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Ad: Low Dimensional Higher Categories and Applications

• Math:  

Classification of (2+1)- and (3+1)-TQFTs, not fully extended---

Invariants of low dimensional manifolds (especially smooth 4D)

• Physics:  

Classification of 2D and 3D symmetry enriched topological order (SET)

and symmetry protected topological order (SPT)



Modular Tensor Category 

Topological Phases of Matter Topological Quantum Computation

Reshetikhin-Turaev/Witten-Chern-Simons (2+1)-TQFT

Topological phases of matter are TQFTs in Nature and hardware 

for hypothetical topological quantum computers.



Symmetry and 2D Topological Phases of Matter

We develop a general framework to classify 2D topological order in topological 
phases of matter with symmetry by using G-crossed braided tensor category.

Given a 2D topological order 𝓒 and a global symmetry G of 𝓒, three intertwined 
themes on the interplay of symmetry group G and intrinsic topological order 𝓒

• Symmetry Fractionalization---topological quasi-particles carry fractional 
quantum numbers of the underlying constituents

• Defects---extrinsic point-like defects.  Many are non-abelian objects

• Gauging---deconfine defects by promoting the global symmetry G to a local G 
gauge theory



Examples of Topological Phases with Symmetry

Z2 Toric Code (Kitaev): 

Electric-magnetic duality: e     m

Topological order:



Examples of 2D Topological Phases with Symmetry

1/m-Laughlin state

Topological order is encoded by 𝑼(𝟏)𝒎x{1,e}

Topological particle-hole symmetry: a↔-a



Z2-Layer Exchange Symmetry: Bilayer FQH States

E.g. Halperin (mml) state



Topological Phases of Matter

Finite-energy topological quasiparticle excitations=anyons

Anyons a, b, c
a

b

c
a

Anyons are of the same type if they differ only
by local operators

Anyons in 2+1 dimensions described mathematically by a 
Unitary Modular Tensor Category       = Anyon Model



Microscopic Symmetry G:

Symmetry is on-site if:

Should preserve locality of 𝓛

Symmetry of Quantum Systems (𝓛, H)

𝑅𝑔: 𝓛 ⟶ 𝓛 𝑅𝑔𝐻 = 𝐻𝑅𝑔



Assumptions and Work In Progress

1) The global symmetry G is a finite group
2) Bulk 2D topological order in boson/spin systems=UMTC=anyon model
3) Global symmetry G can be realized as on-site unitary symmetries of the 
microscopic Hamiltonian, at least at low energies

Partial results in our paper:

• Continuous symmetries such as U(1) charge conservation and SO(3) spin rotation (2/3)

• Fermion systems (1 or 0)

• Time-reversal (1/3)

• Spatial (1/6+1/6)

• Fermion parity (0)



Classification of 2D SETs Topologically

• Given a 2D topological order=UMTC=anyon model 𝓒, and a finite 
group G, then G-SETs=G-crossed braided extensions of 𝓒

• SETs are in 1-1 correspondence with set [BG, BPic(𝓒)] of homotopy
classes of maps between classifying spaces BG and BPic(𝓒), where 
BPic(𝓒) is the classifying space of the categorical 2-group Pic(𝓒) with 
𝜋1 = Aut(𝓒), 𝜋2 =𝓐, 𝜋3 = ℂ\{0}, and 𝜋𝑖 = 0 for i>3. (ENO 2010)

• Note that [BG, BPic(𝓒)] = 𝜋0(𝑋𝑌), where X= BPic(𝓒), Y=BG. Do higher 
homotopy groups 𝝅𝒊 𝑿𝒀 , i>0, of the mapping space 𝑿𝒀 have 
physical meaning and significance?



Classification of G-crossed Extensions of a UMTC 𝓒 Algebraically

Etingof, Nikshych, Ostrik (2010)

classified by 

If a primary obstruction in                     vanishes, then choose 

If a secondary obstruction in                      vanishes, then 
choose 



Fine print: Symmetry, Defects, and Gauging

1. Skeletonizing G-Crossed Braided Tensor Category to Obtain 
Numerical Version of G-Crossed Braided Tensor Category

2. Applying G-Crossed Braided Tensor Categories to Physics:

General Classification and Characterization of
Symmetry-Enriched 2D Topological Order



2D Topological Order = UMTC = Anyon Model 𝓒

A modular tensor category = a non-degenerate braided spherical fusion category: 

a collection of numbers {L,  𝑵𝒂𝒃
𝒄 ,  𝑭𝒅;𝒏𝒎

𝒂𝒃𝒄 , 𝑹𝒄
𝒂𝒃} that satisfy some polynomial constraint equations.

