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Abstract
Label smoothing is commonly used in training
deep learning models, wherein one-hot training la-
bels are mixed with uniform label vectors. Empir-
ically, smoothing has been shown to improve both
predictive performance and model calibration. In
this paper, we study whether label smoothing is
also effective as a means of coping with label
noise. While label smoothing apparently ampli-
fies this problem — being equivalent to injecting
symmetric noise to the labels — we show how it
relates to a general family of loss-correction tech-
niques from the label noise literature. Building
on this connection, we show that label smooth-
ing is competitive with loss-correction under label
noise. Further, we show that when distilling mod-
els from noisy data, label smoothing of the teacher
is beneficial; this is in contrast to recent findings
for noise-free problems, and sheds further light
on settings where label smoothing is beneficial.

1. Introduction
Label smoothing is commonly used to improve the per-
formance of deep learning models (Szegedy et al., 2016;
Chorowski & Jaitly, 2017; Vaswani et al., 2017; Zoph et al.,
2018; Real et al., 2018; Huang et al., 2019; Li et al., 2020).
Rather than standard training with one-hot training labels,
label smoothing prescribes using smoothed labels by mixing
in a uniform label vector. This procedure is generally un-
derstood as a means of regularisation (Szegedy et al., 2016;
Zhang et al., 2018) that improves generalization and model
calibration (Pereyra et al., 2017; Müller et al., 2019).

How does label smoothing affect the robustness of deep
networks? Such robustness is desirable when learning from
data subject to label noise (Angluin & Laird, 1988). Modern
deep networks can perfectly fit such noisy labels (Zhang
et al., 2017). Can label smoothing address this problem?
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Interestingly, there are two competing intuitions. On the one
hand, smoothing might mitigate the problem, as it prevents
overconfidence on any one example. On the other hand,
smoothing might accentuate the problem, as it is equivalent
to injecting uniform noise into all labels (Xie et al., 2016).

Which of these intuitions is borne out in practice? A sys-
tematic study of this question is, to our knowledge, lacking.
Indeed, label smoothing is conspicuously absent in most
treatments of the noisy label problem (Patrini et al., 2016;
Han et al., 2018b; Charoenphakdee et al., 2019; Thulasi-
dasan et al., 2019; Amid et al., 2019; Menon et al., 2020). In-
triguingly, however, a cursory inspection at popular loss cor-
rection techniques in this literature (Natarajan et al., 2013;
Patrini et al., 2017; van Rooyen & Williamson, 2018) reveals
a strong similarity to label smoothing (see §3). But what is
the precise relationship between these methods, and does it
imply label smoothing is a viable denoising technique?

In this paper, we address these questions by first connect-
ing label smoothing to existing label noise techniques. At
first glance, this connection indicates that smoothing has
an opposite effect to one such loss-correction technique.
However, we empirically show that smoothing is competi-
tive with such techniques in denoising, and that it improves
performance of distillation (Hinton et al., 2015) under label
noise. We then explain its denoising ability by analysing
smoothing as a regulariser. In sum, our contributions are:

(i) we present a novel connection of label smoothing to
loss correction techniques from the label noise litera-
ture (Natarajan et al., 2013; Patrini et al., 2017).

(ii) we empirically demonstrate that label smoothing sig-
nificantly improves performance under label noise at
varying noise levels, and is competitive with loss cor-
rection techniques. Our experiments show that smooth-
ing improves accuracy on both the clean and noisy
parts of the data, while preserving model calibration.
We explain these denoising effects by relating label
smoothing to `2 regularisation.

(iii) we show that when distilling from noisy labels, smooth-
ing the teacher improves the student; this is in marked
contrast to recent findings in noise-free settings.

Contributions (i) and (ii) establish that label smoothing can
be beneficial under noise, and also highlight that a reg-
ularisation view can complement a loss view, the latter
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being more popular in the noise literature (Patrini et al.,
2017). Contribution (iii) continues a line of exploration ini-
tiated in Müller et al. (2019) as to the relationship between
teacher accuracy and student performance. While Müller
et al. (2019) established that label smoothing can harm dis-
tillation, we show an opposite picture in noisy settings.

