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Abstract

Neural Ordinary Differential Equation (Neural ODE)

has been proposed as a continuous approximation to the

ResNet architecture. Some commonly used regulariza-

tion mechanisms in discrete neural networks (e.g., dropout,

Gaussian noise) are missing in current Neural ODE net-

works. In this paper, we propose a new continuous neu-

ral network framework called Neural Stochastic Differen-

tial Equation (Neural SDE), which naturally incorporates

various commonly used regularization mechanisms based

on random noise injection. For regularization purposes, our

framework includes multiple types of noise patterns, such as

dropout, additive, and multiplicative noise, which are com-

mon in plain neural networks. We provide some theoretical

analyses explaining the improved robustness of our models

against input perturbations. Furthermore, we demonstrate

that the Neural SDE network can achieve better generaliza-

tion than the Neural ODE and is more resistant to adver-

sarial and non-adversarial input perturbations.

1. Introduction

Despite the superhuman performance in many computer

vision tasks, recent findings [2, 8, 28] demonstrate that

deep neural networks remain to be more fragile than hu-

man or even shallow models. Existing work support such

phenomenon from different perspectives; for instance, on

CIFAR-10 and ImageNet, [25] shows that the test accuracy

drops by 5% − 15% if we replace the original test set by a

new one. This experiment casts doubts on the brittleness of

generalization and implies that current classifiers are very

sensitive to minutiae of data cleaning process. Even on the

same test set, unnoticeable adversarial perturbations crafted

by specific algorithms [19] can make the test accuracy close

to zero. In the less challenging non-adversarial case, [11]

collects tens of different types of perturbations and corrup-

tions, including motion blur or frog, to large scale image

dataset; they found that test accuracy drops considerably on

corrupted images. We summarize three settings above as

generalization, adversarial robustness, and non-adversarial

robustness. Ideally, we desire a model not only to be dis-

tributionally robust but also be resistant against adversarial

and non-adversarial perturbations. Unfortunately, previous

works only focus on one of these problems – e.g. they may

apply adversarial training technique [8, 19] to tackle adver-

sarial examples but fall short of clean accuracy when no

perturbation exists. It is thus very interesting to see whether

there is a unified way to mitigate all the problems, and

whether we can find a theoretical explanation for it.

In this paper, we study the role of randomness for train-

ing a robust neural network. There are abundant sources of

randomness: 1) dropout layer [26] randomly disable some

neural connections and set the corresponding hidden fea-

tures to zero; 2) similarly, drop block [7] selects a dense,

rectangular region to zero; 3) stochastic depth network [12]

removes some residual blocks as a whole during the train-

ing stage; and 4) random smoothing [4] adds i.i.d. Gaussian

noise to input images to be resistant to adversarial perturba-

tions. As we will see later, all of these ideas are mostly the

same, which are composed of the deterministic part – a neu-

ral network, and the stochastic part – Bernoulli or Gaussian

random variables.

To study and understand how randomness stabilizes

neural networks, we propose a new continuous neural

network framework called Neural Stochastic Differential

Equation (Neural SDE), which models the continuous lim-

its of ResNet based on the recent proposed Neural ODE

model [3] and adds stochastic diffusion and jump terms to

cover various commonly used regularization mechanisms

based on random noise, including Dropout, stochastic depth

and Gaussian smoothing. Inside the Neural SDE model,
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there are drift term – the deterministic part of our network;

the diffusion term – the stochastic part driven by multi-

dimensional Brownian motions; and the jump term – the

stochastic part driven by Poisson process. Diffusion term is

best suited for small but persistent changes to hidden fea-

tures, such as Gaussian smoothing after each residual block.

Jump term works better for strong and sparse strikes to

hidden features, examples include dropout/drop block layer

and stochastic depth network. Based on the formulation,

we draw a theoretical connection between the robustness

of neural networks to the stability of the solution. Further-

more, we manage to get the stability condition in the scope

of neural network.

In addition to the theoretical contribution, we also show

that it’s possible to directly train the Neural SDE model ef-

ficiently by numerically solving the SDE system. With the

added stochastic regularizations, the proposed continuous

neural network outperforms the Neural ODE network in

terms of generalizability, adversarial robustness, and non-

adversarial robustness on CIFAR10 (or CIFAR10.1 [24]),

STL10, as well as Tiny-ImageNet datasets.

