (ct)
1661			memcpy(accent_table, buf,
1662					ct * sizeof(struct kbdiacruc));
1663		accent_table_size = ct;
1664		spin_unlock_irqrestore(&kbd_event_lock, flags);
1665		kfree(buf);
1666		return 0;
1667	}
1668	}
1669	return ret;
1670}
1671
1672/**
1673 *	vt_do_kdskbmode		-	set keyboard mode ioctl
1674 *	@console: the console to use
1675 *	@arg: the requested mode
1676 *
1677 *	Update the keyboard mode bits while holding the correct locks.
1678 *	Return 0 for success or an error code.
1679 */
1680int vt_do_kdskbmode(int console, unsigned int arg)
1681{
1682	struct kbd_struct *kb = kbd_table + console;
1683	int ret = 0;
1684	unsigned long flags;
1685
1686	spin_lock_irqsave(&kbd_event_lock, flags);
1687	switch(arg) {
1688	case K_RAW:
1689		kb->kbdmode = VC_RAW;
1690		break;
1691	case K_MEDIUMRAW:
1692		kb->kbdmode = VC_MEDIUMRAW;
1693		break;
1694	case K_XLATE:
1695		kb->kbdmode = VC_XLATE;
1696		do_compute_shiftstate();
1697		break;
1698	case K_UNICODE:
1699		kb->kbdmode = VC_UNICODE;
1700		do_compute_shiftstate();
1701		break;
1702	case K_OFF:
1703		kb->kbdmode = VC_OFF;
1704		break;
1705	default:
1706		ret = -EINVAL;
1707	}
1708	spin_unlock_irqrestore(&kbd_event_lock, flags);
1709	return ret;
1710}
1711
1712/**
1713 *	vt_do_kdskbmeta		-	set keyboard meta state
1714 *	@console: the console to use
1715 *	@arg: the requested meta state
1716 *
1717 *	Update the keyboard meta bits while holding the correct locks.
1718 *	Return 0 for success or an error code.
1719 */
1720int vt_do_kdskbmeta(int console, unsigned int arg)
1721{
1722	struct kbd_struct *kb = kbd_table + console;
1723	int ret = 0;
1724	unsigned long flags;
1725
1726	spin_lock_irqsave(&kbd_event_lock, flags);
1727	switch(arg) {
1728	case K_METABIT:
1729		clr_vc_kbd_mode(kb, VC_META);
1730		break;
1731	case K_ESCPREFIX:
1732		set_vc_kbd_mode(kb, VC_META);
1733		break;
1734	default:
1735		ret = -EINVAL;
1736	}
1737	spin_unlock_irqrestore(&kbd_event_lock, flags);
1738	return ret;
1739}
1740
1741int vt_do_kbkeycode_ioctl(int cmd, struct kbkeycode __user *user_kbkc,
1742								int perm)
1743{
1744	struct kbkeycode tmp;
1745	int kc = 0;
1746
1747	if (copy_from_user(&tmp, user_kbkc, sizeof(struct kbkeycode)))
1748		return -EFAULT;
1749	switch (cmd) {
1750	case KDGETKEYCODE:
1751		kc = getkeycode(tmp.scancode);
1752		if (kc >= 0)
1753			kc = put_user(kc, &user_kbkc->keycode);
1754		break;
1755	case KDSETKEYCODE:
1756		if (!perm)
1757			return -EPERM;
1758		kc = setkeycode(tmp.scancode, tmp.keycode);
1759		break;
1760	}
1761	return kc;
1762}
1763
1764#define i (tmp.kb_index)
1765#define s (tmp.kb_table)
1766#define v (tmp.kb_value)
1767
1768int vt_do_kdsk_ioctl(int cmd, struct kbentry __user *user_kbe, int perm,
1769						int console)
1770{
1771	struct kbd_struct *kb = kbd_table + console;
1772	struct kbentry tmp;
1773	ushort *key_map, *new_map, val, ov;
1774	unsigned long flags;
1775
1776	if (copy_from_user(&tmp, user_kbe, sizeof(struct kbentry)))
1777		return -EFAULT;
1778
1779	if (!capable(CAP_SYS_TTY_CONFIG))
1780		perm = 0;
1781
1782	switch (cmd) {
1783	case KDGKBENT:
1784		/* Ensure another thread doesn't free it under us */
1785		spin_lock_irqsave(&kbd_event_lock, flags);
1786		key_map = key_maps[s];
1787		if (key_map) {
1788		    val = U(key_map[i]);
1789		    if (kb->kbdmode != VC_UNICODE && KTYP(val) >= NR_TYPES)
1790			val = K_HOLE;
1791		} else
1792		    val = (i ? K_HOLE : K_NOSUCHMAP);
1793		spin_unlock_irqrestore(&kbd_event_lock, flags);
1794		return put_user(val, &user_kbe->kb_value);
1795	case KDSKBENT:
1796		if (!perm)
1797			return -EPERM;
1798		if (!i && v == K_NOSUCHMAP) {
1799			spin_lock_irqsave(&kbd_event_lock, flags);
1800			/* deallocate map */
1801			key_map = key_maps[s];
1802			if (s && key_map) {
1803			    key_maps[s] = NULL;
1804			    if (key_map[0] == U(K_ALLOCATED)) {
