[go: nahoru, domu]

1/*
2 *  linux/drivers/video/sa1100fb.c
3 *
4 *  Copyright (C) 1999 Eric A. Thomas
5 *   Based on acornfb.c Copyright (C) Russell King.
6 *
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License.  See the file COPYING in the main directory of this archive for
9 * more details.
10 *
11 *	        StrongARM 1100 LCD Controller Frame Buffer Driver
12 *
13 * Please direct your questions and comments on this driver to the following
14 * email address:
15 *
16 *	linux-arm-kernel@lists.arm.linux.org.uk
17 *
18 * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19 * following web page for more information:
20 *
21 *	http://www.arm.linux.org.uk/developer/patches/info.shtml
22 *
23 * Thank you.
24 *
25 * Known problems:
26 *	- With the Neponset plugged into an Assabet, LCD powerdown
27 *	  doesn't work (LCD stays powered up).  Therefore we shouldn't
28 *	  blank the screen.
29 *	- We don't limit the CPU clock rate nor the mode selection
30 *	  according to the available SDRAM bandwidth.
31 *
32 * Other notes:
33 *	- Linear grayscale palettes and the kernel.
34 *	  Such code does not belong in the kernel.  The kernel frame buffer
35 *	  drivers do not expect a linear colourmap, but a colourmap based on
36 *	  the VT100 standard mapping.
37 *
38 *	  If your _userspace_ requires a linear colourmap, then the setup of
39 *	  such a colourmap belongs _in userspace_, not in the kernel.  Code
40 *	  to set the colourmap correctly from user space has been sent to
41 *	  David Neuer.  It's around 8 lines of C code, plus another 4 to
42 *	  detect if we are using grayscale.
43 *
44 *	- The following must never be specified in a panel definition:
45 *	     LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46 *
47 *	- The following should be specified:
48 *	     either LCCR0_Color or LCCR0_Mono
49 *	     either LCCR0_Sngl or LCCR0_Dual
50 *	     either LCCR0_Act or LCCR0_Pas
51 *	     either LCCR3_OutEnH or LCCD3_OutEnL
52 *	     either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53 *	     either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54 *
55 * Code Status:
56 * 1999/04/01:
57 *	- Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58 *	  resolutions are working, but only the 8bpp mode is supported.
59 *	  Changes need to be made to the palette encode and decode routines
60 *	  to support 4 and 16 bpp modes.
61 *	  Driver is not designed to be a module.  The FrameBuffer is statically
62 *	  allocated since dynamic allocation of a 300k buffer cannot be
63 *	  guaranteed.
64 *
65 * 1999/06/17:
66 *	- FrameBuffer memory is now allocated at run-time when the
67 *	  driver is initialized.
68 *
69 * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70 *	- Big cleanup for dynamic selection of machine type at run time.
71 *
72 * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73 *	- Support for Bitsy aka Compaq iPAQ H3600 added.
74 *
75 * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76 *	       Jeff Sutherland <jsutherland@accelent.com>
77 *	- Resolved an issue caused by a change made to the Assabet's PLD
78 *	  earlier this year which broke the framebuffer driver for newer
79 *	  Phase 4 Assabets.  Some other parameters were changed to optimize
80 *	  for the Sharp display.
81 *
82 * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83 *	- XP860 support added
84 *
85 * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86 *	- Allows standard options to be passed on the kernel command line
87 *	  for most common passive displays.
88 *
89 * 2000/08/29:
90 *	- s/save_flags_cli/local_irq_save/
91 *	- remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92 *
93 * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94 *	- Updated LART stuff. Fixed some minor bugs.
95 *
96 * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97 *	- Pangolin support added
98 *
99 * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100 *	- Huw Webpanel support added
101 *
102 * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103 *	- Freebird add
104 *
105 * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com>
106 *	       Cliff Brake <cbrake@accelent.com>
107 *	- Added PM callback
108 *
109 * 2001/05/26: <rmk@arm.linux.org.uk>
110 *	- Fix 16bpp so that (a) we use the right colours rather than some
111 *	  totally random colour depending on what was in page 0, and (b)
112 *	  we don't de-reference a NULL pointer.
113 *	- remove duplicated implementation of consistent_alloc()
114 *	- convert dma address types to dma_addr_t
115 *	- remove unused 'montype' stuff
116 *	- remove redundant zero inits of init_var after the initial
117 *	  memset.
118 *	- remove allow_modeset (acornfb idea does not belong here)
119 *
120 * 2001/05/28: <rmk@arm.linux.org.uk>
121 *	- massive cleanup - move machine dependent data into structures
122 *	- I've left various #warnings in - if you see one, and know
123 *	  the hardware concerned, please get in contact with me.
124 *
125 * 2001/05/31: <rmk@arm.linux.org.uk>
126 *	- Fix LCCR1 HSW value, fix all machine type specifications to
127 *	  keep values in line.  (Please check your machine type specs)
128 *
129 * 2001/06/10: <rmk@arm.linux.org.uk>
130 *	- Fiddle with the LCD controller from task context only; mainly
131 *	  so that we can run with interrupts on, and sleep.
132 *	- Convert #warnings into #errors.  No pain, no gain. ;)
133 *
134 * 2001/06/14: <rmk@arm.linux.org.uk>
135 *	- Make the palette BPS value for 12bpp come out correctly.
136 *	- Take notice of "greyscale" on any colour depth.
137 *	- Make truecolor visuals use the RGB channel encoding information.
138 *
139 * 2001/07/02: <rmk@arm.linux.org.uk>
140 *	- Fix colourmap problems.
