## Supplemental Material for "On the Difficulty of Nearest Neighbor Search"

## 1. Notation Table

Table 1. Notations

| Symbol | Meaning |
| :--- | :--- |
| $x$ | a random vector x |
| $x^{j}$ | the $j$ dimension of $x$ |
| $x_{i}$ | a sample in database, |
| $n$ | each $x_{i}$ a i.i.d. sample of $x$ <br> the number of samples in database <br> $q$ |
| $d$ | query |
| $p$ | number of dimensions <br> parameter for $L_{p}$ norm <br> fraction of non-zero dimensions <br> distance for $d$-dimensional data, |
| $D_{d}()$, | abbreviated as $D($,$) if no ambiguity$ |
| $D_{\text {max }}^{q}$ | max $D_{d}\left(x_{i}, q\right)$, maximum distance <br> between $q$ and database samples |
| $D_{\text {min }}^{q}$ | min $D_{d}\left(x_{i}, q\right)$, minimum distance <br> $i=1, \ldots n$ <br> between $q$ and database samples <br> $m e a n D_{d}\left(x_{i}, q\right)$, mean distance |
| $D_{\text {mean }}^{q}$ | metween the query and database samples <br> $E_{q}\left(D_{\text {min }}^{q}\right)$, expected minimum distance |
| $D_{\text {min }}$ | between queries and database samples <br> $E_{q}\left(D_{\text {mean }}^{q}\right)$, expected mean distance <br> between the queries and database samples |
| $D_{\text {mean }}$ |  |

## 2. Proofs

## Proof of Theorem 2.2:

The probability for both $x^{j}$ and $q^{j}$ to be non-zero is $s_{j}^{2}$, and the probability for one of them to be non-zero is $2\left(1-s_{j}\right) s_{j}$. Hence, the mean

$$
\mu_{j}=E\left[R_{j}\right]=E\left[\left|x^{j}-q^{j}\right|^{p}\right]
$$

for sparse vectors can be computed as,

$$
\mu_{j}=s_{j}^{2} m_{j, p}^{\prime}+2\left(1-s_{j}\right) s_{j} m_{j, p}
$$

Similarly, the variance
$\sigma_{j}^{2}=\operatorname{Var}\left[R_{j}\right]=E\left[R_{j}^{2}\right]-E\left[R_{j}\right]^{2}=E\left[\left|x^{j}-q^{j}\right|^{2 p}\right)-\mu_{j}^{2}$
for sparse vectors can be given as,

$$
\sigma_{j}^{2}=s_{j}^{2} m_{j, 2 p}^{\prime}+2\left(1-s_{j}\right) s_{j} m_{j, 2 p}-\mu_{j}^{2}
$$

Thus, the normalized variance for sparse vectors is:

$$
\begin{equation*}
{\sigma^{\prime}}^{2}=\frac{\sum_{j=1}^{d} \sigma_{j}^{2}}{\left(\sum_{j=1}^{d} \mu_{j}\right)^{2}} \tag{1}
\end{equation*}
$$

If we assume each dimension to be i.i.d, i.e., all $V_{j}$ have the same distribution with $E\left[V_{j}\right]=\mu_{d}, \operatorname{var}\left[V_{j}\right]=\sigma_{d}^{2}$, and also assume $s_{j}=s, m_{j, p}=m_{p}$ and $m_{j, p}^{\prime}=m_{p}^{\prime}$, then

$$
\begin{equation*}
\sigma^{\prime}=\frac{1}{d^{1 / 2}} \frac{\sigma_{d}}{\mu_{d}}=\frac{1}{d^{1 / 2}} \sqrt{\frac{s\left[\left(m_{2 p}^{\prime}-2 m_{2 p}\right) s+2 m_{2 p}\right]}{s^{2}\left[\left(m_{p}^{\prime}-2 m_{p}\right) s+2 m_{p}\right]^{2}}-1} \tag{2}
\end{equation*}
$$

## Proof of Theorem 3.1:

With the hash functions of

$$
h(x)=\left\lfloor\frac{w^{T} x+b}{t}\right\rfloor
$$

it can be shown that(Datar et al., 2004),

$$
\begin{equation*}
P\left(h\left(x_{i}\right)=h(q)\right)=f_{h}\left(\left\|x_{i}-q\right\|_{p}\right) \tag{3}
\end{equation*}
$$

where function $f_{h}(a)=\int_{0}^{t} \frac{1}{a} f_{p}\left(\frac{z}{a}\right)\left(1-\frac{z}{t}\right) d z$ is monotonically decreasing with $a$. Here $f_{p}$ is the p.d.f. of the absolute value of a $p$-stable variable.
Suppose the data are normalized by a scale factor such that $D_{\text {mean }}=1$. Note that such a normalization will not change the nearest neighbor search results at all. In this case, $D_{\min }=1 / C_{r}$. Denote $p_{1}\left(p_{2}\right)$ as the probability for one random query $q$ and its nearest neighbor ( $q$ and a random database point) to have the same code with one hash function. According to equation (3),

$$
p_{1}=f_{h}\left(1 / C_{r}\right)
$$

and

$$
p_{2}=f_{h}(1)
$$

since the expected distance between $q$ and its nearest neighbor is $D_{\min }=1 / C_{r}$, and the expected distance between $q$ and a random database point is $D_{\text {mean }}=1$.

