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ABSTRACT HOMOTOPY THEORY IN PROCATEGORIES

by Timothy PORTER

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. XVII - 2 ( 1976 )

Artin and Mazur in [1] initiated the use of the category of prosim-

plicial sets as a tool in homotopy theory. Their method involved firstly the

formation of the homotopy category of simplicial sets and then passing to

the corresponding procategory. This method proves to be unsuitable for cer-

tain applications and by analogy with a similar situation with categories of

simplicial spectra, it seems to be advisable to reverse the order of construc-

tion. This was done in [9] and it allows one to use the homotopy limit con-

struction of Bousfield and Kan [3]y or Boardman and Vogt ([2] and [11]).

In [9] no attempt was made to investigate other homotopy structures within

the procategory.

In this paper an attempt is made to extend a sizeable amount of « ab-

stract homotopy theory» from a category to the corresponding category of

proobjects. The meaning we attach to the term «abstract homotopy theory»
is that of Quillen [10J or Brown [4] ; we only claim « attempt » because the
actual result obtained shows that, on extending an abstract homotopy theo-

ry in the manner shown, some of the structure is weakened. However, it will

be shown that sufficient structure remains to give a sizeable amount of elem-

entary homotopy theory. In future papers particular cases will be examined

in more detail and it will be shown just how much structure is retained.

Other extensions are possible; for instance see Hastings [8] , Ed-
wards and Hastings [6] and Grossman [71 . These structures retain more
of the original homotopy theory on C but do not allow the same sort of ap-

plications.

Finally I would like to thank Professor Wall of Liverpool and Gavin
Wraith of Sussex for indirectly suggesting this approach.
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1. Categories of fibrant objects.

In [4], Brown showed that a weaker form of homotopy theory than

Quillen’s «model category » structure [10] gives a sufficient amount of stru-

cture to allow a considerable part of homotopy theory to be carried out. Ex-

plicitly he made the following definitions.

Let be a category with finite products and a final object e . As-

sume that has two distinguished classes of maps called weak equival-
ences and librations. A map is called an aspherical or trivial fibration if

it is both a fibration and a weak equivalence.
A path space object for an object B is an object BI together with

maps

where s is a weak equivalence, ( do, d1) is a fibration and

C will be called a category ojjibrant objects ( for a homotopy theory)
if this structure satisfies the axioms :

( F1) If f, g are maps so that g f is defined and two of f, g and jg are
weak equivalences, so is the third.

( F2 ) The composite of two fibrations is a fibration. Any isomorphism
is a fibration.

( F3) Given a diagram

with v a fibration, the fibred product A x B exists and the projection I)r.*
C

A x B -&#x3E; A is a fibration. If v is aspherical, so is pr .
C

(F4) For any object B , there exists at least one path space /3 
I 

(not

necessarily functorial in B ).

(F5) For any object B , the map B -&#x3E; e is a fibration.

We refer the interested reader to Brown’s paper [4 ] for the detailed

development of this set of axioms. For the situation in which these axioms
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will be used here, it is necessary to alter them slightly. We replace (F4) by
an axiom which requires that at least one functorial path space object ex-

ists ; we will however continue to call this one ( F4).

It is a well known result ( see for instance Artin and Mazur [1] or

Duskin [5]) that any map f : A - B in pro (C) can be replaced up to iso-

morphism by a «level map)), i. e. a proobject in the category of maps of e .

Because of this it helps to look at functor categories Hom (g , e) before con-

sidering the more difficult case of pJIQ( C). We shall of course assume that
I is small, but no assumption rieeds be made as to other structure of g.

TH EOREM 1. 1. Let Hom (g,C) be the category of functors from 9 to a cat-

egory o f fibrant objects with functorial (F4). Then Hom. (g, e) is a cat-

egory o f fibrant objects.

P RO O F . We will specify the required structure but will leave it to the reader

to verify that this structure works.
- Weak equivalences: Let

and

be two functors and f: X -Y a natural transformation; f is a weak equiva-
lence if each f ( i ): X(i) -&#x3E;Y(i) is a weak equivalence in(?.

- Fibrations : With f : X - Y as above, f is a fibration if each f( i ) :

X ( i) -&#x3E; Y ( i ) is a fibration in e.
- Path space object : Denoting the functorial path space by ( )I , the

path space of X : I -+ e is

COROLLARY 1. 2. The class o f weak equivalences in Ram (g, e) admits a
calculus of right fractions.

P RO O F . This is a direct consequence of the Theorem together with Propos-
ition 2, page 424 of [4 ] .

The corollary implies that the category of fractions formed by form-

ally inverting the weak equivalences is well behaved. A comparison with

the work of Vogt [11] suggests that this «homotopy category » is equivalent
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to some category of coherent 9-indexed diagrams in some sense ; we will not
pursue this idea here.

2. Categories of cofibrant objects.

In [4] , Brown only gives explicitly the axioms listed in n° 1 ; how-

ever on page 442 he mentions the duals of these axioms in Proposition 8 .

