Symmetry, Defects, and Gauging of Topological Phases of Matter

Zhenghan Wang

Joint work with M. Barkeshli, P. Bonderson, and M. Cheng

Microsoft Station Q/UC Santa Barbara

arXiv:1410.4540

Ad: Low Dimensional Higher Categories and Applications

• Math:

Classification of (2+1)- and (3+1)-TQFTs, not fully extended---Invariants of low dimensional manifolds (especially smooth 4D)

Physics:

Classification of 2D and 3D symmetry enriched topological order (SET) and symmetry protected topological order (SPT)

Reshetikhin-Turaev/Witten-Chern-Simons (2+1)-TQFT

Topological phases of matter are TQFTs in Nature and hardware for hypothetical topological quantum computers.

Symmetry and 2D Topological Phases of Matter

We develop a general framework to classify 2D topological order in topological phases of matter with symmetry by using G-crossed braided tensor category.

Given a 2D topological order C and a global symmetry G of C, three intertwined themes on the interplay of symmetry group G and intrinsic topological order C

- Symmetry Fractionalization---topological quasi-particles carry fractional quantum numbers of the underlying constituents
- **Defects**---extrinsic point-like defects. Many are non-abelian objects
- Gauging---deconfine defects by promoting the global symmetry G to a local G gauge theory

Examples of Topological Phases with Symmetry

Z₂ Toric Code (Kitaev):

$$H_{Z_2} = \sum_s A_s + \sum_p B_p$$

$$B_p = \prod_{i \in \text{boundary}(p)} \sigma_i^z \quad A_s = \prod_{i \in \text{star}(s)} \sigma_i^x$$

Topological order:
$$\mathcal{C} = D(Z_2) = \{1, e, m, \psi\}$$

Electric-magnetic duality: e - m

Examples of 2D Topological Phases with Symmetry

1/m-Laughlin state
$$\Psi(\{z_i\}) = \prod_{i < j} (z_i - z_j)^m e^{-\sum_i |z_i|^2/4l_B^2}$$

Topological order is encoded by $U(1)_m \times \{1,e\}$

Topological particle-hole symmetry: a↔-a

Z₂-Layer Exchange Symmetry: Bilayer FQH States

E.g. Halperin (mml) state

$$\Psi(\{z_i\}, \{w_i\}) = \prod_{i < j} (z_i - z_j)^m (w_i - w_j)^m \prod_{i,j} (z_i - w_j)^l$$

Topological Phases of Matter

Finite-energy topological quasiparticle excitations=anyons

Anyons a, b, c

Anyons are of the same type if they differ only by local operators

Anyons in 2+1 dimensions described mathematically by a Unitary Modular Tensor Category \mathcal{C} = Anyon Model

Symmetry of Quantum Systems (£, H)

Microscopic Symmetry G:

$$R_g \colon \mathcal{L} \to \mathcal{L} \qquad R_g H = H R_g$$

Should preserve locality of ${\cal L}$

Symmetry is on-site if:
$$R_g = \prod_{i=1}^N R_g^{(i)}$$

Assumptions and Work In Progress

- 1) The global symmetry G is a finite group
- 2) Bulk 2D topological order in boson/spin systems=UMTC=anyon model
- 3) Global symmetry G can be realized as on-site unitary symmetries of the microscopic Hamiltonian, at least at low energies

Partial results in our paper:

- Continuous symmetries such as U(1) charge conservation and SO(3) spin rotation (2/3)
- Fermion systems (1 or 0)
- Time-reversal (1/3)
- Spatial (1/6+1/6)
- Fermion parity (0)

Classification of 2D SETs Topologically

- Given a 2D topological order=UMTC=anyon model ${\cal C}$, and a finite group G, then G-SETs=G-crossed braided extensions of ${\cal C}$
- SETs are in 1-1 correspondence with set [BG, BPic(\mathcal{C})] of homotopy classes of maps between classifying spaces BG and BPic(\mathcal{C}), where BPic(\mathcal{C}) is the classifying space of the categorical 2-group Pic(\mathcal{C}) with $\pi_1 = \operatorname{Aut}(\mathcal{C})$, $\pi_2 = \mathcal{A}$, $\pi_3 = \mathbb{C}\setminus\{0\}$, and $\pi_i = 0$ for i>3. (ENO 2010)
- Note that [BG, BPic(\mathcal{C})] = $\pi_0(X^Y)$, where X= BPic(\mathcal{C}), Y=BG. Do higher homotopy groups $\pi_i(X^Y)$, i>0, of the mapping space X^Y have physical meaning and significance?

