1/* linux/drivers/usb/gadget/s3c-hsudc.c 2 * 3 * Copyright (c) 2010 Samsung Electronics Co., Ltd. 4 * http://www.samsung.com/ 5 * 6 * S3C24XX USB 2.0 High-speed USB controller gadget driver 7 * 8 * The S3C24XX USB 2.0 high-speed USB controller supports upto 9 endpoints. 9 * Each endpoint can be configured as either in or out endpoint. Endpoints 10 * can be configured for Bulk or Interrupt transfer mode. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15*/ 16 17#include <linux/kernel.h> 18#include <linux/module.h> 19#include <linux/spinlock.h> 20#include <linux/interrupt.h> 21#include <linux/platform_device.h> 22#include <linux/dma-mapping.h> 23#include <linux/delay.h> 24#include <linux/io.h> 25#include <linux/slab.h> 26#include <linux/clk.h> 27#include <linux/err.h> 28#include <linux/usb/ch9.h> 29#include <linux/usb/gadget.h> 30#include <linux/usb/otg.h> 31#include <linux/prefetch.h> 32#include <linux/platform_data/s3c-hsudc.h> 33#include <linux/regulator/consumer.h> 34#include <linux/pm_runtime.h> 35 36#include <mach/regs-s3c2443-clock.h> 37 38#define S3C_HSUDC_REG(x) (x) 39 40/* Non-Indexed Registers */ 41#define S3C_IR S3C_HSUDC_REG(0x00) /* Index Register */ 42#define S3C_EIR S3C_HSUDC_REG(0x04) /* EP Intr Status */ 43#define S3C_EIR_EP0 (1<<0) 44#define S3C_EIER S3C_HSUDC_REG(0x08) /* EP Intr Enable */ 45#define S3C_FAR S3C_HSUDC_REG(0x0c) /* Gadget Address */ 46#define S3C_FNR S3C_HSUDC_REG(0x10) /* Frame Number */ 47#define S3C_EDR S3C_HSUDC_REG(0x14) /* EP Direction */ 48#define S3C_TR S3C_HSUDC_REG(0x18) /* Test Register */ 49#define S3C_SSR S3C_HSUDC_REG(0x1c) /* System Status */ 50#define S3C_SSR_DTZIEN_EN (0xff8f) 51#define S3C_SSR_ERR (0xff80) 52#define S3C_SSR_VBUSON (1 << 8) 53#define S3C_SSR_HSP (1 << 4) 54#define S3C_SSR_SDE (1 << 3) 55#define S3C_SSR_RESUME (1 << 2) 56#define S3C_SSR_SUSPEND (1 << 1) 57#define S3C_SSR_RESET (1 << 0) 58#define S3C_SCR S3C_HSUDC_REG(0x20) /* System Control */ 59#define S3C_SCR_DTZIEN_EN (1 << 14) 60#define S3C_SCR_RRD_EN (1 << 5) 61#define S3C_SCR_SUS_EN (1 << 1) 62#define S3C_SCR_RST_EN (1 << 0) 63#define S3C_EP0SR S3C_HSUDC_REG(0x24) /* EP0 Status */ 64#define S3C_EP0SR_EP0_LWO (1 << 6) 65#define S3C_EP0SR_STALL (1 << 4) 66#define S3C_EP0SR_TX_SUCCESS (1 << 1) 67#define S3C_EP0SR_RX_SUCCESS (1 << 0) 68#define S3C_EP0CR S3C_HSUDC_REG(0x28) /* EP0 Control */ 69#define S3C_BR(_x) S3C_HSUDC_REG(0x60 + (_x * 4)) 70 71/* Indexed Registers */ 72#define S3C_ESR S3C_HSUDC_REG(0x2c) /* EPn Status */ 73#define S3C_ESR_FLUSH (1 << 6) 74#define S3C_ESR_STALL (1 << 5) 75#define S3C_ESR_LWO (1 << 4) 76#define S3C_ESR_PSIF_ONE (1 << 2) 77#define S3C_ESR_PSIF_TWO (2 << 2) 78#define S3C_ESR_TX_SUCCESS (1 << 1) 79#define S3C_ESR_RX_SUCCESS (1 << 0) 80#define S3C_ECR S3C_HSUDC_REG(0x30) /* EPn Control */ 81#define S3C_ECR_DUEN (1 << 7) 82#define S3C_ECR_FLUSH (1 << 6) 83#define S3C_ECR_STALL (1 << 1) 84#define S3C_ECR_IEMS (1 << 0) 85#define S3C_BRCR S3C_HSUDC_REG(0x34) /* Read Count */ 86#define S3C_BWCR S3C_HSUDC_REG(0x38) /* Write Count */ 87#define S3C_MPR S3C_HSUDC_REG(0x3c) /* Max Pkt Size */ 88 89#define WAIT_FOR_SETUP (0) 90#define DATA_STATE_XMIT (1) 91#define DATA_STATE_RECV (2) 92 93static const char * const s3c_hsudc_supply_names[] = { 94 "vdda", /* analog phy supply, 3.3V */ 95 "vddi", /* digital phy supply, 1.2V */ 96 "vddosc", /* oscillator supply, 1.8V - 3.3V */ 97}; 98 99/** 100 * struct s3c_hsudc_ep - Endpoint representation used by driver. 101 * @ep: USB gadget layer representation of device endpoint. 102 * @name: Endpoint name (as required by ep autoconfiguration). 103 * @dev: Reference to the device controller to which this EP belongs. 104 * @desc: Endpoint descriptor obtained from the gadget driver. 105 * @queue: Transfer request queue for the endpoint. 106 * @stopped: Maintains state of endpoint, set if EP is halted. 107 * @bEndpointAddress: EP address (including direction bit). 108 * @fifo: Base address of EP FIFO. 109 */ 110struct s3c_hsudc_ep { 111 struct usb_ep ep; 112 char name[20]; 113 struct s3c_hsudc *dev; 114 struct list_head queue; 115 u8 stopped; 116 u8 wedge; 117 u8 bEndpointAddress; 118 void __iomem *fifo; 119}; 120 121/** 122 * struct s3c_hsudc_req - Driver encapsulation of USB gadget transfer request. 123 * @req: Reference to USB gadget transfer request. 124 * @queue: Used for inserting this request to the endpoint request queue. 125 */ 126struct s3c_hsudc_req { 127 struct usb_request req; 128 struct list_head queue; 129}; 130 131/** 132 * struct s3c_hsudc - Driver's abstraction of the device controller. 133 * @gadget: Instance of usb_gadget which is referenced by gadget driver. 134 * @driver: Reference to currenty active gadget driver. 135 * @dev: The device reference used by probe function. 136 * @lock: Lock to synchronize the usage of Endpoints (EP's are indexed). 137 * @regs: Remapped base address of controller's register space. 138 * irq: IRQ number used by the controller. 139 * uclk: Reference to the controller clock. 140 * ep0state: Current state of EP0. 