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Abstract

Set functions predict a label from a permutation-
invariant variable-size collection of feature vec-
tors. We propose making set functions more un-
derstandable and regularized by capturing domain
knowledge through shape constraints. We show
how prior work in monotonic constraints can be
adapted to set functions, and then propose two
new shape constraints designed to generalize the
conditioning role of weights in a weighted mean.
We show how one can train standard functions and
set functions that satisfy these shape constraints
with a deep lattice network. We propose a non-
linear estimation strategy we call the semantic
feature engine that uses set functions with the pro-
posed shape constraints to estimate labels for com-
pound sparse categorical features. Experiments
on real-world data show the achieved accuracy is
similar to deep sets or deep neural networks, but
provides guarantees on the model behavior, which
makes it easier to explain and debug.

1. Introduction
Common set functions such as mean, median, min and max
share the satisfying property that they are monotonically
increasing functions: if one of the elements in the set is
increased, the output can only increase. In this paper, we
show that one can machine learn flexible set functions with
this monotonicity guarantee.

Another common and useful set function is the weighted
mean, in which a conditioning feature (the weight input)
specifies how much to trust a primary input. We propose and
investigate new shape constraints that act on pairs of features
that capture this relationship of one feature conditioning the
importance of a second feature.
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For example, suppose one wants to predict how good a
restaurant is based on its customer reviews, where each
restaurant x is described by a set of M(x) reviews, and
each review is described by D features, such as the star
rating and the reviewer’s credibility. We will show how
to train a flexible function that maps the set of reviews
to a prediction for the restaurant, and is guaranteed to be
a monotonically increasing function of each review’s star
rating, and is guaranteed to be more sensitive to a rating if
its reviewer’s credibility is higher.

In general, our proposed new shape constrained set func-
tion learning is applicable whenever one is estimating a
measurement from a set of noisy measurements, and has
side information about how noisy each measurement is.
The monotonicity shape constraints can be applied to multi-
ple primary features, and the new conditioning shape con-
straints can be applied to multiple pairs of features. These
shape constraints provide guarantees on how the model be-
haves, which improves the ability to summarize the model
(improved interpretability) and makes the model behave
more predictably (improved debuggability).

While we focus here on set functions, our proposed condi-
tioning shape constraints can also be used to capture com-
plementary relationships, and submodularity and supermod-
ularity relationships, for standard machine learned functions
that map RD → R.

We will show that shape-constrained set functions are espe-
cially helpful for problems that arise in feature engineering
from sparse compound categorical inputs such as queries.
A common heuristic for such compound inputs is to split
the compound input up into a set of elements (e.g., split a
query into its ngrams), estimate a label for each element,
then combine the set of estimates, usually using a classic set
function like mean or max. We propose such a split-estimate-
combine method that we call semantic feature engine (SFE),
where the combine step uses a learned set function with the
proposed shape constraints. SFE is easy to debug and under-
stand, can be re-trained with less churn than deep models,
and we will show it works well in practice.
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2. Related Work on Set Functions
We restrict our focus to set functions that output a label
y ∈ R and take an input x which is specified as a set of un-
ordered feature vectors {xm ∈ RD} for m = 1, . . . ,M(x)
for some finite M(x). The special case of D = 1 includes
classic set functions like mean, min, max, geometric mean,
and harmonic mean, and has been studied under the name ag-
gregation functions (Torra & Naurkawa, 2010). Another spe-
cial case is if every element of the set is a one-hot Boolean
feature vector, often used to represent a set of categorical
elements (see e.g. Bach (2013)).

Zaheer et al. (2017) showed that set functions of this form
can be expressed as some transform ρ of the average of a
per-element transform φ:

f(x) = ρ

 1

M(x)

M(x)∑
m=1

φ(xm)

 (1)

where φ : RD → RK , and ρ : RK → R. Equation (1) can
be read as a function ρ acting on a K-dimensional mean
embedding defined by φ. See Fig. 1 for a block diagram.

Zaheer et al. (2017) proposed using a DNN for φ and ρ,
and jointly optimizing the training of (1); they called this
deep sets. Earlier work includes support distribution ma-
chines (Muandet et al., 2012; Poczos et al., 2012), which
we express in the form of (1) in Appendix A.