Classification of G-crossed Extensions of a UMTC *C* Algebraically

Etingof, Nikshych, Ostrik (2010)

$$\mathcal{C}_G^{ imes}$$
 classified by $([
ho],[t],[lpha])$

$$[\rho]: G \to \operatorname{Aut}(\mathcal{C})$$

If a primary obstruction in $H^3_
ho(G,\mathcal{A})$ vanishes, then choose

$$[t] \in H^2_{\rho}(G, \mathcal{A})$$

If a secondary obstruction in $H^4(G,U(1))$ vanishes, then choose $[\alpha] \in H^3(G,U(1))$

Fine print: Symmetry, Defects, and Gauging

- Skeletonizing G-Crossed Braided Tensor Category to Obtain Numerical Version of G-Crossed Braided Tensor Category
- 2. Applying G-Crossed Braided Tensor Categories to Physics:

General Classification and Characterization of Symmetry-Enriched 2D Topological Order

2D Topological Order = UMTC = Anyon Model C

A modular tensor category = a non-degenerate braided spherical fusion category: a collection of numbers {L, N_{ab}^c , $F_{d:nm}^{abc}$, R_c^{ab} } that satisfy some polynomial constraint equations.

6j symbols for recoupling

$$\begin{array}{ccc}
a & b \\
c & b
\end{array} = \sum_{\nu} \left[R_c^{ab} \right]_{\mu\nu} \begin{array}{c}
a & b \\
c & \nu
\end{array}.$$

R-symbol for braiding

Pentagons for 6j symbols

Hexagons for R-symbols

Examples

- Pointed: C(A, q), A finite abelian group, q non-deg. quadratic form on A.
- Rep $(D^{\omega}G)$, ω a 3-cocycle on G a finite group.
- Quantum groups/Kac-Moody algebras: subquotients of $\operatorname{Rep}(U_q\mathfrak{g})$ at $q=e^{\pi i/l}$ or level k integrable $\hat{\mathfrak{g}}$ -modules, e.g.
 - $SU(N)_k = C(\mathfrak{sl}_N, N+k),$
 - $SO(N)_k$,
 - $\operatorname{Sp}(N)_k$,
 - for gcd(N, k) = 1, $PSU(N)_k \subset SU(N)_k$ "even half"
- Drinfeld center: $\mathcal{Z}(\mathcal{D})$ for spherical fusion category \mathcal{D} .
- Rank-finiteness (see E. Rowell's poster).

Topological and Global Symmetry

The categorical symmetry group $\underline{Aut(C)}$ of an anyon model C consists of all permutations of anyon types and transformations of fusion states $\{|a,b,c,\mu>\}$ that preserve all defining data up to gauge freedom. In math jargon, all braided tensor auto-equivalences of C.

Given an anyon model C, its $\underline{Aut(C)}$ is classified by a triple (Π_1, Π_2, κ) ,

where Π_1 is the classes of braided tensor auto-equivalences of \mathcal{C} , Π_2 = \mathcal{A} the abelian anyons of \mathcal{C} , and $\kappa \in H^3(\Pi_1,\Pi_2)$ a cohomology class.

 Π_1 =Aut(\mathcal{C}) will be called the topological symmetry group of \mathcal{C} . Given a group G, a global G-symmetry of \mathcal{C} is ρ : G \rightarrow Aut(\mathcal{C}) --- a group

homomorphism.

Symmetries of Abelian Anyon Models

- An abelian anyon model is given by a pair C=(A,q),
 where A is a commutative finite group and
 q(x) is the topological twist of anyon type x ∈A, q: A→U(1).
- The topological symmetry group Π_1 =Aut(\mathcal{C}) is the group O(A,q)={s∈ Aut(A): q(s(x))=q(x) for all x∈A} and Π_2 =A
- $U(1)_3$: A= Z_3 , q(x)= $\{1,e^{\frac{2\pi i}{3}},e^{\frac{2\pi i}{3}}\}$, Π_1 = Z_2 , Π_2 = Z_3 .
- Toric code and 3fermion: both A= $Z_2 \oplus Z_2$ ={1,,e,m, ψ } and q(x)={1,1,1,-1} or q(x)={1,-1,-1,-1}, so Π_1 = Z_2 or S_3 .

Kitaev Toric Code: $H=\sum_{v} (I-A_{v}) + \sum_{p} (I-B_{p})$

There are 4 types of anyons: 1,e,m, ε .