141 * ep: List of endpoints supported by the controller. 142 */ 143struct s3c_hsudc { 144 struct usb_gadget gadget; 145 struct usb_gadget_driver *driver; 146 struct device *dev; 147 struct s3c24xx_hsudc_platdata *pd; 148 struct usb_phy *transceiver; 149 struct regulator_bulk_data supplies[ARRAY_SIZE(s3c_hsudc_supply_names)]; 150 spinlock_t lock; 151 void __iomem *regs; 152 int irq; 153 struct clk *uclk; 154 int ep0state; 155 struct s3c_hsudc_ep ep[]; 156}; 157 158#define ep_maxpacket(_ep) ((_ep)->ep.maxpacket) 159#define ep_is_in(_ep) ((_ep)->bEndpointAddress & USB_DIR_IN) 160#define ep_index(_ep) ((_ep)->bEndpointAddress & \ 161 USB_ENDPOINT_NUMBER_MASK) 162 163static const char driver_name[] = "s3c-udc"; 164static const char ep0name[] = "ep0-control"; 165 166static inline struct s3c_hsudc_req *our_req(struct usb_request *req) 167{ 168 return container_of(req, struct s3c_hsudc_req, req); 169} 170 171static inline struct s3c_hsudc_ep *our_ep(struct usb_ep *ep) 172{ 173 return container_of(ep, struct s3c_hsudc_ep, ep); 174} 175 176static inline struct s3c_hsudc *to_hsudc(struct usb_gadget *gadget) 177{ 178 return container_of(gadget, struct s3c_hsudc, gadget); 179} 180 181static inline void set_index(struct s3c_hsudc *hsudc, int ep_addr) 182{ 183 ep_addr &= USB_ENDPOINT_NUMBER_MASK; 184 writel(ep_addr, hsudc->regs + S3C_IR); 185} 186 187static inline void __orr32(void __iomem *ptr, u32 val) 188{ 189 writel(readl(ptr) | val, ptr); 190} 191 192static void s3c_hsudc_init_phy(void) 193{ 194 u32 cfg; 195 196 cfg = readl(S3C2443_PWRCFG) | S3C2443_PWRCFG_USBPHY; 197 writel(cfg, S3C2443_PWRCFG); 198 199 cfg = readl(S3C2443_URSTCON); 200 cfg |= (S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST); 201 writel(cfg, S3C2443_URSTCON); 202 mdelay(1); 203 204 cfg = readl(S3C2443_URSTCON); 205 cfg &= ~(S3C2443_URSTCON_FUNCRST | S3C2443_URSTCON_PHYRST); 206 writel(cfg, S3C2443_URSTCON); 207 208 cfg = readl(S3C2443_PHYCTRL); 209 cfg &= ~(S3C2443_PHYCTRL_CLKSEL | S3C2443_PHYCTRL_DSPORT); 210 cfg |= (S3C2443_PHYCTRL_EXTCLK | S3C2443_PHYCTRL_PLLSEL); 211 writel(cfg, S3C2443_PHYCTRL); 212 213 cfg = readl(S3C2443_PHYPWR); 214 cfg &= ~(S3C2443_PHYPWR_FSUSPEND | S3C2443_PHYPWR_PLL_PWRDN | 215 S3C2443_PHYPWR_XO_ON | S3C2443_PHYPWR_PLL_REFCLK | 216 S3C2443_PHYPWR_ANALOG_PD); 217 cfg |= S3C2443_PHYPWR_COMMON_ON; 218 writel(cfg, S3C2443_PHYPWR); 219 220 cfg = readl(S3C2443_UCLKCON); 221 cfg |= (S3C2443_UCLKCON_DETECT_VBUS | S3C2443_UCLKCON_FUNC_CLKEN | 222 S3C2443_UCLKCON_TCLKEN); 223 writel(cfg, S3C2443_UCLKCON); 224} 225 226static void s3c_hsudc_uninit_phy(void) 227{ 228 u32 cfg; 229 230 cfg = readl(S3C2443_PWRCFG) & ~S3C2443_PWRCFG_USBPHY; 231 writel(cfg, S3C2443_PWRCFG); 232 233 writel(S3C2443_PHYPWR_FSUSPEND, S3C2443_PHYPWR); 234 235 cfg = readl(S3C2443_UCLKCON) & ~S3C2443_UCLKCON_FUNC_CLKEN; 236 writel(cfg, S3C2443_UCLKCON); 237} 238 239/** 240 * s3c_hsudc_complete_request - Complete a transfer request. 241 * @hsep: Endpoint to which the request belongs. 242 * @hsreq: Transfer request to be completed. 243 * @status: Transfer completion status for the transfer request. 244 */ 245static void s3c_hsudc_complete_request(struct s3c_hsudc_ep *hsep, 246 struct s3c_hsudc_req *hsreq, int status) 247{ 248 unsigned int stopped = hsep->stopped; 249 struct s3c_hsudc *hsudc = hsep->dev; 250 251 list_del_init(&hsreq->queue); 252 hsreq->req.status = status; 253 254 if (!ep_index(hsep)) { 255 hsudc->ep0state = WAIT_FOR_SETUP; 256 hsep->bEndpointAddress &= ~USB_DIR_IN; 257 } 258 259 hsep->stopped = 1; 260 spin_unlock(&hsudc->lock); 261 usb_gadget_giveback_request(&hsep->ep, &hsreq->req); 262 spin_lock(&hsudc->lock); 263 hsep->stopped = stopped; 264} 265 266/** 267 * s3c_hsudc_nuke_ep - Terminate all requests queued for a endpoint. 268 * @hsep: Endpoint for which queued requests have to be terminated. 269 * @status: Transfer completion status for the transfer request. 270 */ 271static void s3c_hsudc_nuke_ep(struct s3c_hsudc_ep *hsep, int status) 272{ 273 struct s3c_hsudc_req *hsreq; 274 275 while (!list_empty(&hsep->queue)) { 276 hsreq = list_entry(hsep->queue.next, 277 struct s3c_hsudc_req, queue); 278 s3c_hsudc_complete_request(hsep, hsreq, status); 279 } 280} 281 282/** 283 * s3c_hsudc_stop_activity - Stop activity on all endpoints. 284 * @hsudc: Device controller for which EP activity is to be stopped. 285 * 286 * All the endpoints are stopped and any pending transfer requests if any on 287 * the endpoint are terminated. 288 */ 289static void s3c_hsudc_stop_activity(struct s3c_hsudc *hsudc) 290{ 291 struct s3c_hsudc_ep *hsep; 292 int epnum; 293 294 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 295 296 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) { 297 hsep = &hsudc->ep[epnum]; 298 hsep->stopped = 1; 299 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); 300 } 301} 302 303/** 304 * s3c_hsudc_read_setup_pkt - Read the received setup packet from EP0 fifo. 305 * @hsudc: Device controller from which setup packet is to be read. 306 * @buf: The buffer into which the setup packet is read. 307 * 308 * The setup packet received in the EP0 fifo is read and stored into a 309 * given buffer address. 