Distribution regression handles the same set-up, with the
additional assumption that each element xm in the set x
was drawn independently and identically (IID) from a prob-
ability distribution PX (Póczos et al., 2013; Szabo et al.,
2016). This assumption enables handling the learning in
two phases: first learn the underlying probability distribu-
tion P̂X for each x (e.g. with a kernel density estimation),
and then learn a mapping from a probability distribution to
the label. That work is best-suited to sets large enough to
make distribution estimation reasonable, though Bayesian
approaches can help (Law et al., 2018). Other work has
also defined kernels for distributions derived from sets of
inputs (Kondor & Jebara, 2003).

Some machine-learning algorithms have also been proposed
for fixed-size permutation-invariant sets, e.g. (Shivaswamy
& Jebara, 2006). The multiple instance learning set-up
(Dietterich et al., 1997) differs in that each element in the
input set has a label, that is each example has the form
{xm, ym} (and the label for the set x is usually taken to be
the maximum of the {ym}).

3. Monotonicity Guarantees
The unlimited flexibility of deep sets makes it difficult to
know what the model has learned, predict how it will be-

have for a given example, and be confident it hasn’t overfit.
For many applications one does have domain knowledge
that certain features should only have a positive impact on
the output. For standard machine learning, such domain
knowledge can be captured by constraining the model to
be monotonically increasing with respect to selected inputs.
Such monotonicity constraints provide regularization and
make the model’s behavior easy to describe with respect to
the constrained features (see e.g. Groeneboom & Jongbloed
(2014); Chetverikov et al. (2018); Gupta et al. (2016)).

Here, we expand the definition of monotonicity to handle set
functions as defined in (1). Without loss of generality, we
only address increasing monotonicity, analogous definitions
can be made for decreasing monotonicity.

Definition 1 (Monotonically Increasing Set Function). A set
function f(x) as defined by (1) is monotonically increasing
with respect to feature d if f(x+) ≥ f(x−) for any pair of
inputs x+ and x− that are the same except that x+m[d] >
x−m[d] for some m, and strictly monotonically increasing if
f(x+) > f(x−).

An analogous definition was given for the special case of
D = 1 in Torra & Naurkawa (2010). A different notion is
a monotone set function, which requires f(A) ≤ f(B) if
A ⊆ B (Rosenthal, 1948).

3.1. Learning Monotonic Set Functions

One approach to producing monotonic set functions would
be to use deep sets, but constrain all the DNN parameters in
both the φ and ρ models to be non-negative. However, such
monotonic neural nets are known to be very restricted in
their expressability (Daniels & Velikova, 2010), in part be-
cause all the weights must be constrained to be non-negative
even if one only wants to constrain one feature to be mono-
tonic. And if the activation function is a ReLU, monotonic
neural nets also become convex (Gupta et al., 2018).

Instead, we propose using a deep lattice network (DLN)
(You et al., 2017) for each of φ and ρ, as shown in Fig.
1 and described in Section 5. DLNs are state-of-the-art
for learning monotonic functions (You et al., 2017). A
DLN can be made-up of three types of layers: (i) linear
embedding layers that linearly mix inputs (ii) calibration
layers of one-dimensional piece-wise linear functions that
maps D inputs to D outputs without mixing the D inputs,
and (iii) lattice layers that nonlinearly mix inputs using an
ensemble of multi-dimensional interpolated look-up tables
(lattices). Fig 2 shows an example of just a simple lattice
layer with D = 2 inputs and one ouput. The lattice layer is
parameterized by a 2× 2 look-up table, such that the four
look-up table parameters are the values of the function at
the four corners of the D = 2 input space, and the look-
up table is bilinearly interpolated to produce the output.
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Figure 1. Figure shows an example of the set function expressed in (1) using calibrator and lattice layers for φ and ρ, as proposed. The
D = 3 features for each element xm are fused together using the same φ function. The K = 2 outputs of φ can be interpreted as K = 2
separate fusions, one shown in blue and orange. Each of theK = 2 fusions is averaged over theM(x) = 2 elements, then theK averaged
values are inputs to ρ. Each squiggly line denotes a one-dimensional piece-wise linear function (PLF) that calibrates its input, and each
box denotes a multi-dimensional lattice function that nonlinearly mixes its inputs (see Fig. 2 for an example lattice function). The output
f(x) can be constrained to be a monotonic function of any inputs by constraining each of the functions along the path between those
inputs and f(x) to be monotonically increasing. Further, any of the D inputs can be constrained to condition the importance of another of
the D inputs as defined by the proposed trapezoid shape constraint by constraining each φk to have a trapezoid shape constraint, and
constraining the ρ to be monotonic and continuous w.r.t each φk.