Origin of Symmetry Fractionalization: Topological Symmetry Is Categorical

Given a global symmetry (G, ρ) realized as symmetries R_g of a Hamiltonian with a local Hilbert space L(Y;I), then L(Y;I)= $\bigoplus L_{\lambda_i}$ according to energy levels λ_i . The ground state manifold L_{λ_0} further decomposes as V(Y;t) $\bigotimes L_{\lambda_0}^{loc}$ (Y;I), where V(Y;t) is the topological part and $L_{\lambda_0}^{loc}$ (Y;I) the local part. Onsite symmetries R_g act on L_{λ_0} = V(Y;t) $\bigotimes L_{\lambda_0}^{loc}$ (Y;I) split as $\rho_g \bigotimes \prod_l R_g^l$.

Anyon states in V(Y;t) are universality classes up to local actions, so global symmetry actions are not exact. Hence, projective local actions on $L_{\lambda_0}^{loc}(y;l)$ are allowed to compensate for the overall phases from the global actions. Since projective representations of G are classified by $H^2(G, U(1))$, can symmetry factionalizations be classified by $H^2(G, U(1))$?

The separation of global symmetry into topological and local parts requires subtle consistency:

- 1. A potential obstruction;
- 2. The coefficient for H^2 is not U(1), but Π_2 ={abelian anyons}.

Global Symmetry G
$$\rho: G \longrightarrow Aut(\mathcal{C})$$

$$\mathbf{g}a \equiv \rho_{\mathbf{g}}(a)$$

Natural Isomorphism

$$\rho_{\mathbf{gh}} = \kappa_{\mathbf{g}, \mathbf{h}} \rho_{\mathbf{g}} \rho_{\mathbf{h}}$$

$$\rho_{\mathbf{g}}(|a,b;c\rangle) = U_{\mathbf{g}}({}^{\mathbf{g}}a,{}^{\mathbf{g}}b;{}^{\mathbf{g}}c)|{}^{\mathbf{g}}a,{}^{\mathbf{g}}b;{}^{\mathbf{g}}c\rangle$$

$$\rho$$
 leads to an obstruction $o_3(\rho) \in H^3_\rho$ (G, \mathcal{A})

$$\mathcal{A}\subseteq\mathcal{C}$$
 Abelian anyons

Symmetry Localization

Ground state is symmetric: $R_{f g}|\Psi_0
angle=|\Psi_0
angle$

Consider state with two anyons:

$$R_{\mathbf{g}}|\Psi_{a,\bar{a};0}\rangle = U_{\mathbf{g}}^{(1)}U_{\mathbf{g}}^{(2)} \rho_{\mathbf{g}}|\Psi_{a,\bar{a};0}\rangle$$

= $U_{\mathbf{g}}^{(1)}U_{\mathbf{g}}^{(2)}U_{\mathbf{g}}({}^{\mathbf{g}}a, {}^{\mathbf{g}}\bar{a};0)|\Psi_{\mathbf{g}_{a}, \mathbf{g}\bar{a};0}\rangle$

Symmetry Fractionalization

Anyons can form a projective representation

$$U_{\mathbf{g}}^{(j)}U_{\mathbf{h}}^{(j)} \neq U_{\mathbf{gh}}^{(j)}$$

Even if
$$R_{\mathbf{g}}R_{\mathbf{h}}=R_{\mathbf{gh}}$$

General Result: Symmetry Fractionalization

- 1. Requires $o_3(\rho) = 0$ ($H^3_{\rho}(G, A)$ obstruction must vanish)
- 2. Classified by $H^2_
 ho(G,\mathcal{A})$

$$\mathcal{A}\subseteq\mathcal{C}$$
 Abelian anyons

Symmetry Fractionalization Mathematically

The obstruction $o_3(\rho) = \rho^*(\kappa) \in H^3(G,\Pi_2)$:

the pull back of the class κ in (Π_1, Π_2, κ) to $H^3(G, \Pi_2)$ by the global symmetry $\rho : G \rightarrow \Pi_1$.

If $o_3(\rho)=0$, then possible symmetry fractionalizations form a torsor over $H^2(G,\Pi_2)$.

A set X is a torsor over a group G if X has a transitive free action of G.

Vanishing of Symmetry Fractionalization Obstruction

Theorem:

The obstruction to symmetry fractionalization vanishes if either

- 1) the global symmetry ρ does not permute anyon types or
- 2) the anyon model is abelian with all 6j symbols trivial, i.e. the associativity 3-cocyle ω is trivial.