2. Related work

Our work is inspired by the success of the Neural ODE

network, and we seek to improve the generalization and ro-

bustness of Neural ODE by adding noise in the dynamic

system. Regularization mechanisms such as dropout cannot

be easily incorporated in the original Neural ODE due to its

deterministic nature.

Neural ODE The idea of formulating ResNet as a dy-

namic system was discussed in [5]. A framework was pro-

posed to link existing deep architectures with discretized

numerical ODE solvers [18], and was shown to be param-

eter efficient. These networks adopt layer-wise architec-

ture – each layer is parameterized by different indepen-

dent weights. The Neural ODE model [3] computes hid-

den states in a different way: it directly models the dynam-

ics of hidden states by an ODE solver, with the dynamics

parameterized by a shared model. A memory efficient ap-

proach to compute gradient by adjoint methods was devel-

oped, making it possible to train large, multi-scale genera-

tive networks [1, 9]. Our work can be regarded as an exten-

sion of this framework, with the purpose of incorporating a

variety of noise-injection based regularization mechanisms.

Stochastic differential equation (SDE) in the context of neu-

ral network has been studied recently, focusing either on

understanding how dropout shapes the loss landscape [27],

or on using SDE as a universal function approximation tool

to learn the solution of high dimensional PDEs [23]. In-

stead, we aim to explain why adding random noise boosts

the stability of deep networks, and demonstrates the im-

proved generalization and robustness.

Noisy Neural Networks Adding random noise to differ-

ent layers is a technique commonly employed in training

neural networks. Dropout [26] randomly disables some

neurons to avoid overfitting, which can be viewed as mul-

tiplying hidden states with Bernoulli random variables.

Stochastic depth neural network [12] randomly drops some

residual blocks of residual neural network during train-

ing time. Another successful regularization for ResNet is

Shake-Shake regularization [6], which sets a binary random

variable to randomly switch between two residual blocks

during training. More recently, dropblock [7] was de-

signed specifically for convolutional layers: unlike dropout,

it drops some continuous regions rather than sparse points

to hidden states. All of the above regularization techniques

are proposed to improve generalization performance. One

common characteristic of them is that they fix the network

during testing time. There is another line of research that fo-

cuses on improving robustness to perturbations/adversarial

attacks by noise injection. Among them, random self-

ensemble [17, 16] adds Gaussian noise to hidden states dur-

ing both training and testing time. In training time, it works

as a regularizer to prevent overfitting; in testing time, the

random noise is also helpful, which will be explained in

this paper. Very recently, there are several concurrent work

on stochastic version of Neural ODE [13, 29, 30]. How-

ever compared with [13] and [29], our paper addresses a

very different problem, i.e. the robustness of deep random

neural network. And while [30] deals with adversarial ro-

bustness (which is also in our scope, but we extend it to

non-adversarial robustness), their method is still based on

adversarial training. In contrast, we are interested in how

and why random noise in training and testing phases im-

proves robustness.

3. Neural SDE model

Traditional neural networks are usually stacked with

multiple layers; recent work [3] shows that we can model it

in the continuous limit. This means that there is no notion of

discrete layers, and hidden features are changed smoothly.

Mathematically it has the following form

ht = hs +

∫ t

s

f(hτ , τ ;w) dτ, (1)

where t > s are two different “depths”; ht is the hidden

features at depth t; f is the residual block parameterized

by w. This formula is exactly the continuous limit of the

original ResNet [10] structure

hn+1 = hn + f(hn;wn), (2)

here the layer index n = 1, 2, . . . , N is discrete. Notice that

the original Neural ODE model does not contain any ran-

domness in hidden features ht. Thus it is not ready to model
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a variety of random neural networks (such as dropout).

To address this limitation, we augment the original Neural

ODE model (1) with two kinds of stochastic terms: one is

the diffusion term (to model Gaussian noise), and the other

is jump term (to model Bernoulli noise), formally

ht = hs +

∫ t

s

f(hτ , τ ;w) dτ

︸ ︷︷ ︸

drift term

+

∫ t

s

G(hτ , τ) dBτ

︸ ︷︷ ︸

diffusion term

+

∫ t

s

J(hτ , τ)⊙ ZNτ
dNτ

︸ ︷︷ ︸

jump term

.