310 */ 311 312static void s3c_hsudc_read_setup_pkt(struct s3c_hsudc *hsudc, u16 *buf) 313{ 314 int count; 315 316 count = readl(hsudc->regs + S3C_BRCR); 317 while (count--) 318 *buf++ = (u16)readl(hsudc->regs + S3C_BR(0)); 319 320 writel(S3C_EP0SR_RX_SUCCESS, hsudc->regs + S3C_EP0SR); 321} 322 323/** 324 * s3c_hsudc_write_fifo - Write next chunk of transfer data to EP fifo. 325 * @hsep: Endpoint to which the data is to be written. 326 * @hsreq: Transfer request from which the next chunk of data is written. 327 * 328 * Write the next chunk of data from a transfer request to the endpoint FIFO. 329 * If the transfer request completes, 1 is returned, otherwise 0 is returned. 330 */ 331static int s3c_hsudc_write_fifo(struct s3c_hsudc_ep *hsep, 332 struct s3c_hsudc_req *hsreq) 333{ 334 u16 *buf; 335 u32 max = ep_maxpacket(hsep); 336 u32 count, length; 337 bool is_last; 338 void __iomem *fifo = hsep->fifo; 339 340 buf = hsreq->req.buf + hsreq->req.actual; 341 prefetch(buf); 342 343 length = hsreq->req.length - hsreq->req.actual; 344 length = min(length, max); 345 hsreq->req.actual += length; 346 347 writel(length, hsep->dev->regs + S3C_BWCR); 348 for (count = 0; count < length; count += 2) 349 writel(*buf++, fifo); 350 351 if (count != max) { 352 is_last = true; 353 } else { 354 if (hsreq->req.length != hsreq->req.actual || hsreq->req.zero) 355 is_last = false; 356 else 357 is_last = true; 358 } 359 360 if (is_last) { 361 s3c_hsudc_complete_request(hsep, hsreq, 0); 362 return 1; 363 } 364 365 return 0; 366} 367 368/** 369 * s3c_hsudc_read_fifo - Read the next chunk of data from EP fifo. 370 * @hsep: Endpoint from which the data is to be read. 371 * @hsreq: Transfer request to which the next chunk of data read is written. 372 * 373 * Read the next chunk of data from the endpoint FIFO and a write it to the 374 * transfer request buffer. If the transfer request completes, 1 is returned, 375 * otherwise 0 is returned. 376 */ 377static int s3c_hsudc_read_fifo(struct s3c_hsudc_ep *hsep, 378 struct s3c_hsudc_req *hsreq) 379{ 380 struct s3c_hsudc *hsudc = hsep->dev; 381 u32 csr, offset; 382 u16 *buf, word; 383 u32 buflen, rcnt, rlen; 384 void __iomem *fifo = hsep->fifo; 385 u32 is_short = 0; 386 387 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; 388 csr = readl(hsudc->regs + offset); 389 if (!(csr & S3C_ESR_RX_SUCCESS)) 390 return -EINVAL; 391 392 buf = hsreq->req.buf + hsreq->req.actual; 393 prefetchw(buf); 394 buflen = hsreq->req.length - hsreq->req.actual; 395 396 rcnt = readl(hsudc->regs + S3C_BRCR); 397 rlen = (csr & S3C_ESR_LWO) ? (rcnt * 2 - 1) : (rcnt * 2); 398 399 hsreq->req.actual += min(rlen, buflen); 400 is_short = (rlen < hsep->ep.maxpacket); 401 402 while (rcnt-- != 0) { 403 word = (u16)readl(fifo); 404 if (buflen) { 405 *buf++ = word; 406 buflen--; 407 } else { 408 hsreq->req.status = -EOVERFLOW; 409 } 410 } 411 412 writel(S3C_ESR_RX_SUCCESS, hsudc->regs + offset); 413 414 if (is_short || hsreq->req.actual == hsreq->req.length) { 415 s3c_hsudc_complete_request(hsep, hsreq, 0); 416 return 1; 417 } 418 419 return 0; 420} 421 422/** 423 * s3c_hsudc_epin_intr - Handle in-endpoint interrupt. 424 * @hsudc - Device controller for which the interrupt is to be handled. 425 * @ep_idx - Endpoint number on which an interrupt is pending. 426 * 427 * Handles interrupt for a in-endpoint. The interrupts that are handled are 428 * stall and data transmit complete interrupt. 429 */ 430static void s3c_hsudc_epin_intr(struct s3c_hsudc *hsudc, u32 ep_idx) 431{ 432 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; 433 struct s3c_hsudc_req *hsreq; 434 u32 csr; 435 436 csr = readl(hsudc->regs + S3C_ESR); 437 if (csr & S3C_ESR_STALL) { 438 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); 439 return; 440 } 441 442 if (csr & S3C_ESR_TX_SUCCESS) { 443 writel(S3C_ESR_TX_SUCCESS, hsudc->regs + S3C_ESR); 444 if (list_empty(&hsep->queue)) 445 return; 446 447 hsreq = list_entry(hsep->queue.next, 448 struct s3c_hsudc_req, queue); 449 if ((s3c_hsudc_write_fifo(hsep, hsreq) == 0) && 450 (csr & S3C_ESR_PSIF_TWO)) 451 s3c_hsudc_write_fifo(hsep, hsreq); 452 } 453} 454 455/** 456 * s3c_hsudc_epout_intr - Handle out-endpoint interrupt. 457 * @hsudc - Device controller for which the interrupt is to be handled. 458 * @ep_idx - Endpoint number on which an interrupt is pending. 459 * 460 * Handles interrupt for a out-endpoint. The interrupts that are handled are 461 * stall, flush and data ready interrupt. 462 */ 463static void s3c_hsudc_epout_intr(struct s3c_hsudc *hsudc, u32 ep_idx) 464{ 465 struct s3c_hsudc_ep *hsep = &hsudc->ep[ep_idx]; 466 struct s3c_hsudc_req *hsreq; 467 u32 csr; 468 469 csr = readl(hsudc->regs + S3C_ESR); 470 if (csr & S3C_ESR_STALL) { 471 writel(S3C_ESR_STALL, hsudc->regs + S3C_ESR); 472 return; 473 } 474 475 if (csr & S3C_ESR_FLUSH) { 476 __orr32(hsudc->regs + S3C_ECR, S3C_ECR_FLUSH); 477 return; 478 } 479 480 if (csr & S3C_ESR_RX_SUCCESS) { 481 if (list_empty(&hsep->queue)) 482 return; 483 484 hsreq = list_entry(hsep->queue.next, 485 struct s3c_hsudc_req, queue); 486 if (((s3c_hsudc_read_fifo(hsep, hsreq)) == 0) && 487 (csr & S3C_ESR_PSIF_TWO)) 488 s3c_hsudc_read_fifo(hsep, hsreq); 489 } 490} 491 492/** s3c_hsudc_set_halt - Set or clear a endpoint halt. 493 * @_ep: Endpoint on which halt has to be set or cleared. 