It follows that the obstructions to symmetry fractionalizations for toric code and 3fermion all vanish.

Symmetry Defects

$$H_0 = \sum_i h_i + \sum_{\langle ij
angle} h_{ij}$$
 $H_{\mathbf{g},\mathbf{g}^{-1}} = H_0 + \sum_{\substack{\langle ij
angle: i \in C_l; j \in C_r}} [R_{\mathbf{g}}^{(j)} h_{ij} R_{\mathbf{g}}^{(j)-1} - h_{ij}]$

Given a topological phase with symmetry G, extrinsic point-like defects can be introduced by modifying the original Hamiltonian

Defects Confined

Defects are NOT finite-energy quasiparticle excitations/anyons

Mathematics: G-Crossed Braided Tensor Category

We would like to have methods to systematically compute all properties of defects (fusion rule, braiding ,etc)

G-Graded Fusion

Topologically distinct types of g-defects

$$\mathcal{C}_{G} = \bigoplus_{\mathbf{g} \in G} \mathcal{C}_{\mathbf{g}}$$

 $\mathcal{C}_{\mathbf{g}}$ contains collection of g-defects. Module category

$$a_{\mathbf{g}} \times b_{\mathbf{h}} = \sum_{c \in \mathcal{C}_{\mathbf{gh}}} N_{ab}^{c} c$$
 $\mathcal{D}_{\mathbf{g}} = \mathcal{D}_{\mathbf{0}}$

Obstructions to Defectification

- Obstruction $o_3(\rho)$ to symmetry fractionalization is also the obstruction to a consistent fusion rule for \mathcal{C}_g . If $o_3(\rho)=0$, then consistent fusion rules are in 1-1 correspondence with symmetry fractionalization classes (ρ,t) .
- Pentagons lead to a secondary obstruction $o_4(\rho,t) \in H^4(G, U(1))$ to consistently defectify.
- If $o_4(\rho,t)=0$, possible defectifications form a torsor over $H^3(G,U(1))$.
- If both obstructions=0, a defect theory is determined by (G, ρ , t, α), where $\alpha \in H^3(G,U(1))$.

G-Crossed Braiding

$$egin{align} \left[U_{\mathbf{0}}\left(a,b;c
ight)
ight]_{\mu
u} &= \delta_{\mu
u} \ & \ U_{\mathbf{k}}\left(0,0;0
ight) = \left.U_{\mathbf{k}}\left(a,0;a
ight)
ight. \ & \ = U_{\mathbf{k}}\left(0,b;b
ight) = 1 \ & \ \end{array}$$

$$\eta_0 (\mathbf{g}, \mathbf{h}) = 1$$

$$\eta_x (\mathbf{0}, \mathbf{0}) = \eta_x (\mathbf{g}, \mathbf{0})$$

$$= \eta_x (\mathbf{0}, \mathbf{h}) = 1$$

Sliding Consistency

G-Crossed Heptagon

G-Crossed version of hexagon equation

G-Crossed Data: Skeletonization

G-Crossed UBTC $\ensuremath{\mathcal{C}}_G^ imes$ characterized by data

$$\{L, N_{ab}^c, F_d^{abc}, R_c^{ab}, \eta_a(\boldsymbol{g}, \boldsymbol{h}), U_{\boldsymbol{k}}(a, b; c)\}$$

Subject to consistency equations

Inequivalent solutions

Distinct SET phases

Gauge-Invariant quantities = Topological invariants of SET

Gauge Transformations

(1) Vertex basis gauge transformations (Old type)

