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1. Notation Table

Table 1. Notations

Symbol Meaning

x a random vector x
xj the j dimension of x
xi a sample in database,

each xi a i.i.d. sample of x
n the number of samples in database
q query
d number of dimensions
p parameter for Lp norm
s fraction of non-zero dimensions
Dd(, ) distance for d-dimensional data,

abbreviated as D(, ) if no ambiguity
Dq

max max
i=1,...n

Dd(xi, q), maximum distance

between q and database samples
Dq

min min
i=1,...n

Dd(xi, q), minimum distance

between q and database samples
Dq

mean meanDd(xi, q), mean distance
between the query and database samples

Dmin Eq(D
q
min), expected minimum distance

between queries and database samples
Dmean Eq(D

q
mean), expected mean distance

between the queries and database samples

2. Proofs

Proof of Theorem 2.2:

The probability for both xj and qj to be non-zero is
s2

j , and the probability for one of them to be non-zero
is 2(1 − sj)sj . Hence, the mean

µj = E[Rj ] = E[|xj − qj |p]

for sparse vectors can be computed as,

µj = s2
jm

′

j,p + 2(1 − sj)sjmj,p

Similarly, the variance

σ2
j = V ar[Rj ] = E[R2

j ]−E[Rj ]
2 = E[|xj − qj |2p)− µ2

j

for sparse vectors can be given as,

σ2
j = s2

jm
′

j,2p + 2(1 − sj)sjmj,2p − µ2
j ,

Thus, the normalized variance for sparse vectors is:

σ′2 =

∑d
j=1 σ2

j

(
∑d

j=1 µj)2
. (1)

If we assume each dimension to be i.i.d, i.e., all Vj have
the same distribution with E[Vj ] = µd, var[Vj ] = σ2

d,
and also assume sj = s, mj,p = mp and m′

j,p = m′

p,
then

σ′ =
1

d1/2

σd

µd
=

1

d1/2

√

s[(m′

2p − 2m2p)s + 2m2p]

s2[(m′

p − 2mp)s + 2mp]2
− 1 (2)

Proof of Theorem 3.1:

With the hash functions of

h(x) = ⌊
wT x + b

t
⌋

it can be shown that(Datar et al., 2004),

P (h(xi) = h(q)) = fh(||xi − q||p) (3)

where function fh(a) =
∫ t

0
1
afp(

z
a )(1 − z

t )dz is mono-
tonically decreasing with a. Here fp is the p.d.f. of
the absolute value of a p-stable variable.

Suppose the data are normalized by a scale factor such
that Dmean = 1. Note that such a normalization will
not change the nearest neighbor search results at all.
In this case, Dmin = 1/Cr. Denote p1 (p2) as the prob-
ability for one random query q and its nearest neigh-
bor (q and a random database point) to have the same
code with one hash function. According to equation
(3),

p1 = fh(1/Cr)

and
p2 = fh(1),

since the expected distance between q and its nearest
neighbor is Dmin = 1/Cr, and the expected distance
between q and a random database point is Dmean = 1.



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Supplemental Material for ”On the Difficulty of Nearest Neighbor Search”

Suppose there are k hash bits in one table and l hash
tables in LSH. The probability that the true nearest
neighbor will have the same code of the query in one
hash table is pk

1 . So The probability that the true
nearest neighbor will be missed in one hash table is
(1 − pk

1) and will be missed in all l hash tables is (1 −
pk
1)l. We want to make sure

(1 − pk
1)l = δ.

So

l =
log δ

log(1 − pk
1)

≤
− log δ

pk
1

= log
1

δ
p−k
1

The number of all hash bits to compute are

O(kl) = O(k log
1

δ
p−k
1 ).

The number of all points falling into the query bucket
in one table are O(npk

2). In total there are l hash
tables, the number of points to be check will be

O(lnpk
2).