2. Background and Notation
We present some background on (noisy) multiclass classifi-
cation, label smoothing, and knowledge distillation.

2.1. Multiclass Classification

In multiclass classification, we seek to classify instances
X into one of L labels Y = [L]

.
= {1, 2, . . . , L}. More

precisely, suppose instances and labels are drawn from a
distribution P. Let ` : [L] × RL → R+ be a loss function,
where `(y, f) is the penalty for predicting scores f ∈ RL
given true label y ∈ [L]. We seek a predictor f : X → RL
minimising the risk of f , i.e., its expected loss under P:

R(f)
.
= E

(x,y)
[`(y, f(x))] = E

x

[
p∗(x)T`(f(x))

]
,

where p∗(x)
.
=
[
P(y | x)

]
y∈[L] is the class-probability dis-

tribution, and `(f) .
=
[
`(y, f)

]
y∈[L]. Canonically, ` is the

softmax cross-entropy, `(y, f) .
= −fy + log

∑
y′∈[L] e

fy′ .

Given a finite training sample S = {(xn, yn)}Nn=1 ∼ PN ,
one can minimise the empirical risk

R(f ;S)
.
=

1

N

N∑
n=1

`(yn, f(xn)).

In label smoothing (Szegedy et al., 2016), one mixes the
training labels with a uniform mixture over all possible
labels: for α ∈ [0, 1], this corresponds to minimising

R̄(f ;S) =
1

N

N∑
n=1

ȳT
n `(f(xn)), (1)

where (ȳn)i
.
= (1− α) · Ji = yK + α

L .

2.2. Learning under Label Noise

The label noise problem is the setting where one observes
samples from some distribution P̄ with P̄(y | x) 6= P(y | x);
i.e., the observed labels are not reflective of the ground
truth (Angluin & Laird, 1988; Scott et al., 2013). Our goal
is to nonetheless minimise the risk on the (unobserved) P.
This poses a challenge to deep neural networks, which can
fit completely arbitrary labels (Zhang et al., 2017).

A common means of coping with noise is to posit a noise
model, and design robust procedures under this model.

One simple model is class-conditional noise (Blum &
Mitchell, 1998; Scott et al., 2013; Natarajan et al., 2013),
wherein there is a row-stochastic noise transition matrix
T ∈ [0, 1]L×L such that for each (x, y) ∼ P, label y
may be flipped to y′ with probability Ty,y′ . Formally, if
p̄∗y(x)

.
= P̄(y | x) and p∗y(x)

.
= P(y | x) are the noisy and

clean class-probabilities respectively, we have

p̄∗(x) = TTp∗(x). (2)

The symmetric noise model further assumes that there is
a constant flip probability ρ ∈

[
0, 1− 1

L

)
of changing the

label uniformly to one of the other classes (Long & Servedio,
2010; van Rooyen et al., 2015), i.e., for α .

= L
L−1 · ρ,

T = (1− α) · I +
α

L
· J (3)

where I denotes the identity and J the all-ones matrix.

While there are several approaches to coping with noise,
our interest will be in the family of loss correction tech-
niques: assuming one has knowledge (or estimates) of the
noise-transition matrix T, such techniques yield consistent
risk minimisers with respect to P. (Patrini et al., 2017) pro-
posed two such techniques, termed backward and forward
correction, which respectively involve the losses

`←(f) = T−1`(f) (4)
`→(f) = `(Tf). (5)

Observe that for a given label y, `←(y, f) =
∑
y′∈[L] T

−1
yy′ ·

`(y′, f(x)) computes a weighted sum of losses for all labels
y′ ∈ [L], while `→(y, f) = `

(
y,
∑
y′∈[L] T:y′ · fy′(x)

)
computes a weighted sum of predictions for all y′ ∈ [L].

Backward correction was inspired by techniques in Natara-
jan et al. (2013); Cid-Sueiro et al. (2014); van Rooyen &
Williamson (2018), and results in an unbiased estimate of
the risk with respect to P. Recent works have studied robust
estimation of the T matrix from noisy data alone (Patrini
et al., 2017; Han et al., 2018b; Xia et al., 2019). Forward
correction was inspired by techniques in Reed et al. (2014);
Sukhbaatar et al. (2015), and does not result in an unbi-
ased risk estimate. However, it preserves the Bayes-optimal
minimiser, and is empirically effective (Patrini et al., 2017).