$$\begin{split} |\widetilde{a,b;c,\mu}\rangle &= \sum_{\mu'} \left[\Gamma_c^{ab}\right]_{\mu\mu'} |a,b;c,\mu'\rangle \\ &\left[\widetilde{R}_{c\mathrm{gh}}^{a\mathrm{g}b_\mathrm{h}}\right]_{\mu\nu} = \sum_{\mu',\nu'} \left[\Gamma_c^{b^{\;\mathrm{h}}a}\right]_{\mu\mu'} \left[R_{c\mathrm{gh}}^{a\mathrm{g}b_\mathrm{h}}\right]_{\mu'\nu'} \left[\left(\Gamma_c^{ab}\right)^{-1}\right]_{\nu'\nu} \\ &\left[\widetilde{U}_\mathbf{k}\left(a,b;c\right)\right]_{\mu\nu} = \sum_{\mu',\nu'} \left[\Gamma_{\bar{\mathbf{k}}}^{\bar{\mathbf{k}}a^{\;\bar{\mathbf{k}}}b}\right]_{\mu\mu'} \left[U_\mathbf{k}\left(a,b;c\right)\right]_{\mu'\nu'} \left[\left(\Gamma_c^{ab}\right)^{-1}\right]_{\nu'\nu} \\ &\left[\widetilde{F}_d^{abc}\right]_{(e,\alpha,\beta)(f,\mu,\nu)} = \sum_{\alpha',\beta',\mu',\nu'} \left[\Gamma_e^{ab}\right]_{\alpha\alpha'} \left[\Gamma_d^{ec}\right]_{\beta\beta'} \left[F_d^{abc}\right]_{(e,\alpha',\beta')(f,\mu',\nu')} \left[\left(\Gamma_f^{bc}\right)^{-1}\right]_{\mu'\mu} \left[\left(\Gamma_d^{af}\right)^{-1}\right]_{\nu'\nu} \end{split}$$

Gauge Transformations

(2) Symmetry Action Gauge Transformations (New Type)

Associated with natural isomorphism $\,\check{
ho}_{\mathbf{g}}\,=\,\Upsilon_{\mathbf{g}}
ho_{\mathbf{g}}$

$$\begin{split} \left[\check{U}_{\mathbf{k}} \left(a, b; c \right) \right]_{\mu\nu} &= \frac{\gamma_a(\mathbf{k}) \gamma_b(\mathbf{k})}{\gamma_c(\mathbf{k})} \left[U_{\mathbf{k}} \left(a, b; c \right) \right]_{\mu\nu} \\ \left[\check{R}_{c_{\mathbf{gh}}}^{a_{\mathbf{g}}b_{\mathbf{h}}} \right]_{\mu\nu} &= \gamma_a(\mathbf{h}) \left[R_{c_{\mathbf{gh}}}^{a_{\mathbf{g}}b_{\mathbf{h}}} \right]_{\mu\nu} \end{split}$$

$$\check{\eta}_x(\mathbf{g}, \mathbf{h}) = \frac{\gamma_x(\mathbf{gh})}{\gamma_{\bar{\mathbf{g}}_x}(\mathbf{h})\gamma_x(\mathbf{g})} \eta_x(\mathbf{g}, \mathbf{h}) \qquad \gamma_0(\mathbf{h}) = \gamma_a(\mathbf{0}) = 1$$

Invariants of Modular Tensor Category

MTC $\mathcal{C} \rightrightarrows RT (2+1)$ -TQFT (V, Z)

- Pairing $\langle Y^2, \mathcal{C} \rangle = V(Y^2; \mathcal{C}) \in \text{Rep}(\mathcal{M}(Y^2))$ for a surface Y^2 , $\mathcal{M}(Y^2) = \text{mapping class group}$
- Pairing $Z_{X,L,\mathcal{C}}=\langle (X^3,L_C),\mathcal{C}\rangle\in\mathbb{C}$ for colored framed oriented links L_c in 3-mfd X^3

```
fix C, Z_{X,L,C} invariant of (X^3, L_c)
fix (X^3, L_c), Z_{X,L,C} invariant of C
fix Y^2, V(Y^2; C) invariant of C
```

Quantum Dimensions, Twists, and S-matrix: Unknot and Hopf Link

Quantum **Dimension**

$$d_a \,=\, a \, igg($$

Twist
$$\theta_a = \frac{1}{d_a}$$

Total Quantum $\mathcal{D} = \sqrt{\sum_{a \in \mathcal{C}} d_a^2}$

$$\mathcal{D} = \sqrt{\sum_{a \in \mathcal{C}} d_a^2}$$

$$= \sum_{c,\mu} \frac{d_c}{d_a} \left[R_c^{aa} \right]_{\mu\mu}$$

$$S_{ab} = \mathcal{D}^{-1} \sum_{c} N_{\bar{a}b}^{c} \frac{\theta_{c}}{\theta_{a}\theta_{b}} d_{c} = \frac{1}{\mathcal{D}} a \underbrace{b}_{b} \underbrace{b}_{b}$$