6j symbols for recoupling   
Pentagons for 6j symbols

R-symbol for braiding Hexagons for R-symbols



Examples
• Pointed: 𝒞(𝐴, 𝑞), 𝐴 finite abelian group, 𝑞 non-deg. quadratic form on 𝐴.

• Rep(𝐷𝜔𝐺), 𝜔 a 3-cocycle on 𝐺 a finite group.

• Quantum groups/Kac-Moody algebras: subquotients of Rep(𝑈𝑞𝔤) at 𝑞 =
𝑒  𝜋𝑖 𝑙 or level 𝑘 integrable  𝔤-modules, e.g.

• SU 𝑁 𝑘 = 𝒞(𝔰𝔩𝑁 , 𝑁 + 𝑘),

• SO 𝑁 𝑘,

• Sp 𝑁 𝑘,

• for gcd(𝑁, 𝑘) = 1, PSU N k ⊂ SU 𝑁 𝑘 “even half”

• Drinfeld center: 𝒵(𝒟) for spherical fusion category 𝒟.

• Rank-finiteness (see E. Rowell’s poster).



Topological and Global Symmetry

The categorical symmetry group Aut(𝓒) of an anyon model 𝓒 consists of all 
permutations of anyon types and transformations of fusion states {|a,b,c,𝜇>} that 
preserve all defining data up to gauge freedom.  In math jargon, all braided 
tensor auto-equivalences of 𝓒. 

Given an anyon model 𝓒, its Aut(𝓒) is classified by a triple  

(𝜫𝟏, 𝜫𝟐, κ), 

where 𝜫𝟏 is the classes of braided tensor auto-equivalences of 𝓒 , 𝜫𝟐=𝓐 the 
abelian anyons of 𝓒 , and κ ∈ 𝑯𝟑(𝜫𝟏,𝜫𝟐) a cohomology class. 

𝜫𝟏=Aut(𝓒) will be called the topological symmetry group of 𝓒.  

Given a group G, a global G-symmetry of 𝓒 is 𝜌:  G→Aut(𝓒) --- a group 
homomorphism.



Symmetries of Abelian Anyon Models

• An abelian anyon model is given by a pair 𝓒=(A,q), 

where A is a commutative finite group and 

q(x) is the topological twist of anyon type x ∊A, q: A→U(1).

• The topological symmetry group Π1=Aut(𝓒) 

is the group O(A,q)={s∊ Aut(A): q(s(x))=q(x) for all x∊A}

and Π2=A

• 𝑈(1)3:  A=𝑍3, q(x)={1,𝑒
2𝜋𝑖

3 , 𝑒
2𝜋𝑖

3 }, Π1=Z2, Π2=Z3.

• Toric code and 3fermion:  both A=Z2⊕Z2 ={1,,e,m,𝜓} and 

q(x)={1,1,1,-1} or q(x)={1,-1,-1,-1}, so Π1= Z2 or 𝑆3.



Origin of Symmetry Fractionalization: Topological Symmetry Is Categorical

Given a global symmetry (G, 𝜌) realized as symmetries 𝑅𝑔 of a Hamiltonian with a local Hilbert 
space L(Y;l), then L(Y;l)=⊕𝐿𝜆𝑖

according to energy levels 𝜆𝑖.  The ground state manifold 𝐿𝜆0
further 

decomposes as V(Y;t)⨂𝐿𝜆0

𝑙𝑜𝑐(Y;l), where V(Y;t) is the topological part and 𝐿𝜆0

𝑙𝑜𝑐(Y;l) the local part.  On-

site symmetries 𝑅𝑔 act on 𝐿𝜆0
= V(Y;t)⨂𝐿𝜆0

𝑙𝑜𝑐(Y;l) split as 𝜌𝑔⊗∏𝑙𝑅𝑔
𝑙 .  

Anyon states in V(Y;t) are universality classes up to local actions, so global symmetry actions are 
not exact.  Hence, projective local actions on 𝐿𝜆0

𝑙𝑜𝑐(y;l) are allowed to compensate for the overall 
phases from the global actions.  Since projective representations of G are classified by 𝐻2(G, U(1)), 
can symmetry factionalizations be classified by 𝐻2(G, U(1))?