(3)

Compared with Neural ODE model in (1) that only con-

tains deterministic component (drift term), we add two ex-

tra terms in (3) to model different nature of randomness:

diffusion term and jump term. The diffusion term consists

of Brownian motion Bt and its coefficient G (optionally)

parameterized by unknown variables v. Inside the jump

term, deterministic function J(hτ , τ) controls the jump

size; Random variables ZNτ
∼ Bernoulli(±1, p) controls

the direction; and Nτ ∼ Poisson(λτ) is a Poisson count-

ing process controlling the “frequency” of jumps. For com-

pleteness, we include some key properties of Brownian mo-

tion to appendix, and for more systematic discussion we re-

fer readers to related sections in [22, 14], informally we can

regard the random variable dBt as i.i.d. Gaussian random

variables with distribution N (0, dt). Next we will explain

these two terms in details.

Diffusion term. This part is an Itô integral and we know

it follows Gaussian distribution. To see it more clearly, we

can simply set G(hτ , τ) = σ and so the result of integration

will be Bt−Bs ∼ N (0, (t−s)σ2), which is consistent with

adding Gaussian noise to each residual block. For general

G, it does allow closed-form solution but the result is still

Gaussian, only the variance is now dependent on hidden

features hτ .

Jump term. The key feature of jump term is that the inte-

gral is calculated over Poisson process Nt, that is, the total

number of jumps in interval [s, t] follows Poisson distribu-

tion

P (Ns→t = n) =
[λ(t− s)]n

n!
e−λ(t−s), n ∈ Z+.

We can imagine that by inserting the jump term to our hid-

den state transition formula (3), we are effectively adding n
dropout layers to the network, where n is drawn from some

Poisson distribution; and for each dropout layer, it is ran-

domly placed to any network depth (see Fig. 1 to get a bet-

ter picture). Additionally, for each dropout layer, the drop

probability is determined by Bernoulli random variables Z.

1 2 3 4 5 6 7 8 9 10 11 12 13-1

1

2

3

4

5

6

Network Depth

Nt

dNt T1 T2 T3T0

1st
dropout

2nd
dropout

3rd
dropout

4th
dropout

Figure 1. Illustrateion of dropout layers under (3).

Rationale of (3). It might not be straightforward to see

why our model (3) is a proper replacement for the discrete

version of a residual neural network equipped with Gaus-

sian smoothing and Dropout layers. Here we make more

justifications about it. We first notice that the noise pattern

coming from dropout layers is very different from the noise

generated by Gaussian smoothing. By definition, Dropout

randomly sets some features to zero, so the noise here is

inherently Bernoulli distributed. On the other hand, the dif-

fusion term is a Gaussian process (Itô integral). Therefore,

it is not reasonable to model a dropout layer with diffusion

term, nor is it suitable to model Gaussian noise with jump

term. That is why we use two separate terms in our contin-

uous framework.

3.1. Some concrete examples

We proposed a new framework in (3) for encoding the

randomness into Neural ODE using diffusion and jump

terms. Next we will give some concrete examples for these

two terms.

Dropout. Dropout layer randomly disables some connec-

tions in neural network, here we consider a common situa-

tion where dropout layer is placed after convolutional block

and before residual connection (Fig. 2). Mathematically we

Conv block

f(ht;w)
Dropout

ht

f(ht;w)⊙ γ

ht + f(ht;w)⊙ γ

Figure 2. Our dropout layer configuration.

can formulate it as ht+1 = ht + f(ht;w) ⊙ γ, where ht
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is input features at depth τ , and P (γi = 0) = pdrop deter-

mines the drop rate. To be compatible with (3), we rewrite

it as

ht+1 = ht + f(ht;w)⊙ γ

= ht +
1

2
f(ht;w) + 2f(ht;w)⊙

γ − 0.5

2

= ht +
1

2
f(ht;w) + 2f(ht;w)⊙ Z

, (4)

where we are essentially shifting Bernoulli random vari-

ables from γ (with values {0, 1}) to Z (with values

{−1,+1}). Comparing (4) with (3), we arrive at the fol-

lowing continuous version of (4)

ht = hs+

∫ t

s

1

2
f(hτ ;w) dτ+

∫ t

s

2f(hτ ;w)⊙ZNτ
dNτ .