Verlinde Algebra and Modularity: Rep. of SL(2, \mathbb{Z})=MCG of T^2

For a Unitary Modular Tensor Category,

$$(ST)^3 = e^{i\pi c/4}C \qquad S^2 = C \qquad C^2 = \mathbb{I}$$

$$T_{ab} = \theta_a \delta_{ab}$$

Dimension of ground state Hilbert space on torus = |C|

$$|a
angle_l = \sum_{b \in \mathcal{C}} S_{ab} |b
angle_m$$

Topological Twists

$$heta_a = rac{1}{d_a} \left(egin{array}{c} a_{
m g} & a_{
m g} \ & & & & \\ & = \sum_{c,\mu} rac{d_c}{d_a} \left[R_c^{aa}
ight]_{\mu\mu} & a_{
m g} \end{array}
ight) = heta_a \left(egin{array}{c} a_{
m g} \ & a_{
m g} \end{array}
ight)$$

Type (2) Gauge transformations:
$$\check{\theta}_{a_{\mathbf{g}}} = \gamma_{a_{\mathbf{g}}}(\mathbf{g})\theta_{a_{\mathbf{g}}}$$

Twist of defects is not gauge-invariant, as expected

Topological S-Matrix

$$S_{a_{\mathbf{g}}b_{\mathbf{h}}} = \frac{1}{\mathcal{D}_{\mathbf{0}}} a \underbrace{b}_{b} \underbrace{b}_{\mathbf{0}} \underbrace{b}_{\mathbf{0}} \underbrace{[U_{\mathbf{\bar{g}}\mathbf{h}}(\bar{a}, b; c)]_{\mu\mu}}_{\eta_{\bar{a}}(\mathbf{\bar{g}}, \mathbf{h})\eta_{b}(\mathbf{h}, \mathbf{\bar{g}})}$$

Type II Gauge transformations: $\check{S}_{a_{\bf g}b_{\bf h}}=\gamma_{\bar a}({\bf h})\gamma_b({f ar g})S_{a_{\bf g}b_{\bf h}}$

G-Crossed Verlinde Formula:

$$N_{a_{\mathbf{g}}b_{\mathbf{h}}}^{c_{\mathbf{gh}}} = \sum_{x_{0} \in \mathcal{C}_{\mathbf{0}}^{\mathbf{g},\mathbf{h}}} \frac{S_{a_{\mathbf{g}}x_{0}}S_{b_{\mathbf{h}}x_{0}}S_{c_{\mathbf{gh}}x_{0}}^{*}}{S_{0x_{0}}} \eta_{x}(\bar{\mathbf{h}},\bar{\mathbf{g}})$$

Extended Verlinde Algebra

$$\mathcal{V}^{ ext{ext}} = igoplus_{(\mathbf{g},\mathbf{h}),\mathbf{gh=hg}} \mathcal{V}_{(\mathbf{g},\mathbf{h})}$$

$$\mathcal{S}^{(\mathbf{g},\mathbf{h})} : \mathcal{V}_{(\mathbf{g},\mathbf{h})} o \mathcal{V}_{(\mathbf{h},\mathbf{\bar{g}})}$$

$$\mathcal{S}^{(\mathbf{g},\mathbf{h})} : \mathcal{V}_{(\mathbf{g},\mathbf{h})} o \mathcal{V}_{(\mathbf{h},\mathbf{ar{g}})} \ \mathcal{T}^{(\mathbf{g},\mathbf{h})} : \mathcal{V}_{(\mathbf{g},\mathbf{h})} o \mathcal{V}_{(\mathbf{g},\mathbf{gh})}$$

$$\dim \mathcal{V}_{(\mathbf{g},\mathbf{h})} = |\mathcal{C}_{\mathbf{g}}^{\mathbf{h}}|$$

$$\dim \mathcal{V}_{(\mathbf{g},\mathbf{h})} = |\mathcal{C}_{\mathbf{g}}^{\mathbf{h}}| \qquad \mathcal{C}_{\mathbf{g}}^{\mathbf{h}} = \{ a \in \mathcal{C}_{\mathbf{g}} \mid {}^{\mathbf{h}}a = a \}$$

$$|\mathcal{C}_{\mathbf{h}}^{\mathbf{g}}| = |\mathcal{C}_{\mathbf{g}}^{\mathbf{h}}|$$

$$|\mathcal{C}_{\mathbf{g}}| = |\mathcal{C}_{\mathbf{0}}^{\mathbf{g}}|$$

G-Crossed Modularity

For G-Crossed UBTC, define modular matrices:

$$\mathcal{S}_{a_{\mathbf{g}}b_{\mathbf{h}}}^{(\mathbf{g},\mathbf{h})} = \frac{S_{a_{\mathbf{g}}b_{\mathbf{h}}}}{U_{\mathbf{h}}(a,\bar{a};0)} \qquad \mathcal{T}_{a_{\mathbf{g}}b_{\mathbf{g}}}^{(\mathbf{g},\mathbf{h})} = \eta_{a}(\mathbf{g},\mathbf{h})\theta_{a_{\mathbf{g}}}\delta_{a_{\mathbf{g}}b_{\mathbf{g}}}$$
$$C_{a_{\mathbf{g}}b_{\bar{\mathbf{g}}}}^{(\mathbf{g},\mathbf{h})} = \frac{1}{U_{\mathbf{h}}(\bar{b},b;0)\eta_{b}(\mathbf{h},\bar{\mathbf{h}})}\delta_{a_{\mathbf{g}}\bar{b}_{\bar{\mathbf{g}}}}$$

$$(\mathcal{ST})^3 = e^{i\pi c/4}C$$
 $\mathcal{S} = \mathcal{S}^{\dagger}C$ $C^2 = 1$

Unitarity of S \rightarrow Representation of SL(2, \mathbb{Z}): Homotopy TQFT

Gauging Global Symmetry G

Given a topological order C, then gauging (G, ρ , t, α) of C is:

Step I:

Defectify C, $C_G^{\times} = \bigoplus_g C_g$, where $C_e = C$.

Step II:

Orbifold $\mathcal{C}_G^{\mathsf{X}}$, a new topological order $\mathcal{C}/\mathsf{G} = (\mathcal{C}_G^{\mathsf{X}})^G$.

Gauging deconfines defects and leads to a topological phase transition from \mathcal{C} to \mathcal{C}/G .

Gauged Theory

Objects in $\,{\cal C}/G\,$

$$[a] = \{ {}^{\mathbf{g}}a, \forall \mathbf{g} \in G \} \qquad G_a = \{ \mathbf{g} \in G \mid {}^{\mathbf{g}}a = a \}$$

 π_a = irreducible projective representation of $\,G_a$

$$\pi_a(\mathbf{g})\pi_a(\mathbf{h}) = \eta_a(\mathbf{g}, \mathbf{h})\pi_a(\mathbf{gh}) \quad \mathbf{g}, \mathbf{h} \in G_a$$

$$([a], \pi_a) \in \mathcal{C}/G$$

Flux-Charge composite

General Results

- The anyon model $\mathcal{C}/G = (\mathcal{C}_G^{\times})^G$ contains a sub-category Rep(G).
- $D^2_{\mathcal{C}/G} = D_{\mathcal{C}}^2 |G|^2$. Same central charge.
- Gauging done sequentially if N⊂G normal: first N and then G/N.
- If C is a quantum double, then C/G a double.
- \mathcal{C} and \mathcal{C}/G same up to doubles.

• Inverse process of gauging:

When Rep(G) in $\mathcal{C}/G = (\mathcal{C}_G^{\times})^G$ condensed, \mathcal{C} recovered.

Particle-Hole Symmetry of Bosonic ${f Z}_3$

Consider p-h symm. of \mathbb{Z}_3 ---No symm. fractionalization as $\mathbb{H}^2(\mathbb{Z}_2, \mathbb{Z}_3)$ =0.

Defectification:

Only one twist defect g in C_1 : $g \otimes g = 1 + a + \overline{a}$. This theory is NOT braided---Tambara-Yamagami theory for Z_3 . But it has a G-crossed braiding. There are two ways to have an defect as $H^3(Z_2, U(1)) = Z_2$.

Gauging:

Taking the equivariant quotient results either $SU(2)_4$ or its cousin Jones-Kauffman theory at r=6---two metaplectic theories corresponding to the two classes in $H^3(Z_2,U(1))=Z_2$ as above.

Braided G-crossed $oldsymbol{Z}_3$ -Tambara-Yamagami

The 6j symbols for the \mathbb{Z}_3 -Tambara-Yamagami theory is (unlisted admissible 6j symbols and R-symbols=1):

$$F_g^{agb} = F_b^{gag} = \chi(a,b), F_{g,ab}^{ggg} = \frac{\kappa}{\sqrt{3}} \chi^{-1}(a,b),$$

where $\chi(a,b)$ is a symmetric bi-character of Z_3 and $\kappa=\pm 1$, g=defect and $a,b\in Z_3$.

It is known that this theory is NOT braided.