The separation of global symmetry into topological and local parts requires subtle consistency:

1. A potential obstruction;

2. The coefficient for 𝑯𝟐 is not U(1), but 𝜫𝟐={abelian anyons}.



Global Symmetry G

leads to an obstruction 

Natural Isomorphism

Abelian anyons

𝜌: 𝐺 𝐴𝑢𝑡(𝓒)

𝜌 𝑜3 𝜌 ∈ 𝐻𝜌
3 (G,𝓐)



Symmetry Localization

Ground state is symmetric: 

Consider state with two anyons:



Symmetry Fractionalization

Anyons can form a projective representation

General Result: Symmetry Fractionalization

1. Requires                      (                obstruction must vanish) 

2. Classified by 

Abelian anyons

Even if

𝑜3 𝜌 = 0



Symmetry Fractionalization Mathematically

The obstruction 𝑜3(𝜌)=𝜌∗(κ)∊𝐻3(G,𝛱2) : 

the pull back of the class κ in (𝜫𝟏, 𝜫𝟐, κ) to 𝑯𝟑(G,𝜫𝟐) by the global 
symmetry 𝜌 : G→𝜫𝟏.  

If 𝑜3(𝜌)=0, then possible symmetry fractionalizations form a torsor
over 𝐻2(G,𝛱2). 

A set X is a torsor over a group G if X has a transitive free action of G.



Vanishing of Symmetry Fractionalization Obstruction

Theorem:

The obstruction to symmetry fractionalization vanishes if either 

1) the global symmetry 𝜌 does not permute anyon types or 

2) the anyon model is abelian with all 6j symbols trivial, i.e. the 
associativity 3-cocyle 𝜔 is trivial.

It follows that the obstructions to symmetry fractionalizations for 
toric code and 3fermion all vanish.



Symmetry Defects

Cut Glue

Given a topological phase with symmetry G, extrinsic point-like
defects can be introduced by modifying the original Hamiltonian



Defects are NOT finite-energy quasiparticle excitations/anyons

Mathematics: G-Crossed Braided Tensor Category

Cannot be described by original UMTC 

We would like to have methods to systematically 
compute all properties of defects (fusion rule, braiding ,etc)

Defects Confined



G-Graded Fusion

Topologically distinct types of g-defects

contains collection of g-defects. Module category



Obstructions to Defectification

• Obstruction 𝑜3(𝜌) to symmetry fractionalization is also the 
obstruction to a consistent fusion rule for 𝓒𝑔. If 𝑜3(𝜌)=0 , then 
consistent fusion rules are in 1-1 correspondence with symmetry 
fractionalization classes (𝜌,t). 

• Pentagons lead to a secondary obstruction 𝑜4(𝜌,t)∊𝐻4(G, U(1)) to 
consistently defectify.

• If 𝑜4(𝜌,t)=0, possible defectifications form a torsor over 𝐻3(G,U(1)).  

• If both obstructions=0, a defect theory is determined by (G, 𝜌, t, 𝛼), 
where 𝛼∊𝐻3(G,U(1)).



G-Crossed Braiding



Sliding Consistency



G-Crossed Heptagon 

G-Crossed version of hexagon equation



G-Crossed Data: Skeletonization

G-Crossed UBTC            characterized by data 

Subject to consistency equations

Gauge-Invariant quantities = Topological invariants of SET

Inequivalent solutions Distinct SET phases

{𝐿,𝑁𝑎𝑏
𝑐 , 𝐹𝑑

𝑎𝑏𝑐 , 𝑅𝑐
𝑎𝑏 , 𝜂𝑎 𝒈, 𝒉 , 𝑈𝒌(𝑎, 𝑏; 𝑐)}



Gauge Transformations

(1) Vertex basis gauge transformations (Old type)



Gauge Transformations

(2) Symmetry Action Gauge Transformations (New Type)

Associated with natural isomorphism       



Invariants of Modular Tensor Category

MTC 𝒞 RT (2+1)-TQFT (𝑉, 𝑍)

• Pairing 𝑌2, 𝒞 = 𝑉 𝑌2; 𝒞 ∈ Rep(ℳ 𝑌2 ) for a surface 𝑌2, 
ℳ 𝑌2 = mapping class group

• Pairing 𝑍𝑋,𝐿,𝒞 = 𝑋3, 𝐿𝐶 , 𝒞 ∈ ℂ for colored framed 
oriented links 𝐿𝑐 in 3-mfd 𝑋3

fix 𝒞, 𝑍𝑋,𝐿,𝒞 invariant of (𝑋3, 𝐿𝑐)

fix (𝑋3, 𝐿𝑐), 𝑍𝑋,𝐿,𝒞 invariant of 𝒞

fix 𝑌2, 𝑉(𝑌2; 𝒞) invariant of 𝒞



Quantum Dimensions, Twists, and S-matrix: Unknot and Hopf Link

Quantum 
Dimension

Total Quantum 
Dimension

Twist



Verlinde Algebra and Modularity: Rep. of SL(2,ℤ)=MCG of 𝑻𝟐

For a Unitary Modular Tensor Category, 

Dimension of ground state Hilbert 
space on torus = 



Topological Twists

Type (2) Gauge transformations:

Twist of defects is not gauge-invariant, as expected



Topological S-Matrix

Type II Gauge transformations:

G-Crossed Verlinde Formula:



Extended Verlinde Algebra



G-Crossed Modularity

For G-Crossed UBTC, define modular matrices:

Unitarity of S  Representation of SL(2, ℤ): Homotopy TQFT



Gauging Global Symmetry G

Given a topological order 𝓒, then gauging (G, 𝝆, t, 𝛼) of 𝓒 is:

Step I:  

Defectify 𝓒, 𝓒𝐺
𝗑 =⊕𝑔 𝓒𝑔, where 𝓒𝑒= 𝓒.