494 * @value: 1 for setting halt on endpoint, 0 to clear halt. 495 * 496 * Set or clear endpoint halt. If halt is set, the endpoint is stopped. 497 * If halt is cleared, for in-endpoints, if there are any pending 498 * transfer requests, transfers are started. 499 */ 500static int s3c_hsudc_set_halt(struct usb_ep *_ep, int value) 501{ 502 struct s3c_hsudc_ep *hsep = our_ep(_ep); 503 struct s3c_hsudc *hsudc = hsep->dev; 504 struct s3c_hsudc_req *hsreq; 505 unsigned long irqflags; 506 u32 ecr; 507 u32 offset; 508 509 if (value && ep_is_in(hsep) && !list_empty(&hsep->queue)) 510 return -EAGAIN; 511 512 spin_lock_irqsave(&hsudc->lock, irqflags); 513 set_index(hsudc, ep_index(hsep)); 514 offset = (ep_index(hsep)) ? S3C_ECR : S3C_EP0CR; 515 ecr = readl(hsudc->regs + offset); 516 517 if (value) { 518 ecr |= S3C_ECR_STALL; 519 if (ep_index(hsep)) 520 ecr |= S3C_ECR_FLUSH; 521 hsep->stopped = 1; 522 } else { 523 ecr &= ~S3C_ECR_STALL; 524 hsep->stopped = hsep->wedge = 0; 525 } 526 writel(ecr, hsudc->regs + offset); 527 528 if (ep_is_in(hsep) && !list_empty(&hsep->queue) && !value) { 529 hsreq = list_entry(hsep->queue.next, 530 struct s3c_hsudc_req, queue); 531 if (hsreq) 532 s3c_hsudc_write_fifo(hsep, hsreq); 533 } 534 535 spin_unlock_irqrestore(&hsudc->lock, irqflags); 536 return 0; 537} 538 539/** s3c_hsudc_set_wedge - Sets the halt feature with the clear requests ignored 540 * @_ep: Endpoint on which wedge has to be set. 541 * 542 * Sets the halt feature with the clear requests ignored. 543 */ 544static int s3c_hsudc_set_wedge(struct usb_ep *_ep) 545{ 546 struct s3c_hsudc_ep *hsep = our_ep(_ep); 547 548 if (!hsep) 549 return -EINVAL; 550 551 hsep->wedge = 1; 552 return usb_ep_set_halt(_ep); 553} 554 555/** s3c_hsudc_handle_reqfeat - Handle set feature or clear feature requests. 556 * @_ep: Device controller on which the set/clear feature needs to be handled. 557 * @ctrl: Control request as received on the endpoint 0. 558 * 559 * Handle set feature or clear feature control requests on the control endpoint. 560 */ 561static int s3c_hsudc_handle_reqfeat(struct s3c_hsudc *hsudc, 562 struct usb_ctrlrequest *ctrl) 563{ 564 struct s3c_hsudc_ep *hsep; 565 bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE); 566 u8 ep_num = ctrl->wIndex & USB_ENDPOINT_NUMBER_MASK; 567 568 if (ctrl->bRequestType == USB_RECIP_ENDPOINT) { 569 hsep = &hsudc->ep[ep_num]; 570 switch (le16_to_cpu(ctrl->wValue)) { 571 case USB_ENDPOINT_HALT: 572 if (set || (!set && !hsep->wedge)) 573 s3c_hsudc_set_halt(&hsep->ep, set); 574 return 0; 575 } 576 } 577 578 return -ENOENT; 579} 580 581/** 582 * s3c_hsudc_process_req_status - Handle get status control request. 583 * @hsudc: Device controller on which get status request has be handled. 584 * @ctrl: Control request as received on the endpoint 0. 585 * 586 * Handle get status control request received on control endpoint. 587 */ 588static void s3c_hsudc_process_req_status(struct s3c_hsudc *hsudc, 589 struct usb_ctrlrequest *ctrl) 590{ 591 struct s3c_hsudc_ep *hsep0 = &hsudc->ep[0]; 592 struct s3c_hsudc_req hsreq; 593 struct s3c_hsudc_ep *hsep; 594 __le16 reply; 595 u8 epnum; 596 597 switch (ctrl->bRequestType & USB_RECIP_MASK) { 598 case USB_RECIP_DEVICE: 599 reply = cpu_to_le16(0); 600 break; 601 602 case USB_RECIP_INTERFACE: 603 reply = cpu_to_le16(0); 604 break; 605 606 case USB_RECIP_ENDPOINT: 607 epnum = le16_to_cpu(ctrl->wIndex) & USB_ENDPOINT_NUMBER_MASK; 608 hsep = &hsudc->ep[epnum]; 609 reply = cpu_to_le16(hsep->stopped ? 1 : 0); 610 break; 611 } 612 613 INIT_LIST_HEAD(&hsreq.queue); 614 hsreq.req.length = 2; 615 hsreq.req.buf = &reply; 616 hsreq.req.actual = 0; 617 hsreq.req.complete = NULL; 618 s3c_hsudc_write_fifo(hsep0, &hsreq); 619} 620 621/** 622 * s3c_hsudc_process_setup - Process control request received on endpoint 0. 623 * @hsudc: Device controller on which control request has been received. 624 * 625 * Read the control request received on endpoint 0, decode it and handle 626 * the request. 