2.3. Knowledge Distillation

Knowledge distillation (Bucilǎ et al., 2006; Hinton et al.,
2015) refers to the following recipe: given a training sample
S ∼ PN , one trains a teacher model using a loss function
suitable for estimating class-probabilities, e.g., the softmax
cross-entropy. This produces a class-probability estimator
pt : X → ∆L, where ∆ denotes the simplex. One then
uses {(xn,pt(xn))}Nn=1 to train a student model, e.g., us-
ing cross entropy (Hinton et al., 2015) or square loss (Sanh
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et al., 2019) as an objective. The key advantage of distilla-
tion is that the resulting student has improved performance
compared to simply training the student on labels in S.

3. Label Smoothing Meets Loss Correction
We now relate label smoothing to loss correction techniques
for label noise via a label smearing framework.

3.1. Label Smearing for Loss Functions

Suppose we have some base loss ` of interest, e.g., the
softmax cross-entropy. Recall that we summarise the loss
via the vector `(f) .

=
[
`(y, f)

]
y∈[L]. The loss on an example

(x, y) is `(y, f(x)) = eTy `(f(x)) for one-hot vector ey .

Consider now the following generalisation, which we term
label smearing: given a matrix M ∈ RL×L, we compute

`SM(f)
.
= M `(f).

On an example (x, y), the smeared loss is given by

eTy `
SM(f(x)) = Myy · `(y, f(x)) +

∑
y′ 6=y

Myy′ · `(y′, f(x)).

Compared to the standard loss, we now potentially involve
all possible labels, scaled appropriately by the matrix M.

3.2. Special Cases of Label Smearing

The label smearing framework captures many interesting
approaches as special cases (see Table 1):

• Standard training. Suppose that M = I, for identity
matrix I. This trivially corresponds to standard training.

• Label smoothing. Suppose that M = (1−α) · I+ α
L · J,

where J is the all-ones matrix, and α ∈ [0, 1] is a tuning
parameter. This corresponds to mixing the true label
with a uniform distribution over all the classes, which is
precisely label smoothing per (1).

• Backward correction. Suppose that M = T−1, where T
is a class-conditional noise transition matrix. This corre-
sponds to the backward correction procedure of Patrini
et al. (2017). Here, the entries of M may be negative;
indeed, for symmetric noise, M = 1

1−α ·
(
I− α

L · J
)

where α .
= L

L−1 · ρ. While this poses optimisation prob-
lems, recent works have studied means of correcting
this (Kiryo et al., 2017; Han et al., 2018a).

The above techniques have been developed with different
motivations. By casting them in a common framework, we
can elucidate some of their shared properties.

3.3. Statistical Consistency of Label Smearing

Recall that our fundamental goal is to devise a procedure
that can approximately minimise the population risk R(f).

Method Smearing matrix

Standard I

Label smoothing (1− α) · I + α
L · J

Backward correction 1
1−α · I− α

(1−α)·L · J

Table 1. Comparison of different label smearing methods. Here,
I denotes the identity and J the all-ones matrix. For backward
correction, the theoretical optimal choice of α = L

L−1
· ρ, where

ρ is the level of symmetric label noise.

Given this, it behooves us to understand the effect of label
smearing on this risk. As we shall explicate, label smearing:

(i) is equivalent to fitting to a modified distribution.

(ii) preserves classification consistency for suitable M.

For (i), observe that the smeared loss has corresponding risk

Rsm(f) = E
x

[
p∗(x)T`SM(f(x))

]
= E

x

[
p∗(x)TM `(f(x))

]
.

Consequently, minimising a smeared loss is equivalent to
minimising the original loss on a smeared distribution with
class-probabilities pSM(x) = MTp∗(x).