Step II: 

Orbifold 𝓒𝐺
𝗑 , a new topological order 𝓒/G =(𝓒𝐺

𝗑 )𝐺.

Gauging deconfines defects and leads to a topological phase 
transition from 𝓒 to 𝓒/G.



Gauged Theory

Objects in 

= irreducible projective representation of

Flux-Charge composite



General Results     

• The anyon model 𝓒/G =(𝓒𝐺
𝗑 )𝐺 contains a sub-category Rep(G).   

• 𝐷2
𝓒/𝐺=𝐷𝓒

2 |𝐺|2. Same central charge. 

• Gauging done sequentially if N⊂G normal: first N and then G/N.

• If 𝓒 is a quantum double, then 𝓒/G a double.

• 𝓒 and 𝓒/G same up to doubles.

• Inverse process of gauging:  

When Rep(G) in 𝓒/G =(𝓒𝐺
𝗑 )𝐺 condensed,  𝓒 recovered.



Particle-Hole Symmetry of Bosonic 𝒁𝟑

Consider p-h symm. of 𝒁𝟑---No symm. fractionalization as 𝑯𝟐(𝒁𝟐, 𝒁𝟑)=0.

Defectification:  

Only one twist defect g in 𝐶1: g⊗g=1+a+ 𝑎. This theory is NOT braided---Tambara-
Yamagami theory for 𝑍3.  But it has a G-crossed braiding.  There are two ways to 
have an defect as 𝐻3(𝑍2,U(1))=𝑍2.

Gauging:  

Taking the equivariant quotient results either 𝑆𝑈(2)4 or its cousin Jones-Kauffman 
theory at r=6---two metaplectic theories corresponding to the two classes in 
𝐻3(𝑍2,U(1))=𝑍2 as above.



Braided G-crossed 𝒁𝟑-Tambara-Yamagami 

The 6j symbols for the 𝑍3-Tambara-Yamagami theory is (unlisted 
admissible 6j symbols and R-symbols=1):

𝑭𝒈
𝒂𝒈𝒃

=𝑭𝒃
𝒈𝒂𝒈

=𝜒(a,b), 𝑭𝒈,𝒂𝒃
𝒈𝒈𝒈

=
𝜿

√𝟑
𝝌−𝟏(a,b), 

where 𝜒(a,b) is a symmetric bi-character of 𝑍3 and 𝜅=±1, g=defect 
and a,b ∊𝑍3.                                                                           𝑎𝑔 g

It is known that this theory is NOT braided.  

But it is G-crossed braided:                                                g          a 

𝑹𝒈
𝒈𝒂

=𝑹𝒈
𝒂𝒈

=𝝎𝟐𝒂𝟐
and 𝑹𝒂

𝒈𝒈
=(−𝒊𝜿)  𝟏 𝟐𝝎𝒂𝟐

, a=0,1,2.



Modular G-crossed Category

• The extended Verlinde algebra has 4 sectors: 𝑉0,0, 𝑉0,1, 𝑉1,0, 𝑉1,1, and  𝑠-,  𝑡-
matrices form a rep. of SL(2,ℤ). Below the s,t are those of the 𝑍3 theory. 

• The extended  𝑠-matrix  𝑠=

𝒔 0
0 0

0 0
1 0

0 1
0 0

0 0
0 −𝜅

• The extended  𝑡 matrix  𝑡=

𝒕 0
0 1

0 0
0 0

0 0
0 0

0 (−𝑖𝜅)  1 2

(−𝑖𝜅)  1 2 0



Gauging As Construction of New UMTCs

• 3-fermion theory (toric code sister): 𝑆𝑂 8 1 with G=𝑆3

• S-,T-matrices:

𝜈 = 1,𝜔 = 𝑒2𝜋𝑖/3, 𝛼 = 𝑒4𝜋𝑖/3



Summary

We skeletonize an existing mathematical theory and formulate it into 
a physical theory with full computational power for symmetry, 
defects, and gauging of 2D topological phases.  

It provides a general framework to classify symmetry enriched 2D 
topological phases of matter.


