
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 1

Semi-Supervised Hashing for Large Scale
Search

Jun Wang, Member, IEEE, Sanjiv Kumar, Member, IEEE, and Shih-Fu Chang, Fellow, IEEE

Abstract—Hashing based approximate nearest neighbor (ANN) search in huge databases has become popular owing to its
computational and memory efficiency. The popular hashing methods, e.g., Locality Sensitive Hashing and Spectral Hashing, construct
hash functions based on random or principal projections. The resulting hashes are either not very accurate or inefficient. Moreover
these methods are designed for a given metric similarity. On the contrary, semantic similarity is usually given in terms of pairwise labels
of samples. There exist supervised hashing methods that can handle such semantic similarity but they are prone to overfitting when
labeled data is small or noisy. In this work, we propose a semi-supervised hashing (SSH) framework that minimizes empirical error over
the labeled set and an information theoretic regularizer over both labeled and unlabeled set. Based on this framework, we present three
different semi-supervised hashing methods, including orthogonal hashing, non-orthogonal hashing, and sequential hashing. Particularly,
the sequential hashing method generates robust codes in which each hash function is designed to correct the errors made by the
previous ones. We further show that the sequential learning paradigm can be extended to unsupervised domains where no labeled
pairs are available. Extensive experiments on four large datasets (up to 80 million samples) demonstrate the superior performance of
the proposed SSH methods over state-of-the-art supervised and unsupervised hashing techniques.

Index Terms—Hashing, Nearest neighbor search, binary codes, semi-supervised hashing, pairwise labels, sequential hashing.

F

1 INTRODUCTION

Web data including documents, images and videos is growing
rapidly. For example, the photo sharing website Flickr has
over 5 billion images. The video sharing website YouTube
receives more than 24 hours of uploaded videos per minute.
There is an emerging need to retrieve relevant content from
such massive databases. Besides the widely-used text-based
commercial search engines, like Google and Bing, content
based image retrieval (CBIR) has attracted substantial attention
over the past decade [1]. Instead of taking textual keywords as
input, CBIR techniques directly take a visual query q and try
to return its nearest neighbors from a given database X using
a prespecified feature space and distance measure.

In fact, finding nearest neighbors is a fundamental step
in many machine learning algorithms such as kernel density
estimation, spectral clustering, manifold learning and semi-
supervised learning [2]. Exhaustively comparing the query q
with each sample in the database X is infeasible because
linear complexity O(|X |) is not scalable in practical set-
tings. Besides the scalability issue, most large scale CBIR
applications also suffer from curse of dimensionality since
visual descriptors usually have hundreds or even thousands of
dimensions. Therefore, beyond the infeasibility of exhaustive
search, storage of the original data also becomes a critical
bottleneck.

• J. Wang is with IBM T.J. Watson Research, Yorktown Heights, NY, 10598.
E-mail: wangjun@us.ibm.edu

• S. Kumar is with Google Research, New York, NY, 10011
E-mail: sanjivk@google.com

• S.-F. Chang is with the Department of Electrical and Computer Engineer-
ing, Columbia University, New York, NY, 10027.
E-mail: sfchang@ee.columbia.edu.

Fortunately, in many applications, it is sufficient to return
approximate nearest neighbors. Instead of doing exact nearest
neighbor search through linear scan, a fast and accurate index-
ing method with sublinear (o(|X |)), logarithmic (O(log |X |)),
or even constant (O(1)) query time is desired for approximate
nearest neighbors (ANN) search. For example, ϵ-ANN aims
at finding p ∈ X satisfying d(p, q) ≤ (1 + ϵ)d(p′, q), where
ϵ > 0 and p′ is the nearest neighbor of query q [3]. Over the
past several decades, many techniques have been developed
for fast and efficient ANN search. Especially, tree based
approaches tend to store data with efficient data structures,
which makes the search operation extremely fast, typically
with the complexity of O(log(|X |)). The representative tree
based algorithms include KD tree [4][5][6], ball tree [7], met-
ric tree [8], and vantage point tree [9]. A more detailed survey
of the tree based ANN search algorithms can be found in [10].
However, the performance of tree-based methods degrades
drastically for high-dimensional data, mostly reducing to worst
case of linear search [11].