141 *
142 * 2001/07/13: <abraham@2d3d.co.za>
143 *	- Added support for the ICP LCD-Kit01 on LART. This LCD is
144 *	  manufactured by Prime View, model no V16C6448AB
145 *
146 * 2001/07/23: <rmk@arm.linux.org.uk>
147 *	- Hand merge version from handhelds.org CVS tree.  See patch
148 *	  notes for 595/1 for more information.
149 *	- Drop 12bpp (it's 16bpp with different colour register mappings).
150 *	- This hardware can not do direct colour.  Therefore we don't
151 *	  support it.
152 *
153 * 2001/07/27: <rmk@arm.linux.org.uk>
154 *	- Halve YRES on dual scan LCDs.
155 *
156 * 2001/08/22: <rmk@arm.linux.org.uk>
157 *	- Add b/w iPAQ pixclock value.
158 *
159 * 2001/10/12: <rmk@arm.linux.org.uk>
160 *	- Add patch 681/1 and clean up stork definitions.
161 */
162
163#include <linux/module.h>
164#include <linux/kernel.h>
165#include <linux/sched.h>
166#include <linux/errno.h>
167#include <linux/string.h>
168#include <linux/interrupt.h>
169#include <linux/slab.h>
170#include <linux/mm.h>
171#include <linux/fb.h>
172#include <linux/delay.h>
173#include <linux/init.h>
174#include <linux/ioport.h>
175#include <linux/cpufreq.h>
176#include <linux/gpio.h>
177#include <linux/platform_device.h>
178#include <linux/dma-mapping.h>
179#include <linux/mutex.h>
180#include <linux/io.h>
181
182#include <video/sa1100fb.h>
183
184#include <mach/hardware.h>
185#include <asm/mach-types.h>
186#include <mach/shannon.h>
187
188/*
189 * Complain if VAR is out of range.
190 */
191#define DEBUG_VAR 1
192
193#include "sa1100fb.h"
194
195static const struct sa1100fb_rgb rgb_4 = {
196	.red	= { .offset = 0,  .length = 4, },
197	.green	= { .offset = 0,  .length = 4, },
198	.blue	= { .offset = 0,  .length = 4, },
199	.transp	= { .offset = 0,  .length = 0, },
200};
201
202static const struct sa1100fb_rgb rgb_8 = {
203	.red	= { .offset = 0,  .length = 8, },
204	.green	= { .offset = 0,  .length = 8, },
205	.blue	= { .offset = 0,  .length = 8, },
206	.transp	= { .offset = 0,  .length = 0, },
207};
208
209static const struct sa1100fb_rgb def_rgb_16 = {
210	.red	= { .offset = 11, .length = 5, },
211	.green	= { .offset = 5,  .length = 6, },
212	.blue	= { .offset = 0,  .length = 5, },
213	.transp	= { .offset = 0,  .length = 0, },
214};
215
216
217
218static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
219static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
220
221static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
222{
223	unsigned long flags;
224
225	local_irq_save(flags);
226	/*
227	 * We need to handle two requests being made at the same time.
228	 * There are two important cases:
229	 *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
230	 *     We must perform the unblanking, which will do our REENABLE for us.
231	 *  2. When we are blanking, but immediately unblank before we have
232	 *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
233	 */
234	if (fbi->task_state == C_ENABLE && state == C_REENABLE)
235		state = (u_int) -1;
236	if (fbi->task_state == C_DISABLE && state == C_ENABLE)
237		state = C_REENABLE;
238
239	if (state != (u_int)-1) {
240		fbi->task_state = state;
241		schedule_work(&fbi->task);
242	}
243	local_irq_restore(flags);
244}
245
246static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
247{
248	chan &= 0xffff;
249	chan >>= 16 - bf->length;
250	return chan << bf->offset;
251}
252
253/*
254 * Convert bits-per-pixel to a hardware palette PBS value.
255 */
256static inline u_int palette_pbs(struct fb_var_screeninfo *var)
257{
258	int ret = 0;
259	switch (var->bits_per_pixel) {
260	case 4:  ret = 0 << 12;	break;
261	case 8:  ret = 1 << 12; break;
262	case 16: ret = 2 << 12; break;
263	}
264	return ret;
265}
266
267static int
268sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
269		       u_int trans, struct fb_info *info)
270{
271	struct sa1100fb_info *fbi =
272		container_of(info, struct sa1100fb_info, fb);
273	u_int val, ret = 1;
274
275	if (regno < fbi->palette_size) {
276		val = ((red >> 4) & 0xf00);
277		val |= ((green >> 8) & 0x0f0);
278		val |= ((blue >> 12) & 0x00f);
279
280		if (regno == 0)
281			val |= palette_pbs(&fbi->fb.var);
282
283		fbi->palette_cpu[regno] = val;
284		ret = 0;
285	}
286	return ret;
287}
288
289static int
290sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
291		   u_int trans, struct fb_info *info)
292{
293	struct sa1100fb_info *fbi =
294		container_of(info, struct sa1100fb_info, fb);
295	unsigned int val;
296	int ret = 1;
297
298	/*
299	 * If inverse mode was selected, invert all the colours
300	 * rather than the register number.  The register number
301	 * is what you poke into the framebuffer to produce the
302	 * colour you requested.
303	 */
304	if (fbi->inf->cmap_inverse) {
305		red   = 0xffff - red;
306		green = 0xffff - green;
307		blue  = 0xffff - blue;
308	}
309
310	/*
311	 * If greyscale is true, then we convert the RGB value
312	 * to greyscale no mater what visual we are using.