Suppose there are $k$ hash bits in one table and $l$ hash tables in LSH. The probability that the true nearest neighbor will have the same code of the query in one hash table is $p_{1}^{k}$. So The probability that the true nearest neighbor will be missed in one hash table is $\left(1-p_{1}^{k}\right)$ and will be missed in all $l$ hash tables is ( $1-$ $\left.p_{1}^{k}\right)^{l}$. We want to make sure

$$
\left(1-p_{1}^{k}\right)^{l}=\delta
$$

So

$$
l=\frac{\log \delta}{\log \left(1-p_{1}^{k}\right)} \leq \frac{-\log \delta}{p_{1}^{k}}=\log \frac{1}{\delta} p_{1}^{-k}
$$

The number of all hash bits to compute are

$$
O(k l)=O\left(k \log \frac{1}{\delta} p_{1}^{-k}\right)
$$

The number of all points falling into the query bucket in one table are $O\left(n p_{2}^{k}\right)$. In total there are $l$ hash tables, the number of points to be check will be

$$
O\left(\ln p_{2}^{k}\right)
$$

As discussed in (Gionis et al., 1999), we can choose

$$
n p_{2}^{k}=O(1)
$$

i.e., $k=O\left(\frac{\log n}{\log p_{2}^{-1}}\right)$. Note that

$$
p_{1}=p_{2}^{\frac{\log p_{1}}{\log p_{2}}}
$$

so
$p_{1}^{k}=\left(p_{2}^{\frac{\log p_{1}}{\log p_{2}}}\right)^{k}=\left(p_{2}^{k}\right)^{\frac{\log p_{1}}{\log p_{2}}}=O\left(\left(\frac{1}{n}\right)^{\frac{\log p_{1}}{\log p_{2}}}\right)=O\left(n^{-g\left(C_{r}\right)}\right)$
where

$$
g\left(C_{r}\right)=\frac{\log p_{1}}{\log p_{2}}=\frac{\log f_{h}\left(1 / C_{r}\right)}{\log f_{h}(1)}
$$

And hence

$$
l \leq \log \frac{1}{\delta} p_{1}^{-k}=O\left(\log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right) .
$$

And the number of all points to check, or in other words, the number of returned candidate points, is

$$
O\left(\ln p_{2}^{k}\right)=O\left(\log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right)
$$

Since $f_{h}(\cdot)$ is a monotonically decreasing function, when $C_{r}$ is larger, $g\left(C_{r}\right)$ will be smaller ${ }^{1}$. This completes the proof.

[^0]
## Proof of Corollary 3.2:

From the proof above, we know $l=\log \frac{1}{\delta} p_{1}^{-k}$ and $p_{1}^{-k}=O\left(n^{g\left(C_{r}\right)}\right)$, so

$$
l=O\left(\log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right)
$$

The number of returned candidate points, is

$$
O\left(\ln p_{2}^{k}\right)=O\left(\log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right)
$$

The number of all hash bits to compute is

$$
O\left(\frac{\log n}{\log p_{2}^{-1}} \log \frac{1}{\delta} p_{1}^{-k}\right)=O\left(\frac{\log n}{\log p_{2}^{-1}} \log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right)
$$

Since computing one hash bit and check one point both take $O(d)$, the time complexity of LSH will be

$$
O\left(d \frac{\log n}{\log p_{2}^{-1}} \log \frac{1}{\delta} n^{g\left(C_{r}\right)}\right)
$$

and moreover, we need $l$ tables, each table will have space complexity $O(n)$, so the total space complexity for LSH will be

$$
O(n d+n l)=O\left(n d+\log \frac{1}{\delta} n^{\left(1+g\left(C_{r}\right)\right)}\right)
$$

This completes the proof.

