
Supplemental Material for
“Discrete Graph Hashing”

Wei Liu† Cun Mu‡ Sanjiv Kumar] Shih-Fu Chang‡
†IBM T. J. Watson Research Center ‡Columbia University]Google Research

weiliu@us.ibm.com cm3052@columbia.edu
sfchang@ee.columbia.edu sanjivk@google.com

1 Proofs

Lemma 1. If
{
B(j)

}
is the sequence of iterates produced by Algorithm 1, then f

(
B(j+1)

)
≥

f
(
B(j)

)
holds for any integer j ≥ 0, and both

{
f(B(j))

}
and

{
B(j)

}
converge.

Proof. Since the B-subproblem in Eq. (5) of the main paper is to maximize a continuous function
over a compact (i.e., closed and bounded) set, its optimal objective function value f∗ is finite. As
B(j) is feasible for each j, the sequence {f(B(j))} is bounded from above.

By definition, f̂j
(
B(j)

)
≡ f

(
B(j)

)
. Since B(j+1) ∈ arg maxB∈{±1}n×r f̂j(B), we have

f̂j
(
B(j+1)

)
≥ f̂j

(
B(j)

)
. Also, as A is positive semidefinite, f(B) is a convex function. Therefore,

f(B) ≥ f̂j(B) at any B ∈ {1,−1}n×r, which implies that f
(
B(j+1)

)
≥ f̂j

(
B(j+1)

)
. Putting all

the above together, we have

f
(
B(j+1)

)
≥ f̂j

(
B(j+1)

)
≥ f̂j

(
B(j)

)
= f

(
B(j)

)
, ∀j ∈ Z, j ≥ 0.

Together with the fact that
{
f(B(j))

}
is bounded from above, it turns out that the monotonically

non-decreasing sequence
{
f(B(j))

}
converges.

The convergence of
{
B(j)

}
is established based on the following three key facts.

First, if B(j+1) = B(j), then due to the update in Eq. (7) of the main paper, we have B(j′) ≡ B(j)

for any integer j′ ≥ j + 1.

Second, if B(j+1) 6= B(j), then we can infer that the entries of the gradient ∇f
(
B(j)

)
are not all

zeros, and that there exists at least an entry (i, k) (1 ≤ i ≤ n, 1 ≤ k ≤ r) such that∇i,kf
(
B(j)

)
6= 0

and
(
B(j+1)

)
i,k
6=
(
B(j)

)
i,k

. Due to the update in Eq. (7), at such an entry (i, k),
(
B(j+1)

)
i,k

=

sgn
(
∇i,kf

(
B(j)

))
, which implies that ∇i,kf

(
B(j)

) ((
B(j+1)

)
i,k
−
(
B(j)

)
i,k

)
> 0. Then, we

can derive as follows:

f̂j
(
B(j+1)

)
− f̂j

(
B(j)

)
=
〈
∇f
(
B(j)

)
,B(j+1) −B(j)

〉
=

∑
i, k

∇i,kf
(
B(j)

)
= 0

∇i,kf
(
B(j)

) ((
B(j+1)

)
i,k
−
(
B(j)

)
i,k

)
+

∑
i, k

∇i,kf
(
B(j)

)
6= 0(

B(j+1)
)
i,k

=
(
B(j)

)
i,k

∇i,kf
(
B(j)

) ((
B(j+1)

)
i,k
−
(
B(j)

)
i,k

)
+

1

∑
i, k

∇i,kf
(
B(j)

)
6= 0(

B(j+1)
)
i,k
6=
(
B(j)

)
i,k

∇i,kf
(
B(j)

) ((
B(j+1)

)
i,k
−
(
B(j)

)
i,k

)

= 0 + 0 +
∑
i, k

∇i,kf
(
B(j)

)
6= 0(

B(j+1)
)
i,k
6=
(
B(j)

)
i,k

∇i,kf
(
B(j)

) ((
B(j+1)

)
i,k
−
(
B(j)

)
i,k

)

> 0.