For example, under label smoothing, we fit to the class-
probabilities MTp∗(x) = (1 − α) · p∗(x) + α

L . This cor-
responds to a scaling and translation of the original. This
trivially preserves the label with maximal probability, pro-
vided α < 1. Smoothing is thus consistent for classification,
i.e., minimising its risk also minimises the classification
risk (Zhang, 2004a;b; Bartlett et al., 2006).

Now consider backward correction with M = T−1. Sup-
pose this is applied to a distribution with class-conditional
label noise governed by transition matrix T. Then, we
will fit to probabilities MTp̄∗(x) = (TT)−1p̄∗(x). By (2),
these will exactly equal the clean probabilities p∗(x); i.e.,
backward correction will effectively denoise the labels.

3.4. Relating Label Smoothing and Loss Correction

Following Table 1, one cannot help but notice a strong simi-
larity between label smoothing and backward correction for
symmetric noise. Both methods combine an identity matrix
with an all-ones matrix; the striking difference, however, is
that this combination is via addition in one, but subtraction
in the other. This results in losses with very different forms:

`LS(y, f) ∝ `(y, f) +
α

(1− α) · L ·
∑
y′

`(y′, f) (6)

`←(y, f) ∝ `(y, f)− α

L

∑
y′

`(y′, f).
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Figure 1. Effect of label smoothing, backward correction, and forward correction on the logistic loss. The standard logistic loss vanishes
for large positive predictions, and is linear for large negative predictions. Smoothing introduces a finite positive minima. Backward
correction makes the loss negative for large positive predictions. Forward correction makes the loss saturate for large negative predictions.

Fundamentally, the effect of the two techniques is differ-
ent: smoothing aims to minimise the average per-class loss
1
L

∑
y′ `(y

′, f), while backward correction seeks to max-
imise this. Figure 1 visualises the effect on the losses when
L = 2, and ` is the logistic loss. Intriguingly, the smoothed
loss is seen to penalise confident predictions. On the other
hand, backward correction allows one to compensate for
overly confident negative predictions by allowing for a neg-
ative loss on positive samples that are correctly predicted.

Label smoothing also relates to forward correction: recall
that here, we compute the loss `→(f) = `(Tf). Com-
pared to label smoothing, forward correction thus performs
smoothing of the logits. As shown in Figure 1, the effect is
that the loss becomes bounded for all predictions.

At this stage, we return to our original motivating question:
can label smoothing mitigate label noise? The above would
seem to indicate otherwise: backward correction guarantees
an unbiased risk estimate, and yet we have seen smoothing
constructs a fundamentally different loss. In the next section,
we assess whether this is borne out empirically.

4. Effect of Label Smoothing on Label Noise
We now present experimental observations of the effects of
label smoothing under label noise. We then provide insights
into why smoothing can successfully denoise labels, by
viewing smoothing as a form of shrinkage regularisation.

4.1. Denoising Effects of Label Smoothing

We begin by empirically answering the question: can label
smoothing successfully mitigate label noise? To study this,
we employ smoothing in settings where the training data
is artificially injected with symmetric label noise. This
follows the convention in the label noise literature (Patrini
et al., 2017; Han et al., 2018a; Charoenphakdee et al., 2019).

Specifically, we consider the CIFAR-10, CIFAR-100 and

ImageNet datasets, and add symmetric label noise at level
ρ∗ = 20% to the training (but not the test) set; i.e., we re-
place the training label with a uniformly chosen label 20%
of the time. On CIFAR-10 and CIFAR-100 we train two dif-
ferent models on this noisy data, ResNet-32 and ResNet-56,
with similar hyperparameters as Müller et al. (2019). Each
experiment is repeated five times, and we report the mean
and standard deviation of the clean test accuracy. On Ima-
geNet we train ResNet-v2-50 with LARS (You et al., 2017).
We describe the detailed experimental setup in Appendix B.

As loss functions, our baseline is training with the softmax
cross-entropy on the noisy labels. We then employ label
smoothing (1) (LS) for various values of α, as well as for-
ward (FC) and backward (BC) correction (4), (5) assuming
symmetric noise for various values of α. We remark here
that in the label noise literature, it is customary to estimate
α, with theoretical optimal value α∗ = L

L−1 · ρ∗; however,
we shall here simply treat this as a tuning parameter akin to
the smoothing α, whose effect we shall study.