Stochastic depth network. This is very similar to the

previous dropout setting, the only difference is that for

stochastic depth network, random vector γ is no longer i.i.d.

Bernoulli distributed but “bonded” together. More formally,

γ = γ · J where Ji,j = 1 is an all-ones matrix and γ is a

(scalar) Bernoulli random variable (of values {0, 1}). Be-

yond that, there is no difference with previous dropout layer,

and the continuous form of it is

ht = hs +

∫ t

s

1

2
f(hτ ;w) dτ +

∫ t

s

2f(hτ ;w)ZNτ
dNτ ,

(5)

here ZNτ
is just a scalar random variable.

Gaussian-dropout. We can create another kind of

dropout noise that does not involve Bernoulli random vari-

ables. We first scale the original dropout (4) by 1 − pdrop,

which becomes

ht+1 = ht + f(ht;w)⊙
γ

1− pdrop

. (6)

The reason we add an 1 − pdrop scaling factor is that now

the output expectation E[ht+1] = ht + f(ht;w) looks as

if no dropout is used, due to the fact that E[γ] = 1 − pdrop.

Disentangling the mean from variance, we have

ht+1 = ht + f(ht;w) + f(ht;w)⊙ (
γ

1− pdrop

− I)

= ht + f(ht;w) +

√
pdrop

1− pdrop

f(ht;w)⊙ zt,

(7)

where I is the identity matrix, and zt ,
√

1−pdrop

pdrop

(
γ

1−pdrop
−

I
)

. We can verify that zt as a two-point distribution, has

the same mean and variance as standard Gaussian distribu-

tion. So as an approximation, we directly replace zt with

N (0, 1). After that, the continuous version becomes

ht = hs+

∫ t

s

f(hτ ;w) dτ+

∫ t

s

√
pdrop

1− pdrop

f(ht;w)⊙dBτ .

Gaussian smoothing. As we have mentioned before,

Gaussian noise is better modeled by diffusion term. The

traditional way of applying Gaussian smoothing is adding

small, uncorrelated noise to each hidden layer [17] (or just

the input layer [16, 4]), mathematically

ht+1 = ht + f(ht;w) +Wt, Wt ∼ N (0, σ2I). (8)

But through experiments we found that multiplicative noise

of following form also works

ht+1 = ht+f(ht;w)+f(ht;w)Wt, Wt ∼ N (0, σ2I).
(9)

Unlike (8), the noise scale in (9) grows with the scale of out-

put from convolution block f(ht;w), thus the noise vari-

ance is self-adjustable and sometimes it can be advanta-

geous. For both additive and multiplicative Gaussian noise,

the integral form is as straightforward as follows

ht = hs+

∫ t

s

f(hτ ;w) dτ+

{∫ t

s
G(τ) dBτ ,

∫ t

s
G(ht, τ) dBτ .

(10)

As we can see, for additive noise, diffusion coefficient G

is independent on ht; while for multiplicative noise, G can

change along with hidden features ht.

3.2. Training algorithm and complexity

The implementation of the stochastic, continuous neu-

ral network training algorithm is similar to Neural ODE [3]

and it is stated in Algorithm 1. In fact, we can view (3)

as a SDE problem, and standard SDE solvers can be ap-

plied here for training. We can see from the algorithm that

for forward propagation we pick a standard SDE solvers

such as Euler-Maruyama [15], Milstein [21] or higher or-

der Runge-Kutta method, but for backward propagation we

simply rely on the automatic gradient provided by major

deep learning frameworks. Although it is possible to derive

Algorithm 1 Forward and backward propagation

1: procedure TRAINING-PROCESS ⊲ Do forward &

backward propagation

2: Given initial state h0, integral range [0, T ].

3: hT = SDE Solve
(

f(ht, t;w),G(ht, t;v), [0, T ]
)

.

⊲ Call a black-box SDE solver

4: Calculate loss L = ℓ(hT ).
5: Calculate gradient ∂L

∂w
and ∂L

∂v
with autograd.