For more details on lattice layers or calibration layers, see
Gupta et al. (2016). All three types of DLN layers can
be constrained for monotonicity, resulting in end-to-end
monotonicity guarantees by composition (You et al., 2017).

For set functions, one can interpret the K outputs of φ in (1)
as K different fusions {φk(xm)} of the D features in xm.
Then if we constrain the K fusions to each be monotonic
w.r.t the selected monotonic features, and also constrain ρ
to be monotonic with respect to each {φk} then the overall
set function will be monotonic w.r.t the selected features.

Proposition 1. For functions of the form (1), if φk is mono-
tonically increasing w.r.t d and ρ is monotonically increas-
ing w.r.t φk for any φk that acts on feature d, then f is
monotonically increasing in d.

(All proofs are in the appendix.)

4. New Two-Input Shape Constraints
Another type of domain knowledge that is common when
dealing with set functions is that some inputs are known to
play a conditioning role for other inputs, like the weights in
a weighted mean. For example, we may have a set of ratings
and a confidence in each rater as depicted in Fig. 2, or more
generally, a set of measurements and knowledge about how
precise each measurement is. We propose and investigate
two different new shape constraints that can capture this type
of domain knowledge, discuss how to guarantee them for
multi-layer functions, show that we can guarantee these new
shape constraints for lattice models for standard functions

that map RD → R, and show how to guarantee the new
trapezoid shape constraints for set functions of form (1).

Figure 2. An example lattice function φ : R2 → R that acts
on a rating and the rater’s confidence. The lattice parameters
θ1, θ2, θ3, θ4 are the function values at the corners, the rest of the
function is bilinearly interpolated from these parameters. Here, φ
is monotonically increasing in the rating, and φ satisfies the pro-
posed Edgeworth constraint: the slope of φ w.r.t rating gets steeper
as the rater confidence increases. It also satisfies the proposed
trapezoid constraint: as rater confidence grows, the set of possible
outputs grows.

4.1. Edgeworth Shape Constraint

We call our first new shape constraint the Edgeworth shape
constraint, named for the 19th century economist Francis
Ysidro Edgeworth, who defined complementary goods as
inputs that increase the marginal value of each other’s im-
pact on an output (Milgrom & Roberts, 1995). Suppose f is
monotonically increasing w.r.t feature d, then an Edgeworth
shape constraint guarantees the model is more sensitive to
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feature d if the conditioning feature w is higher, see Fig. 2
for an example.

Definition 2 (Edgeworth Shape Constraint). A set function
f(x) as per (1) satisfies the Edgeworth shape constraint on
input d and input w if the change in f w.r.t. d is monotoni-
cally increasing in w, that is,

f(x++)− f(x−+) ≥ f(x+−)− f(x−−) (2)

for any choice of x++, x+−, x−+, x−− that are identical
except there is an m and real numbers a−∗ ≤ a+∗ and
a∗− ≤ a∗+ where:

x−−m [d] = x−+m [d] = a−∗

x+−m [d] = x++
m [d] = a+∗

x−−m [w] = x+−m [w] = a∗−

x−+m [w] = x++
m [w] = a∗+.

We extend this definition to standard (non-set) functions
f : RD → R, by regarding them as set functions with fixed
set size M(x) = 1.

One can apply the Edgeworth constraint to non-monotonic
inputs (see Appendix D for an example). For the special
case that each element of a set is a one-hot Boolean feature
vector, then the Edgeworth constraint (2) is equivalent to
constraining f to be supermodular (Bach, 2013).

To guarantee that a multi-layer set function satisfies an Edge-
worth constraint, it is sufficient to guarantee it for each ag-
gregation φk and constrain ρ to be increasing and convex in
each φk, and constrain f to be monotonically increasing in
w (details in Appendix C), which is not a reasonable con-
straint if w is a conditioning feature like measurement preci-
sion. This difficulty of satisfying Edgeworth constraints in
multi-layer functions motivates our next shape constraint.

