
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Supplemental Material for ”On the Difficulty of Nearest Neighbor

Search”

1. Notation Table

Table 1. Notations

Symbol Meaning

x a random vector x
xj the j dimension of x
xi a sample in database,

each xi a i.i.d. sample of x
n the number of samples in database
q query
d number of dimensions
p parameter for Lp norm
s fraction of non-zero dimensions
Dd(,) distance for d-dimensional data,

abbreviated as D(,) if no ambiguity
Dq

max max
i=1,...n

Dd(xi, q), maximum distance

between q and database samples
Dq

min min
i=1,...n

Dd(xi, q), minimum distance

between q and database samples
Dq

mean meanDd(xi, q), mean distance
between the query and database samples

Dmin Eq(D
q
min), expected minimum distance

between queries and database samples
Dmean Eq(D

q
mean), expected mean distance

between the queries and database samples

2. Proofs

Proof of Theorem 2.2:

The probability for both xj and qj to be non-zero is
s2

j , and the probability for one of them to be non-zero
is 2(1 − sj)sj . Hence, the mean

µj = E[Rj] = E[|xj − qj |p]

for sparse vectors can be computed as,

µj = s2
jm

′

j,p + 2(1 − sj)sjmj,p

Similarly, the variance

σ2
j = V ar[Rj] = E[R2

j]−E[Rj]
2 = E[|xj − qj |2p)− µ2

j

for sparse vectors can be given as,

σ2
j = s2

jm
′

j,2p + 2(1 − sj)sjmj,2p − µ2
j ,

Thus, the normalized variance for sparse vectors is:

σ′2 =

∑d
j=1 σ2

j

(
∑d

j=1 µj)2
. (1)

If we assume each dimension to be i.i.d, i.e., all Vj have
the same distribution with E[Vj] = µd, var[Vj] = σ2

d,
and also assume sj = s, mj,p = mp and m′

j,p = m′

p,
then

σ′ =
1

d1/2

σd

µd
=

1

d1/2

√

s[(m′

2p − 2m2p)s + 2m2p]

s2[(m′

p − 2mp)s + 2mp]2
− 1 (2)

Proof of Theorem 3.1:

With the hash functions of

h(x) = ⌊
wT x + b

t
⌋

it can be shown that(Datar et al., 2004),

P (h(xi) = h(q)) = fh(||xi − q||p) (3)

where function fh(a) =
∫ t

0
1
afp(

z
a)(1 − z

t)dz is mono-
tonically decreasing with a. Here fp is the p.d.f. of
the absolute value of a p-stable variable.

Suppose the data are normalized by a scale factor such
that Dmean = 1. Note that such a normalization will
not change the nearest neighbor search results at all.
In this case, Dmin = 1/Cr. Denote p1 (p2) as the prob-
ability for one random query q and its nearest neigh-
bor (q and a random database point) to have the same
code with one hash function. According to equation
(3),

p1 = fh(1/Cr)

and
p2 = fh(1),

since the expected distance between q and its nearest
neighbor is Dmin = 1/Cr, and the expected distance
between q and a random database point is Dmean = 1.

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supplemental Material for ”On the Difficulty of Nearest Neighbor Search”

Suppose there are k hash bits in one table and l hash
tables in LSH. The probability that the true nearest
neighbor will have the same code of the query in one
hash table is pk

1 . So The probability that the true
nearest neighbor will be missed in one hash table is
(1 − pk

1) and will be missed in all l hash tables is (1 −
pk
1)l. We want to make sure

(1 − pk
1)l = δ.

So

l =
log δ

log(1 − pk
1)

≤
− log δ

pk
1

= log
1

δ
p−k
1

The number of all hash bits to compute are

O(kl) = O(k log
1

δ
p−k
1).

The number of all points falling into the query bucket
in one table are O(npk

2). In total there are l hash
tables, the number of points to be check will be

O(lnpk
2).

As discussed in (Gionis et al., 1999), we can choose

npk
2 = O(1),

i.e., k = O(log n

log p−1

2

). Note that

p1 = p
log p1
log p2

2 ,

so

pk
1 = (p

log p1
log p2

2)k = (pk
2)

log p1
log p2 = O((

1

n
)

log p1
log p2) = O(n−g(Cr))

where

g(Cr) =
log p1

log p2
=

log fh(1/Cr)

log fh(1)
.