627 */ 628static void s3c_hsudc_process_setup(struct s3c_hsudc *hsudc) 629{ 630 struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; 631 struct usb_ctrlrequest ctrl = {0}; 632 int ret; 633 634 s3c_hsudc_nuke_ep(hsep, -EPROTO); 635 s3c_hsudc_read_setup_pkt(hsudc, (u16 *)&ctrl); 636 637 if (ctrl.bRequestType & USB_DIR_IN) { 638 hsep->bEndpointAddress |= USB_DIR_IN; 639 hsudc->ep0state = DATA_STATE_XMIT; 640 } else { 641 hsep->bEndpointAddress &= ~USB_DIR_IN; 642 hsudc->ep0state = DATA_STATE_RECV; 643 } 644 645 switch (ctrl.bRequest) { 646 case USB_REQ_SET_ADDRESS: 647 if (ctrl.bRequestType != (USB_TYPE_STANDARD | USB_RECIP_DEVICE)) 648 break; 649 hsudc->ep0state = WAIT_FOR_SETUP; 650 return; 651 652 case USB_REQ_GET_STATUS: 653 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) 654 break; 655 s3c_hsudc_process_req_status(hsudc, &ctrl); 656 return; 657 658 case USB_REQ_SET_FEATURE: 659 case USB_REQ_CLEAR_FEATURE: 660 if ((ctrl.bRequestType & USB_TYPE_MASK) != USB_TYPE_STANDARD) 661 break; 662 s3c_hsudc_handle_reqfeat(hsudc, &ctrl); 663 hsudc->ep0state = WAIT_FOR_SETUP; 664 return; 665 } 666 667 if (hsudc->driver) { 668 spin_unlock(&hsudc->lock); 669 ret = hsudc->driver->setup(&hsudc->gadget, &ctrl); 670 spin_lock(&hsudc->lock); 671 672 if (ctrl.bRequest == USB_REQ_SET_CONFIGURATION) { 673 hsep->bEndpointAddress &= ~USB_DIR_IN; 674 hsudc->ep0state = WAIT_FOR_SETUP; 675 } 676 677 if (ret < 0) { 678 dev_err(hsudc->dev, "setup failed, returned %d\n", 679 ret); 680 s3c_hsudc_set_halt(&hsep->ep, 1); 681 hsudc->ep0state = WAIT_FOR_SETUP; 682 hsep->bEndpointAddress &= ~USB_DIR_IN; 683 } 684 } 685} 686 687/** s3c_hsudc_handle_ep0_intr - Handle endpoint 0 interrupt. 688 * @hsudc: Device controller on which endpoint 0 interrupt has occured. 689 * 690 * Handle endpoint 0 interrupt when it occurs. EP0 interrupt could occur 691 * when a stall handshake is sent to host or data is sent/received on 692 * endpoint 0. 693 */ 694static void s3c_hsudc_handle_ep0_intr(struct s3c_hsudc *hsudc) 695{ 696 struct s3c_hsudc_ep *hsep = &hsudc->ep[0]; 697 struct s3c_hsudc_req *hsreq; 698 u32 csr = readl(hsudc->regs + S3C_EP0SR); 699 u32 ecr; 700 701 if (csr & S3C_EP0SR_STALL) { 702 ecr = readl(hsudc->regs + S3C_EP0CR); 703 ecr &= ~(S3C_ECR_STALL | S3C_ECR_FLUSH); 704 writel(ecr, hsudc->regs + S3C_EP0CR); 705 706 writel(S3C_EP0SR_STALL, hsudc->regs + S3C_EP0SR); 707 hsep->stopped = 0; 708 709 s3c_hsudc_nuke_ep(hsep, -ECONNABORTED); 710 hsudc->ep0state = WAIT_FOR_SETUP; 711 hsep->bEndpointAddress &= ~USB_DIR_IN; 712 return; 713 } 714 715 if (csr & S3C_EP0SR_TX_SUCCESS) { 716 writel(S3C_EP0SR_TX_SUCCESS, hsudc->regs + S3C_EP0SR); 717 if (ep_is_in(hsep)) { 718 if (list_empty(&hsep->queue)) 719 return; 720 721 hsreq = list_entry(hsep->queue.next, 722 struct s3c_hsudc_req, queue); 723 s3c_hsudc_write_fifo(hsep, hsreq); 724 } 725 } 726 727 if (csr & S3C_EP0SR_RX_SUCCESS) { 728 if (hsudc->ep0state == WAIT_FOR_SETUP) 729 s3c_hsudc_process_setup(hsudc); 730 else { 731 if (!ep_is_in(hsep)) { 732 if (list_empty(&hsep->queue)) 733 return; 734 hsreq = list_entry(hsep->queue.next, 735 struct s3c_hsudc_req, queue); 736 s3c_hsudc_read_fifo(hsep, hsreq); 737 } 738 } 739 } 740} 741 742/** 743 * s3c_hsudc_ep_enable - Enable a endpoint. 744 * @_ep: The endpoint to be enabled. 745 * @desc: Endpoint descriptor. 746 * 747 * Enables a endpoint when called from the gadget driver. Endpoint stall if 748 * any is cleared, transfer type is configured and endpoint interrupt is 749 * enabled. 750 */ 751static int s3c_hsudc_ep_enable(struct usb_ep *_ep, 752 const struct usb_endpoint_descriptor *desc) 753{ 754 struct s3c_hsudc_ep *hsep; 755 struct s3c_hsudc *hsudc; 756 unsigned long flags; 757 u32 ecr = 0; 758 759 hsep = our_ep(_ep); 760 if (!_ep || !desc || _ep->name == ep0name 761 || desc->bDescriptorType != USB_DT_ENDPOINT 762 || hsep->bEndpointAddress != desc->bEndpointAddress 763 || ep_maxpacket(hsep) < usb_endpoint_maxp(desc)) 764 return -EINVAL; 765 766 if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK 767 && usb_endpoint_maxp(desc) != ep_maxpacket(hsep)) 768 || !desc->wMaxPacketSize) 769 return -ERANGE; 770 771 hsudc = hsep->dev; 772 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) 773 return -ESHUTDOWN; 774 775 spin_lock_irqsave(&hsudc->lock, flags); 776 777 set_index(hsudc, hsep->bEndpointAddress); 778 ecr |= ((usb_endpoint_xfer_int(desc)) ? S3C_ECR_IEMS : S3C_ECR_DUEN); 779 writel(ecr, hsudc->regs + S3C_ECR); 780 781 hsep->stopped = hsep->wedge = 0; 782 hsep->ep.desc = desc; 783 hsep->ep.maxpacket = usb_endpoint_maxp(desc); 784 785 s3c_hsudc_set_halt(_ep, 0); 786 __set_bit(ep_index(hsep), hsudc->regs + S3C_EIER); 787 788 spin_unlock_irqrestore(&hsudc->lock, flags); 789 return 0; 790} 791 792/** 793 * s3c_hsudc_ep_disable - Disable a endpoint. 794 * @_ep: The endpoint to be disabled. 795 * @desc: Endpoint descriptor. 796 * 797 * Disables a endpoint when called from the gadget driver. 798 */ 799static int s3c_hsudc_ep_disable(struct usb_ep *_ep) 800{ 801 struct s3c_hsudc_ep *hsep = our_ep(_ep); 802 struct s3c_hsudc *hsudc = hsep->dev; 803 unsigned long flags; 804 805 if (!_ep || !hsep->ep.desc) 806 return -EINVAL; 807 808 spin_lock_irqsave(&hsudc->lock, flags); 809 810 set_index(hsudc, hsep->bEndpointAddress); 811 __clear_bit(ep_index(hsep), hsudc->regs + S3C_EIER); 812 813 s3c_hsudc_nuke_ep(hsep, -ESHUTDOWN); 814 815 hsep->ep.desc = NULL; 816 hsep->stopped = 1; 817 818 spin_unlock_irqrestore(&hsudc->lock, flags); 819 return 0; 820} 821 822/** 823 * s3c_hsudc_alloc_request - Allocate a new request. 824 * @_ep: Endpoint for which request is allocated (not used). 825 * @gfp_flags: Flags used for the allocation. 826 * 827 * Allocates a single transfer request structure when called from gadget driver. 