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Ad: Low Dimensional Higher Categories and Applications

* Math:
Classification of (2+1)- and (3+1)-TQFTs, not fully extended---
Invariants of low dimensional manifolds (especially smooth 4D)

* Physics:
Classification of 2D and 3D symmetry enriched topological order (SET)
and symmetry protected topological order (SPT)



Reshetikhin-Turaev/Witten-Chern-Simons (2+1)-TQFT

Modular Tensor Category

N\

Topological Phases of Matter ===  Topological Quantum Computation

Topological phases of matter are TQFTs in Nature and hardware
for hypothetical topological quantum computers.



Symmetry and 2D Topological Phases of Matter

We develop a general framework to classify 2D topological order in topological
phases of matter with symmetry by using G-crossed braided tensor category.

Given a 2D topological order € and a global symmetry G of C, three intertwined
themes on the interplay of symmetry group G and intrinsic topological order C

* Symmetry Fractionalization---topological quasi-particles carry fractional
guantum numbers of the underlying constituents

* Defects---extrinsic point-like defects. Many are non-abelian objects

* Gauging---deconfine defects by promoting the global symmetry G to a local G
gauge theory



Examples of Topological Phases with Symmetry
Z, Toric Code (Kitaev):
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Topological order: (= D(Zy) ={1,e,m,1}

Electric-magnetic duality: e « m




Examples of 2D Topological Phases with Symmetry

1/m-Laughlin state ~ ¥({zi}) = [ [ (2 — zj)™e™ Ze l2:7/405
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Topological order is encoded by U(1),,543e}

Topological particle-hole symmetry: a¢é>-a
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Z,-Layer Exchange Symmetry: Bilayer FQH States

E.g. Halperin (mml) state

U({z}, {wi}) = [ [ (2 — )™ (wi — w;)™ H(Za — w;)’

1<J



Topological Phases of Matter

Finite-energy topological quasiparticle excitations=anyons

Anyons a, b, ¢

Anyons are of the same type if they differ only
by local operators

Anyons in 2+1 dimensions described mathematically by a
Unitary Modular Tensor Category C = Anyon Model



Symmetry of Quantum Systems (£, H)

Microscopic Symmetry G:
Ry: L — L R,H = HR,
Should preserve locality of £

N
Symmetry is on-site if: R, = H Rgi)
i=1



Assumptions and Work In Progress

1) The global symmetry G is a finite group
2) Bulk 2D topological order in boson/spin systems=UMTC=anyon model

3) Global symmetry G can be realized as on-site unitary symmetries of the
microscopic Hamiltonian, at least at low energies

Partial results in our paper:

* Continuous symmetries such as U(1) charge conservation and SO(3) spin rotation (2/3)
* Fermion systems (1 or 0)

* Time-reversal (1/3)

» Spatial (1/6+1/6)

* Fermion parity (0)



Classification of 2D SETs Topologically

* Given a 2D topological order=UMTC=anyon model C, and a finite
group G, then G-SETs=G-crossed braided extensions of C

e SETs are in 1-1 correspondence with set [BG, BPic(C)] of homotopy
classes of maps between classifying spaces BG and BPic(C), where
BPic(C) is the classifying space of the categorical 2-group Pic(C) with
m, = Aut(C), m, = A, m3 = C\{0}, and ; = 0 for i>3. (ENO 2010)

* Note that [BG, BPic(C)] = my(X¥), where X= BP Pic(€), Y=BG. Do higher

homotopy groups 7;( XY ), i>0, of the mapping space X! have
physical meaning and significance?




Classification of G-crossed Extensions of a UMTC € Algebraically
Etingof, Nikshych, Ostrik (2010)

Cé classified by ([p], [t], [a])
pl: G — Aut(C)

If a primary obstruction in Hg’(G, A) vanishes, then choose
t] € Hy (G, A)

If a secondary obstruction in H*(G,U(1)) vanishes, then
choose [a] € H*(G, U(1))



Fine print: Symmetry, Defects, and Gauging

1. Skeletonizing G-Crossed Braided Tensor Category to Obtain
Numerical Version of G-Crossed Braided Tensor Category

2. Applying G-Crossed Braided Tensor Categories to Physics:

General Classification and Characterization of
Symmetry-Enriched 2D Topological Order



2D Topological Order = UMTC = Anyon Model C

A modular tensor category = a non-degenerate braided spherical fusion category:

a collection of numbers {L, N¢,, Fﬁf;fm, R} that satisfy some polynomial constraint equations.
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Examples

* Pointed: C(4, q), A finite abelian group, g non-deg. quadratic form on A.
* Rep(D®G), w a 3-cocycle on G a finite group.

* Quantum groups/Kac-Moody algebras: subquotients of Rep(U,g) at q =
e™/L or level k integrable §-modules, e.g.