6: Update network parameters w and v.
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Figure 3. Left: we compare the propagation time between Neural

ODE, ODE with adjoint, and SDE. We can see that the running

time increases proportionally with network depth and there is no

significant overhead in our model. Right: We compute the error of

SDE solver caused by discretization in Euler schemes, measured

by the relative error in ht, i.e. ε = ‖hT−ĥT ‖
‖hT ‖

and hT is the

ground-truth (computed with a very fine grid), ĥT is computed

with coarse grid ∆t ∈ [1.0×10−4, 1.0×10−1] (note that network

depth t = T/∆T ).

an adjoint algorithm as in [3] to save memory consump-

tion, in practice, we find that the most straightforward au-

tograd method works efficiently in all our experiments, see

Fig. 3(left). Furthermore, we observe the error caused by

discretization is small enough for end tasks even when us-

ing a large grid size in SDE solver (Line 3 in Algorithm 1)

as shown in Fig 3(right). More details are in the appendix.

4. Connection between jump-diffusion and ro-

bustness

In this section, we build a new explanation to shed some

light on answering how noise (inside jump-diffusion term

(3)) helps training the robust neural network. It is worth

noting that our analysis is very different from the traditional

belief that noise acts as a regularizer during training. We

focus on the role of randomness in testing time, and in this

sense, our idea is complementary to the former. In the fol-

lowing parts, we first deliver a toy example to have a closer

view of this phenomenon, and then we present some theo-

ries to understand the principles in behind.

4.1. A toy example

Let’s look at a 1-dimensional toy example where random-

ness stabilizes the system. Suppose we have a simple SDE

dxt = xt dt+ σxt dBt, (11)

with Bt being the standard Brownian motion. When we

remove the diffusion term by setting σ = 0, (11) becomes

an ODE: dxt = xt dt with solution xt = x0e
t, where x0

is the initialization of xt. If x0 6= 0, we can see that xt →
±∞ as t → ∞. In other words, any small perturbation at

initialization x0 = ǫ will be amplified through the ODE-

system at future time t. In contrast, if we add the diffusion

back σ 6= 0, we then have the classic geometric Brownian

motion with solution xt = x0 exp
(
(1 − σ2/2)t + σBt

)
.

Once the variance of noise is large enough (e.g. σ >
√
2),

then we know that xt
a.s.→ 0.

To visualize the difference, we run several numerical

simulations in Fig. 4 for xt with different variances σ. The

0 1 2 3 4 5 6 7

Time t

0.00

0.05

0.10

0.15

0.20

Sa
m

pl
e

pa
th

x
(t
)

σ = 0

Sample path
σ = 2.8, 500-average

Figure 4. Toy example. By comparing the simulations under

σ = 0 and σ = 2.8, we see adding noise to the system can be

an effective way to control xt. Average over multiple runs is used

to cancel out the volatility during the early stage. It is noteworthy

that here we employ the multiplicative noise, where the deviation

term scales proportionally to xt.

experiments in Fig. 4 clearly show that the behavior of solu-

tion paths can change significantly after adding a diffusion

term. This example is inspiring because we can control the

impact of perturbations on the output by adding a stochastic

term to our networks.

4.2. Theoretical explanation

Inspired by the toy example above, we theoretically ana-

lyze the stability of Neural jump-diffusion equation (3). Our

analytical results show that the jump-diffusion terms can in-

deed improve the robustness of the model against small, ar-

bitrary input perturbations. This finding also explains why

noise injection can improve both generalizability and ro-

bustness in discrete networks, which has been observed in

current literature [17, 16]. To simplify our symbols, we ig-

nore the jump term temporarily and focus on the diffusion

term. The following assumptions on drift f and diffusion

G guarantee the existence and uniqueness of solution.

Assumption 1 f and G are at most linear, i.e. ‖f(x, t)‖+
‖G(x, t)‖ ≤ c1(1+‖x‖) for c1 > 0, ∀x ∈ R

n and t ∈ R
+.

Assumption 2 f and G are c2-Lipschitz: ‖f(x, t) −
f(y, t)‖ + ‖G(x, t) −G(y, t)‖ ≤ c2‖x − y‖ for c2 > 0,

∀x,y ∈ R
n and t ∈ R

+.