In addition, tree-based methods also suffer from memory
constraints. In many cases, the size of the data-structure is
bigger than the original data itself. Hence, hashing based
ANN techniques have attracted more attention recently. They
have constant query time and also need substantially reduced
storage as they usually store only compact codes. In this work,
we focus on binary codes. Given n D-dim vectors X ∈ RD×n,
the goal in hashing is to learn suitable K-bit binary codes
Y ∈ BK×n. To generate Y, K binary hash functions are used.
Linear projection-based hash functions have been widely used
in the literature since they are very simple and efficient. Also,
they have achieved state-of-the-art performance for various
tasks [12][13][14]. In linear projection-based hashing, the kth

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 2

hash function can be generalized to be of the following form:

hk(x) = sgn(f(w⊤
k x + bk)), (1)

where x is a data point, wk is a projection vector, bk is
a threshold and f(·) is an arbitrary function. Since h(x) ∈
{−1, 1}, the corresponding binary hash bit can be simply
expressed as: yk(x) = (1 + hk(x))/2. Different choices of
w and f(·) lead to different hashing approaches.

Broadly, hashing methods can be divided into two main
categories: unsupervised methods and supervised methods.
Unsupervised methods design hash functions using unlabeled
data X to generate binary codes. Locality Sensitive Hashing
(LSH) [12] is arguably the most popular unsupervised hashing
method and has been applied to many problem domains,
including information retrieval and computer vision. Its ker-
nelized version has recently been developed in [15]. Another
effective method called Spectral Hashing (SH) was proposed
recently by Weiss et al. [13]. More recently, graph based
hashing technique was proposed to leverage low-dimensional
manifold structure of data to design efficient and compact
hash codes [16]. Since unsupervised methods do not require
any labeled data, they can be easily applied to different data
domains given a prespecified distance metric.

From the perspective of quality of retrieved results, hashing
based ANN methods aim to return an approximate set of
nearest neighbors. However, in typical CBIR, even returning
the exact nearest neighbors does not guarantee good search
quality. This is due to the well-known problem of semantic
gap, where the high level semantic description of visual
content often differs from the extracted low level visual de-
scriptors [17]. Furthermore, most hashing approaches provide
theoretic guarantees with only certain distance metric spaces.
For instance, LSH function family works for the ℓp (p ∈ (0, 2])
and Jaccard distances. But in CBIR applications, it is usually
hard to express similarity (or distance) between image pairs
with a simple metric. Ideally, one would like to provide pairs
of images that one believes contain ‘similar’ or ‘dissimilar’ im-
ages. From such pairwise labeled data, the hashing mechanism
should be able to automatically generate codes that satisfy the
semantic similarity. Supervised learning techniques have been
proposed in the past to handle this issue. For example, in [18],
authors suggested merging standard LSH with a learned Maha-
lanobis metric to reflect semantic indexing. Since this approach
uses labeled sample pairs for training distance metric, it was
categorized as a semi-supervised learning paradigm. However,
the hash functions are still randomized.

In addition, a Boosted Similarity Sensitive Coding (BSSC)
technique was proposed in [19] which tries to learn a series of
weighted hash functions from labeled data. Kulis and Darrell
recently proposed to learn hash functions based on explicitly
minimizing the reconstruction error between the metric space
and Hamming space, termed as Binary Reconstructive Embed-
ding (BRE) [21]. Other binary encoding methods, like deep
neural network stacked with Restricted Boltzmann Machines
(RBMs), were recently applied to learn binary codes [20],
which have shown superior performance over BSSC given
sufficient training labels [23]. Although RBMs use both labeled
and unlabeled data, the latter is only used in a pre-training

phase, whose solution provides a good initialization for the
supervised back-propagation phase. So RBMs based binary
embedding is still categorized as a supervised method. One
of the problems with all of these supervised methods is that
they have much slower training process in comparison to the
unsupervised methods. Another problem stems from limited
or noisy training data, which can easily lead to overfitting.