* SUIN), = C(sly, N + k),

* SO(N)y,

* Sp(N)g,

e for gcd(N, k) = 1, PSU(N), © SU(N);, “even half”
* Drinfeld center: Z (D) for spherical fusion category D.

e Rank-finiteness (see E. Rowell’s poster).



Topological and Global Symmetry

The categorical symmetry group Aut(C) of an anyon model C consists of all
permutations of anyon types and transformations of fusion states {]a,b,c,u>} that
preserve all defininF data up to gauge freedom. In math jargon, all braided
tensor auto-equivalences of C.

o b
(. /d dy) h y
Given an anyon model C, its Aut(C) is classified by a triple | Y
(le Hz, K—)r

where I1, is the classes of braidgd tensor auto-equivalences of C, I1,=cA the
abelian anyons of C, and kx € H>(II,II,) a cohomology class.

I1{=Aut(C) will be called the topological symmetry group of C.

Given a group G, a global G-symmetry of Cis p: G—Aut(C) --- a group
homomorphism.



Symmetries of Abelian Anyon Models

* An abelian anyon model is given by a pair C=(A,q),
where A is a commutative finite group and
g(x) is the topological twist of anyon type x €A, g: A>U(1).
* The topological symmetry group I1;=Aut(C)
is the group O(A,q)={se Aut(A): q(s(x))=q(x) for all xeA}
and I1,=A

27Tl 27Tl

° U(l)g A=Zg, q(X)={1,e 3 ,€ 3 }, H1=Zz, H2=Z3.
* Toric code and 3fermion: both A=Z,&@Z, ={1,,e,m,1»} and
q(x)={1,1,1,-1} or q(x)={1,-1,-1,-1}, so [I;=Z, or S5.

g ag

Kitaev Toric Code: H=Y, (IFA)+X,(1-B,)

There are 4 types of anyons: 1,e,m, &




Origin of Symmetry Fractionalization: Topological Symmetry Is Categorical

Given a global symmetry (G, p) realized as symmetries R, of a Hamiltonian with a local Hilbert
space L(Y;l), then L(Y;1)=L,, according to energy levels 4;. The ground state manifold L,  further
decomposes as V(Y;t)®Lf{Z)C(Y;I), where V(Y;t) is the topological part and LQ%C(Y;I) the local part. On-
site symmetries R; acton L; = V(Y;t)®Lf{;C(Y;I) split as pg®HlR£].

Anyon states in V(Y;t) are universality classes up to local actions, so global symmetry actions are
not exact. Hence, projective local actions on Lflooc(y;l) are allowed to compensate for the overall

phases from the global actions. Since projective representations of G are classified by H?(G, U(1)),
can symmetry factionalizations be classified by H?(G, U(1))?

The separation of global symmetry into topological and local parts requires subtle consistency:
1. A potential obstruction;

2. The coefficient for H? is not U(1), but IT,={abelian anyons}.



Global Symmetry G p: G — Aut(C)

a &a
® g @
‘b

®C Og

Sb

C

g
a — a
Natural Isomorphism Pg( )

Pgh — Rg hPgfh
pg(‘&, b; C>) — Ug(ga’g ng C) ‘gajg b;g C>

p leads to an obstruction 03(p) € H; (G,A) ACC
Abelian anyons



Symmetry Localization

Ground state is symmetric: Rg‘\p()> — |\IJO>
Consider state with two anyons:
Rg|Vaa0) = UsVUS? pg|¥a,a0)
= UNUP Ug(5a, 8a;0)|V &g, sa;0)




Symmetry Fractionalization

Anyons can form a projective representation
() 77() (J)
U0 # U
Evenif RgRnh = Rgn
General Result: Symmetry Fractionalization

1. Requires 03(p) =0 (H3(G,.A)obstruction must vanish)

2. Classified by HE(G, A) ACC

Abelian anyons



Symmetry Fractionalization Mathematically

The obstruction o3(p)=p*(k)eH3(G,I1,) :

the pull back of the class x in (14, IT,, k) to H3(G,II,) by the global
symmetry p : G—I1,.

If 03(p)=0, then possible symmetry fractionalizations form a torsor
over H4(G,I1,).

A set X is a torsor over a group G if X has a transitive free action of G.



Vanishing of Symmetry Fractionalization Obstruction

Theorem:

The obstruction to symmetry fractionalization vanishes if either

1) the global symmetry p does not permute anyon types or

2) the anyon model is abelian with all 6j symbols trivial, i.e. the
associativity 3-cocyle w is trivial.

It follows that the obstructions to symmetry fractionalizations for
toric code and 3fermion all vanish.