We now analyse the results along several dimensions.

Accuracy: In Figure 2, we plot the test accuracies of all
methods on CIFAR-10 and CIFAR-100. Our first finding is
that label smoothing significantly improves accuracy over
the baseline. We observe similar denoising effects on Ima-
geNet in Table 2. Moreover, a similar trend holds for higher
levels of label noise, as reported in Table 3. This confirms
that empirically, label smoothing is effective in dealing with
label noise.

Our second finding is that, surprisingly, choosing α� ρ∗,
the true noise rate, improves performance of all methods.
This is in contrast to the theoretically optimal choice α ≈ ρ∗
for loss correction approaches (Patrini et al., 2017), and
indicates it is valuable to treat α as a tuning parameter.

Finally, we see that label smoothing is often competitive
with loss correction. This is despite it minimising a funda-
mentally different loss to the unbiased backward correction,
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0.0 0.1 0.2 0.4 0.6

LS 70.86 71.12 71.55 70.95 70.59
FC 70.86 73.04 73.17 73.35 72.92

Table 2. Test accuracy on ImageNet trained with ρ = 20% label
noise on ResNet-v2-50, with label smoothing (LS) and forward cor-
rection (FC) for varying α. Both LS and FC successfully denoise,
and thus improve over the baseline (α = 0).

ρ 0.0 0.2 0.4 0.6 0.8

40% 50.67 52.86 55.90 56.49 54.98
60% 37.58 39.43 42.39 44.38 42.35

Table 3. Test accuracy on CIFAR-100 trained with ρ = 40% and
ρ = 60% label noise with label smoothing (LS) for varying α. LS
improves over the baseline (α = 0). Results averaged over 3 runs.

as discussed in §3.4. We note however that loss correction
generally produces the best overall accuracy with high α.

Denoising: What explains the effectiveness of label smooth-
ing for training with label noise? Does it correct the predic-
tions on noisy examples, or does it only further improve the
predictions on the clean (non-noisy) examples?

To answer these questions, we separately inspect accura-
cies on the noisy and clean portions of the training data
(i.e., on those samples whose labels are flipped, or not).
Table 4 reports this breakdown from the ResNet-32 model
on CIFAR-100, for different values of α. We see that as α
increases, accuracy improves on both the noisy and clean
parts of the data, with a more significant boost on the noisy
part. Consequently, smoothing systematically improves pre-
dictions of both clean and noisy samples.

Model Confidence: Predictive accuracy is only concerned
with a model ranking the true label ahead of the others. How-
ever, the confidence in model predictions is also of interest,
particularly since a danger with label noise is being overly
confident in predicting a noisy label. How do smoothing
and correction methods affect this confidence under noise?

To measure this, in Figure 3 we plot distributions of
the differences between the logit activation p̂(y | x)
for a true/noisy label y, and the average logit activation
1
L

∑
y′∈[L] p̂(y

′ | x). Compared to the baseline, label
smoothing significantly reduces confidence in the noisy label
(refer to the left side of Figure 3(b)).

To visualise this effect of smoothing, in Figure 4 we plot
pre-logits (penultimate layer output) of examples from 3
classes projected onto their class vectors as in Müller et al.
(2019), for a ResNet-32 trained on CIFAR-100. As we
increase α, the confidences for noisy labels shrink, showing
the denoising effects of label smoothing.

α Full train Clean part Noisy part
true labels true labels true labels noisy labels

0.0 77.39 86.75 39.92 17.88
0.1 80.11 87.99 48.58 12.27
0.2 81.22 88.27 53.01 8.32

Table 4. Accuracy on different portions of the training set from
ResNet-32, trained with different label smoothing values α on
CIFAR-100. As α increases, accuracy improves on both clean and
noisy part of data. Interestingly, the improvement on the noisy
part of data is greater than the reduction in fit to the noisy labels
(compare the two rightmost columns in the table). Thus, there are
noisy examples assigned neither to correct class nor to the observed
noisy class without LS, and which LS helps classify correctly.