As such, we have that once B(j+1) 6= B(j),

f
(
B(j+1)

)
≥ f̂j

(
B(j+1)

)
> f̂j

(
B(j)

)
= f

(
B(j)

)
,

which hence causes a strict increase from f
(
B(j)

)
to f

(
B(j+1)

)
.

Third, there are only finite f values in the cost sequence
{
f(B(j))

}
because of finite feasible points

in the set {1,−1}n×r.

Taking together the second and third facts, we find that there exists an integer j ≥ 0 such that
B(j+1) = B(j), or otherwise infinite values will appear in

{
f(B(j))

}
. Incorporating the first fact,

it can be easily arrived that there exists an integer j ≥ 0 such that B(j′) ≡ B(j) for any integer
j′ ≥ j + 1, which immediately indicates the convergence of

{
B(j)

}
.

Lemma 2. Y? =
√
n[U Ū][V V̄]> is an optimal solution to the Y-subproblem in Eq. (6).

Proof. We first prove that Y? is feasible to Eq. (6) in the main paper, i.e., Y? ∈ Ω. Note that
1>J = 0 and hence 1>JB = 0. Because JB and U have the same column (range) space, we
have 1>U = 0. Moreover, as we construct Ū such that 1>Ū = 0, we have 1>[U Ū] = 0, which
implies 1>Y? = 0. Together with the fact that (Y?)>Y? = n[V V̄][U Ū]>[U Ū][V V̄]> = nIr,
the feasibility of Y? to Eq. (6) does hold.

Now we consider an arbitrary Y ∈ Ω. Due to 1>Y = 0, we have JY = Y − 1
n11>Y = Y, and

〈B,Y〉 = 〈B,JY〉 = 〈JB,Y〉. Moreover, by using von Neumann’s trace inequality [2] and the
fact that Y>Y = nIr, we have 〈JB,Y〉 ≤

√
n
∑r′

k=1 σk. On the other hand,

〈B,Y?〉 = 〈JB,Y?〉

=

〈
[U Ū]

[
Σ 0
0 0

]
[V V̄]>,Y?

〉
=
√
n

〈[
Σ 0
0 0

]
, Ir

〉

=
√
n

r′∑
k=1

σk.

Therefore, we can quickly derive

tr
(
B>Y

)
= 〈B,Y〉 = 〈JB,Y〉

≤
√
n

r′∑
k=1

σk

= 〈B,Y?〉
= tr

(
B>Y?

)
for any Y ∈ Ω, which completes the proof.

2

Theorem 1. If
{

(Bk,Yk)
}

is the sequence generated by Algorithm 2, then Q(Bk+1,Yk+1) ≥
Q(Bk,Yk) holds for any integer k ≥ 0, and

{
Q(Bk,Yk)

}
converges starting with any feasible

initial point (B0,Y0).

Proof. Let us use ‖ · ‖2 to denote matrix 2-norm. ∀ B ∈ {±1}n×r and ∀Y ∈ Ω, we can derive

Q(B,Y) = 〈B,AB〉+ ρ〈B,Y〉
≤ ‖B‖F‖AB‖F + ρ‖B‖F‖Y‖F
≤ ‖B‖F‖A‖2‖B‖F + ρ‖B‖F‖Y‖F
=
√
nr ·
√
nr + ρ

√
nr ·
√
nr = (1 + ρ)nr,

where the second line is due to Cauchy-Schwarz inequality, the third line follows from the inequality
‖CD‖F ≤ ‖C‖2‖D‖F for any compatible matrices C and D, and the last line holds as ‖B‖F =
‖Y‖F =

√
nr and ‖A‖2 = 1. Since (Bk,Yk) is feasible at each k, the sequence

{
Q(Bk,Yk)

}
is

bounded from above.

Applying Lemma 1 and Lemma 2, we quickly have

Q(Bk+1,Yk+1) ≥ Q(Bk+1,Yk) ≥ Q(Bk,Yk).

Together with the boundedness of
{
Q(Bk,Yk)

}
, the monotonically non-decreasing sequence{

Q(Bk,Yk)
}

must converge.