1805					kfree(key_map);
1806					keymap_count--;
1807			    }
1808			}
1809			spin_unlock_irqrestore(&kbd_event_lock, flags);
1810			break;
1811		}
1812
1813		if (KTYP(v) < NR_TYPES) {
1814		    if (KVAL(v) > max_vals[KTYP(v)])
1815				return -EINVAL;
1816		} else
1817		    if (kb->kbdmode != VC_UNICODE)
1818				return -EINVAL;
1819
1820		/* ++Geert: non-PC keyboards may generate keycode zero */
1821#if !defined(__mc68000__) && !defined(__powerpc__)
1822		/* assignment to entry 0 only tests validity of args */
1823		if (!i)
1824			break;
1825#endif
1826
1827		new_map = kmalloc(sizeof(plain_map), GFP_KERNEL);
1828		if (!new_map)
1829			return -ENOMEM;
1830		spin_lock_irqsave(&kbd_event_lock, flags);
1831		key_map = key_maps[s];
1832		if (key_map == NULL) {
1833			int j;
1834
1835			if (keymap_count >= MAX_NR_OF_USER_KEYMAPS &&
1836			    !capable(CAP_SYS_RESOURCE)) {
1837				spin_unlock_irqrestore(&kbd_event_lock, flags);
1838				kfree(new_map);
1839				return -EPERM;
1840			}
1841			key_maps[s] = new_map;
1842			key_map = new_map;
1843			key_map[0] = U(K_ALLOCATED);
1844			for (j = 1; j < NR_KEYS; j++)
1845				key_map[j] = U(K_HOLE);
1846			keymap_count++;
1847		} else
1848			kfree(new_map);
1849
1850		ov = U(key_map[i]);
1851		if (v == ov)
1852			goto out;
1853		/*
1854		 * Attention Key.
1855		 */
1856		if (((ov == K_SAK) || (v == K_SAK)) && !capable(CAP_SYS_ADMIN)) {
1857			spin_unlock_irqrestore(&kbd_event_lock, flags);
1858			return -EPERM;
1859		}
1860		key_map[i] = U(v);
1861		if (!s && (KTYP(ov) == KT_SHIFT || KTYP(v) == KT_SHIFT))
1862			do_compute_shiftstate();
1863out:
1864		spin_unlock_irqrestore(&kbd_event_lock, flags);
1865		break;
1866	}
1867	return 0;
1868}
1869#undef i
1870#undef s
1871#undef v
1872
1873/* FIXME: This one needs untangling and locking */
1874int vt_do_kdgkb_ioctl(int cmd, struct kbsentry __user *user_kdgkb, int perm)
1875{
1876	struct kbsentry *kbs;
1877	char *p;
1878	u_char *q;
1879	u_char __user *up;
1880	int sz;
1881	int delta;
1882	char *first_free, *fj, *fnw;
1883	int i, j, k;
1884	int ret;
1885
1886	if (!capable(CAP_SYS_TTY_CONFIG))
1887		perm = 0;
1888
1889	kbs = kmalloc(sizeof(*kbs), GFP_KERNEL);
1890	if (!kbs) {
1891		ret = -ENOMEM;
1892		goto reterr;
1893	}
1894
1895	/* we mostly copy too much here (512bytes), but who cares ;) */
1896	if (copy_from_user(kbs, user_kdgkb, sizeof(struct kbsentry))) {
1897		ret = -EFAULT;
1898		goto reterr;
1899	}
1900	kbs->kb_string[sizeof(kbs->kb_string)-1] = '\0';
1901	i = kbs->kb_func;
1902
1903	switch (cmd) {
1904	case KDGKBSENT:
1905		sz = sizeof(kbs->kb_string) - 1; /* sz should have been
1906						  a struct member */
1907		up = user_kdgkb->kb_string;
1908		p = func_table[i];
1909		if(p)
1910			for ( ; *p && sz; p++, sz--)
1911				if (put_user(*p, up++)) {
1912					ret = -EFAULT;
1913					goto reterr;
1914				}
1915		if (put_user('\0', up)) {
1916			ret = -EFAULT;
1917			goto reterr;
1918		}
1919		kfree(kbs);
1920		return ((p && *p) ? -EOVERFLOW : 0);
1921	case KDSKBSENT:
1922		if (!perm) {
1923			ret = -EPERM;
1924			goto reterr;
1925		}
1926
1927		q = func_table[i];
1928		first_free = funcbufptr + (funcbufsize - funcbufleft);
1929		for (j = i+1; j < MAX_NR_FUNC && !func_table[j]; j++)
1930			;
1931		if (j < MAX_NR_FUNC)
1932			fj = func_table[j];
1933		else
1934			fj = first_free;
1935
1936		delta = (q ? -strlen(q) : 1) + strlen(kbs->kb_string);
1937		if (delta <= funcbufleft) { 	/* it fits in current buf */
1938		    if (j < MAX_NR_FUNC) {
1939			memmove(fj + delta, fj, first_free - fj);
1940			for (k = j; k < MAX_NR_FUNC; k++)
1941			    if (func_table[k])
1942				func_table[k] += delta;
1943		    }
1944		    if (!q)
1945		      func_table[i] = fj;
1946		    funcbufleft -= delta;
1947		} else {			/* allocate a larger buffer */
1948		    sz = 256;