Realizing the challenging issue of semantic gap, and inef-
ficiencies of existing supervised hashing approaches, in this
article, we propose a Semi-Supervised Hashing (SSH) frame-
work that can leverage semantic similarity using labeled data
while remaining robust to overfitting. The objective function
of SSH consists of two main components: supervised empirical
fitness and unsupervised information theoretic regularization.
Specifically, we provide a rigorous formulation in which a
supervised term tries to minimize the empirical error on the
labeled data while an unsupervised term provides effective
regularization by maximizing desirable properties like variance
and independence of individual bits. Based on this semi-
supervised formulation, we present several variants of learning
binary hash functions. The taxonomy of the proposed Semi-
supervised hashing method in comparison to a few popular
hashing methods is given in Table 1.

The remainder of this article is organized as follows. In
Section 2, we briefly survey several popular hashing methods.
Section 3 presents the detailed formulation of our approach,
i.e. Semi-Supervised Hashing (SSH). In Section 4, we present
three different solutions for designing semi-supervised hash
functions, followed by an extension to unsupervised domain.
Section 5 provides extensive experimental validation on sev-
eral large image datasets. The conclusions and future work are
given in Section 6.

2 RELATED WORK
Given a dataset X = {xi}, i = 1, · · · , n, containing n =
|X| points, and xi ∈ RD, the objective in nearest neighbor
search is to find a set of nearest neighbors R ⊂ X for a
given query q. For large-scale applications, to avoid excessive
computational and memory costs, one would like to instead do
an approximate nearest neighbor (ANN) search with sublinear
query complexity [2][12].

In the following subsections, in addition to the popularly
used Locality Sensitive Hashing, we briefly review a few
state-of-the-art representative methods from supervised as well
as unsupervised domains. Specifically, we discuss Boosted
Similarity Sensitive Coding, Spectral Hashing, and Binary
Reconstructive Embedding based hashing along with their pros
and cons for the application of image retrieval.

2.1 Locality Sensitive Hashing
A key ingredient of Locality Sensitive Hashing (LSH) is
mapping “similar” samples to the same bucket with high
probability. In other words, the property of locality in the
original space will be largely preserved in the Hamming space.
More precisely, the hash functions h(·) from LSH family
satisfy the following elegant locality preserving property:

P {h(x) = h(y)} = sim(x,y) (2)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 3

Method Hash Function Projection Hamming Distance Learning Paradigm

Locality Sensitive Hashing (LSH) [12] sgn(w⊤x + b) data-independent non-weighted unsupervised

Shift Invariant Kernel based Hashing (SIKH) [14] sgn(cos(w⊤x + b) + t) data-independent non-weighted unsupervised

Spectral Hashing (SH) [13] sgn(cos(kw⊤x)) data-dependent non-weighted unsupervised

Boosted Similarity Sensitive Coding (BSSC) [19] – data-dependent weighted supervised

Restricted Boltzmann Machines (RBMs) [20] – – non-weighted supervised

Binary Reconstructive Embedding (BRE) [21] sgn(w⊤kx) data-dependent non-weighted supervised

Label-regularized Max-margin Partition (LAMP) [22] sgn(w⊤x + b) data-dependent non-weighted supervised

LSH for Learned Metrics (LSH-LM) [18] sgn(w⊤Gx) data-dependent non-weighted supervised

Semi-Supervised Hashing (SSH) sgn(w⊤x + b) data-dependent non-weighted semi-supervised

TABLE 1
The conceptual comparison of the proposed SSH method with other binary encoding methods.

where the similarity measure can be directly linked to the dis-
tance function d, for example, sim(x,y) = exp{−∥x−y∥2

σ2 }.
A typical category of LSH functions consists of random
projections and thresholds as:

h(x) = sign(w⊤x + b) (3)

where w is a random hyperplane and b is a random in-
tercept. Clearly, the random vector w is data-independent,
which is usually constructed by sampling each component
of w randomly from a p-stable distribution for a general
ℓp metric, where p ∈ (0, 2], e.g., standard Gaussian for ℓ2
distance [24]. Due to the asymptotic theoretical guarantees for
random projection based LSH, many LSH based large scale
search systems have been developed. For instance, a self-
tuning indexing technique, called LSH forest was proposed
in [25], which aims at improving the performance without
additional storage and query overhead. However, the practical
efficiency of LSH is still very limited since it requires long
codes to achieve high precision. But this reduces recall dramat-
ically, and constructing multiple tables is necessary to increase
recall [12]. For example, suppose a K-bit binary embedding
is given as H(x) = [h1(x), · · · , hK(x)]. Then, given l K-bit
tables, the collision probability for two points is given as:

P {H(x) = H(y)} ∝ l ·
[
1 − cos−1x⊤y

π

]K

(4)

For a large scale application, the value of K should be large
to reduce false collisions (i.e., the number of non-neighbor
sample pairs falling into the same bucket). However a large
value of K decreases the collision probability between similar
samples as well. In order to overcome this drawback, multiple
hash tables have to be constructed. Obviously, this is inefficient
due to extra storage cost and larger query time. In [26], a
technique called MultiProbe LSH was developed to reduce the
number of required hash tables through intelligently probing
multiple buckets in each hash table. However, the above data-
independent random projections based hash functions lack
good discrimination over data. Therefore, recent methods tend
to leverage data-dependent learning techniques to improve the
efficiency of hash functions [27].

Incorporating kernel learning with LSH can help generalize
similarity search from standard metric space to a wide class
of similarity functions [15][22]. Furthermore, metric learning
has been combined with randomized LSH functions given a
few pairwise similarity and dissimilarity constraints [18]. All
these methods still use random hyperplanes to design hash
functions with asymptotic performance guarantees. However,
in practice, the performance is significantly degraded if only
compact codes are used [13][28].

2.2 Boosted Similarity Sensitive Coding

To improve discrimination among hash codes, Boosted Sim-
ilarity Sensitive Coding (BSSC) was designed to learn a
weighted Hamming embedding for task specific similarity
search [19] as,

H : X → {α1h1(x), · · · , αKhK(x)} (5)

Hence the conventional Hamming distance is replaced by
the weighted version as

dWH =
K∑

k=1

αk|hk(xi) − hk(xj)| (6)

By learning the hash function weights {α1, · · · , αk}, the
objective is to lower the collision probability of non-neighbor
pair (xi,xj) ∈ C, while improving the collision probability
of neighborhood pair (xi,xj) ∈ M. If one treats each hash
function as a decision stump, the straightforward way of
learning the weights is to directly apply adaptive boosting
algorithm [29], as described in [19].

2.3 Spectral Hashing

Due to the limitations of random projection based hashing
approaches, learning techniques have been applied to improve
the efficiency of hashing. Particularly, Spectral Hashing (SH)
was recently proposed to design compact binary codes for
ANN search. Besides the desired property of keeping neigh-
bors in input space as neighbors in the Hamming space,

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 4

the basic SH formulation requires the codes to be bal-
anced and uncorrelated. Strictly speaking, the hash functions
H(x) = {hk(x)}, k = 1, · · · ,K satisfy the following
criteria [13]:

min
∑
ij

sim(xi,xj)∥H(xi) − H(xj)∥2 (7)

subject to: hk(xi) ∈ {−1, 1}∑
i

hk(xi) = 0, k = 1, · · · ,K∑
i

hk(xi)hl(xi) = 0, for k ̸= l

The direct solution for the above optimization is non-trivial for
even a single bit since it is a balanced graph partition prob-
lem, which is NP hard. The combination of K-bit balanced
partitioning is even harder because of the pairwise indepen-
dence constraints. After relaxing the constraints, the above
optimization was solved using spectral graph analysis [30].
Especially, with the assumption of uniform data distribution,
the spectral solution can be efficiently computed using 1D-
Laplacian eigenfunctions [13].

The final SH algorithm consists of three key steps: 1)
extraction of maximum variance directions through Principal
Component Analysis (PCA) on the data; 2) direction selec-
tion, which prefers to partition projections with large spread
and small spatial frequency; 3) partition of projected data
by a sinusoidal function with previously computed angular
frequency. SH has been shown to be effective in encoding
low-dimensional data since the important PCA directions are
selected multiple times to create binary bits. However, for
high dimensional problems (D >> K) where many directions
contain enough variance, usually each PCA direction is picked
only once. This is because the top few projections have similar
range and thus, a low spatial frequency is preferred. In this
case, SH approximately replicates a PCA projection followed
by a mean partition. In SH, the projection directions are data
dependent but learned in an unsupervised manner. Moreover,
the assumption of uniform data distribution is usually not true
for real-world data.