4.2. Trapezoid Shape Constraint

A different property we expect a conditioning feature w
to have is that the range of possible outputs should grow
as w grows. For example, as illustrated in Fig. 2, if we
trust a rater more, then we should be more negative if they
give a 1 star review, and more positive if they give a 5 star
review (on a scale of 1-5 stars). The proposed Edgeworth
constraint does not in itself guarantee this property because
it is defined on differences. We capture this property in
a second new shape constraint we refer to as a trapezoid
constraint, as it forces the output ranges to have an acute
trapezoidal shape as w is increased.

Definition 3 (Trapezoid Shape Constraint). Let f be a set
function as per (1), and assume the domain of input d is
a bounded interval [amin ∗, amax ∗] for some real-values
amin ∗ < amax ∗. Then f satisfies the trapezoid shape con-
straint for input d conditioned on input w if f is continuous,

monotonically increasing w.r.t. d, and the range of f never
shrinks as w grows, that is:

[f(xmin−), f(xmax−)] ⊆ [f(xmin+), f(xmax+)] (3)

for any choice of xmin−, xmax−, xmin+, xmax+ that are
identical except there is an m and real numbers a∗− ≤ a∗+
where:

xmin−
m [d] = xmin+

m [d] = amin ∗

xmax−
m [d] = xmax+

m [d] = amax ∗

xmin−
m [w] = xmax−

m [w] = a∗−

xmin+
m [w] = xmax+

m [w] = a∗+.

Equivalently, (3) can be written,

f(xmin−) ≥ f(xmin+) (4)

f(xmax+) ≥ f(xmax−). (5)

We extend this definition to standard (non-set) functions
f : RD → R, by regarding them as set functions with fixed
set size M(x) = 1.

Lemma 1. For (1) to satisfy the trapezoid constraint, it is
sufficient that φk satisfies the constraint for all k, and that
ρ is continuous and monotonically increasing w.r.t each of
its K inputs.

4.3. Two-Input Shape Constraints with Lattice Models

Next we show how to constrain a calibrated lattice model
(and an ensemble of them) to make sure that a trained model
satisfies either the Edgeworth or trapezoid constraint. The
example shown in Figure 1 uses a calibrated lattice model
for each φk. Recall that a calibrated lattice model (Gupta
et al., 2016) is a two-layer deep lattice network where each
of theD inputs is individually calibrated, then fused together
with a multi-dimensional lattice function. That is,

g(xm) = θTψ(cα(xm)), (6)

with definitions as follows. The first layer calibrates each of
the D inputs with a different 1-D calibrator trained per in-
put: cα(xm) = (cα1

[1](xm[1]), . . . , cαD
[D](xm[D])) and

each calibrator c[d] : R → [0, 1] is a 1-D piecewise lin-
ear function parameterized by V fixed knots defined by the
V quantiles of the training data and V corresponding free
parameters αd ∈ RV . Thus the first layer cα outputs a cal-
ibrated feature vector [0, 1]D, and unless otherwise noted,
we constrain each calibrator to produce outputs over its full
output range [0, 1] (i.e. to be a surjection). Thus the input
to the second layer is a point in the D-dimensional hyper-
cube, which has has 2D vertices. Then ψ : [0, 1]D → R2D

is a fixed nonlinear interpolation kernel that maps the D-
dimensional point to 2D interpolation weights on the 2D
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hypercube vertices in a way that satisfies the linear inter-
polation equations (Gupta et al., 2006), such as the stan-
dard multilinear interpolation kernel or the faster (but non-
differentiable) simplex kernel which produces the Lovasz
extension (Gupta et al., 2016). Then the linear interpolation
weight vector ψ(·) weights the 2D look-up table parameters
θ ∈ R2D to form the output θTψ(·).

The following lemmas show sufficient and necessary condi-
tions for the calibrated lattice function to satisfy the Edge-
worth and trapezoid constraints. Consult Fig. 2 to help
visualize these constraints.

We index the lattice layer’s parameters θ ∈ R2D by p ∈
{0, 1}D, where θp is the value of the function at the corner
p of the 2D unit hypercube; that is θp = θTψ(p). We
denote by ei ∈ {0, 1}D the vector containing 1 in the ith
entry and 0 everywhere else.