Symmetry Defects

—

Cut Glue ot 1T 1=

HEI:ZM-F{Z}:M;;
i ij

(D
ieCr;jelC,

Given a topological phase with symmetry G, extrinsic point-like
defects can be introduced by modifying the original Hamiltonian



Defects Confined

Defects are NOT finite-energy quasiparticle excitations/anyons

a p,(a)
g g’
Cannot be described by original UMTC @ <— — =X

Mathematics: G-Crossed Braided Tensor Category

We would like to have methods to systematically
compute all properties of defects (fusion rule, braiding ,etc)



G-Graded Fusion

Topologically distinct types of g-defects

Ca = EPCq

gcG

Ce contains collection of g-defects. Module category

E C
EECgh




Obstructions to Defectification

* Obstruction 03(p) to symmetry fractionalization is also the
obstruction to a consistent fusion rule for C,. If 03(p)=0, then
consistent fusion rules are in 1-1 correspondence with symmetry
fractionalization classes (p,t).

* Pentagons lead to a secondary obstruction o,(p,t)e H*(G, U(1)) to
consistently defectify.

* If 04(p,t)=0, possible defectifications form a torsor over H3(G,U(1)).

* If both obstructions=0, a defect theory is determined by (G, p, t, @),
where aeH?3(G,U(1)).



G-Crossed Braiding
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Sliding Consistency
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G-Crossed Heptagon

a b ¢ a b ¢
=\
R~ ¢ . R
%/ d Z \ﬂ\zj
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G-Crossed version of hexagon equation



G-Crossed Data: Skeletonization

G-Crossed UBTC Cé characterized by data
{L, Ngp, F$"°, RE®,n4(g, h), Ug(a, b; c)}

Subject to consistency equations

Inequivalent solutions Distinct SET phases

Gauge-Invariant quantities = Topological invariants of SET



Gauge Transformations

(1) Vertex basis gauge transformations (Old type)

i

a,b e, ) = ) [Te°] la,bse, i)

!
l:ﬁgsfh:pu B Z [Fg Ea} ! [Rgg:h] 7y I:(ng)_l}
“1’1):

Lot ' v'v
o~ T k. _k —1
[Uk (a,b;e)] = Z [F}zj ﬂ Uk (a,b;¢)] [(FSE’ } ,
d v u! | pt FLp v
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Gauge Transformations

(2) Symmetry Action Gauge Transformations (New Type)

Associated with natural isomorphism pg = Tgpg

Yo (k)7 (k)

[E:Tk (a, b; c)} w = () Ux (a, b; C)],w
Ragbh = ~, h Ragbh
[ “eh },uu 7 ( ) [ “gh },uu
(g h) = —28 )@ h) i) = a(0) =1

Vez(h)v:(8)



Invariants of Modular Tensor Category

MTC C .2 RT (2+1)-TQFT (V, Z)
e Pairing (Y4,C) = V(Y?;C) € Rep(M (Y?)) for a surface Y?,
M (Y?) = mapping class group
* Pairing Zx ;. ¢ = ((X3,L¢), C) € C for colored framed
oriented links L, in 3-mfd X3
fix C, Zx 1 ¢ invariant of (X2, L.)
fix (X3, L.), Zy | ¢ invariant of C
fix Y%, V(Y?; C) invariant of C




Quantum Dimensions, Twists, and S-matrix: Unknot and Hopf Link

Q.uantu.m de = a Twist g, = i
Dimension d, p

Total Quantum p_ [N g2 _ E[Rm
Dimension ; ¢ Zda ¢ HE

1 _l
=D Z b@gb T pa\ b




Verlinde Algebra and Modularity: Rep. of SL(2,Z)=MCG of T?

For a Unitary Modular Tensor Category,
(ST)? =e™/1C  §2=C (C?=1
Tab eadab

o

Dimension of ground state Hilbert
space on torus = ‘C|

‘H'}E — Z Sab|b>m

beC



Topological Twists

Type (2) Gauge transformations: éag = Yag (g)gﬂg

Twist of defects is not gauge-invariant, as expected



Topological S-Matrix

1

Zd 9,3 [Ugh(t‘l b C)],u,u
020 Na g:h)nb(hng)

g

Type Il Gauge transformations:  Sq_ 5, = Ya(h)V5(8)Sa.bn

G-Crossed Verlinde Formula:

Cg L hZo T
Naggh o Z SD:{:D = ﬁfﬂ(h:g)



Extended Verlinde Algebra

Vext _ @ V(g,h)

(g,h),gh=hg

S&M : Vn) = Vg

h)
T(g ) V(g,h) _}V(gaghl

dimV(g,h):‘Cg‘ ng{mecg|hm:u}

CRl =1Cgl  |ICql = IC§]




G-Crossed Modularity

For G-Crossed UBTC, define modular matrices:

(gh) _  Oaghy (gh)
S = Treny TS = e h)ubu,

1
O[gvh} — _ _ '5 -
2t Un (b, ; 0)ny(h, h) 2=’

(ST)? = eime/4ic & = STC €2 = 1

Unitarity of S = Representation of SL(2, Z): Homotopy TQFT



Gauging Global Symmetry G

Given a topological order C, then gauging (G, p, t, a) of C is:

Step I:

Defectify C, C;=, C,4, where C.=C.