1949		    while (sz < funcbufsize - funcbufleft + delta)
1950		      sz <<= 1;
1951		    fnw = kmalloc(sz, GFP_KERNEL);
1952		    if(!fnw) {
1953		      ret = -ENOMEM;
1954		      goto reterr;
1955		    }
1956
1957		    if (!q)
1958		      func_table[i] = fj;
1959		    if (fj > funcbufptr)
1960			memmove(fnw, funcbufptr, fj - funcbufptr);
1961		    for (k = 0; k < j; k++)
1962		      if (func_table[k])
1963			func_table[k] = fnw + (func_table[k] - funcbufptr);
1964
1965		    if (first_free > fj) {
1966			memmove(fnw + (fj - funcbufptr) + delta, fj, first_free - fj);
1967			for (k = j; k < MAX_NR_FUNC; k++)
1968			  if (func_table[k])
1969			    func_table[k] = fnw + (func_table[k] - funcbufptr) + delta;
1970		    }
1971		    if (funcbufptr != func_buf)
1972		      kfree(funcbufptr);
1973		    funcbufptr = fnw;
1974		    funcbufleft = funcbufleft - delta + sz - funcbufsize;
1975		    funcbufsize = sz;
1976		}
1977		strcpy(func_table[i], kbs->kb_string);
1978		break;
1979	}
1980	ret = 0;
1981reterr:
1982	kfree(kbs);
1983	return ret;
1984}
1985
1986int vt_do_kdskled(int console, int cmd, unsigned long arg, int perm)
1987{
1988	struct kbd_struct *kb = kbd_table + console;
1989        unsigned long flags;
1990	unsigned char ucval;
1991
1992        switch(cmd) {
1993	/* the ioctls below read/set the flags usually shown in the leds */
1994	/* don't use them - they will go away without warning */
1995	case KDGKBLED:
1996                spin_lock_irqsave(&kbd_event_lock, flags);
1997		ucval = kb->ledflagstate | (kb->default_ledflagstate << 4);
1998                spin_unlock_irqrestore(&kbd_event_lock, flags);
1999		return put_user(ucval, (char __user *)arg);
2000
2001	case KDSKBLED:
2002		if (!perm)
2003			return -EPERM;
2004		if (arg & ~0x77)
2005			return -EINVAL;
2006                spin_lock_irqsave(&led_lock, flags);
2007		kb->ledflagstate = (arg & 7);
2008		kb->default_ledflagstate = ((arg >> 4) & 7);
2009		set_leds();
2010                spin_unlock_irqrestore(&led_lock, flags);
2011		return 0;
2012
2013	/* the ioctls below only set the lights, not the functions */
2014	/* for those, see KDGKBLED and KDSKBLED above */
2015	case KDGETLED:
2016		ucval = getledstate();
2017		return put_user(ucval, (char __user *)arg);
2018
2019	case KDSETLED:
2020		if (!perm)
2021			return -EPERM;
2022		setledstate(kb, arg);
2023		return 0;
2024        }
2025        return -ENOIOCTLCMD;
2026}
2027
2028int vt_do_kdgkbmode(int console)
2029{
2030	struct kbd_struct *kb = kbd_table + console;
2031	/* This is a spot read so needs no locking */
2032	switch (kb->kbdmode) {
2033	case VC_RAW:
2034		return K_RAW;
2035	case VC_MEDIUMRAW:
2036		return K_MEDIUMRAW;
2037	case VC_UNICODE:
2038		return K_UNICODE;
2039	case VC_OFF:
2040		return K_OFF;
2041	default:
2042		return K_XLATE;
2043	}
2044}
2045
2046/**
2047 *	vt_do_kdgkbmeta		-	report meta status
2048 *	@console: console to report
2049 *
2050 *	Report the meta flag status of this console
2051 */
2052int vt_do_kdgkbmeta(int console)
2053{
2054	struct kbd_struct *kb = kbd_table + console;
2055        /* Again a spot read so no locking */
2056	return vc_kbd_mode(kb, VC_META) ? K_ESCPREFIX : K_METABIT;
2057}
2058
2059/**
2060 *	vt_reset_unicode	-	reset the unicode status
2061 *	@console: console being reset
2062 *
2063 *	Restore the unicode console state to its default
2064 */
2065void vt_reset_unicode(int console)
2066{
2067	unsigned long flags;
2068
2069	spin_lock_irqsave(&kbd_event_lock, flags);
2070	kbd_table[console].kbdmode = default_utf8 ? VC_UNICODE : VC_XLATE;
2071	spin_unlock_irqrestore(&kbd_event_lock, flags);
2072}
2073
2074/**
2075 *	vt_get_shiftstate	-	shift bit state
2076 *
2077 *	Report the shift bits from the keyboard state. We have to export
2078 *	this to support some oddities in the vt layer.