Lemma 2. Assume that c[d] and c[w] are monotonically
increasing. Then g as defined in (6) satisfies the Edgeworth
constraint if and only if for all p ∈ {0, 1}D that has 0’s in
its dth and wth entries,

θp+ew+ed
− θp+ew ≥ θp+ed

− θp. (7)

Lemma 3. Assume that c[w] and c[d] are monotonically
increasing and that g is monotonically increasing w.r.t d.
Then g as defined in (6) satisfies the trapezoid constraint if
and only if for all p ∈ {0, 1}D that has 0’s in its dth and
wth entries,

θp+ed+ew ≥ θp+ed
and θp ≥ θp+ew . (8)

Corollary 1. If a calibrated lattice defined by (6) satisfies
the trapezoid constraint, then it also satisfies the Edgeworth
constraint.

Corollary 2. Given an ensemble of calibrated lattices of
the form g(x) =

∑
t θ
T
t ψ(cαt(xm)) (Canini et al., 2016)

where all lattices satisfy equation (7) (or equation (8)), g(x)
satisfies equation (7) (or equation (8).

5. Training Set Functions with Shape
Constraints

GivenN training example pairs {xi, yi}, where xi is a set of
M(xi) feature vectors {xim ∈ RD} for m = 1, . . . ,M(xi)
and yi ∈ R, we propose training a 5-layer deep lattice
network (DLN) set function of the form (1) where the kth
component of φ is denoted φk and is a calibrated lattice
function as per (6) and ρ is a calibrated lattice with its output
also calibrated (as shown in Fig. 1), using a constrained

empirical risk minimization:

arg min
α,β,γ,θ,ζ

N∑
i=1

L

ρ
M(xim)∑

m=1

φ(xim)

 , yi

 (9)

s.t. AT [α β γ θ ζ] ≥ 0, (10)

where φk = θTk ψ(cαk
(xim)), for k = 1, . . . ,K,

ρ = cγ
(
ζTψ(cβ(·))

)
,

and where the matrix A specifies the sparse linear inequal-
ity constraints needed for any specified monotonicity or
trapezoid constraints. One can also enforce Edgeworth con-
straints, but that requires simplifying the model to just a
calibrated lattice by setting K = 1 and removing ρ, or
adding additional constraints on ρ (see Sec 4.1 for details).

All parameters of (9) have gradients so that (9) can be
trained using SGD. To handle the sparse linear inequality
constraints in (10) we use the Light-Touch algorithm (Cotter
et al., 2016) on top of Adagrad (Duchi et al., 2011). It is
straightforward to extend (9) to use an ensemble of lattices
for the ρ or φk.

6. Semantic Feature Engine
We propose a general strategy we term Semantic Feature
Engine (SFE) that uses set functions with shape constraints
to estimate a label Y for a compound sparse categorical
input z, such as a query, or the set of actors in a movie, or
ingredients in a recipe. Such inputs are sparse in that any
given z may have never occurred before, and are compound
in the sense that they can be split up into meaningful tokens.
For example, a query can be split into its ngrams, a recipe
split into common subsets of ingredients, etc.

The bag of words strategy is to treat the compound input as a
Boolean feature vector signifying which tokens are present,
and learn an embedding to reduce the dimensionality, often
followed by a DNN. This strategy can be difficult to debug
because the embedding vectors are not inherently meaning-
ful, and can have problematically high churn because the
embedding may radically change when re-trained (Cormier
et al., 2016). Lastly, we get no guarantees on what the model
learns.