Step Il:

Orbifold C¥, a new topological order €/G =(C¥)°.

Gauging deconfines defects and leads to a topological phase
transition from C to C/G.



Gauged Theory
Objects in C/G

la] = {8a,Vg € G} Go={geG|®a=a}

T, = irreducible projective representation of Ga

ﬂ-a(g)ﬂ-a(h) — na(ga h)ﬂ-a(gh) g7 h < Ga,

(la],7q) € C/G

Flux-Charge composite



General Results

* The anyon model €/G =(C%)% contains a sub-category Rep(G).
* D%¢/6=D¢ |G|*. Same central charge.

* Gauging done sequentially if NcG normal: first N and then G/N.
* If C is a quantum double, then €/G a double.

* C and €/G same up to doubles.

* Inverse process of gauging:
When Rep(G) in €/G =(C%)Y condensed, € recovered.



Particle-Hole Symmetry of Bosonic Z4

Consider p-h symm. of Z;---No symm. fractionalization as H*(Z,, Z3)=0.

Defectification:

Only one twist defect g In C;: g®g=1+a+a. This theory is NOT braided---Tambara-
Yamagami theory for Z;. But It has a G-crossed braiding. There are two ways to
have an defect as H3(Z,,U(1))=2,.

Gauging:

Taking the equivariant quotient results either SU(2), or its cousin Jones-Kauffman
theory at r=6---two metaplectic theories corresponding to the two classes in
H3(Z,,U(1))=Z, as above.



Braided G-crossed Z;-Tambara-Yamagami

The 6j symbols for the Z;-Tambara-Yamagami theory is (unlisted
admissible 6j symbols and R-symbols=1):

b _
Fg’"=F)*“=x(ab), F3tt=7-x""(a,b),

where y(a,b) is a symmetric bi-character of Z; and k=11, g=defect
and a,b €Z5. ady g

It is known that this theory is NOT braided.

But it is G-crossed braided: g a
Rga=Rgg=w2“2 and R99=(—iK)"2w*", a=0,1,2.



Modular G-crossed Category

* The extended Verlinde algebra has 4 sectors: Vo, Vi1, V10, V1,1, and §-, t-
matrices form a rep. of SL(2,Z). Below the s,t are those of the Z5 theory.

s 0 0 O
. ~ .~ (0 0 1 0
The extended S-matrix S= 010 0
0O 0 0 -k
t 0 0 0 \
N 10 1 0 O
* The extended ¢t matrix t= 0 0 0 (—ix)'/
\O O (_lK)l/Z O /



Gauging As Construction of New UMTCs

* 3-fermion theory (toric code sister): SO(8), with G=5;
* S- T-matrices:

Label d )
! 1 2 3 3 4 4 4 32 3v2 32 32 (I,+) | 1 1
1 1 2 3 3 4 4 4 -3v2-3V2-3V2-3V2 (1,—) | 1 1
2 2 4 6 6 -4-4-4 0 0 0 0 {a,a} | 2 1
3 3 6 -3 -3 0 0 0 -3v2-3vV2 3v2 3v2 (Y,+) | 3 —1
3 3 6 -3 -3 0 0 0 3v2 32 —i\/_—%\/_ v,—) | 3 -1
4 4 -4 0 0 b eca 0 0 0 {ww} | 4 | a='/3
4 4 -4 0 0 ¢ a b 0 0 n 0 {wa,wa}| 4 |wa=1/3
4 4 -4 0 0 a b c 0 0 0 0 (wa,wa}| 4 |oPa—1/3
3v2-3v2 0 -3v2 3vV2 0 0 0 0O 0 6 -6 (04, 4) |3V2]| =
3v2-3v2 0 -3v2 3v2 0 0 0 0 0 -6 6 (0—,+) |3v2] —e=*F*
3v2-3v2 0 3v2 -3/2 0 0 0 6 -6 0 0 (o4, —) |3V2] —eF"
13v2-3v2 0 3v2 -32 0 0 0 -6 6 0 0 _ (o—, =) |3v2] e~ F°
a = —8cos&&,b = —8sinZ,c = 8cosZ. V=10 = e2m/3 g = g4mi/3



Summary

We skeletonize an existing mathematical theory and formulate it into
a physical theory with full computational power for symmetry,
defects, and gauging of 2D topological phases.

It provides a general framework to classify symmetry enriched 2D
topological phases of matter.

Defectification . Gauging
> = 7 [

Confinement Condensation