α LS FC BC
0.0 0.111 0.111 0.111
0.1 0.108 0.153 0.214
0.2 0.156 0.165 0.266

Table 5. Expected calibration error (ECE) computed on 100 bins
on test set for ResNet-32 on CIFAR-100, trained with different
label smearing techniques under varying values of α. Generally,
label smearing is detrimental to calibration.

On the other hand, both forward and backward correction
systematically increase confidence in predictions. This is
especially pronounced for forward correction, demonstrated
by the large spike for high differences in Figure 3(b). At
the same time, these techniques increase the confidence in
predictions of the true label (refer to Figure 3(a)): forward
correction in particular becomes much more confident in
the true label than any other technique.

In sum, Figure 3 illustrates both positive and adverse ef-
fects on confidence from label smearing techniques: label
smoothing becomes less confident in both the noisy and cor-
rect labels, while forward and backward correction become
more confident in both the correct labels and noisy labels.

Model Calibration: To further tease out the impact of label
smearing on model confidences, we ask: how do these
techniques affect the calibration of the output probabilities?
This measures how meaningful the model probabilities are
in a frequentist sense (Dawid, 1982).

In Table 5, we report the expected calibration error
(ECE) (Guo et al., 2017) on the test set for each method.
While smoothing improves calibration over the baseline
with α = 0.1 — an effect noted also in (Müller et al., 2019)
— for larger α, it becomes significantly worse. Furthermore,
loss correction techniques significantly degrade calibration
over smoothing. This is in keeping with the above findings
as to these methods sharpening prediction confidences.
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(a) CIFAR 100 (b) CIFAR 10

Figure 2. Effect of α on smoothing and forward label correction test accuracies on CIFAR-100 and CIFAR-10 from ResNet-32. Standard
deviations are denoted by the shaded regions. Label smoothing (LS) significantly improves over baseline, and choosing α� ρ∗, the true
noise rate, improves even further. Forward correction (FC) outperforms LS and also benefits from choosing large values for α. Backward
correction (BC) is worse than baseline for small α, and better than baseline for large α. In Table 8 in appendix, we report additional results
for ResNet-56 and ResNet-32 from different label smearing methods, including where confusion matrix is estimated by pre-training a
model as in Patrini et al. (2017).

(a) Gap between true (unobserved) label logit
and mean logit.

(b) Gap between noisy (observed) label logit and
mean logit.

Figure 3. Density of differences between logit corresponding to the true (left plot; corresponding to the “true” label, before injecting label
noise) and noisy label (right plot; corresponding to the “noisy” label, after injecting label noise) and the average over all logits on the
mis-labeled portion of the train data. Results are with α = 0.2 on CIFAR-100, and the ResNet-32 model. LS reduces confidence mostly
on the noisy label, whereas FC and BC increase confidence mostly on the true label. See Figure 7 for plots on full and clean data.

Summary: Overall, our results demonstrate that label
smoothing is competitive with loss correction techniques in
coping with label noise, and that it is particularly successful
in denoising examples while preserving calibration.

4.2. Label Smoothing as Regularisation

While empirically encouraging, the results in the previous
section indicate a gap in our theoretical understanding: from
§3.4, the smoothing loss apparently has the opposite effect to
backward correction, which is theoretically unbiased under
noise. What, then, explains the success of smoothing?

To understand the denoising effects of label smoothing, we
now study its role as a regulariser. To get some intuition,
consider a linear model f(x) = Wx, trained on features

X ∈ RN×D and one-hot labels Y ∈ {0, 1}N×L using the
square loss, i.e., minW ‖XW −Y‖22. Label smoothing at
level α transforms the optimal solution W∗ to

W̄∗ = (1− α) ·W∗ +
α

L
· (XTX)−1XTJ. (7)

Observe that if our data is centered, the second term will be
zero. Consequently, for such data, the effect of label smooth-
ing is simply to shrink the weights. Thus, label smoothing
can have a similar effect to shrinkage regularisation.

Our more general finding is the following. From (6), label
smoothing is equivalent to minimising a regularised risk
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(a) Label smoothing α = 0. (b) Label smoothing α = 0.2. (c) Label smoothing α = 0.7.