Alternatively, the classic split-estimate-combine heuristic
splits the compound input into tokens, computes an esti-
mate of the label Y for each token, and then combines
the per-token estimates with a classic set function like the
mean or max into one estimate for z. This approach is easy
to debug, and the per-token estimates are relatively stable
when refreshed with new training data, and is a positive
function of each of the per-token estimates. The proposed
SFE builds on this strategy, but uses a more flexible learned
set function with shape constraints to combine D features
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Figure 3. Example SFE steps to predict how much you will enjoy “green tea cake” (show by acronym “G T C” in the figure). First,
tokenize “green tea cake” into all its ngrams. Then retrieve pre-computed estimates of your enjoyment for each ngram. In this example,
we do not have a pre-computed estimate for the ngrams “green tea cake” or “tea cake”, but we do for “green tea”, “green”, “tea”, and
“cake.” Next, because there is an estimate for “green tea,” we filter out its child-token estimates “green” and “tea” because they are likely
to be less useful and possibly misleading. Then other useful features about the remaining two tokens “green tea” and “cake” are retrieved,
say the order of each ngram (a bigram and a unigram), and how confident we are in each token’s estimate. Now we have a set with
M(x) = 2 elements, and each element has D = 3 features (the estimate, the ngram order, and the confidence). Fuse this set into a final
estimate with a learned set function, where the set function has been trained to predict the overall estimate, and has been constrained to be
a positive function of each of the estimates, and with a trapezoid constraint that makes the output trust a token’s estimate more if it is a
higher-order ngram or its confidence scores is higher.

per-token. SFE preserves delivers an easier to debug model
with guaranteed behavior and much less churn than embed-
dings; see Appendix M for more details on debuggability
and Appendix N for more details on churn.

6.1. SFE Evaluation

First, we explain how SFE evaluation works, given pre-
computed per-token estimates and a trained set function.
See Fig. 3 for an example where the input z is short text,
and see Appendix H for an example where the input z is
a set of attributes. Given a compound sparse categorical
example z, first tokenize z into a set of tokens {zm}. For
example, a natural tokenization for short text inputs is into
its set of ngrams up to some order, e.g. up to quadgrams.
For each token, SFE retrieves an estimate of the label Y
for that token from a table built as part of training; if a
token was not seen enough times during training to provide
a useful estimate, then no estimate exists for that token.
Additional features are retrieved for the remaining tokens,
such as the token order (i.e. unigram vs bigram), other
measures of confidence in each token estimate, and how
many tokens there were originally, how many tokens had
estimates, etc., producing aD dimensional feature vector for
each retrieved token. A set function is then run on the set of
D feature vectors, and the output is taken to be the estimate
Ê[Y |z]. One can apply the set function on all the retrieved
tokens. However, to improve accuracy and debuggability,
we recommend filtering less-precise tokens if more-precise
tokens have estimates. For example, for ngrams treat all
sub-ngrams of a ngram as its children. We filter out a child
token if any of its parent tokens have estimates. So if we
have found an estimate for the bigram ice cream, we throw
away the estimates for the unigrams ice and cream (see Fig.
3 for another example). More generally, define a partial
ordering of the tokens that can be described as a directed
acyclic graph on the tokens, and remove a child token if

its parent token is retrieved. See Appendix H for another
example.

6.2. Computing the SFE Per-Token Estimates

Next we describe how to compute the estimates of Y
for each token. Start with a training set {zj , yj} for
j = 1, . . . , J , where each zj is a categorical input, and
tokenize each zj into a set of tokens {zjm} using the same
tokenization that will be used at runtime.

Per-token estimates can be computed as the maximum like-
lihood estimate (MLE), that is, just take the average Y over
all examples in which a token appears (as done in our ex-
periments). In addition, we drop any estimates computed
from too few examples, where one can specify too few by a
required minimum count (done in the experiments), or by a
required maximum confidence interval for a token estimate.
Other estimation strategies than MLE can of course be used,
such as MAP estimates, or one can take advantage of the
simultaneous multiple estimates to do Stein estimation or
multi-task averaging (Feldman et al., 2014).

However, if at runtime one filters out child tokens if their
parent token is retrieved (as we recommend, and done in all
our examples and experiments), then one should also do this
filtering when computing the per-token estimates to make
training and run-time consistent. Specifically, partition all
seen training tokens {zjm} into Q disjoint subsets {Tq}
for q = 1, . . . , Q following the topological ordering of the
partial ordering DAG used to filter at evaluation time, so that
the set TQ has the highest-order tokens. That is, if t1 ∈ Tr,
t2 ∈ Ts, and r < s, then t1 cannot be an ancestor of t2 in
the DAG. For example, if the tokens are ngrams, partition
by ngram order so that Tq is the set of all q-order ngrams,
that is, the tokens ice,cream ∈ T1 have ancestor ice cream
truck ∈ T3. Then we compute the maximum likelihood
estimate Ê[Y |t] for the token t as the empirical mean of
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Y over the training examples that contain t but were not
already used to form estimates for ancestors of t. That is,
for q = Q,Q− 1, . . . , 1 in turn, for each token t ∈ Tq ,