Based on the above assumptions, we can show that the

SDE (3) has a unique solution [22]. We remark that these

assumptions on f are quite natural and are also enforced on

the original Neural ODE model (see Sec. 6 of [3]). As to

the diffusion matrix G, we have seen that at least for ad-

ditive Gaussian noise (where G is a constant matrix) and

multiplicative Gaussian noise (where G is proportional to

f ), both assumptions are automatically satisfied as long as

f possesses the same regularities.
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We analyze the dynamics of perturbation. Our analysis

applies not only to the Neural SDE model but also to the

Neural ODE model, by setting the diffusion term G and

jump term J to zero. Our idea is illustrated in Fig. 5. First

he
t

ht

|he
0 − h0| 6 ε |he

T − hT | → ∞

Network Depth

H
id
d
en

F
ea
tu
re
s

?

Figure 5. Illustration of our analysis. Given a smaller perturbation

ε at the input, how does the error propagation through a deep neu-

ral network? If the error is controllable, then we can make sure

that the final prediction result is also controllable. In our analy-

sis, we do not need to care about how ht or he

t evolves, only the

difference εt = h
e

t − ht matters; and this is depicted in (13).

of all, we consider initializing our differential equation (3)

at two slightly different values h0 and he
0 = h0+ε0, where

h0 is the original (clean) input, ε0 is the perturbation (also

called “error”) on h0. In many real problems, the perturba-

tion at input is bounded, i.e. ‖ε0‖ ≤ δ. Therefore, under the

perturbed initialization he
0, the hidden states at time t follow

the same rule in (3), recalling the jump term is ignored for

simplicity,

dhe
t = f(he

t , t;w) dt+G(he
t , t) dB

′
t,with he

0 = h0+ε0,
(12)

where B′
t is Brownian motions for the SDE associated with

initialization he
0. Then it is natural to analyze how the per-

turbation εt = he
t −ht evolves in the long run. Subtracting

(3) from (12), we have

dεt =
[
f(he

t , t;w)− f(ht, t;w)
]
dt

+
[
G(he

t , t)−G(ht, t)
]
dBt

= f∆(εt, t;w) dt+G∆(εt, t) dBt.

(13)

Here we made an implicit assumption that the Brownian

motions Bt and B
′
t have the same sample path for both ini-

tialization h0 and he
0, i.e. Bt = B

′
t w.p.1. In other words,

we focus on the difference of two random processes ht and

he
t driven by the same underlying Brownian motion. So it

is valid to subtract the diffusion terms.

An important property of (13) is that it admits a trivial

solution εt ≡ 0, ∀t ∈ R
+ and w ∈ R

d. To verify that, we

only need to show that both the drift (f ) and diffusion (G)

are zero under εt = 0:

f∆(0, t;w) = f(ht + 0, t;w)− f(ht, t;w) = 0,

G∆(0, t) = G(ht + 0, t)−G(ht, t) = 0.
(14)

The implication of zero solution is clear: for a neural net-

work, if we do not perturb the input data, then the output

will never change. However, the solution εt = 0 can be

highly unstable, in the sense that for an arbitrarily small

perturbation ε0 6= 0 at initialization, the change of output

εT can be arbitrarily large. Luckily, as we will show below,

by choosing the diffusion term G properly, we can always

control εt within a small range.

In general, we cannot get the closed-form solution to a

multidimensional SDE, but we can still analyze the asymp-

totic stability through the dynamics f and G. This is an ex-

tension of the Lyapunov stability theory to a stochastic sys-

tem. First, we define the notion of stability in the stochastic

case. Let (Ω,F , P ) be a complete probability space with

filtration {Ft}t≥0 and Bt be an m-dimensional Brownian

motion defined in the probability space, we consider the

SDE in (13) with initial value ε0

dεt = f∆(εt, t) dt+G∆(εt, t) dBt, (15)

where for simplicity we dropped the dependency on param-

eters w and v. We further assume f∆ : Rn × R+ 7→ R
n

and G∆ : Rn × R+ 7→ R
n×m are both Borel measurable.

We can show that if assumptions (1) and (2) hold for f and

G, then they hold for f∆ and G∆ as well (see appendix),

and we know the SDE (15) allows a unique solution εt. We

have the following Lynapunov stability results from [20].