828 */ 829static struct usb_request *s3c_hsudc_alloc_request(struct usb_ep *_ep, 830 gfp_t gfp_flags) 831{ 832 struct s3c_hsudc_req *hsreq; 833 834 hsreq = kzalloc(sizeof(*hsreq), gfp_flags); 835 if (!hsreq) 836 return NULL; 837 838 INIT_LIST_HEAD(&hsreq->queue); 839 return &hsreq->req; 840} 841 842/** 843 * s3c_hsudc_free_request - Deallocate a request. 844 * @ep: Endpoint for which request is deallocated (not used). 845 * @_req: Request to be deallocated. 846 * 847 * Allocates a single transfer request structure when called from gadget driver. 848 */ 849static void s3c_hsudc_free_request(struct usb_ep *ep, struct usb_request *_req) 850{ 851 struct s3c_hsudc_req *hsreq; 852 853 hsreq = our_req(_req); 854 WARN_ON(!list_empty(&hsreq->queue)); 855 kfree(hsreq); 856} 857 858/** 859 * s3c_hsudc_queue - Queue a transfer request for the endpoint. 860 * @_ep: Endpoint for which the request is queued. 861 * @_req: Request to be queued. 862 * @gfp_flags: Not used. 863 * 864 * Start or enqueue a request for a endpoint when called from gadget driver. 865 */ 866static int s3c_hsudc_queue(struct usb_ep *_ep, struct usb_request *_req, 867 gfp_t gfp_flags) 868{ 869 struct s3c_hsudc_req *hsreq; 870 struct s3c_hsudc_ep *hsep; 871 struct s3c_hsudc *hsudc; 872 unsigned long flags; 873 u32 offset; 874 u32 csr; 875 876 hsreq = our_req(_req); 877 if ((!_req || !_req->complete || !_req->buf || 878 !list_empty(&hsreq->queue))) 879 return -EINVAL; 880 881 hsep = our_ep(_ep); 882 hsudc = hsep->dev; 883 if (!hsudc->driver || hsudc->gadget.speed == USB_SPEED_UNKNOWN) 884 return -ESHUTDOWN; 885 886 spin_lock_irqsave(&hsudc->lock, flags); 887 set_index(hsudc, hsep->bEndpointAddress); 888 889 _req->status = -EINPROGRESS; 890 _req->actual = 0; 891 892 if (!ep_index(hsep) && _req->length == 0) { 893 hsudc->ep0state = WAIT_FOR_SETUP; 894 s3c_hsudc_complete_request(hsep, hsreq, 0); 895 spin_unlock_irqrestore(&hsudc->lock, flags); 896 return 0; 897 } 898 899 if (list_empty(&hsep->queue) && !hsep->stopped) { 900 offset = (ep_index(hsep)) ? S3C_ESR : S3C_EP0SR; 901 if (ep_is_in(hsep)) { 902 csr = readl(hsudc->regs + offset); 903 if (!(csr & S3C_ESR_TX_SUCCESS) && 904 (s3c_hsudc_write_fifo(hsep, hsreq) == 1)) 905 hsreq = NULL; 906 } else { 907 csr = readl(hsudc->regs + offset); 908 if ((csr & S3C_ESR_RX_SUCCESS) 909 && (s3c_hsudc_read_fifo(hsep, hsreq) == 1)) 910 hsreq = NULL; 911 } 912 } 913 914 if (hsreq) 915 list_add_tail(&hsreq->queue, &hsep->queue); 916 917 spin_unlock_irqrestore(&hsudc->lock, flags); 918 return 0; 919} 920 921/** 922 * s3c_hsudc_dequeue - Dequeue a transfer request from an endpoint. 923 * @_ep: Endpoint from which the request is dequeued. 924 * @_req: Request to be dequeued. 925 * 926 * Dequeue a request from a endpoint when called from gadget driver. 927 */ 928static int s3c_hsudc_dequeue(struct usb_ep *_ep, struct usb_request *_req) 929{ 930 struct s3c_hsudc_ep *hsep = our_ep(_ep); 931 struct s3c_hsudc *hsudc = hsep->dev; 932 struct s3c_hsudc_req *hsreq; 933 unsigned long flags; 934 935 hsep = our_ep(_ep); 936 if (!_ep || hsep->ep.name == ep0name) 937 return -EINVAL; 938 939 spin_lock_irqsave(&hsudc->lock, flags); 940 941 list_for_each_entry(hsreq, &hsep->queue, queue) { 942 if (&hsreq->req == _req) 943 break; 944 } 945 if (&hsreq->req != _req) { 946 spin_unlock_irqrestore(&hsudc->lock, flags); 947 return -EINVAL; 948 } 949 950 set_index(hsudc, hsep->bEndpointAddress); 951 s3c_hsudc_complete_request(hsep, hsreq, -ECONNRESET); 952 953 spin_unlock_irqrestore(&hsudc->lock, flags); 954 return 0; 955} 956 957static struct usb_ep_ops s3c_hsudc_ep_ops = { 958 .enable = s3c_hsudc_ep_enable, 959 .disable = s3c_hsudc_ep_disable, 960 .alloc_request = s3c_hsudc_alloc_request, 961 .free_request = s3c_hsudc_free_request, 962 .queue = s3c_hsudc_queue, 963 .dequeue = s3c_hsudc_dequeue, 964 .set_halt = s3c_hsudc_set_halt, 965 .set_wedge = s3c_hsudc_set_wedge, 966}; 967 968/** 969 * s3c_hsudc_initep - Initialize a endpoint to default state. 970 * @hsudc - Reference to the device controller. 971 * @hsep - Endpoint to be initialized. 972 * @epnum - Address to be assigned to the endpoint. 973 * 974 * Initialize a endpoint with default configuration. 975 */ 976static void s3c_hsudc_initep(struct s3c_hsudc *hsudc, 977 struct s3c_hsudc_ep *hsep, int epnum) 978{ 979 char *dir; 980 981 if ((epnum % 2) == 0) { 982 dir = "out"; 983 } else { 984 dir = "in"; 985 hsep->bEndpointAddress = USB_DIR_IN; 986 } 987 988 hsep->bEndpointAddress |= epnum; 989 if (epnum) 990 snprintf(hsep->name, sizeof(hsep->name), "ep%d%s", epnum, dir); 991 else 992 snprintf(hsep->name, sizeof(hsep->name), "%s", ep0name); 993 994 INIT_LIST_HEAD(&hsep->queue); 995 INIT_LIST_HEAD(&hsep->ep.ep_list); 996 if (epnum) 997 list_add_tail(&hsep->ep.ep_list, &hsudc->gadget.ep_list); 998 999 hsep->dev = hsudc; 1000 hsep->ep.name = hsep->name; 1001 usb_ep_set_maxpacket_limit(&hsep->ep, epnum ? 