Ê[Y |t] =
∑J
j=1 yjIt not covered zj∑J
j=1 It not covered zj

where It not coveredzj = It∈{zjm}I@Ê[Y |s] for any s∈{zjm},t∈s

and t ∈ s means s is an ancestor of t. (11)

Before proceeding on to Tq−1, remove away any estimates
computed from too few examples, whether that is controlled
by a minimum count or a maximum confidence interval.
See Appendix I for a worked example.

6.3. Training the SFE Set Function

Training the SFE set function requires a training set {zi, yi},
where each zi is converted into a set xi as described in Sec.
6.1, and the set function is then trained on {xi, yi}. We rec-
ommend constraining the set function to be monotonically
increasing in each token’s estimate. We also investigate
imposing a trapezoid constraint on the token estimate d con-
ditioned on the token order w (e.g. unigram vs bigram), and
possibly on other features that specify the precision of the
token estimate. To reduce overfitting, use a different set of
training data for the set function than is used to form the
token-wise estimates.

7. Experiments
We compare the DLN set functions with shape constraints
to Deep Sets with four experiments, summarized in Table 1.

The deep sets comparison used a TensorFlow implemen-
tation with a 3-layer fully-connected DNN for each of φ
and ρ, as in Zaheer et al. (2017). The DLN set functions
used the simplex interpolation kernel for ψ, and all DLN
models were trained with monotonicity constraints on one
or two features, some were also trained with trapezoidal con-
straints on conditioning features. The DNN comparisons
used a standard feed-forward architecture. Input text strings
are tokenized into ngrams, similarly to SFE, while input sets
are tokenized into their individual elements. These elements
are represented by a Boolean feature vector, passed through
an embedding, then followed by a series of fully connected
layers and a final softmax classification layer.

All hyperparameters were validated: see Appendix J for de-
tails. The training loss for all learned functions was squared
error.

7.1. Sales Prediction From Reviews

For the Kaggle puzzles dataset, the goal is to predict the
number of sales of each of 199 puzzles over a six month

window given its set of customer reviews at the beginning
of the six month period. The data is not IID: the test set is
the most recent 6 month data, the validation data is from the
previous 6 months and on only 168 puzzles, and the train
set is from 6 months before that and only on 155 puzzles.
We take D = 3 features for each review: its star rating, its
word count, and M(x). We constrain all the DLN models
to be monotonic in star rating and M(x) (as the number
of reviews signals popularity). For DLN Trap., we also
apply a trapezoidal constraint on star rating and word count,
as we expect longer reviews to be more important. We
also compare to simply averaging the feature vectors for
each review, then training a D = 3 linear regression on the
mean feature vectors. Results in Table 2 show that using the
trapezoid constraint reduced test MSE, and it also makes
it easier to explain what the model does and predict how it
will behave on unseen data.

7.2. Predicting Kickstarter Success From Titles

The Kaggle Kickstarter dataset has N = 331, 034 examples
of Kickstarter campaign titles that are labeled as succeeded
or failed. We removed capitalization. We split those exam-
ples randomly 70/10/20 to form a train/validation/test set,
then split the train data 90/10 to train the SFE and the set
function on separate train data; the DNN was trained on all
100% of the training data.

We trained SFE to estimate the probability of success given
a title, which we tokenized into ngrams, and kept per-token
estimates if a token appeared at least 10 times in the SFE
train set. One can analyze the SFE token estimates to see
which title ngrams were most and least effective. For exam-
ple, the 871 titles with the ngram a short film had a success
rate of 73%, but the 773 titles with the ngram app were only
10% successful (more per-ngram statistics in App. L).

For the SFE set function, we compared a simple average of
the per-token estimates to a learned set function using deep
sets or DLN’s trained on the held-out 10% training examples
and usingD = 5 features per-token. Results in Table 3 show
the SFE strategy works well compared to the DNN, and that
the DLN test accuracy is consistently slightly better than
the Deep Sets. The trapezoidal constraints improve our
understanding of the model behavior and may have a slight
positive effect on metrics.