Proposition 1. For any orthogonal matrix R ∈ Rr×r and any binary matrix B ∈ {±1}n×r, we

have tr
(
B>AB

)
≥ 1

r
tr2
(
R>H>AB

)
.

Proof. Since A is positive semidefinite, it suffices to write A = E>E with some proper E ∈ Rm′×n

(m′ ≤ m). Moreover, because the operator norm ‖A‖2 = 1, we have ‖E‖2 = 1.

By taking into account the fact H>H = Ir, we can derive that for any orthogonal matrix R ∈ Rr×r

and any binary matrix B ∈ {±1}n×r, the following inequality holds:∣∣tr(R>H>AB
)∣∣ =

∣∣tr(R>H>E>EB
)∣∣

=
∣∣〈EHR,EB

〉∣∣
≤ ‖EHR‖F‖EB‖F
≤ ‖E‖2‖HR‖F‖EB‖F

=
√

tr
(
R>H>HR

)
‖EB‖F

=
√

tr(Ir)‖EB‖F
=
√
r‖EB‖F.

The above inequality gives ‖EB‖F ≥
∣∣tr(R>H>AB

)∣∣ /√r, leading to

tr
(
B>AB

)
= tr

(
B>E>EB

)
= ‖EB‖2F

≥
(∣∣tr(R>H>AB

)∣∣ /√r)2
=

1

r
tr2
(
R>H>AB

)
,

which completes the proof.

It is also easy to prove the convergence of the sequence
{

tr
(
(Rj)>H>ABj

0

)}
j

generated in opti-

mizing problem (8) of the main paper, by following the spirit of Theorem 1.

3

2 More Discussions

2.1 Orthogonal Constraint

Like Spectral Hashing (SH) [7, 6] and Anchor Graph Hashing (AGH) [4], we impose the orthogonal
constraints on the target hash bits so that the redundancy among these bits can be minimized, which
will lead to uncorrelated hash bits if the orthogonal constraints are strictly satisfied. However, the
orthogonality of hash bits is traditionally difficult to achieve, so our proposed Discrete Graph Hash-
ing (DGH) model pursues nearly orthogonal (uncorrelated) hash bits by softening the orthogonal
constraints. Here we clarify that the performance drop of linear projection based hashing methods
such as [1][3] is not due to the orthogonal constraints imposed on hash bits, but on the “projection
directions”. When using orthogonal projections, the quality of constructed hash functions typical-
ly degrades rapidly since most variance of the training data is captured in the first few orthogonal
projections. On the contrary, in this work we impose the orthogonal constraints on hash bits. Even
though recall is expected to drop with long codes for all the considered hashing techniques including
our proposed DGH, orthogonal/uncorrelated hash bits have been found to yield better search accu-
racy (e.g., precision/recall) for longer code lengths since they minimize the bit redundancy. Previous
hashing methods [4, 6, 7] using continuous relaxations deteriorate with longer code lengths because
of large errors introduced by the discretizations of their continuously relaxed solutions. Our hashing
technique (both versions DGH-I and DGH-R) generates nearly uncorrelated hash bits via direct dis-
crete optimization, so its recall decreases much slower and also keeps much higher in comparison
to the other methods (see Figure 3). The hash lookup success rate of our DGH is kept almost 100%
with only a tiny drop (see Figure 1 in the main paper). Overall, we have shown that the orthogonal
constraints on hash bits, which are nearly satisfied by enforcing direct discrete optimization, do not
hurt but improve recall/success rate of hash lookup for relatively longer code lengths.