## Proof of Theorem 3.3:

After projecting the data on vector $w$, the squared $L_{2}$ distance between a query $q$ and its nearest neighbor $x_{q, N N}$ is

$$
\left(w^{T} q-w^{T} x_{q, N N}\right)^{2} .
$$

Moreover, the expected distance between $q$ and a random point $x$ is

$$
E_{x}\left(w^{T} q-w^{T} x\right)^{2}
$$

which can be approximated as

$$
\frac{1}{n} \sum_{i}\left(w^{T} q-w^{T} x_{i}\right)^{2}
$$

To find projections that maximize the (squared) relative contrast, we will have

$$
\begin{array}{r}
\hat{w}=\arg \max _{w} \frac{E_{q}\left[\sum_{i}\left(w^{T} q-w^{T} x_{i}\right)^{2}\right]}{E_{q}\left[\left(w^{T} q-w^{T} x_{q, N N}\right)^{2}\right]} \\
=\arg \max _{w} \frac{w^{T} E_{q}\left[\sum_{i}\left(q-x_{i}\right)\left(q-x_{i}\right)^{T}\right] w}{w^{T} E_{q}\left[\left(q-x_{q, N N}\right)\left(q-x_{q, N N}\right)^{T}\right] w} \tag{5}
\end{array}
$$

$$
\begin{equation*}
=\arg \max _{w} \frac{w^{T} S_{X} w}{w^{T} S_{N N} w} \tag{6}
\end{equation*}
$$

where $S_{X}=E_{q}\left[\sum_{i}\left(q-x_{i}\right)\left(q-x_{i}\right)^{T}\right]$.
Since $\sum_{i} x_{i}=0$,

$$
S_{X}=E_{q}\left[n q q^{T}+\sum_{i} x_{i} x_{i}^{T}\right]
$$

Moreover, $q$ has the same distribution as $x$, so

$$
E_{q}\left[q q^{T}\right] \approx \Sigma_{X}
$$

where $\Sigma_{X}=(1 / n) \sum_{i} x_{i} x_{i}^{T}$. Hence $S_{X}$ can be approximated as $2 n \Sigma_{X}$, and

$$
\hat{w}=\arg \max _{w} \frac{w^{T} S_{X} w}{w^{T} S_{N N} w}=\arg \max _{w} \frac{w^{T} \Sigma_{X} w}{w^{T} S_{N N} w}
$$

If we further assume that the nearest neighbors are isotropic, i.e.,

$$
S_{N N}=\alpha I
$$

we get

$$
\hat{w}=\arg \max _{w} w^{T} \Sigma_{X} w,
$$

which leads to picking high-variance PCA directions.

## Proof of Theorem 4.3:

If $\sigma^{\prime}$ is very small, for example,

$$
\phi\left(\frac{-1}{\sigma^{\prime}}\right) \ll \frac{1}{n}
$$

then in Theorem 2.1, we can omit $\phi\left(\frac{-1}{\sigma^{\prime}}\right)$ and then we can get

$$
C_{r}=\frac{D_{\text {mean }}}{D_{\min }} \approx \frac{1}{\left(1+\phi^{-1}\left(\frac{1}{n}\right) \sigma^{\prime}\right)^{\frac{1}{p}}}
$$

Moreover, note that

$$
\phi^{-1}\left(\frac{1}{n}\right) \sigma^{\prime} \gg \phi^{-1}\left(\phi\left(\frac{-1}{\sigma^{\prime}}\right)\right) \sigma^{\prime}=-1
$$

In other words, $\phi^{-1}\left(\frac{1}{n}\right) \sigma^{\prime}$ is a negative number with very small absolute value, so we can further apporximate the result as

$$
\left(1+\phi^{-1}\left(\frac{1}{n}\right) \sigma^{\prime}\right)^{\frac{1}{p}} \approx 1+\frac{1}{p} \phi^{-1}\left(\frac{1}{n}\right) \sigma^{\prime} .
$$

If we have i.i.d assumption for each dimension, then

$$
\sigma^{\prime}=\frac{1}{d^{1 / 2}} \frac{\sigma_{j}}{\mu_{j}}
$$

And hence

$$
\frac{D_{\text {mean }}}{D_{\min }}=\frac{1}{1+\phi^{-1}\left(\frac{1}{n}\right) \frac{1}{p} \frac{1}{d^{1 / 2}} \frac{\sigma_{j}}{\mu_{j}}}
$$

## References

Datar, M., Immorlica, N., Indyk, P., and Mirrokni, V.S. Locality-sensitive hashing scheme based on pstable distributions. In $S O G C, 2004$.

Gionis, A., Indyk, P., and Motwani, R. Similarity search in high dimensions via hashing. In $V L D B$, 1999.


[^0]:    ${ }^{1}$ Note that both $\log f_{h}\left(1 / C_{r}\right)$ and $\log f_{h}(1)$ are negative, since $f_{h}(\cdot)$ is always $\leq 1$.