313	 */
314	if (fbi->fb.var.grayscale)
315		red = green = blue = (19595 * red + 38470 * green +
316					7471 * blue) >> 16;
317
318	switch (fbi->fb.fix.visual) {
319	case FB_VISUAL_TRUECOLOR:
320		/*
321		 * 12 or 16-bit True Colour.  We encode the RGB value
322		 * according to the RGB bitfield information.
323		 */
324		if (regno < 16) {
325			u32 *pal = fbi->fb.pseudo_palette;
326
327			val  = chan_to_field(red, &fbi->fb.var.red);
328			val |= chan_to_field(green, &fbi->fb.var.green);
329			val |= chan_to_field(blue, &fbi->fb.var.blue);
330
331			pal[regno] = val;
332			ret = 0;
333		}
334		break;
335
336	case FB_VISUAL_STATIC_PSEUDOCOLOR:
337	case FB_VISUAL_PSEUDOCOLOR:
338		ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
339		break;
340	}
341
342	return ret;
343}
344
345#ifdef CONFIG_CPU_FREQ
346/*
347 *  sa1100fb_display_dma_period()
348 *    Calculate the minimum period (in picoseconds) between two DMA
349 *    requests for the LCD controller.  If we hit this, it means we're
350 *    doing nothing but LCD DMA.
351 */
352static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
353{
354	/*
355	 * Period = pixclock * bits_per_byte * bytes_per_transfer
356	 *		/ memory_bits_per_pixel;
357	 */
358	return var->pixclock * 8 * 16 / var->bits_per_pixel;
359}
360#endif
361
362/*
363 *  sa1100fb_check_var():
364 *    Round up in the following order: bits_per_pixel, xres,
365 *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
366 *    bitfields, horizontal timing, vertical timing.
367 */
368static int
369sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
370{
371	struct sa1100fb_info *fbi =
372		container_of(info, struct sa1100fb_info, fb);
373	int rgbidx;
374
375	if (var->xres < MIN_XRES)
376		var->xres = MIN_XRES;
377	if (var->yres < MIN_YRES)
378		var->yres = MIN_YRES;
379	if (var->xres > fbi->inf->xres)
380		var->xres = fbi->inf->xres;
381	if (var->yres > fbi->inf->yres)
382		var->yres = fbi->inf->yres;
383	var->xres_virtual = max(var->xres_virtual, var->xres);
384	var->yres_virtual = max(var->yres_virtual, var->yres);
385
386	dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
387	switch (var->bits_per_pixel) {
388	case 4:
389		rgbidx = RGB_4;
390		break;
391	case 8:
392		rgbidx = RGB_8;
393		break;
394	case 16:
395		rgbidx = RGB_16;
396		break;
397	default:
398		return -EINVAL;
399	}
400
401	/*
402	 * Copy the RGB parameters for this display
403	 * from the machine specific parameters.
404	 */
405	var->red    = fbi->rgb[rgbidx]->red;
406	var->green  = fbi->rgb[rgbidx]->green;
407	var->blue   = fbi->rgb[rgbidx]->blue;
408	var->transp = fbi->rgb[rgbidx]->transp;
409
410	dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
411		var->red.length, var->green.length, var->blue.length,
412		var->transp.length);
413
414	dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
415		var->red.offset, var->green.offset, var->blue.offset,
416		var->transp.offset);
417
418#ifdef CONFIG_CPU_FREQ
419	dev_dbg(fbi->dev, "dma period = %d ps, clock = %d kHz\n",
420		sa1100fb_display_dma_period(var),
421		cpufreq_get(smp_processor_id()));
422#endif
423
424	return 0;
425}
426
427static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
428{
429	if (fbi->inf->set_visual)
430		fbi->inf->set_visual(visual);
431}
432
433/*
434 * sa1100fb_set_par():
435 *	Set the user defined part of the display for the specified console
436 */
437static int sa1100fb_set_par(struct fb_info *info)
438{
439	struct sa1100fb_info *fbi =
440		container_of(info, struct sa1100fb_info, fb);
441	struct fb_var_screeninfo *var = &info->var;
442	unsigned long palette_mem_size;
443
444	dev_dbg(fbi->dev, "set_par\n");
445
446	if (var->bits_per_pixel == 16)
447		fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
448	else if (!fbi->inf->cmap_static)
449		fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
450	else {
451		/*
452		 * Some people have weird ideas about wanting static
453		 * pseudocolor maps.  I suspect their user space
454		 * applications are broken.
455		 */
456		fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
457	}
458
459	fbi->fb.fix.line_length = var->xres_virtual *
460				  var->bits_per_pixel / 8;
461	fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
462
463	palette_mem_size = fbi->palette_size * sizeof(u16);
464
465	dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
466
467	fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
468	fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
469
470	/*
471	 * Set (any) board control register to handle new color depth
472	 */
473	sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
474	sa1100fb_activate_var(var, fbi);
475
476	return 0;
477}
478
479#if 0
480static int
481sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
482		  struct fb_info *info)
483{
484	struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
485
486	/*
487	 * Make sure the user isn't doing something stupid.