512 : 64); 1002 hsep->ep.ops = &s3c_hsudc_ep_ops; 1003 hsep->fifo = hsudc->regs + S3C_BR(epnum); 1004 hsep->ep.desc = NULL; 1005 hsep->stopped = 0; 1006 hsep->wedge = 0; 1007 1008 set_index(hsudc, epnum); 1009 writel(hsep->ep.maxpacket, hsudc->regs + S3C_MPR); 1010} 1011 1012/** 1013 * s3c_hsudc_setup_ep - Configure all endpoints to default state. 1014 * @hsudc: Reference to device controller. 1015 * 1016 * Configures all endpoints to default state. 1017 */ 1018static void s3c_hsudc_setup_ep(struct s3c_hsudc *hsudc) 1019{ 1020 int epnum; 1021 1022 hsudc->ep0state = WAIT_FOR_SETUP; 1023 INIT_LIST_HEAD(&hsudc->gadget.ep_list); 1024 for (epnum = 0; epnum < hsudc->pd->epnum; epnum++) 1025 s3c_hsudc_initep(hsudc, &hsudc->ep[epnum], epnum); 1026} 1027 1028/** 1029 * s3c_hsudc_reconfig - Reconfigure the device controller to default state. 1030 * @hsudc: Reference to device controller. 1031 * 1032 * Reconfigures the device controller registers to a default state. 1033 */ 1034static void s3c_hsudc_reconfig(struct s3c_hsudc *hsudc) 1035{ 1036 writel(0xAA, hsudc->regs + S3C_EDR); 1037 writel(1, hsudc->regs + S3C_EIER); 1038 writel(0, hsudc->regs + S3C_TR); 1039 writel(S3C_SCR_DTZIEN_EN | S3C_SCR_RRD_EN | S3C_SCR_SUS_EN | 1040 S3C_SCR_RST_EN, hsudc->regs + S3C_SCR); 1041 writel(0, hsudc->regs + S3C_EP0CR); 1042 1043 s3c_hsudc_setup_ep(hsudc); 1044} 1045 1046/** 1047 * s3c_hsudc_irq - Interrupt handler for device controller. 1048 * @irq: Not used. 1049 * @_dev: Reference to the device controller. 1050 * 1051 * Interrupt handler for the device controller. This handler handles controller 1052 * interrupts and endpoint interrupts. 1053 */ 1054static irqreturn_t s3c_hsudc_irq(int irq, void *_dev) 1055{ 1056 struct s3c_hsudc *hsudc = _dev; 1057 struct s3c_hsudc_ep *hsep; 1058 u32 ep_intr; 1059 u32 sys_status; 1060 u32 ep_idx; 1061 1062 spin_lock(&hsudc->lock); 1063 1064 sys_status = readl(hsudc->regs + S3C_SSR); 1065 ep_intr = readl(hsudc->regs + S3C_EIR) & 0x3FF; 1066 1067 if (!ep_intr && !(sys_status & S3C_SSR_DTZIEN_EN)) { 1068 spin_unlock(&hsudc->lock); 1069 return IRQ_HANDLED; 1070 } 1071 1072 if (sys_status) { 1073 if (sys_status & S3C_SSR_VBUSON) 1074 writel(S3C_SSR_VBUSON, hsudc->regs + S3C_SSR); 1075 1076 if (sys_status & S3C_SSR_ERR) 1077 writel(S3C_SSR_ERR, hsudc->regs + S3C_SSR); 1078 1079 if (sys_status & S3C_SSR_SDE) { 1080 writel(S3C_SSR_SDE, hsudc->regs + S3C_SSR); 1081 hsudc->gadget.speed = (sys_status & S3C_SSR_HSP) ? 1082 USB_SPEED_HIGH : USB_SPEED_FULL; 1083 } 1084 1085 if (sys_status & S3C_SSR_SUSPEND) { 1086 writel(S3C_SSR_SUSPEND, hsudc->regs + S3C_SSR); 1087 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN 1088 && hsudc->driver && hsudc->driver->suspend) 1089 hsudc->driver->suspend(&hsudc->gadget); 1090 } 1091 1092 if (sys_status & S3C_SSR_RESUME) { 1093 writel(S3C_SSR_RESUME, hsudc->regs + S3C_SSR); 1094 if (hsudc->gadget.speed != USB_SPEED_UNKNOWN 1095 && hsudc->driver && hsudc->driver->resume) 1096 hsudc->driver->resume(&hsudc->gadget); 1097 } 1098 1099 if (sys_status & S3C_SSR_RESET) { 1100 writel(S3C_SSR_RESET, hsudc->regs + S3C_SSR); 1101 for (ep_idx = 0; ep_idx < hsudc->pd->epnum; ep_idx++) { 1102 hsep = &hsudc->ep[ep_idx]; 1103 hsep->stopped = 1; 1104 s3c_hsudc_nuke_ep(hsep, -ECONNRESET); 1105 } 1106 s3c_hsudc_reconfig(hsudc); 1107 hsudc->ep0state = WAIT_FOR_SETUP; 1108 } 1109 } 1110 1111 if (ep_intr & S3C_EIR_EP0) { 1112 writel(S3C_EIR_EP0, hsudc->regs + S3C_EIR); 1113 set_index(hsudc, 0); 1114 s3c_hsudc_handle_ep0_intr(hsudc); 1115 } 1116 1117 ep_intr >>= 1; 1118 ep_idx = 1; 1119 while (ep_intr) { 1120 if (ep_intr & 1) { 1121 hsep = &hsudc->ep[ep_idx]; 1122 set_index(hsudc, ep_idx); 1123 writel(1 << ep_idx, hsudc->regs + S3C_EIR); 1124 if (ep_is_in(hsep)) 1125 s3c_hsudc_epin_intr(hsudc, ep_idx); 1126 else 1127 s3c_hsudc_epout_intr(hsudc, ep_idx); 1128 } 1129 ep_intr >>= 1; 1130 ep_idx++; 1131 } 1132 1133 spin_unlock(&hsudc->lock); 1134 return IRQ_HANDLED; 1135} 1136 1137static int s3c_hsudc_start(struct usb_gadget *gadget, 1138 struct usb_gadget_driver *driver) 1139{ 1140 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1141 int ret; 1142 1143 if (!driver 1144 || driver->max_speed < USB_SPEED_FULL 1145 || !driver->setup) 1146 return -EINVAL; 1147 1148 if (!hsudc) 1149 return -ENODEV; 1150 1151 if (hsudc->driver) 1152 return -EBUSY; 1153 1154 hsudc->driver = driver; 1155 1156 ret = regulator_bulk_enable(ARRAY_SIZE(hsudc->supplies), 1157 hsudc->supplies); 1158 if (ret != 0) { 1159 dev_err(hsudc->dev, "failed to enable supplies: %d\n", ret); 1160 goto err_supplies; 1161 } 1162 1163 /* connect to bus through transceiver */ 1164 if (!IS_ERR_OR_NULL(hsudc->transceiver)) { 1165 ret = otg_set_peripheral(hsudc->transceiver->otg, 1166 &hsudc->gadget); 1167 if (ret) { 1168 dev_err(hsudc->dev, "%s: can't bind to transceiver\n", 1169 hsudc->gadget.name); 1170 goto err_otg; 1171 } 1172 } 1173 1174 enable_irq(hsudc->irq); 1175 dev_info(hsudc->dev, "bound driver %s\n", driver->driver.name); 1176 1177 s3c_hsudc_reconfig(hsudc); 1178 1179 pm_runtime_get_sync(hsudc->dev); 1180 1181 s3c_hsudc_init_phy(); 1182 if (hsudc->pd->gpio_init) 1183 hsudc->pd->gpio_init(); 1184 1185 return 0; 1186err_otg: 