2.2 Spectral Relaxation

Spectral methods have been well studied in the literature, and the effect of spectral relaxations which
were widely adopted in clustering, segmentation, and hashing problems could be bounded. However,
as those existing bounds are typically concerned with the worst case, such theoretical results may
be very conservative without clear practical implications. Moreover, since we used the solution,
obtained via continuous relaxation + discrete rounding, of the spectral method AGH [4] as an initial
point for running our discrete method DGH-I, due to the proven monotonicity (Theorem 1), DGH
(Algorithm 2 in the main paper) leads to a solution which is certainly no worse than the initial point
(i.e., the spectral solution) in terms of the objective function value of Eq. (4) in the main paper. Note
that the deviation (e.g., `1 distance) from the continuously relaxed solution to the discrete solution
will grow as the code length increases, as disclosed by the normalized cuts work [5]. Quantitatively,
we find that the hash lookup F-measure (Figure 2 in the main paper) and recall (Figure 3) achieved
by the spectral methods (e.g., SH, 1-AGH and 2-AGH) relying on continuous relaxations either drop
drastically or become very poor when the code length surpasses 48. Therefore, in the main paper,
we argued that continuous relaxations applied for solving hashing problems may lead to poor hash
codes with longer code lengths.

2.3 Initialization

Our proposed initialization schemes are motivated by previous work. In our first initialization
scheme, Y0 originates from the spectral embedding of the graph Laplacian, and its binarization
B0 (threshold Y0 at zero) has been used as the final hash codes by the spectral method AGH [4].
Our second initialization scheme modifies the first one to seek the optimally rotated spectral embed-
ding Y0, where the motivation is provided by Proposition 1. While the two initialization schemes
are heuristic, we find that both of them consistently result in much better performance than random
initialization.

2.4 Out-of-Sample Hashing

We proposed a novel out-of-sample extension for hashing in Section 2 of the main paper, which is
essentially discrete and completely different from the continuous out-of-sample extensions suggest-
ed by the spectral methods including SH [7], MDSH [6], 1-AGH and 2-AGH [4]. Our proposed

4

0 1 2 3
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5
(a) Convergence curves of Q(B,Y) with r=24

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e6

)

DGH−I
DGH−R

0 1 2 3 4
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

3

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e6

)

(b) Convergence curves of Q(B,Y) with r=48

DGH−I
DGH−R

0 1 2 3 4 5
3

3.5

4

4.5

5

5.5

6
(c) Convergence curves of Q(B,Y) with r=96

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e6

)

DGH−I
DGH−R

Figure 1: Convergence curves of Q(B,Y) starting with two different initial points on CIFAR-10.

0 1 2
2

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8
(a) Convergence curves of Q(B,Y) with r=24

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e6

)

DGH−I
DGH−R

0 1 2 3 4
3

3.5

4

4.5

5

5.5
(b) Convergence curves of Q(B,Y) with r=48

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e6

)

DGH−I
DGH−R

0 1 2 3 4 5 6 7 8
0.5

0.6

0.7

0.8

0.9

1

1.1

iterations

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
es

 Q
(B

,Y
)

(1
e7

)

(c) Convergence curves of Q(B,Y) with r=96

DGH−I
DGH−R

Figure 2: Convergence curves of Q(B,Y) starting with two different initial points on SUN397.

extension neither makes any assumption nor involves any approximation, but directly achieves the
hash code for any given query in a discrete manner. Consequently, this discrete hashing extension
makes the whole hashing scheme asymmetric in the sense that hash codes are yielded differently for
samples in the dataset and queries outside the dataset. In contrast, the overall hashing schemes of the
above spectral methods [4, 6, 7] are all symmetric. We gave a brief discussion about the proposed
asymmetric hashing mechanism in Section 4 of the main paper.

3 More Experimental Results

In Figures 1 and 2, we plot the convergence curves of
{
Q(Bk,Yk)

}
starting with the suggested two

initial points (B0,Y0). In specific, DGH-I uses the first initial point, and DGH-R uses the second
initial point which is obtained by learning a rotation matrix R. Note that if R is equal to the identity
matrix Ir, DGH-R degenerates to be DGH-I. Figures 1 and 2 indicate that when learning 24, 48, and
96 hash bits, DGH-R consistently gives a higher objective valueQ(B0,Y0) than DGH-I at the start;
DGH-R also reaches a higher objective value Q(B∗,Y∗) than DGH-I at the convergence, though
DGH-R tends to need more iterations for convergence. Typically, more than one iteration are needed
for both DGH-I and DGH-R to converge, where the first iteration usually gives rise to the largest
increase in the objective function value Q(B,Y).