488	 */
489	if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
490		return -EINVAL;
491
492	return gen_set_cmap(cmap, kspc, con, info);
493}
494#endif
495
496/*
497 * Formal definition of the VESA spec:
498 *  On
499 *  	This refers to the state of the display when it is in full operation
500 *  Stand-By
501 *  	This defines an optional operating state of minimal power reduction with
502 *  	the shortest recovery time
503 *  Suspend
504 *  	This refers to a level of power management in which substantial power
505 *  	reduction is achieved by the display.  The display can have a longer
506 *  	recovery time from this state than from the Stand-by state
507 *  Off
508 *  	This indicates that the display is consuming the lowest level of power
509 *  	and is non-operational. Recovery from this state may optionally require
510 *  	the user to manually power on the monitor
511 *
512 *  Now, the fbdev driver adds an additional state, (blank), where they
513 *  turn off the video (maybe by colormap tricks), but don't mess with the
514 *  video itself: think of it semantically between on and Stand-By.
515 *
516 *  So here's what we should do in our fbdev blank routine:
517 *
518 *  	VESA_NO_BLANKING (mode 0)	Video on,  front/back light on
519 *  	VESA_VSYNC_SUSPEND (mode 1)  	Video on,  front/back light off
520 *  	VESA_HSYNC_SUSPEND (mode 2)  	Video on,  front/back light off
521 *  	VESA_POWERDOWN (mode 3)		Video off, front/back light off
522 *
523 *  This will match the matrox implementation.
524 */
525/*
526 * sa1100fb_blank():
527 *	Blank the display by setting all palette values to zero.  Note, the
528 * 	12 and 16 bpp modes don't really use the palette, so this will not
529 *      blank the display in all modes.
530 */
531static int sa1100fb_blank(int blank, struct fb_info *info)
532{
533	struct sa1100fb_info *fbi =
534		container_of(info, struct sa1100fb_info, fb);
535	int i;
536
537	dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
538
539	switch (blank) {
540	case FB_BLANK_POWERDOWN:
541	case FB_BLANK_VSYNC_SUSPEND:
542	case FB_BLANK_HSYNC_SUSPEND:
543	case FB_BLANK_NORMAL:
544		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
545		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
546			for (i = 0; i < fbi->palette_size; i++)
547				sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
548		sa1100fb_schedule_work(fbi, C_DISABLE);
549		break;
550
551	case FB_BLANK_UNBLANK:
552		if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
553		    fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
554			fb_set_cmap(&fbi->fb.cmap, info);
555		sa1100fb_schedule_work(fbi, C_ENABLE);
556	}
557	return 0;
558}
559
560static int sa1100fb_mmap(struct fb_info *info,
561			 struct vm_area_struct *vma)
562{
563	struct sa1100fb_info *fbi =
564		container_of(info, struct sa1100fb_info, fb);
565	unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
566
567	if (off < info->fix.smem_len) {
568		vma->vm_pgoff += 1; /* skip over the palette */
569		return dma_mmap_writecombine(fbi->dev, vma, fbi->map_cpu,
570					     fbi->map_dma, fbi->map_size);
571	}
572
573	vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
574
575	return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
576}
577
578static struct fb_ops sa1100fb_ops = {
579	.owner		= THIS_MODULE,
580	.fb_check_var	= sa1100fb_check_var,
581	.fb_set_par	= sa1100fb_set_par,
582//	.fb_set_cmap	= sa1100fb_set_cmap,
583	.fb_setcolreg	= sa1100fb_setcolreg,
584	.fb_fillrect	= cfb_fillrect,
585	.fb_copyarea	= cfb_copyarea,
586	.fb_imageblit	= cfb_imageblit,
587	.fb_blank	= sa1100fb_blank,
588	.fb_mmap	= sa1100fb_mmap,
589};
590
591/*
592 * Calculate the PCD value from the clock rate (in picoseconds).
593 * We take account of the PPCR clock setting.
594 */
595static inline unsigned int get_pcd(unsigned int pixclock, unsigned int cpuclock)
596{
597	unsigned int pcd = cpuclock / 100;
598
599	pcd *= pixclock;
600	pcd /= 10000000;
601
602	return pcd + 1;	/* make up for integer math truncations */
603}
604
605/*
606 * sa1100fb_activate_var():
607 *	Configures LCD Controller based on entries in var parameter.  Settings are
608 *	only written to the controller if changes were made.
609 */
610static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611{
612	struct sa1100fb_lcd_reg new_regs;
613	u_int half_screen_size, yres, pcd;
614	u_long flags;
615
616	dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617
618	dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619		var->xres, var->hsync_len,
620		var->left_margin, var->right_margin);
621	dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622		var->yres, var->vsync_len,
623		var->upper_margin, var->lower_margin);
624
625#if DEBUG_VAR
626	if (var->xres < 16        || var->xres > 1024)
627		dev_err(fbi->dev, "%s: invalid xres %d\n",
628			fbi->fb.fix.id, var->xres);
629	if (var->hsync_len < 1    || var->hsync_len > 64)
630		dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631			fbi->fb.fix.id, var->hsync_len);
632	if (var->left_margin < 1  || var->left_margin > 255)
633		dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634			fbi->fb.fix.id, var->left_margin);
635	if (var->right_margin < 1 || var->right_margin > 255)
636		dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637			fbi->fb.fix.id, var->right_margin);
638	if (var->yres < 1         || var->yres > 1024)
639		dev_err(fbi->dev, "%s: invalid yres %d\n",
640			fbi->fb.fix.id, var->yres);
641	if (var->vsync_len < 1    || var->vsync_len > 64)
642		dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643			fbi->fb.fix.id, var->vsync_len);
644	if (var->upper_margin < 0 || var->upper_margin > 255)
645		dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646			fbi->fb.fix.id, var->upper_margin);
647	if (var->lower_margin < 0 || var->lower_margin > 255)
648		dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649			fbi->fb.fix.id, var->lower_margin);
650#endif
651
652	new_regs.lccr0 = fbi->inf->lccr0 |
653		LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654		LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655
656	new_regs.lccr1 =
657		LCCR1_DisWdth(var->xres) +
658		LCCR1_HorSnchWdth(var->hsync_len) +
659		LCCR1_BegLnDel(var->left_margin) +
660		LCCR1_EndLnDel(var->right_margin);
661
662	/*
663	 * If we have a dual scan LCD, then we need to halve
664	 * the YRES parameter.