1187 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); 1188err_supplies: 1189 hsudc->driver = NULL; 1190 return ret; 1191} 1192 1193static int s3c_hsudc_stop(struct usb_gadget *gadget, 1194 struct usb_gadget_driver *driver) 1195{ 1196 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1197 unsigned long flags; 1198 1199 if (!hsudc) 1200 return -ENODEV; 1201 1202 if (!driver || driver != hsudc->driver) 1203 return -EINVAL; 1204 1205 spin_lock_irqsave(&hsudc->lock, flags); 1206 hsudc->driver = NULL; 1207 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 1208 s3c_hsudc_uninit_phy(); 1209 1210 pm_runtime_put(hsudc->dev); 1211 1212 if (hsudc->pd->gpio_uninit) 1213 hsudc->pd->gpio_uninit(); 1214 s3c_hsudc_stop_activity(hsudc); 1215 spin_unlock_irqrestore(&hsudc->lock, flags); 1216 1217 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1218 (void) otg_set_peripheral(hsudc->transceiver->otg, NULL); 1219 1220 disable_irq(hsudc->irq); 1221 1222 regulator_bulk_disable(ARRAY_SIZE(hsudc->supplies), hsudc->supplies); 1223 1224 dev_info(hsudc->dev, "unregistered gadget driver '%s'\n", 1225 driver->driver.name); 1226 return 0; 1227} 1228 1229static inline u32 s3c_hsudc_read_frameno(struct s3c_hsudc *hsudc) 1230{ 1231 return readl(hsudc->regs + S3C_FNR) & 0x3FF; 1232} 1233 1234static int s3c_hsudc_gadget_getframe(struct usb_gadget *gadget) 1235{ 1236 return s3c_hsudc_read_frameno(to_hsudc(gadget)); 1237} 1238 1239static int s3c_hsudc_vbus_draw(struct usb_gadget *gadget, unsigned mA) 1240{ 1241 struct s3c_hsudc *hsudc = to_hsudc(gadget); 1242 1243 if (!hsudc) 1244 return -ENODEV; 1245 1246 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1247 return usb_phy_set_power(hsudc->transceiver, mA); 1248 1249 return -EOPNOTSUPP; 1250} 1251 1252static const struct usb_gadget_ops s3c_hsudc_gadget_ops = { 1253 .get_frame = s3c_hsudc_gadget_getframe, 1254 .udc_start = s3c_hsudc_start, 1255 .udc_stop = s3c_hsudc_stop, 1256 .vbus_draw = s3c_hsudc_vbus_draw, 1257}; 1258 1259static int s3c_hsudc_probe(struct platform_device *pdev) 1260{ 1261 struct device *dev = &pdev->dev; 1262 struct resource *res; 1263 struct s3c_hsudc *hsudc; 1264 struct s3c24xx_hsudc_platdata *pd = dev_get_platdata(&pdev->dev); 1265 int ret, i; 1266 1267 hsudc = devm_kzalloc(&pdev->dev, sizeof(struct s3c_hsudc) + 1268 sizeof(struct s3c_hsudc_ep) * pd->epnum, 1269 GFP_KERNEL); 1270 if (!hsudc) { 1271 dev_err(dev, "cannot allocate memory\n"); 1272 return -ENOMEM; 1273 } 1274 1275 platform_set_drvdata(pdev, dev); 1276 hsudc->dev = dev; 1277 hsudc->pd = dev_get_platdata(&pdev->dev); 1278 1279 hsudc->transceiver = usb_get_phy(USB_PHY_TYPE_USB2); 1280 1281 for (i = 0; i < ARRAY_SIZE(hsudc->supplies); i++) 1282 hsudc->supplies[i].supply = s3c_hsudc_supply_names[i]; 1283 1284 ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(hsudc->supplies), 1285 hsudc->supplies); 1286 if (ret != 0) { 1287 dev_err(dev, "failed to request supplies: %d\n", ret); 1288 goto err_supplies; 1289 } 1290 1291 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1292 1293 hsudc->regs = devm_ioremap_resource(&pdev->dev, res); 1294 if (IS_ERR(hsudc->regs)) { 1295 ret = PTR_ERR(hsudc->regs); 1296 goto err_res; 1297 } 1298 1299 spin_lock_init(&hsudc->lock); 1300 1301 hsudc->gadget.max_speed = USB_SPEED_HIGH; 1302 hsudc->gadget.ops = &s3c_hsudc_gadget_ops; 1303 hsudc->gadget.name = dev_name(dev); 1304 hsudc->gadget.ep0 = &hsudc->ep[0].ep; 1305 hsudc->gadget.is_otg = 0; 1306 hsudc->gadget.is_a_peripheral = 0; 1307 hsudc->gadget.speed = USB_SPEED_UNKNOWN; 1308 1309 s3c_hsudc_setup_ep(hsudc); 1310 1311 ret = platform_get_irq(pdev, 0); 1312 if (ret < 0) { 1313 dev_err(dev, "unable to obtain IRQ number\n"); 1314 goto err_res; 1315 } 1316 hsudc->irq = ret; 1317 1318 ret = devm_request_irq(&pdev->dev, hsudc->irq, s3c_hsudc_irq, 0, 1319 driver_name, hsudc); 1320 if (ret < 0) { 1321 dev_err(dev, "irq request failed\n"); 1322 goto err_res; 1323 } 1324 1325 hsudc->uclk = devm_clk_get(&pdev->dev, "usb-device"); 1326 if (IS_ERR(hsudc->uclk)) { 1327 dev_err(dev, "failed to find usb-device clock source\n"); 1328 ret = PTR_ERR(hsudc->uclk); 1329 goto err_res; 1330 } 1331 clk_enable(hsudc->uclk); 1332 1333 local_irq_disable(); 1334 1335 disable_irq(hsudc->irq); 1336 local_irq_enable(); 1337 1338 ret = usb_add_gadget_udc(&pdev->dev, &hsudc->gadget); 1339 if (ret) 1340 goto err_add_udc; 1341 1342 pm_runtime_enable(dev); 1343 1344 return 0; 1345err_add_udc: 1346 clk_disable(hsudc->uclk); 1347err_res: 1348 if (!IS_ERR_OR_NULL(hsudc->transceiver)) 1349 usb_put_phy(hsudc->transceiver); 1350 1351err_supplies: 1352 return ret; 1353} 1354 1355static struct platform_driver s3c_hsudc_driver = { 1356 .driver = { 1357 .owner = THIS_MODULE, 1358 .name = "s3c-hsudc", 1359 }, 1360 .probe = s3c_hsudc_probe, 1361}; 1362 1363module_platform_driver(s3c_hsudc_driver); 1364 1365MODULE_DESCRIPTION("Samsung S3C24XX USB high-speed controller driver"); 1366MODULE_AUTHOR("Thomas Abraham <thomas.ab@samsung.com>"); 1367MODULE_LICENSE("GPL"); 1368MODULE_ALIAS("platform:s3c-hsudc"); 1369