2.4 Binary Reconstructive Embedding

Instead of using data-independent random projections as in
LSH or principal components as in SH, Kulis and Darrell [21]
proposed data-dependent and bit-correlated hash functions as:

hk(x) = sgn

(
s∑

q=1

Wkqκ(xkq,x)

)
(8)

The sample set {xkq}, q = 1, · · · , s is the training data for
learning hash function hk and κ(·) is a kernel function, and
W is a weight matrix.

Based on the above formulation, a method called Binary
Reconstructive Embedding (BRE) was designed to minimize
a cost function measuring the difference between the metric
and reconstructed distance in Hamming space. The Euclidean
metric dM and the binary reconstruction distance dR are

defined as:

dM(xi,xj) =
1
2
∥xi − xj∥2 (9)

dR(xi,xj) =
1
K

K∑
k=1

(hk(xi) − hk(xj))
2

The objective is to minimize the following reconstruction error
to derive the optimal W:

W∗ = arg min
W

∑
(xi,xj)∈N

[dM(xi,xj) − dR(xi,xj)]
2 (10)

where the set of sample pairs N is the training data. Op-
timizing the above objective function is difficult due to the
non-differentiability of sgn(·) function. Instead, a coordinate-
descent algorithm was applied to iteratively update the hash
functions to a local optimum. This hashing method can be
easily extended to a supervised scenario by setting same-
label pairs to have zero distance and different-label pairs to
have a large distance. However, since the binary reconstruction
distance dR is bounded in [0, 1] while the metric distance dM
has no upper bound, the minimization problem in Eq. (10) is
only meaningful when input data is appropriately normalized.
In practice, the original data point x is often mapped to a
hypersphere with unit length so that 0 ≤ dM ≤ 1. This
normalization removes the scale of data points, which is often
not negligible in practical applications of nearest neighbor
search.

3 SEMI-SUPERVISED PARADIGM FOR HASH-
ING

In this section, we present the formulation of our hashing
method, i.e. Semi-Supervised Hashing (SSH). In this setting,
one is given a set of n points, X = {xi}, i = 1 . . . n,
xi ∈ RD, in which a fraction of pairs are associated with
two categories of label information, M and C. Specifically, a
pair (xi,xj) ∈ M is denoted as a neighbor-pair when (xi,xj)
are neighbors in a metric space or share common class labels.
Similarly, (xi,xj) ∈ C is called a nonneighbor-pair if two
samples are far away in metric space or have different class
labels. Let us denote the data matrix by X ∈ RD×n where
each column is a data point. Also, suppose there are l points,
l ≪ n, which are associated with at least one of the categories
M or C. Let us denote the matrix formed by these l columns of
X as Xl ∈ RD×l. The goal of SSH is to learn hash functions
that minimize the error on the labeled training data Xl, while
maximally satisfying the desirable properties of hashing e.g.,
maximizing information from each bit. We start the discussion
on our learning paradigm with the basic formulation of SSH.

3.1 Empirical Fitness
SSH aims to map the data X ∈ RD×n to a Hamming space to
obtain its compact representation. Suppose we want to learn
K hash functions leading to a K-bit Hamming embedding of
X given by Y ∈ BK×n. Without loss of generality, let X be
normalized to have zero mean. In this work, we use linear
projection coupled with mean thresholding as a hash function.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 5

In other words, given a vector wk ∈ RD, the kth hash function
is defined as,

hk(xi) = sgn(w⊤
k xi + bk) (11)

where bk is the mean of the projected data, i.e.,
bk = − 1

n

∑n
j=1 w⊤

k xj = 0 since X is zero-mean.
One can get the corresponding binary bit as,

yki =
1
2
(1 + hk(xi)) =

1
2
(1 + sgn(w⊤

k xi)) (12)

Let H = [h1, . . . , hK] be a sequence of K hash functions and
W = [w1, . . . ,wK] ∈ RD×K . We want to learn a W that
gives the same bits for (xi,xj) ∈ M and different bits for
(xi,xj) ∈ C. An objective function measuring the empirical
accuracy on the labeled data for a family of hashing functions
H can be defined as:

J(H)=
∑

k

 ∑
(xi,xj)∈M

hk(xi)hk(xj) −
∑

(xi,xj)∈C

hk(xi)hk(xj)

 (13)

One can express the above objective function in a compact
matrix form by first defining a matrix S ∈ Rl×l incorporating
the pairwise labeled information from Xl as:

Sij =


1 : (xi,xj) ∈ M

−1 : (xi,xj) ∈ C

0 : otherwise.