665	 */
666	yres = var->yres;
667	if (fbi->inf->lccr0 & LCCR0_Dual)
668		yres /= 2;
669
670	new_regs.lccr2 =
671		LCCR2_DisHght(yres) +
672		LCCR2_VrtSnchWdth(var->vsync_len) +
673		LCCR2_BegFrmDel(var->upper_margin) +
674		LCCR2_EndFrmDel(var->lower_margin);
675
676	pcd = get_pcd(var->pixclock, cpufreq_get(0));
677	new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678		(var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679		(var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680
681	dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682	dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683	dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684	dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685
686	half_screen_size = var->bits_per_pixel;
687	half_screen_size = half_screen_size * var->xres * var->yres / 16;
688
689	/* Update shadow copy atomically */
690	local_irq_save(flags);
691	fbi->dbar1 = fbi->palette_dma;
692	fbi->dbar2 = fbi->screen_dma + half_screen_size;
693
694	fbi->reg_lccr0 = new_regs.lccr0;
695	fbi->reg_lccr1 = new_regs.lccr1;
696	fbi->reg_lccr2 = new_regs.lccr2;
697	fbi->reg_lccr3 = new_regs.lccr3;
698	local_irq_restore(flags);
699
700	/*
701	 * Only update the registers if the controller is enabled
702	 * and something has changed.
703	 */
704	if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705	    readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706	    readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707	    readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708	    readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709	    readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710		sa1100fb_schedule_work(fbi, C_REENABLE);
711
712	return 0;
713}
714
715/*
716 * NOTE!  The following functions are purely helpers for set_ctrlr_state.
717 * Do not call them directly; set_ctrlr_state does the correct serialisation
718 * to ensure that things happen in the right way 100% of time time.
719 *	-- rmk
720 */
721static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722{
723	dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724
725	if (fbi->inf->backlight_power)
726		fbi->inf->backlight_power(on);
727}
728
729static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730{
731	dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732
733	if (fbi->inf->lcd_power)
734		fbi->inf->lcd_power(on);
735}
736
737static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738{
739	u_int mask = 0;
740
741	/*
742	 * Enable GPIO<9:2> for LCD use if:
743	 *  1. Active display, or
744	 *  2. Color Dual Passive display
745	 *
746	 * see table 11.8 on page 11-27 in the SA1100 manual
747	 *   -- Erik.
748	 *
749	 * SA1110 spec update nr. 25 says we can and should
750	 * clear LDD15 to 12 for 4 or 8bpp modes with active
751	 * panels.
752	 */
753	if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754	    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755		mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
756
757		if (fbi->fb.var.bits_per_pixel > 8 ||
758		    (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759			mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760
761	}
762
763	if (mask) {
764		unsigned long flags;
765
766		/*
767		 * SA-1100 requires the GPIO direction register set
768		 * appropriately for the alternate function.  Hence
769		 * we set it here via bitmask rather than excessive
770		 * fiddling via the GPIO subsystem - and even then
771		 * we'll still have to deal with GAFR.
772		 */
773		local_irq_save(flags);
774		GPDR |= mask;
775		GAFR |= mask;
776		local_irq_restore(flags);
777	}
778}
779
780static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781{
782	dev_dbg(fbi->dev, "Enabling LCD controller\n");
783
784	/*
785	 * Make sure the mode bits are present in the first palette entry
786	 */
787	fbi->palette_cpu[0] &= 0xcfff;
788	fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789
790	/* Sequence from 11.7.10 */
791	writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
792	writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
793	writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
794	writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
795	writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
796	writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
797	writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
798
799	if (machine_is_shannon())
800		gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
801
802	dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
803	dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
804	dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
805	dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
806	dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
807	dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
808}
809
810static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
811{
812	DECLARE_WAITQUEUE(wait, current);
813	u32 lccr0;
814
815	dev_dbg(fbi->dev, "Disabling LCD controller\n");
816
817	if (machine_is_shannon())
818		gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
819
820	set_current_state(TASK_UNINTERRUPTIBLE);
821	add_wait_queue(&fbi->ctrlr_wait, &wait);
822
823	/* Clear LCD Status Register */
824	writel_relaxed(~0, fbi->base + LCSR);
825
826	lccr0 = readl_relaxed(fbi->base + LCCR0);
827	lccr0 &= ~LCCR0_LDM;	/* Enable LCD Disable Done Interrupt */
828	writel_relaxed(lccr0, fbi->base + LCCR0);
829	lccr0 &= ~LCCR0_LEN;	/* Disable LCD Controller */
830	writel_relaxed(lccr0, fbi->base + LCCR0);
831
832	schedule_timeout(20 * HZ / 1000);
833	remove_wait_queue(&fbi->ctrlr_wait, &wait);
834}
835
836/*
837 *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
838 */
839static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
840{
841	struct sa1100fb_info *fbi = dev_id;
842	unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
843
844	if (lcsr & LCSR_LDD) {
845		u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
846		writel_relaxed(lccr0, fbi->base + LCCR0);
847		wake_up(&fbi->ctrlr_wait);
848	}
849
850	writel_relaxed(lcsr, fbi->base + LCSR);
851	return IRQ_HANDLED;
852}
853
854/*
855 * This function must be called from task context only, since it will
856 * sleep when disabling the LCD controller, or if we get two contending
857 * processes trying to alter state.