We show the recall results of hash lookup within Hamming radius 2 in Figure 3, which reveal that
when the number of hash bits r ≥ 16, DGH-I achieves the highest recall except on YouTube Faces,
where DGH-R is the highest while DGH-I is the second highest. Among those competing hashing
techniques: when r ≥ 48, KLSH, IsoH, SH and BRE suffer from poor recall (< 0.065), and even
give close to zero recall on the first three datasets CIFAR-10, SUN397 and YouTube Faces; ITQ
attains much lower recall than DGH-I and DGH-R, and even gives close to zero recall when r ≥ 32
on the first two datasets; LSH and IMH usually give higher recall than the other methods, but are
notably inferior to DGH-I when r ≥ 16; although using the same constructed anchor graph on each
dataset, DGH-I and DGH-R achieve much higher recall than 1-AGH and 2-AGH which give close
to zero recall when r ≥ 48 on CIFAR-10 and Tiny-1M.

5

Table 1: Hamming ranking performance on CIFAR-10 and SUN397 datasets. r denotes the number
of hash bits used in the hashing methods. All training and test times are in seconds.

Method CIFAR-10 SUN397
Mean Average Precision TrainTime TestTime Mean Average Precision TrainTime TestTime

r = 24 r = 48 r = 96 r = 96 r = 96 r = 24 r = 48 r = 96 r = 96 r = 96
`2 Scan 0.1752 – 0.1550 –

LSH 0.1220 0.1228 0.1256 0.5 1.1×10−5 0.0178 0.0171 0.0228 0.9 1.1×10−5

KLSH 0.1275 0.1361 0.1407 1.8 3.7×10−5 0.0404 0.0641 0.0842 5.2 4.8×10−5

ITQ 0.1714 0.1783 0.1828 14.1 1.2×10−5 0.1050 0.1276 0.1463 18.7 1.1×10−5

IsoH 0.1651 0.1721 0.1765 1.8 1.2×10−5 0.0883 0.0955 0.1218 9.2 1.1×10−5

SH 0.1317 0.1352 0.1296 9.2 1.0×10−4 0.0727 0.0791 0.0909 17.0 9.8×10−5

MDSH 0.1616 0.1637 0.1631 13.3 7.2×10−5 0.0823 0.0984 0.1134 54.8 1.4×10−4

IMH 0.1832 0.1878 0.1925 15.4 2.6×10−5 0.0987 0.1049 0.1102 35.2 3.5×10−5

1-AGH 0.1805 0.1685 0.1522 12.9 3.4×10−5 0.1411 0.1486 0.1493 32.4 4.3×10−5

2-AGH 0.1812 0.1842 0.1719 13.5 5.5×10−5 0.1256 0.1437 0.1544 33.5 5.2×10−5

BRE 0.1619 0.1644 0.1713 943.9 5.6×10−5 0.0683 0.0898 0.1096 1344.9 4.5×10−5

DGH-I 0.1808 0.1819 0.1832 46.0 3.3×10−5 0.1219 0.1119 0.1069 87.5 3.5×10−5

DGH-R 0.1910 0.1912 0.1950 73.1 3.3×10−5 0.1438 0.1575 0.1624 127.7 3.5×10−5

From the recall results, we can conclude that the discrete optimization procedure exploited by our
DGH hashing technique better preserves the neighborhood structure inherent in massive data into a
discrete code space, than the relaxed optimization procedures employed by SH, 1-AGH and 2-AGH.
We argue that the spectral methods SH, 1-AGH and 2-AGH did not really minimize the Hamming
distances between the neighbors remaining in the input space, since the discrete binary constraints
which should be imposed on the hash codes were discarded.