Figure 4. Effect of label smoothing on pre-logits (penultimate layer output) under label noise. Here, we visualise the pre-logits of a
ResNet-32 for three classes on CIFAR-100, using the procedure of Müller et al. (2019). The black markers denote instances which have
been labeled incorrectly due to noise. Smoothing is seen to have a denoising effect: the noisy instances’ pre-logits become more uniform,
and so the model learns to not be overly confident in their label.

(a) Label smoothing. (b) `2 regulariser.

Figure 5. (a) Effect of label smoothing on logistic regression separator, on a synthetic problem with asymmetric label noise. The black
line is the Bayes-optimal separator, found by logistic regression on the clean data. The other lines are separators learned by applying label
smoothing with various α on the noisy data. Without smoothing, noise draws the separator towards the affected class; smoothing undoes
this effect, and brings the separator back to the Bayes-optimal. (b) Shrinkage (`2) regularisation has a similar effect on the separator.

Rsm(f ;D) ∝ R(f ;D) + β · Ω(f), where

Ω(f)
.
= E

x

 ∑
y′∈[L]

`(y′, f(x))

 ,
and β .

= α
(1−α)·L . The second term above does not depend

on the underlying label distribution P(y | x). Consequently,
it may be seen as a data-dependent regulariser on our pre-
dictor f . Concretely, for the softmax cross-entropy,

Ω(f) = E
x

L · log

∑
y′

efy′ (x)

−∑
y′

fy′(x)

 . (8)

To understand the label smoothing regulariser (8) more
closely, we study it for the special case of linear classi-
fiers, i.e., fy′(x) = 〈Wy′ , x〉 . While we acknowledge that
the label smoothing effects displayed in our experiments for

deep networks are complex, as a first step, understanding
these effects for simpler models will prove instructive.

Smoothing for Linear Models. For linear models
fy′(x) = 〈Wy′ , x〉, the label smoothing regularization for
softmax cross-entropy (8) induces the following shrinkage
effect.

Theorem 1. Let x be distributed as Q with a finite mean.
Then Wy′ = 0,∀y′ ∈ [L] is a minimiser of (8). If fur-
ther the data matrix X has rank > L, this is the unique
minimiser.

See Appendix A for the proof. We see that the label smooth-
ing regulariser encourages shrinkage of our weights towards
zero; this is akin to the observation for square loss in (7), and
similar in effect to `2 regularisation, which is also motivated
as increasing the classification margin.

This perspective gives one hint as to why smoothing may
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Dataset Architecture Vanilla distillation LS on teacher LS on student FC on teacher FC on student
CIFAR-100 ResNet-32 63.98±0.26 64.48±0.25 63.83±0.28 66.65±0.18 63.94±0.34
CIFAR-100 ResNet-56 64.31±0.26 65.63±0.24 64.50±0.32 66.35±0.20 64.24±0.26

CIFAR-10 ResNet-32 80.44±0.64 86.95±1.82 85.72±2.61 86.81±1.86 86.92±2.11
CIFAR-10 ResNet-56 77.98±0.25 87.10±1.66 86.98±1.71 86.88±1.80 86.82±1.76

Table 6. Knowledge distillation experiments. We use label smoothing parameter α = 0.1 and temperature parameter T = 2 during
distillation, for all these experiments. We notice that doing LS on teacher improves the student accuracy compared to the baseline. LS on
the student helps as well but not to the same accuracy. Loss correction using FC on teacher helps as well with the distillation.

successfully denoise. For linear models, introducing asym-
metric label noise can move the decision boundary closer to
a class. Hence, a regulariser that increases margin, such as
shrinkage, can help the model to be more robust to noisy la-
bels. We illustrate this effect with the following experiment.

Effect of Shrinkage on Label Noise. We consider a 2D
problem comprising Gaussian class-conditionals, centered
at ±(1, 1) and with isotropic covariance at scale σ2 = 0.01.
The optimal linear separator is one that passes through the
origin, shown in Figure 5 as a black line. This separator is
readily found by fitting logistic regression on this data.