858 */
859static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
860{
861	u_int old_state;
862
863	mutex_lock(&fbi->ctrlr_lock);
864
865	old_state = fbi->state;
866
867	/*
868	 * Hack around fbcon initialisation.
869	 */
870	if (old_state == C_STARTUP && state == C_REENABLE)
871		state = C_ENABLE;
872
873	switch (state) {
874	case C_DISABLE_CLKCHANGE:
875		/*
876		 * Disable controller for clock change.  If the
877		 * controller is already disabled, then do nothing.
878		 */
879		if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
880			fbi->state = state;
881			sa1100fb_disable_controller(fbi);
882		}
883		break;
884
885	case C_DISABLE_PM:
886	case C_DISABLE:
887		/*
888		 * Disable controller
889		 */
890		if (old_state != C_DISABLE) {
891			fbi->state = state;
892
893			__sa1100fb_backlight_power(fbi, 0);
894			if (old_state != C_DISABLE_CLKCHANGE)
895				sa1100fb_disable_controller(fbi);
896			__sa1100fb_lcd_power(fbi, 0);
897		}
898		break;
899
900	case C_ENABLE_CLKCHANGE:
901		/*
902		 * Enable the controller after clock change.  Only
903		 * do this if we were disabled for the clock change.
904		 */
905		if (old_state == C_DISABLE_CLKCHANGE) {
906			fbi->state = C_ENABLE;
907			sa1100fb_enable_controller(fbi);
908		}
909		break;
910
911	case C_REENABLE:
912		/*
913		 * Re-enable the controller only if it was already
914		 * enabled.  This is so we reprogram the control
915		 * registers.
916		 */
917		if (old_state == C_ENABLE) {
918			sa1100fb_disable_controller(fbi);
919			sa1100fb_setup_gpio(fbi);
920			sa1100fb_enable_controller(fbi);
921		}
922		break;
923
924	case C_ENABLE_PM:
925		/*
926		 * Re-enable the controller after PM.  This is not
927		 * perfect - think about the case where we were doing
928		 * a clock change, and we suspended half-way through.
929		 */
930		if (old_state != C_DISABLE_PM)
931			break;
932		/* fall through */
933
934	case C_ENABLE:
935		/*
936		 * Power up the LCD screen, enable controller, and
937		 * turn on the backlight.
938		 */
939		if (old_state != C_ENABLE) {
940			fbi->state = C_ENABLE;
941			sa1100fb_setup_gpio(fbi);
942			__sa1100fb_lcd_power(fbi, 1);
943			sa1100fb_enable_controller(fbi);
944			__sa1100fb_backlight_power(fbi, 1);
945		}
946		break;
947	}
948	mutex_unlock(&fbi->ctrlr_lock);
949}
950
951/*
952 * Our LCD controller task (which is called when we blank or unblank)
953 * via keventd.
954 */
955static void sa1100fb_task(struct work_struct *w)
956{
957	struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
958	u_int state = xchg(&fbi->task_state, -1);
959
960	set_ctrlr_state(fbi, state);
961}
962
963#ifdef CONFIG_CPU_FREQ
964/*
965 * Calculate the minimum DMA period over all displays that we own.
966 * This, together with the SDRAM bandwidth defines the slowest CPU
967 * frequency that can be selected.
968 */
969static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
970{
971#if 0
972	unsigned int min_period = (unsigned int)-1;
973	int i;
974
975	for (i = 0; i < MAX_NR_CONSOLES; i++) {
976		struct display *disp = &fb_display[i];
977		unsigned int period;
978
979		/*
980		 * Do we own this display?
981		 */
982		if (disp->fb_info != &fbi->fb)
983			continue;
984
985		/*
986		 * Ok, calculate its DMA period
987		 */
988		period = sa1100fb_display_dma_period(&disp->var);
989		if (period < min_period)
990			min_period = period;
991	}
992
993	return min_period;
994#else
995	/*
996	 * FIXME: we need to verify _all_ consoles.
997	 */
998	return sa1100fb_display_dma_period(&fbi->fb.var);
999#endif
1000}
1001
1002/*
1003 * CPU clock speed change handler.  We need to adjust the LCD timing
1004 * parameters when the CPU clock is adjusted by the power management
1005 * subsystem.
1006 */
1007static int
1008sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1009			 void *data)
1010{
1011	struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1012	struct cpufreq_freqs *f = data;
1013	u_int pcd;
1014
1015	switch (val) {
1016	case CPUFREQ_PRECHANGE:
1017		set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1018		break;
1019
1020	case CPUFREQ_POSTCHANGE:
1021		pcd = get_pcd(fbi->fb.var.pixclock, f->new);
1022		fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1023		set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1024		break;
1025	}
1026	return 0;
1027}
1028
1029static int
1030sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1031		     void *data)
1032{
1033	struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1034	struct cpufreq_policy *policy = data;
1035
1036	switch (val) {
1037	case CPUFREQ_ADJUST:
1038	case CPUFREQ_INCOMPATIBLE:
1039		dev_dbg(fbi->dev, "min dma period: %d ps, "
1040			"new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1041			policy->max);
1042		/* todo: fill in min/max values */
1043		break;
1044	case CPUFREQ_NOTIFY:
1045		do {} while(0);
1046		/* todo: panic if min/max values aren't fulfilled
1047		 * [can't really happen unless there's a bug in the
1048		 * CPU policy verififcation process *
1049		 */
1050		break;
1051	}
1052	return 0;
1053}
1054#endif
1055
1056#ifdef CONFIG_PM
1057/*
1058 * Power management hooks.  Note that we won't be called from IRQ context,
1059 * unlike the blank functions above, so we may sleep.