And hence

l ≤ log
1

δ
p−k
1 = O(log

1

δ
ng(Cr)).

And the number of all points to check, or in other
words, the number of returned candidate points, is

O(lnpk
2) = O(log

1

δ
ng(Cr)).

Since fh(·) is a monotonically decreasing function,
when Cr is larger, g(Cr) will be smaller1 . This
completes the proof.

1Note that both log fh(1/Cr) and log fh(1) are negative,
since fh(·) is always ≤ 1.

Proof of Corollary 3.2:

From the proof above, we know l = log 1
δ p−k

1 and

p−k
1 = O(ng(Cr)), so

l = O(log
1

δ
ng(Cr)).

The number of returned candidate points, is

O(lnpk
2) = O(log

1

δ
ng(Cr)).

The number of all hash bits to compute is

O(
log n

log p−1
2

log
1

δ
p−k
1) = O(

log n

log p−1
2

log
1

δ
ng(Cr)).

Since computing one hash bit and check one point both
take O(d), the time complexity of LSH will be

O(d
log n

log p−1
2

log
1

δ
ng(Cr)),

and moreover, we need l tables, each table will have
space complexity O(n), so the total space complexity
for LSH will be

O(nd + nl) = O(nd + log
1

δ
n(1+g(Cr))).

This completes the proof.

Proof of Theorem 3.3:

After projecting the data on vector w, the squared L2

distance between a query q and its nearest neighbor
xq,NN is

(wT q − wT xq,NN)2.

Moreover, the expected distance between q and a ran-
dom point x is

Ex(wT q − wT x)2,

which can be approximated as

1

n

∑

i

(wT q − wT xi)
2.

To find projections that maximize the (squared) rela-
tive contrast, we will have

ŵ = arg max
w

Eq[
∑

i

(wT q − wT xi)
2]

Eq[(wT q − wT xq,NN)2]
(4)

= arg max
w

wT Eq[
∑

i

(q − xi)(q − xi)
T]w

wT Eq[(q − xq,NN)(q − xq,NN)T]w
(5)

= arg max
w

wT SXw

wT SNNw
(6)

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Supplemental Material for ”On the Difficulty of Nearest Neighbor Search”

where SX = Eq[
∑

i

(q − xi)(q − xi)
T].

Since
∑

i xi = 0,

SX = Eq[nqqT +
∑

i

xix
T
i].

Moreover, q has the same distribution as x, so

Eq[qq
T] ≈ ΣX ,

where ΣX = (1/n)
∑

i xix
T
i . Hence SX can be approx-

imated as 2nΣX , and

ŵ = arg max
w

wT SXw

wT SNNw
= arg max

w

wT ΣXw

wT SNNw

If we further assume that the nearest neighbors are
isotropic, i.e.,

SNN = αI,

we get
ŵ = arg max

w
wT ΣXw,

which leads to picking high-variance PCA directions.

Proof of Theorem 4.3:

If σ′ is very small, for example,

φ(
−1

σ′
) ≪

1

n
,

then in Theorem 2.1, we can omit φ(−1
σ′

) and then we
can get

Cr =
Dmean

Dmin
≈

1

(1 + φ−1(1
n)σ′)

1
p

.

Moreover, note that

φ−1(
1

n
)σ′ ≫ φ−1(φ(

−1

σ′
))σ′ = −1

In other words, φ−1(1
n)σ′ is a negative number with

very small absolute value, so we can further apporxi-
mate the result as

(1 + φ−1(
1

n
)σ′)

1
p ≈ 1 +

1

p
φ−1(

1

n
)σ′.

If we have i.i.d assumption for each dimension, then

σ′ =
1

d1/2

σj

µj
.

And hence

Dmean

Dmin
=

1

1 + φ−1(1
n) 1

p
1

d1/2

σj

µj

.

References

Datar, M., Immorlica, N., Indyk, P., and Mirrokni,
V.S. Locality-sensitive hashing scheme based on p-
stable distributions. In SOGC, 2004.

Gionis, A., Indyk, P., and Motwani, R. Similarity
search in high dimensions via hashing. In VLDB,
1999.