2079 */
2080int vt_get_shift_state(void)
2081{
2082        /* Don't lock as this is a transient report */
2083        return shift_state;
2084}
2085
2086/**
2087 *	vt_reset_keyboard	-	reset keyboard state
2088 *	@console: console to reset
2089 *
2090 *	Reset the keyboard bits for a console as part of a general console
2091 *	reset event
2092 */
2093void vt_reset_keyboard(int console)
2094{
2095	struct kbd_struct *kb = kbd_table + console;
2096	unsigned long flags;
2097
2098	spin_lock_irqsave(&kbd_event_lock, flags);
2099	set_vc_kbd_mode(kb, VC_REPEAT);
2100	clr_vc_kbd_mode(kb, VC_CKMODE);
2101	clr_vc_kbd_mode(kb, VC_APPLIC);
2102	clr_vc_kbd_mode(kb, VC_CRLF);
2103	kb->lockstate = 0;
2104	kb->slockstate = 0;
2105	spin_lock(&led_lock);
2106	kb->ledmode = LED_SHOW_FLAGS;
2107	kb->ledflagstate = kb->default_ledflagstate;
2108	spin_unlock(&led_lock);
2109	/* do not do set_leds here because this causes an endless tasklet loop
2110	   when the keyboard hasn't been initialized yet */
2111	spin_unlock_irqrestore(&kbd_event_lock, flags);
2112}
2113
2114/**
2115 *	vt_get_kbd_mode_bit	-	read keyboard status bits
2116 *	@console: console to read from
2117 *	@bit: mode bit to read
2118 *
2119 *	Report back a vt mode bit. We do this without locking so the
2120 *	caller must be sure that there are no synchronization needs
2121 */
2122
2123int vt_get_kbd_mode_bit(int console, int bit)
2124{
2125	struct kbd_struct *kb = kbd_table + console;
2126	return vc_kbd_mode(kb, bit);
2127}
2128
2129/**
2130 *	vt_set_kbd_mode_bit	-	read keyboard status bits
2131 *	@console: console to read from
2132 *	@bit: mode bit to read
2133 *
2134 *	Set a vt mode bit. We do this without locking so the
2135 *	caller must be sure that there are no synchronization needs
2136 */
2137
2138void vt_set_kbd_mode_bit(int console, int bit)
2139{
2140	struct kbd_struct *kb = kbd_table + console;
2141	unsigned long flags;
2142
2143	spin_lock_irqsave(&kbd_event_lock, flags);
2144	set_vc_kbd_mode(kb, bit);
2145	spin_unlock_irqrestore(&kbd_event_lock, flags);
2146}
2147
2148/**
2149 *	vt_clr_kbd_mode_bit	-	read keyboard status bits
2150 *	@console: console to read from
2151 *	@bit: mode bit to read
2152 *
2153 *	Report back a vt mode bit. We do this without locking so the
2154 *	caller must be sure that there are no synchronization needs
2155 */
2156
2157void vt_clr_kbd_mode_bit(int console, int bit)
2158{
2159	struct kbd_struct *kb = kbd_table + console;
2160	unsigned long flags;
2161
2162	spin_lock_irqsave(&kbd_event_lock, flags);
2163	clr_vc_kbd_mode(kb, bit);
2164	spin_unlock_irqrestore(&kbd_event_lock, flags);
2165}
2166