But it is G-crossed braided:

$$R_g^{ga} = R_g^{ag} = \omega^{2a^2}$$
 and $R_a^{gg} = (-i\kappa)^{1/2}\omega^{a^2}$, a=0,1,2.

g a

Modular G-crossed Category

• The extended Verlinde algebra has 4 sectors: $V_{0,0}$, $V_{0,1}$, $V_{1,0}$, $V_{1,1}$, and \tilde{s} -, \tilde{t} -matrices form a rep. of SL(2, \mathbb{Z}). Below the **s**,**t** are those of the Z_3 theory.

• The extended
$$\tilde{s}$$
-matrix $\tilde{s} = \begin{pmatrix} s & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -\kappa \end{pmatrix}$
• The extended \tilde{t} matrix $\tilde{t} = \begin{pmatrix} t & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & (-i\kappa)^{1/2} \\ 0 & 0 & (-i\kappa)^{1/2} & 0 \end{pmatrix}$

Gauging As Construction of New UMTCs

- 3-fermion theory (toric code sister): $SO(8)_1$ with $G=S_3$
- S-,T-matrices:

	1	1	2	3	3	4	4	4	$3\sqrt{2}$	$3\sqrt{2}$	$3\sqrt{2}$	$3\sqrt{2}$	1
١	1	1	2	3	3	4	4	4	$-3\sqrt{2}$	$-3\sqrt{2}$	$-3\sqrt{2}$	$-3\sqrt{2}$	l
ı	2	2	4	6	6	-4	-4	-4	0	0	0	0	ı
١	3	3	6	-3	-3	0	0	0	$-3\sqrt{2}$	$-3\sqrt{2}$	$3\sqrt{2}$	$3\sqrt{2}$	l
١	3	3	6	-3	-3	0	0	0	$3\sqrt{2}$	$3\sqrt{2}$	$-3\sqrt{2}$	$-3\sqrt{2}$	l
١	4	4	-4	0	0	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{a}	0	0	0	0	l
١	4	4	-4	0	0	\boldsymbol{c}	\boldsymbol{a}	b	0	0	0	0	l
١	4_	4 _	-4	0 _	0_	\boldsymbol{a}	\boldsymbol{b}	c	0	0	0	0	l
١		_		$-3\sqrt{2}$	_			0	0	0	6	-6	l
١	$3\sqrt{2}$	$-3\sqrt{2}$	0	$-3\sqrt{2}$	$3\sqrt{2}$	0	0	0	0	0	-6	6	l
١	$3\sqrt{2}$	$-3\sqrt{2}$	0	$3\sqrt{2}$	$-3\sqrt{2}$	0	0	0	6	-6	0	0	l
	$3\sqrt{2}$	$-3\sqrt{2}$	0	$3\sqrt{2}$	$-3\sqrt{2}$	0	0	0	-6	6	0	0 _	

$$a = -8\cos\frac{2\pi}{9}, b = -8\sin\frac{\pi}{9}, c = 8\cos\frac{\pi}{9}.$$
 $v = 1, \omega = e^{2\pi i/3}, \alpha = e^{4\pi i/3}$

Label	d	θ
(I,+)	1	1
(I, -)	1	1
$\{a, \overline{a}\}$	2	1
(Y, +)	3	- 1
(Y, -)	3	- 1
$\{w,\overline{w}\}$	4	$\alpha^{-1/3}$
$\{wa, \overline{wa}\}$	4	$\omega \alpha^{-1/3}$
$\{w\overline{a},\overline{w}a\}$	4	$\omega^2 \alpha^{-1/3}$
$(\sigma_+,+)$	$3\sqrt{2}$	$e^{\frac{i\pi\nu}{8}}$
$(\sigma,+)$	$3\sqrt{2}$	$-e^{-\frac{i\pi\nu}{8}}$
$(\sigma_+,-)$	$3\sqrt{2}$	$-e^{\frac{i\pi\nu}{8}}$
$(\sigma, -)$	$3\sqrt{2}$	$e^{-\frac{i\pi\nu}{8}}$

$$\nu = 1, \omega = e^{2\pi i/3}, \alpha = e^{4\pi i/3}$$

Summary

We skeletonize an existing mathematical theory and formulate it into a physical theory with full computational power for symmetry, defects, and gauging of 2D topological phases.

It provides a general framework to classify symmetry enriched 2D topological phases of matter.

$$C \xrightarrow{\text{Defectification}} C_G^{\times} \xrightarrow{\text{Gauging}} C/G$$
Confinement Condensation