We inject 5% asymmetric label noise into the negatives, so
that some of these have their labels flipped to be positive.
The effect of this noise is to move the logistic regression
separator closer to the (true) negatives, indicating there is
greater uncertainty in its predictions. However, if we apply
label smoothing at various levels α, the separator is seen
to gradually converge back to the Bayes-optimal; this is in
keeping with the shrinkage property of the regulariser (8).

Further, as suggested by Theorem 1, an explicit L2 regu-
lariser has a similar effect to smoothing (Figure 5(b)). For-
mally establishing the relationship between label smoothing
and shrinkage is an interesting open question.

Summary. We have seen in §3 that from a loss perspective,
label smoothing results in a biased risk estimate; this is con-
trast to the unbiased backward correction procedure. In this
section, we provided an alternate regularisation perspective,
which gives insight into why label smoothing can denoise
training labels. Combining these two views theoretically,
however, remains an interesting topic for future work.

5. Distillation under Label Noise
We now study the effect of label smoothing on distillation,
when our data is corrupted with label noise. In distillation,
a trained “teacher” model’s logits are used to augment (or
replace) the one-hot labels used to train a “student” model
(Hinton et al., 2015). While traditionally motivated as a
means for a simpler model (student) to mimic the perfor-
mance of a complex model (teacher), Furlanello et al. (2018)
showed gains even for models of similar complexity.
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Figure 6. Effect of label smoothing on the teacher on student’s
accuracy after distillation with temperature T = 1, CIFAR-100.
Teacher and student both use ResNet-32. For all values of α,
label smoothing on the teacher improves distillation performance
compared to a plain teacher (α = 0).

Müller et al. (2019) observed that for standard (noise-free)
problems, label smoothing on the teacher improves the
teacher’s performance, but hurts the student’s performance.
Thus, a better teacher does not result in a better student.
Müller et al. (2019) attribute this to the erasure of relative
information between the teacher logits under smoothing.

But is a teacher trained with label smoothing on noisy data
better for distillation? On the one hand, as we saw in pre-
vious section, label smoothing has a denoising effect on
models trained on noisy data. On the other hand, label
smoothing on clean data may cause some information era-
sure in logits (Müller et al., 2019). Can the teacher transfer
the denoising effects of label smoothing to a student?

We study this question empirically. On the CIFAR-100 and
CIFAR-10 datasets, with the same architectures and noise
injection procedure as the previous section, we train three
teacher models on the noisy labels: one as-is on the noisy
labels, one with label smoothing, and another with forward
correction. We distill each teacher to a student model of
the same complexity (see Appendix B for a complete de-
scription), and measure the student’s performance. As a
final approach, we distill a vanilla teacher, but apply label
smoothing and forward correction on the student.

Table 6 reports the performance of the distilled students
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using each of the above teachers. Our key finding is that on
both datasets, both label smoothing and loss correction on
the teacher significantly improves over vanilla distillation;
this is in marked contrast to the findings of Müller et al.
(2019). On the other hand, smoothing or correcting on
the student has mixed results; while there are benefits on
CIFAR-10, the larger CIFAR-100 sees essentially no gains.

Finally, we plot the effect of the teacher’s label smoothing
parameter α on student performance in Figure 6. Even for
high values of α, smoothing improves performance over the
baseline (α = 0). Per the previous section, large values of α
allow for successful label denoising, and the results indicate
the value of this transfer to the student.

In summary, our experiments show that under label noise, it
is strongly beneficial to denoise the teacher — either through
label smoothing or loss correction — prior to distillation.

6. Conclusion
We studied the effectiveness of label smoothing as a means
of coping with label noise. Empirically, we showed that
smoothing is competitive with existing loss correction tech-
niques, and that it exhibits strong denoising effects. Theo-
retically, we related smoothing to one of these correction
techniques, and re-interpreted it as a form of regularisation.
Further, we showed that when distilling models from noisy
data, label smoothing of the teacher is beneficial. Overall,
our results shed further light on the potential benefits of label
smoothing, and suggest formal exploration of its denoising
properties as an interesting topic for future work. More
broadly, this work represents a step in studying the effects
of common tricks in deep learning on label noise. Further
expanding such study, as done for gradient clipping (Menon
et al., 2020), is also of interest.
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