Although it is not absolutely necessary, we list below the dual axioms and

state the duals of Theorem 1.1 and Corollary 1.2. The reason for stating
these axioms for a « category of ’cofibrant objects » is that any Quillen model

category [10] yields both a category of fibrant objects and a category of

cofibrant objects. It is this situation which is the most important one from

the point of view of the applications.

Let be a category with finite coproducts and an initial object e .
We assume that has two distinguished classes of maps called weak; equi-
valences and co fibrations. A map in both classes is called a trivial co17*-
bration.

A cylinder object for an object B is an object B X I together with

maps

with o-(60+61)= v B, the codiagonal map, 60+61 a cofibration, and cr

a weak equivalence.
C will be called a category of cofibrant objects ( for a homotopy

theory) if this structure satisfies the axioms :

(C1) as (F1) ,

(C2) as ( F2 ) with « f ibration » replaced by « cofibration » 

( C3) Given a diagram

with v a cofibration, the pushout A V B exists and v’: A - A V B is a co-
C C

fibration which is trivial if v is.

(C4) For each B , there is at least a cylinder object BxI in C ( which
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we will need to be functorial in B ).

( C5 ) For any object B , the map e - B is a cofibration.

EX A MP L E S. ( a) If C is a model category in the sense of Quillen [10] and

C consists of the cofibrant objects, then C c is a category of cofibrant ob-

jects in the above sense.

(b) If C is a category of fibrant objects, then eop is a category of co-

fibrant objects in a.natural way.

REMARK. Although we will not state or prove any of the dual results, the

theorems and proofs of Brown’s paper [4] easily dualize and so we shall

feel free to use any of these dual results without explicit proof in the rem-

ainder of this paper or in sequels to this paper.

THEOREM 2. 1. Let Hom. (g,C) be tbe category o f functors from I to a cat-

egory of cofibrant objects e, with functorial (C4). Then Hom(g , C) is a

category of co f i brant objects.

PROOF. As before the bulk of the work is left to the reader. If we define

weak equivalences as in 1.1 and cofibrations in like manner, the result fol-

lows easily.

COROLLARY 2.2. The class of weak equivalences in Hom.( g, C) admits a

calculus of left fractions.

COROLL ARY 2.3. If Hom (g, C) is the category of functors from I to a clo-

sed model category C, then JGm( g, ee) is a category o f fibrant objects
and Hom (g, Cc.) is a category o f cofibrant objects. If C= Cc =Cf’ then
Hom. (g, C) has both structures.

RE M A R K S. ( a ) In 2.3, Cf is, following Quillen’s notation [10], the full ’

subcategory of e determined by the fibrant objects of e .

(b) Although Hom (g,C) is both a category of fibrant and of cofibrant

objects, this does not mean it is a Quillen model category. In Quillen’s ax-

ioms, (M1) requires a certain interaction between fibrations and cofibrations;
there seems no reason to suppose that fibrations and cofibrations interact

in this way in Hom. (g,C). It is for this reason that categories of fibrant

and cofibrant objects suggest themselves as suitable for functor categories.
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( c ) Given more structure in C, Hastings has equipped Hom (g, C) with

a full Quillen model category structure ( see [8] ). His definitions however

are not suitable for the applications envisaged for the theory being develo-

ped here.

3. Procotegori es.

As was mentioned before, any map in a procategory pta( ej can be

reindexed to give a «level map », and so if e has a homotopy structure in-

volving weak equivalences, etc..., it is natural to define f : X - Y to be a

weak equivalence in pro( C) if, by reindexing, one gets a level map fg:
Xi - Yi indexed by some cofiltering category g , which is a weak equiva-
lence in the homotopy structure of Hom (g, C), and similarly for fibrations
and cofibrations if any. From another point of view, this approach to defin-

ing a homotopy theory on pro (C) might be considered as an attempt to «glue»
the various homotopy structures in the functor categories Hom (g, C), for

cofiltering g, together via final ( or coinitial) functors. Unfortunately this

naive approach fails ; for instance the class of weak equivalences defined

in this way is not closed under composition.

The obvious way is to « generates an abstract homotopy from the « ba-

sic» material given by the Hom (g, C) . We will thus make the following de-
finitions :

- Basic weak equivalence: f: X -Y is a basic weak equivalence if

by reindexing one obtains a level weak equivalence, i. e. a weak equival-
ence in the image of some Hom(g, C) with g cofiltering. f will also be

called a basic weak equivalence if it is an isomorphism.
- Basic fibration ( or co fibration ) : f: X - Y is a basic fibration if it

can be replaced (by reindexing) by a level fibration (similarly for cofibration).
- Basic trivial fibration : as above but with a level trivial fibration.
- Path space : If X: I -&#x3E; e then as before X, is the composite

- Cylinder object : If X : I - e, then :
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- Weak equivalence : f : X -Y is a weak equivalence if it is a com-

posite of basic weak equivalences. 
- Fibration : f : X -&#x3E; Y is a fibration if it is a composite of basic fibra-

tions and isomorphisms.