1060 */
1061static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1062{
1063	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1064
1065	set_ctrlr_state(fbi, C_DISABLE_PM);
1066	return 0;
1067}
1068
1069static int sa1100fb_resume(struct platform_device *dev)
1070{
1071	struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1072
1073	set_ctrlr_state(fbi, C_ENABLE_PM);
1074	return 0;
1075}
1076#else
1077#define sa1100fb_suspend	NULL
1078#define sa1100fb_resume		NULL
1079#endif
1080
1081/*
1082 * sa1100fb_map_video_memory():
1083 *      Allocates the DRAM memory for the frame buffer.  This buffer is
1084 *	remapped into a non-cached, non-buffered, memory region to
1085 *      allow palette and pixel writes to occur without flushing the
1086 *      cache.  Once this area is remapped, all virtual memory
1087 *      access to the video memory should occur at the new region.
1088 */
1089static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1090{
1091	/*
1092	 * We reserve one page for the palette, plus the size
1093	 * of the framebuffer.
1094	 */
1095	fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1096	fbi->map_cpu = dma_alloc_writecombine(fbi->dev, fbi->map_size,
1097					      &fbi->map_dma, GFP_KERNEL);
1098
1099	if (fbi->map_cpu) {
1100		fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1101		fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1102		/*
1103		 * FIXME: this is actually the wrong thing to place in
1104		 * smem_start.  But fbdev suffers from the problem that
1105		 * it needs an API which doesn't exist (in this case,
1106		 * dma_writecombine_mmap)
1107		 */
1108		fbi->fb.fix.smem_start = fbi->screen_dma;
1109	}
1110
1111	return fbi->map_cpu ? 0 : -ENOMEM;
1112}
1113
1114/* Fake monspecs to fill in fbinfo structure */
1115static struct fb_monspecs monspecs = {
1116	.hfmin	= 30000,
1117	.hfmax	= 70000,
1118	.vfmin	= 50,
1119	.vfmax	= 65,
1120};
1121
1122
1123static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1124{
1125	struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1126	struct sa1100fb_info *fbi;
1127	unsigned i;
1128
1129	fbi = kmalloc(sizeof(struct sa1100fb_info) + sizeof(u32) * 16,
1130		      GFP_KERNEL);
1131	if (!fbi)
1132		return NULL;
1133
1134	memset(fbi, 0, sizeof(struct sa1100fb_info));
1135	fbi->dev = dev;
1136
1137	strcpy(fbi->fb.fix.id, SA1100_NAME);
1138
1139	fbi->fb.fix.type	= FB_TYPE_PACKED_PIXELS;
1140	fbi->fb.fix.type_aux	= 0;
1141	fbi->fb.fix.xpanstep	= 0;
1142	fbi->fb.fix.ypanstep	= 0;
1143	fbi->fb.fix.ywrapstep	= 0;
1144	fbi->fb.fix.accel	= FB_ACCEL_NONE;
1145
1146	fbi->fb.var.nonstd	= 0;
1147	fbi->fb.var.activate	= FB_ACTIVATE_NOW;
1148	fbi->fb.var.height	= -1;
1149	fbi->fb.var.width	= -1;
1150	fbi->fb.var.accel_flags	= 0;
1151	fbi->fb.var.vmode	= FB_VMODE_NONINTERLACED;
1152
1153	fbi->fb.fbops		= &sa1100fb_ops;
1154	fbi->fb.flags		= FBINFO_DEFAULT;
1155	fbi->fb.monspecs	= monspecs;
1156	fbi->fb.pseudo_palette	= (fbi + 1);
1157
1158	fbi->rgb[RGB_4]		= &rgb_4;
1159	fbi->rgb[RGB_8]		= &rgb_8;
1160	fbi->rgb[RGB_16]	= &def_rgb_16;
1161
1162	/*
1163	 * People just don't seem to get this.  We don't support
1164	 * anything but correct entries now, so panic if someone
1165	 * does something stupid.