Finally, we report the Hamming ranking results on CIFAR-10 and SUN397 in Table 1, which clearly
show the superiority of DGH-R over the competing hashing techniques in mean average precision
(MAP). Regarding the reported training time, most of the competing methods such as AGH are non-
iterative, while BRE and our proposed DGH-I/DGH-R involve iterative optimization procedures
so they are slower. Admittedly, our DGH method is slower in training than the other methods
except BRE, and DGH-R is slower than DGH-I due to the longer initialization for optimizing the
rotation R. However, considering that training happens in the offline mode and substantial quality
improvements are found in the learned hash codes, we believe that a modest sacrifice in training time
is acceptable. Note that in Table 1 of the main paper, even for one million samples of the Tiny-1M
dataset, the training time of DGH-I/DGH-R is less than one hour. Search/query time of all referred
hashing methods includes two components: coding time and table lookup time. Compared to coding
time, the latter is constant (dependent on the number of hash bits r) and small enough to be ignored,
since a single hash table with no reordering is used for all the methods. Hence, we only report the
coding time as the test time per query for all the compared methods. In most information retrieval
applications, test time is usually the main concern as search mostly happens in the online mode, and
our DGH method has comparable test time with the others.

To achieve the best performance for DGH-I/DGH-R, we need to tune the involved (hyper)parameters
via cross validation. However, in our experience they are normally easy to tune. Regarding the
parameters needed by anchor graph construction, we just fix the number of anchors m as 300 as
in the AGH method [4], fix s to 3, and set the other parameters according to [4], so as to make
a fair comparison with AGH. Regarding the budget iteration numbers required by the alternating
maximization procedures of our DGH method, we simply fix them to proper constants (i.e., TR =
100, TB = 300, TG = 20), within which the initialization procedure for optimizing the rotation
R and the DGH procedure (Algorithm 2 in the main paper) empirically converge. For the penalty
parameter ρ that controls the balancing and uncorrelatedness of the learned hash codes, we tune it in
the range of [0.1, 5] on each dataset. Our choices for these parameters are found to work reasonably
well over all datasets.

References

[1] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to
learning binary codes for large-scale image retrieval. TPAMI, 35(12):2916–2929, 2013.

[2] R. Horn and C. Johnson. Matrix analysis. Cambridge University, 2012.

6

8 1216 24 32 48 64 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
(a) Hash lookup recall @ CIFAR−10

bits

R
ec

al
l w

ith
in

 H
am

m
in

g
ra

di
us

 2

LSH
KLSH
ITQ
IsoH
SH
IMH
1−AGH
2−AGH
BRE
DGH−I
DGH−R

8 1216 24 32 48 64 96
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(b) Hash lookup recall @ SUN397

bits

R
ec

al
l w

ith
in

 H
am

m
in

g
ra

di
us

 2

LSH
KLSH
ITQ
IsoH
SH
IMH
1−AGH
2−AGH
BRE
DGH−I
DGH−R

1216 24 32 48 64 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
(c) Hash lookup recall @ YouTube Faces

bits

R
ec

al
l w

ith
in

 H
am

m
in

g
ra

di
us

 2

LSH
KLSH
ITQ
IsoH
SH
IMH
1−AGH
2−AGH
BRE
DGH−I
DGH−R

1216 24 32 48 64 96 128
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

bits

R
ec

al
l w

ith
in

 H
am

m
in

g
ra

di
us

 2

(d) Hash lookup recall @ Tiny−1M

LSH
KLSH
ITQ
IsoH
SH
IMH
1−AGH
2−AGH
BRE
DGH−I
DGH−R

Figure 3: Mean recall of hash lookup within Hamming radius 2 for different hashing techniques.

[3] W. Kong and W.-J. Li. Isotropic hashing. In NIPS 25, 2012.
[4] W. Liu, J. Wang, S. Kumar, and S.-F. Chang. Hashing with graphs. In Proc. ICML, 2011.
[5] J. Shi and J. Malik. Normalized cuts and image segmentation. TPAMI, 22(8):888–905, 2000.
[6] Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hashing. In Proc. ECCV, 2012.
[7] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing. In NIPS 21, 2008.

7

	Proofs
	More Discussions
	Orthogonal Constraint
	Spectral Relaxation
	Initialization
	Out-of-Sample Hashing

	More Experimental Results