Definition 4.1 (Lyapunov stability of SDE) The solution

εt = 0 of (15):

A. is stochastically stable if for any α ∈ (0, 1) and r > 0,

there exists a δ = δ(α, r) > 0 such that Pr{‖εt‖ <
r for all t ≥ 0} ≥ 1− α whenever ‖ε0‖ ≤ δ. Moreover,

if for any α ∈ (0, 1), there exists a δ = δ(α) > 0 such

that Pr{limt→∞ ‖εt‖ = 0} ≥ 1−α whenever ‖ε0‖ ≤ δ,

it is said to be stochastically asymptotically stable;

B. is almost surely exponentially stable if for all ε0 ∈ R
n,

lim sup
t→∞

1
t
log ‖εt‖ < 0 a.s.1

Note that for part A in Definition 4.1, it is hard to quan-

tify how well the stability is and how fast the solution

reaches equilibrium. In addition, under assumptions (1,

2), we have a straightforward result Pr{εt 6= 0 for all t ≥
0} = 1 whenever ε0 6= 0 as shown in appendix. That is,

almost all the sample paths starting from a non-zero initial-

ization can never reach zero due to Brownian motion. On

the contrary, the almost sure exponentially stability result

implies that almost all the sample paths of the solution will

be close to zero exponentially fast. One important result

regarding to stability of this system is [20], deferred to ap-

pendix. We now consider a special case, when the noise is

1“a.s.” is the abbreviation for “almost surely”.
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Table 1. Evaluating the model generalization under different choices of diffusion matrix G(ht, t;v) introduced above. For the three noise

types, we search a suitable parameter σt for each of them so that the diffusion matrix G properly regularizes the model. TTN means testing

time noise. We observe adding noises can improve the test accuracy over Neural ODE, and furthermore, noise at testing time is beneficial.

Data
Accuracy@1 — w/o TTN Accuracy@1 — w/ TTN

ODE Additive Multiplicative Dropout ODE Additive Multiplicative Dropout

CIFAR-10 87.95 88.69 89.06 88.23 – 88.73 89.77 88.44

CIFAR-10.1 70.00 70.80 71.50 71.85 – 71.70 72.05 73.60

STL-10 58.03 61.23 60.54 61.26 – 62.11 62.58 62.13

Tiny-ImageNet 45.19 45.25 46.94 47.04 – 45.39 46.65 47.81

multiplicative G(ht, t) = σ · ht and m = 1. The corre-

sponding SDE of perturbation εt = he
t − ht becomes

dεt = f∆(εt, t;w) dt+ σ · εt dBt. (16)

Note that for the deterministic case of (16) by setting σ ≡ 0,

the solution may not be stable in certain cases (see Figure

4). Whereas for general cases when σ > 0, following corol-

lary claims that by setting σ properly, we will achieve an

(almost surely) exponentially stable system.

Corollary 4.0.1 For (16), if f(ht, t;w) is L-Lipschtiz con-

tinuous w.r.t. ht, then (16) has a unique solution with the

property lim sup
t→∞

1
t
log ‖εt‖ ≤ −(σ

2

2 − L) almost surely for

any ε0 ∈ R
n. In particular, if σ2 > 2L, the solution εt = 0

is almost surely exponentially stable.

5. Experiment

In this section, we show the effectiveness of our frame-

work in terms of generalization, non-adversarial robustness,

and adversarial robustness. Throughout our experiments,

we set f(·) to be a neural network with several convolution

blocks. As to G(·) we have the following choices:

• Neural ODE, this can be done by dropping the diffusion

term G(ht, t) = 0.

• Additive noise, when the diffusion term is independent

of ht, here we simply set it to be diagonal G(ht, t) =
σtI .

• Multiplicative noise, when the diffusion term is propor-

tional to ht, or G(ht, t) = σtht.

• Gaussian-dropout noise, when the diffusion term is pro-

portional to the drift term f(ht, t;w), i.e. G(ht, t) =
σtdiag{f(ht, t;w)}.

Note the last three are our proposed model with different

types of randomness, as explained in Section 3.1. For more

experimental details, the architecture of f(·) and the numer-

ical solver for SDE, please refer to our appendix. Note that

we use the same architecture for all the methods mentioned

above, so the comparisons are fair.

5.1. Generalization Performance

In the first experiment, we show a small noise helps gen-

eralization. However, note that our noise injection is dif-

ferent from the randomness layer in the discrete case. For

instance, dropout layers add Bernoulli noise at training time

but not testing time, whereas our model keeps randomness

at the testing time and takes the averaged prediction of mul-

tiple forward propagations.

As for datasets, we choose CIFAR-10, STL-10 and Tiny-

ImageNet2 to include various sizes and number of classes.

