Supplemental Material for ”On the Difficulty of Nearest Neighbor
Search”

1. Notation Table

Table 1. Notations

Symbol Meaning

x a random vector x

xJ the 7 dimension of x

T; a sample in database,
each z; a i.i.d. sample of x

n the number of samples in database

q query

d number of dimensions

P parameter for L, norm

S fraction of non-zero dimensions

Da(,) distance for d-dimensional data,
abbreviated as D(,) if no ambiguity

Dy .. max Dy(z;,q), maximum distance
between ¢ and database samples

Dt .. . Pfinn Dy(z4,q), minimum distance
between ¢ and database samples

DL ... meanDgy(z;,q), mean distance
between the query and database samples

Din E, (DL . ), expected minimum distance
between queries and database samples

Dinean E,(Dg,..n), expected mean distance
between the queries and database samples

2. Proofs

Proof of Theorem 2.2:

The probability for both 27 and ¢’ to be non-zero is
5?, and the probability for one of them to be non-zero
is 2(1 — s;)s;. Hence, the mean

pj = B[R] = Ell2’ — ¢’ |"]
for sparse vectors can be computed as,
pi = s3mf, +2(1 = s5)smyp
Similarly, the variance

0? = Var[R;] = E[R2] - E[R;]? = El|27 — ¢/ |"") — 112

for sparse vectors can be given as,

2_ 2 Ne o9
0F = 85m; 9, + 2(1 = 85)8m52p — i,

Thus, the normalized variance for sparse vectors is:

d
2 >j-1 o}

)

If we assume each dimension to bei.i.d, i.e., all V; have
the same distribution with E[V}] = ug, var[V;] = o2,
and also assume s; = s, m;, = m;, and m; , = my,
then

, 1o 1 \/s[(mg,,—zmgp)smmgp]

7 A2 g di/? s2[(mf, — 2my)s + 2m,]? B

(1)

(2)

Proof of Theorem 3.1:
With the hash functions of

wla +b

hw) = 22

it can be shown that(Datar et al., 2004),
P(h(zi) = h(q)) = fu(llzi — qllp) (3)

where function fj,(a) = g%fp(g)(l — %)dz is mono-
tonically decreasing with a. Here f, is the p.d.f. of
the absolute value of a p-stable variable.

Suppose the data are normalized by a scale factor such
that D,,ecqn = 1. Note that such a normalization will
not change the nearest neighbor search results at all.
In this case, D, = 1/C,.. Denote py (p2) as the prob-
ability for one random query ¢ and its nearest neigh-
bor (¢ and a random database point) to have the same
code with one hash function. According to equation
(3),
p1 = fa(1/Cr)

and
P2 = fh(1)7

since the expected distance between ¢ and its nearest
neighbor is D, = 1/C,, and the expected distance
between ¢ and a random database point is D,peqn = 1.
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Suppose there are k£ hash bits in one table and [ hash
tables in LSH. The probability that the true nearest
neighbor will have the same code of the query in one
hash table is p¥. So The probability that the true
nearest neighbor will be missed in one hash table is
(1 — p¥) and will be missed in all [ hash tables is (1 —
pi)l. We want to make sure

(1-ph)' = 4.

So
log & —logé 1
= log <p,

log(1—pf) = pf 0

The number of all hash bits to compute are

1
O(kl) = O(klog =p, k.

The number of all points falling into the query bucket
in one table are O(np5). In total there are [ hash
tables, the number of points to be check will be

O(lnpé“).

As discussed in (Gionis et al., 1999), we can choose

npg = 0(1)7
. o logn
ie, k= O(ilogpgl ). Note that

log py

p1=p",

o)
lggpl log p1 1 log p1 _
o= (o) = () F5F = O(() 75 = O(n 7))
where | | L
g(Cr) — ngl — ngh( / T)-
log pa log fn(1)

And hence
1 & LIen!
[ <log s = O(log gng ).

And the number of all points to check, or in other
words, the number of returned candidate points, is

O(Inpk) = O(log %nﬂcﬂ).

Since f(-) is a monotonically decreasing function,
when C,. is larger, ¢(C,) will be smaller! . This
completes the proof.

'Note that both log f4(1/C,) and log fx (1) are negative,
since fp(-) is always < 1.

Proof of Corollary 3.2:
From the proof above, we know [ = log %pfk and

pr* = 0(n), s0

1
I =0(log gng(c")).

The number of returned candidate points, is
1
O(Inp%) = O(log gng(CT)).

The number of all hash bits to compute is
logn
log p5 !

logn
log py !

1
O( log gng(CT))

1 _
log gp1 k) = O(

Since computing one hash bit and check one point both
take O(d), the time complexity of LSH will be
logn

o(d —
log p,

1
1 log Sng(cr))a

and moreover, we need [ tables, each table will have

space complexity O(n), so the total space complexity
for LSH will be

O(nd + nl) = O(nd + log %n(lJrg(Cr))).

This completes the proof.

Proof of Theorem 3.3:

After projecting the data on vector w, the squared Lo
distance between a query ¢ and its nearest neighbor
Lq,NN is

T

(qu —w a:q,NN)Q.

Moreover, the expected distance between ¢ and a ran-
dom point x is

EI(qu - wa)z,

which can be approximated as
1 T T, . \2
- Z(w q—w x;)°.
i

To find projections that maximize the (squared) rela-
tive contrast, we will have

E [ (whq—whz;)?]

(4)

A~ 7
W = arg max
w Egl(w?q —whzgnn)?]

w By (g — 2i)(q — x:) " |w

= arg max i 5
B T Eal(a — Zon ) — zanm) o )

wl Sxw

= arg max (6)

w ’LUTSNNU)
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where Sx = Ey[> (¢ —

K2

Since ), z; =0,

i) (q — zi)"].

Sx = E,[ngq"” + Z zizl].

Moreover, g has the same distribution as z, so
Eq [qu] ~ ZX7

where Sy = (1/n) Y, ;2. Hence Sx can be approx-
imated as 2nXx, and

wT Sxw wl'S yw

W = argmax —x = arg max
wow SNNU) w

’LUTSNNU}
If we further assume that the nearest neighbors are
isotropic, i.e.,

SNN = OJ,

we get

W = argmax w? ¥ xw,
w

which leads to picking high-variance PCA directions.

Proof of Theorem 4.3:
If ¢’ is very small, for example,
-1 1
fb(?) < oy
then in Theorem 2.1, we can omit ¢(=+) and then we
can get

C _ Dmean ~ 1

~
Dmin

1+ (3)0")

=

Moreover, note that
1 _
-1 -1
¢ (g)UI > ¢ (¢(7))UI =-1

In other words, ¢~1(1)o’ is a negative number with

n
very small absolute value, so we can further apporxi-
mate the result as

(1407 ()0) 1+ 67 ()0

And hence

Dmean _
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