7.3. Cuisine Classification from Recipe Ingredient List

The Kaggle recipes dataset consists of N = 39, 774
recipes from 20 cuisines. We build a model that estimates
P {cuisine c is correct | recipe ingredients list, cuisine c}
for 20 different cuisines c, one of which is correct for
each recipe. We rank the 20 cuisine scores and report
precision@3. The dataset was randomly split 70/10/20
into a train/validation/test set, and then the train set was
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Table 1. Experiment Dataset Summary: M(x) stats are for test set.

Dataset # Train # Train # Val # Test D M(x) M(x) # SFE Tokens
Set Function SFE Mean Max

Reviews 155 - 168 199 3 9.3 55 -
Recipes 2,746 25,057 4,025 7,946 5 65.4 1121 3,394,220
Kickstarter Title 23,172 208,552 33,104 66,208 5 3.6 17 18,352
User Intent 551,696 > 100 billion 78,814 157,627 8 1.5 29 > 1 billion

Table 2. Sales Predicted From Reviews: Mean Squared Error

Train Val. Test

Linear 3308 3771 8221
Deep Sets 562 2377 8323
DLN 3146 3320 8330
DLN Trap. 3084 3305 7587

randomly split 90/10 into SFE train set and set function
train set. The DNN was given 100% of the train data.
We did some standard pre-processing such as removing
capitalization, which we have made available as a Kaggle
kernel. We ran SFE on the ingredients crossed with each
cuisine with a count threshold of 5 and a maximum subset
size of 3, see Appendix K for a complete example. As
Table 4 shows, the DNN performed best, with the DLN
close behind, and then deep sets, and the classic mean token
estimate. The trapezoid constraints did hurt accuracy a little
- we hypothesize that and the DNN’s good performance was
due to the train/test split having some too-similar recipes
that rewarded more memorization over generalization.

7.4. Predicting User Intent

For this Google binary classification problem, the goal is
to predict if a given query is seeking a webpage or a place
in the real world. For example, the query [coffee] seeks
places, but [is coffee carcinogenic] seeks webpages. SFE
was run on over 100 billion training examples, for ngrams

Table 3. Kickstarter Accuracy (Prior is 59.6%).

Train Val. Test

DNN 68.9 65.0 64.9
Mean SFE Token Estimate 64.3 64.1 64.3
Deep Sets 65.8 65.5 65.7
DLN 65.9 65.7 65.8
DLN Trap.: Ngram Order 66.2 65.8 65.8
DLN Trap.: Ngram Freq. 66.1 65.7 65.9
DLN Trap.: Both 66.3 65.8 65.8

Table 4. Recipes Results

Train Val. Test
Prec Prec Prec
@3 @3 @3

DNN 97.3 89.1 88.9
Mean SFE Token Estimate 87.3 87.5 87.5
Deep Sets 88.5 88.5 87.7
DLN 88.9 89.0 88.8
DLN Trap. on Freq. 88.6 88.8 88.3
DLN Trap. on Order 88.6 88.9 88.0
DLN Trap. on Both 88.7 88.5 88.0

up to quadgrams, where the label was a noisy binary label
derived from user interactions. Only ngrams that met a very
high count threshold were included, producing over 1 billion
unique ngrams for which per-ngram statistics were kept.

Each set function was trained on a different, actively-
sampled dataset of only relatively difficult examples and
higher-quality classification labels. For the DLN, we con-
strained the set function to be positive in each ngram’s SFE
estimate. Six other features were used for each ngram: we
imposed trapezoid constraints so that the ngram estimate
was conditioned on the ngram frequency and ngram order.
An eighth feature to the set function was the M(x) for the
query. Because of the large size of the token set and the fact
that we used both a large noisy training set for the SFE and
a smaller precise training set to learn the set function, we
did not attempt to compare to a DNN or to the mean SFE
token estimate. Results in Table 5 show the DLN’s worked
slightly better than the deep sets, as well as being easier to
debug and understand.

Table 5. User Intent From Queries Accuracy

Train Val. Test

Deep Sets 65.22 65.33 64.82
DLN 65.38 65.41 64.93
DLN Trap. 65.40 65.48 65.01
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