The experimental results are shown in Table 1. We observe

that for all datasets, noisy versions consistently outperform

ODE, and the reason is that adding moderate noise to the

models at training time can act as a regularizer and thus

improves testing accuracy. Based upon that, if we further

keep testing time noise and ensemble the outputs, we will

obtain even better results.

5.2. Improved non­adversarial robustness

We evaluate the robustness of models under non-

adversarial corruption following the idea of [11]. The cor-

rupted datasets contain tens of defects in photography, in-

cluding motion blur, Gaussian noise, fog, etc. For each

noise type, we run Neural ODE and our model with dropout

noise and gather the testing accuracy. The final results are

reported by mean accuracy (mAcc) in Table 2 by changing

the level of corruption. Both models are trained on clean

data, which means the corrupted images are not visible to

them during the training stage, nor could they augment the

training set with the same types of corruption. From the

table, we can see that our model performs better than Neu-

ral ODE in 8 out of 10 cases. For the rest two, both ODE

and SDE are performing very close. This shows that our

proposed neural jump-diffusion improves the robustness of

Neural ODE under non-adversarial corrupted data.

5.3. Improved adversarial robustness

Next, we consider the performance of our models un-

der adversarial perturbation. This scenario is strictly harder

than the previous case – perturbations are crafted through

2Downloaded from https://tiny-imagenet.herokuapp.

com/
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Table 2. Testing accuracy results under different levels of non-adversarial perturbations.

Data Noise type
mild corrupt← Accuracy→ severe corrupt

Level 1 Level 2 Level 3 Level 4 Level 5

CIFAR10-C†

ODE 75.89 70.59 66.52 60.91 53.02

Dropout 77.02 71.58 67.21 61.61 53.81

Dropout+TTN 79.07 73.98 69.74 64.19 55.99

TinyImageNet-C†

ODE 23.01 19.18 15.20 12.20 9.88

Dropout 22.85 18.94 14.64 11.54 9.09

Dropout+TTN 23.84 19.89 15.28 12.08 9.44

† Downloaded from https://github.com/hendrycks/robustness
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Figure 6. Comparing the robustness against ℓ2-norm constrained adversarial perturbations, on CIFAR-10 (left), STL-10 (middle) and

Tiny-ImageNet (right) data. We observe that jump-diffusion model with either multiplicative noise or dropout noise is more resistant to

adversarial attack than Neural ODE.

constrained loss maximization procedure, so it represents

the worst-case performance. In our experiment, we adopt

ℓ2-PGD attack with 20 steps [19]. The experimental results

are shown in Figure 6. As we can see, jump-diffusion model

with either multiplicative noise or dropout noise is more re-

sistant to adversarial attack than Neural ODE. We also ob-

serve dropout noise outperforms multiplicative noise.

5.4. Visualizing the perturbations of hidden states
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Figure 7. Comparing the perturbations of hidden states, εt, on both

ODE and SDE (we choose dropout-style noise).

In this experiment, we take a look at the perturbation

εt = he
t − ht at any time t. Recall that in the 1-d toy

example in Figure 4, we observe that the perturbation at

time t can be well suppressed by adding a strong diffusion

term, which is also confirmed by our theorem. However, it

is still questionable whether the same phenomenon also ex-

ists in deep neural networks since we cannot add very large

noise to the network during training or testing time. If the

noise is too large, it will also remove all useful features.

Thus it becomes important to make sure that this will not

happen to our models. To this end, we first sample an in-

put x from CIFAR-10 and gather all the hidden states ht

at time t = [0,∆t, 2∆t, . . . , N∆t]. Then we perform reg-

ular PGD attack [19] to find the perturbation δx such that

xadv = x + δx is an adversarial image, and feed the new

data xadv into network again so we get he
t at the same time

stamps as ht. Finally we plot the error εt = he
t − ht w.r.t.

time t (also called “network depth”), shown in Figure 7. We

can observe that by adding a diffusion term (dropout-style

noise), the error accumulates much slower than the ordinary

Neural ODE model.

6. Conclusion

To conclude, we introduce the Neural SDE model, which

can stabilize the prediction of Neural ODE by injecting

stochastic noise. Our model can achieve better generaliza-

tion and improve the robustness under both adversarial and

non-adversarial noises.
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