Even with these definitions, pro (C) is not a category of fibrant (or

cof ibrant ) objects, but by careful use of the reindexing results ( [1] Appen-
dix) available in pro (C) , it is possible to recover the most important re-

sults of Part 1 of Brown’s paper [4] . We will not prove all the intermediate

steps in the proof of these more general results, but merely indicate how to

adapt the proofs given in [4] .

First note that there is a weak form of axiom system satisfied by

the classes described above. The important differences are that the map

(do d 1) is a basic fibration and in axiom (F3) we can only claim that, if

v is a basic trivial fibration, then so is pr ( similarly for ( C3 ) ) .

LEMMA 3.1. (Factorization lemma). 1 f u is any map in pro (C), then u can

be factored u = p i , where p is a basic fibration and i is right inverse to a

basic trivial fibration.

PROOF. Represent u by a level map and apply the factorization lemma in

the relevant Hom (g, C) .

Th e definition of ohomotopic* is interesting in its own right and in-

dicates the sort of structure that is involved here.

If f, g : A -&#x3E; B are two maps in pro (C) then they are bomotopic if

there is a « homotopy s

such that and

We will write

There is immediately the problem of proving  = &#x3E;&#x3E; is transitive.We
can reinterprete =&#x3E;&#x3E; by noting that f = g if and only if by reindexing one

gets a diagram
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so that in

LEMMA 3.2 and th en

P ROO F. Suppose fg = gg and gi, 
= hi, ; then there is a small cofiltering cat- -

egory with objects pairs (i, j) with i in g, j E g’ such that there is a dia-

gram

representing the diagram

(with the vertical maps the respective identities) in pro (C). A map from
( i , j ) to (i’, j’) is a map of the corresponding diagrams. If we denote this

small cofiltering category by 11 we get a prodiagram by assigning to each
( i , j ) the corresponding diagram *( i , j ) .

Each diagram thus formed simplifies to give

and on noting that we can join the two homotopies

t ogether to give a homotopy
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and this is the required homotopy, f = h .

LEMMA 3.3 (cf. Brown [4] Lemma 1). Any diagram

with i a basic weak equivalence and p a fibration can be imbedded ( up to

isomorphism) in a diagram

with t a composite of basic trivial fibrations.

P RO O F . First apply in case p is a basic fibration and then using induc-

tion on the length of the composite. Again reindexing is used to enable each

stage to be done in a functor category.

It is only this weaker form of Lemma 3.3 which is needed, one never

needs the stronger form where i is a weak equivalence.

Brown’s Lemma 2 and Propositions 1 and 2 now follow easily using
induction on the lengths of composite required in the weak equivalences.
As a result of this, Theorem 1 page 425 holds and we can form the homo-

topy category hapna C) using

(where the limit is over the category of weak equivalences over A ) as the

hom-set. 

Rather than dwell too long on the minor changes needed in Brown’s

subsequent proofs to effect the extension to pro (C) -basically the changes
are managed by careful reindexing along the lines of Lemma 3.2 above and
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induction on the lengths of fibrations and weak equivalences - we will leave

the statement and proofs of intermediate results to the reader and will mere-

ly state the theorem which is most useful in the applications.

We first need a definition from [4] page 432 for C pointed. A fibra-
tion sequence is a diagram F - E - B in C) together with an action
in Hopro (C), F X D B - F, which is isomorphic to a diagram and action ob-

tained from a fibration in pro (C) .

TH E O R E M 3.4. If C is a pointed category o f fibrant objects and .0 denotes

the loop space functor, then for any fibration sequence

in p.tu1( C) , the sequence

is exact ( in the sense of Quillen [10] for q = 1 ) for any A in pro ( e) .

Dualising the whole of this section we get the dual result.

THEOREM 3.5. If e is a pointed category o f cofibrant objects and E den-

otes the suspension functor, then for any cofibration sequence

in pm( e) the sequence

is exact ( as before) for any B i n pro ( C) -

The interesting more special case is where is a pointed Quillen

model category and as before Cf is the category of fibrant objects and C
the category of cofibrant objects in e. Theorems 3.4 and 3.5 apply in pro (Cf)
and pro ( ee) respectively and the A of 3.4 ( and B of 3.5) can be chosen

from amongst those objects weakly equivalent to some object in pro (Cf)
(respectively in pro (Cc )).

As mentioned in Section 2, no such axiom as Quillen’s (M1) can be

satisfied in pro (C) even if ee = Cf, but by using a stronger form of
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fibration or cofibration such a development is possible ( see [6] or [8] ).

If, in addition, () I and () X I are adjoint. on (C there is some linking bet-

ween the two forms of structure ( again assuming for simplicity C = Cc = (Cf).
In the cases

(i) C = Kano, the category of pointed Kan complexes,
and

(ii) C = C+(Mod-A), the category of chain complexes of A-modules

which are bounded below,

such a linking occurs. We will investigate those two cases in future papers.

Department of Mathematics

University College
CORK

Republic of IRELAND
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