As discussed in (Gionis et al., 1999), we can choose

npk
2 = O(1),

i.e., k = O( log n

log p−1

2

). Note that

p1 = p
log p1
log p2

2 ,

so

pk
1 = (p

log p1
log p2

2 )k = (pk
2)

log p1
log p2 = O((

1

n
)

log p1
log p2 ) = O(n−g(Cr))

where

g(Cr) =
log p1

log p2
=

log fh(1/Cr)

log fh(1)
.

And hence

l ≤ log
1

δ
p−k
1 = O(log

1

δ
ng(Cr)).

And the number of all points to check, or in other
words, the number of returned candidate points, is

O(lnpk
2) = O(log

1

δ
ng(Cr)).

Since fh(·) is a monotonically decreasing function,
when Cr is larger, g(Cr) will be smaller1 . This
completes the proof.

1Note that both log fh(1/Cr) and log fh(1) are negative,
since fh(·) is always ≤ 1.

Proof of Corollary 3.2:

From the proof above, we know l = log 1
δ p−k

1 and

p−k
1 = O(ng(Cr)), so

l = O(log
1

δ
ng(Cr)).

The number of returned candidate points, is

O(lnpk
2) = O(log

1

δ
ng(Cr)).

The number of all hash bits to compute is

O(
log n

log p−1
2

log
1

δ
p−k
1 ) = O(

log n

log p−1
2

log
1

δ
ng(Cr)).

Since computing one hash bit and check one point both
take O(d), the time complexity of LSH will be

O(d
log n

log p−1
2

log
1

δ
ng(Cr)),

and moreover, we need l tables, each table will have
space complexity O(n), so the total space complexity
for LSH will be

O(nd + nl) = O(nd + log
1

δ
n(1+g(Cr))).

This completes the proof.

Proof of Theorem 3.3:

After projecting the data on vector w, the squared L2

distance between a query q and its nearest neighbor
xq,NN is

(wT q − wT xq,NN )2.

Moreover, the expected distance between q and a ran-
dom point x is

Ex(wT q − wT x)2,

which can be approximated as

1

n

∑

i

(wT q − wT xi)
2.

To find projections that maximize the (squared) rela-
tive contrast, we will have

ŵ = arg max
w

Eq[
∑

i

(wT q − wT xi)
2]

Eq[(wT q − wT xq,NN )2]
(4)

= arg max
w

wT Eq[
∑

i

(q − xi)(q − xi)
T ]w

wT Eq[(q − xq,NN )(q − xq,NN )T ]w
(5)

= arg max
w

wT SXw

wT SNNw
(6)
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where SX = Eq[
∑

i

(q − xi)(q − xi)
T ].

Since
∑

i xi = 0,

SX = Eq[nqqT +
∑

i

xix
T
i ].

Moreover, q has the same distribution as x, so

Eq[qq
T ] ≈ ΣX ,

where ΣX = (1/n)
∑

i xix
T
i . Hence SX can be approx-

imated as 2nΣX , and

ŵ = arg max
w

wT SXw

wT SNNw
= arg max

w

wT ΣXw

wT SNNw

If we further assume that the nearest neighbors are
isotropic, i.e.,

SNN = αI,

we get
ŵ = arg max

w
wT ΣXw,

which leads to picking high-variance PCA directions.

Proof of Theorem 4.3:

If σ′ is very small, for example,

φ(
−1

σ′
) ≪

1

n
,

then in Theorem 2.1, we can omit φ(−1
σ′

) and then we
can get

Cr =
Dmean

Dmin
≈

1

(1 + φ−1( 1
n )σ′)

1
p

.

Moreover, note that

φ−1(
1

n
)σ′ ≫ φ−1(φ(

−1

σ′
))σ′ = −1

In other words, φ−1( 1
n )σ′ is a negative number with

very small absolute value, so we can further apporxi-
mate the result as

(1 + φ−1(
1

n
)σ′)

1
p ≈ 1 +

1

p
φ−1(

1

n
)σ′.

If we have i.i.d assumption for each dimension, then

σ′ =
1

d1/2

σj

µj
.

And hence

Dmean

Dmin
=

1

1 + φ−1( 1
n ) 1

p
1

d1/2

σj

µj

.
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