1166	 */
1167	if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1168	    inf->pixclock == 0)
1169		panic("sa1100fb error: invalid LCCR3 fields set or zero "
1170			"pixclock.");
1171
1172	fbi->fb.var.xres		= inf->xres;
1173	fbi->fb.var.xres_virtual	= inf->xres;
1174	fbi->fb.var.yres		= inf->yres;
1175	fbi->fb.var.yres_virtual	= inf->yres;
1176	fbi->fb.var.bits_per_pixel	= inf->bpp;
1177	fbi->fb.var.pixclock		= inf->pixclock;
1178	fbi->fb.var.hsync_len		= inf->hsync_len;
1179	fbi->fb.var.left_margin		= inf->left_margin;
1180	fbi->fb.var.right_margin	= inf->right_margin;
1181	fbi->fb.var.vsync_len		= inf->vsync_len;
1182	fbi->fb.var.upper_margin	= inf->upper_margin;
1183	fbi->fb.var.lower_margin	= inf->lower_margin;
1184	fbi->fb.var.sync		= inf->sync;
1185	fbi->fb.var.grayscale		= inf->cmap_greyscale;
1186	fbi->state			= C_STARTUP;
1187	fbi->task_state			= (u_char)-1;
1188	fbi->fb.fix.smem_len		= inf->xres * inf->yres *
1189					  inf->bpp / 8;
1190	fbi->inf			= inf;
1191
1192	/* Copy the RGB bitfield overrides */
1193	for (i = 0; i < NR_RGB; i++)
1194		if (inf->rgb[i])
1195			fbi->rgb[i] = inf->rgb[i];
1196
1197	init_waitqueue_head(&fbi->ctrlr_wait);
1198	INIT_WORK(&fbi->task, sa1100fb_task);
1199	mutex_init(&fbi->ctrlr_lock);
1200
1201	return fbi;
1202}
1203
1204static int sa1100fb_probe(struct platform_device *pdev)
1205{
1206	struct sa1100fb_info *fbi;
1207	struct resource *res;
1208	int ret, irq;
1209
1210	if (!dev_get_platdata(&pdev->dev)) {
1211		dev_err(&pdev->dev, "no platform LCD data\n");
1212		return -EINVAL;
1213	}
1214
1215	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1216	irq = platform_get_irq(pdev, 0);
1217	if (irq < 0 || !res)
1218		return -EINVAL;
1219
1220	if (!request_mem_region(res->start, resource_size(res), "LCD"))
1221		return -EBUSY;
1222
1223	fbi = sa1100fb_init_fbinfo(&pdev->dev);
1224	ret = -ENOMEM;
1225	if (!fbi)
1226		goto failed;
1227
1228	fbi->base = ioremap(res->start, resource_size(res));
1229	if (!fbi->base)
1230		goto failed;
1231
1232	/* Initialize video memory */
1233	ret = sa1100fb_map_video_memory(fbi);
1234	if (ret)
1235		goto failed;
1236
1237	ret = request_irq(irq, sa1100fb_handle_irq, 0, "LCD", fbi);
1238	if (ret) {
1239		dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1240		goto failed;
1241	}
1242
1243	if (machine_is_shannon()) {
1244		ret = gpio_request_one(SHANNON_GPIO_DISP_EN,
1245			GPIOF_OUT_INIT_LOW, "display enable");
1246		if (ret)
1247			goto err_free_irq;
1248	}
1249
1250	/*
1251	 * This makes sure that our colour bitfield
1252	 * descriptors are correctly initialised.
1253	 */
1254	sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1255
1256	platform_set_drvdata(pdev, fbi);
1257
1258	ret = register_framebuffer(&fbi->fb);
1259	if (ret < 0)
1260		goto err_reg_fb;
1261
1262#ifdef CONFIG_CPU_FREQ
1263	fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1264	fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1265	cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1266	cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1267#endif
1268
1269	/* This driver cannot be unloaded at the moment */
1270	return 0;
1271
1272 err_reg_fb:
1273	if (machine_is_shannon())
1274		gpio_free(SHANNON_GPIO_DISP_EN);
1275 err_free_irq:
1276	free_irq(irq, fbi);
1277 failed:
1278	if (fbi)
1279		iounmap(fbi->base);
1280	kfree(fbi);
1281	release_mem_region(res->start, resource_size(res));
1282	return ret;
1283}
1284
1285static struct platform_driver sa1100fb_driver = {
1286	.probe		= sa1100fb_probe,
1287	.suspend	= sa1100fb_suspend,
1288	.resume		= sa1100fb_resume,
1289	.driver		= {
1290		.name	= "sa11x0-fb",
1291		.owner	= THIS_MODULE,
1292	},
1293};
1294
1295int __init sa1100fb_init(void)
1296{
1297	if (fb_get_options("sa1100fb", NULL))
1298		return -ENODEV;
1299
1300	return platform_driver_register(&sa1100fb_driver);
1301}
1302
1303int __init sa1100fb_setup(char *options)
1304{
1305#if 0
1306	char *this_opt;
1307
1308	if (!options || !*options)
1309		return 0;
1310
1311	while ((this_opt = strsep(&options, ",")) != NULL) {
1312
1313		if (!strncmp(this_opt, "bpp:", 4))
1314			current_par.max_bpp =
1315			    simple_strtoul(this_opt + 4, NULL, 0);
1316
1317		if (!strncmp(this_opt, "lccr0:", 6))
1318			lcd_shadow.lccr0 =
1319			    simple_strtoul(this_opt + 6, NULL, 0);
1320		if (!strncmp(this_opt, "lccr1:", 6)) {
1321			lcd_shadow.lccr1 =
1322			    simple_strtoul(this_opt + 6, NULL, 0);
1323			current_par.max_xres =
1324			    (lcd_shadow.lccr1 & 0x3ff) + 16;
1325		}
1326		if (!strncmp(this_opt, "lccr2:", 6)) {
1327			lcd_shadow.lccr2 =
1328			    simple_strtoul(this_opt + 6, NULL, 0);
1329			current_par.max_yres =
1330			    (lcd_shadow.
1331			     lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1332						    lccr2 & 0x3ff) +
1333						   1) *
1334			    2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1335		}
1336		if (!strncmp(this_opt, "lccr3:", 6))
1337			lcd_shadow.lccr3 =
1338			    simple_strtoul(this_opt + 6, NULL, 0);
1339	}
1340#endif
1341	return 0;
1342}
1343
1344module_init(sa1100fb_init);
1345MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1346MODULE_LICENSE("GPL");
1347