(14)

Also, suppose H(Xl) ∈ BK×l maps the points in Xl to their
K-bit hash codes. Then, the objective function J(H) can be
represented as,

J(H) =
1
2
tr
{
H(Xl) S H(Xl)⊤

}
(15)

=
1
2
tr
{
sgn(W⊤Xl) S sgn(W⊤Xl)⊤

}
where sgn(W⊤Xl) is the matrix of signs of individual
elements. In summary, we intend to learn optimal hashing
functions H by maximizing the objective function as:

H∗ = arg max
H

J(H) (16)

Since the objective function J(H) itself is non-differentiable,
the above problem is difficult to solve even without consider-
ing any regularizer. We first present a simple relaxation of the
empirical fitness.

In the relaxed version of the objective function, we replace
the sign of projection with its signed magnitude in Eq. (13).
This relaxation is quite intuitive in the sense that it not only
desires similar points to have the same sign but also large
projection magnitudes, meanwhile projecting dissimilar points
not only with different signs but also as far as possible. With
this relaxation, the new objective can be directly written as a
function of W as,

J(W)=
∑

k

 ∑
(xi,xj)∈M

w⊤
k xix⊤

j wk −
∑

(xi,xj)∈C

w⊤
k xix⊤

j wk

 (17)

Without loss of generality, we also assume ∥wk∥ = 1, ∀k.
The above function can be expressed in a matrix form as

J(W) =
1
2
tr
{
W⊤XlSX⊤

l W
}

. (18)

3.2 Information Theoretic Regularization
Maximizing empirical accuracy for just a few pairs can lead
to severe overfitting, as illustrated in Figure 1. To get better
generalization ability, one needs to add regularization by in-
corporating conditions that lead to desirable properties of hash
codes. Even though empirical fitness uses only labeled data,
the regularization term uses all the data X , both unlabeled
and labeled, leading to a semi-supervised learning paradigm.
Hence, we use a regularizer which utilizes both labeled and
unlabeled data. From the information-theoretic point of view,
one would like to maximize the information provided by
each bit [31]. Using maximum entropy principle, a binary
bit that gives balanced partitioning of X provides maximum
information. Thus, it is desired to have

∑n
i=1 hk(xi) = 0.

However, finding mean-thresholded hash functions that meet
the balancing requirement is hard. Instead, we use this property
to construct a regularizer for the empirical accuracy given in
Eq. (18). We now show that maximum entropy partitioning is
equivalent to maximizing the variance of a bit.

Proposition 3.1. [maximum variance condition] A hash func-
tion with maximum entropy H(hk(x)) must maximize the
variance of the hash values, and vice-versa, i.e.,

maxH(hk(x)) ⇐⇒ maxvar[h(x)]

Proof: Assume hk has a probability p of assigning the
hash value hk(x) = 1 to a data point and 1 − p for
hk(x) = − 1. The entropy of hk(x) can be computed as

H(hk(x)) = −p log2 p − (1 − p) log2(1 − p)

It is easy to show that the maximum entropy is
max H(hk(x)) = 1 when the partition is balanced, i.e.,
p = 1/2. Now we show that balanced partitioning im-
plies maximum bit variance. The mean of hash value is
E[h(x)] = µ = 2p − 1 and the variance is:

var[hk(x)] = E[(hk(x) − µ)2]
= 4(1 − p)2p + 4p2(1 − p) = 4p(1 − p)

Clearly, var[h(x)] is concave with respect to p and its maxi-
mum is reached at p = 1/2, i.e. balanced partitioning. Also,
since var[h(x)] has a unique maximum, it is easy to see that
the maximum variance partitioning also maximizes the entropy
of the hash function.

Using the above proposition, the regularizer term is defined
as,

R(W) =
∑

k

var[hk(x)] =
∑

k

var[sgn(w⊤
k x)] (19)

Maximizing the above function with respect to W is still hard
due to its non-differentiability. To overcome this problem, we
now show that the maximum variance of a hash function is
lower-bounded by the scaled variance of the projected data.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 6

Neighbor pair Non-neighbor pair

Fig. 1. An illustration of partitioning with maximum em-
pirical fitness and entropy. Both of the partitions satisfy
the given pairwise labels, while the right one is more
informative due to higher entropy.

Proposition 3.2. [lower bound on maximum variance of a
hash function] The maximum variance of a hash function is
lower-bounded by the scaled variance of the projected data,
i.e.,

maxvar[hk(x)] ≥ α · var[w⊤
k x],

where α is a positive constant.

Proof: Suppose, ∥xi∥2 ≤ β ∀i, β > 0. Since
∥wk∥2 = 1 ∀k, from Cauchy-Schwarz inequality,

∥w⊤
k x∥2 ≤ ∥wk∥2 · ∥x∥2 ≤ β = β · ∥ sgn(w⊤

k x)∥2

⇒ E
[
∥ sgn(w⊤

k x)∥2
]
≥ 1

β
E
[
∥w⊤

k x∥2
]

⇒ maxvar[hk(x)] ≥ 1
β

var[w⊤
k x]

Here, we have used the properties that the data is zero-
centered, i.e., E[w⊤

k x] = 0, and for maximum bit variance
E[sgn(w⊤

k x)] = 0.
Given the above proposition, we use the lower bound on the

maximum variance of a hash function as a regularizer, which
is easy to optimize, i.e.,

R(W) =
1
β

∑
k

E[∥w⊤
k x∥2] =

1
nβ

∑
k

w⊤
k XX⊤wk

=
1

nβ
tr
[
W⊤XX⊤W

]
(20)

3.3 Final Objective Function
Combining the relaxed empirical fitness term from Eq. (18)
and the relaxed regularization term from Eq. (20), the overall
semi-supervised objective function is given as,

J(W) =
1
2
tr
[
W⊤XlSX⊤

l W
]
+

η

2
tr
[
W⊤XX⊤W

]
=

1
2
tr{W⊤ [XlSX⊤

l + ηXX⊤]W}

=
1
2
tr{W⊤MW} (21)

where the constants n and β are absorbed in the coefficient η,
and

M = XlSX⊤
l + ηXX⊤ (22)

We refer to matrix M as adjusted covariance matrix. It is
interesting to note the form of M, where the unsupervised
data variance part XXT gets adjusted by XlSX⊤

l W arising
from the pairwise labeled data.

4 PROJECTION LEARNING

4.1 Orthogonal Projection Learning
While learning compact codes, in addition to each bit being
highly informative, one would like to avoid redundancy in bits
as much as possible. One way to achieve this is by making
the projection directions orthogonal, i.e.,

W∗ = arg max
W

J(W) (23)

subject to W⊤W = I

Now, the learning of optimal projections W becomes a typ-
ical eigenproblem, which can be easily solved by doing an
eigenvalue decomposition on matrix M:

max
W

J(W) =
K∑

k=1

λk

W∗ = [e1 · · · eK] (24)

where λ1 > λ2 > · · · > λK are the top eigenvalues of M and
ek, k = 1, · · · ,K are the corresponding eigenvectors.

Mathematically, it is very similar to finding maximum vari-
ance direction using PCA except that the original covariance
matrix gets “adjusted” by another matrix arising from the
labeled data. Hence, our framework provides an intuitive
and easy way to learn hash functions in a semi-supervised
paradigm.

4.2 Non-Orthogonal Projection Learning
In the previous subsection, we imposed orthogonality con-
straints on the projection directions in order to approximately
decorrelate the hash bits. However, these orthogonality con-
straints sometimes lead to a practical problem. It is well known
that for most real-world datasets, most of the variance is
contained in top few projections. The orthogonality constraints
force one to progressively pick those directions that have
very low variance, substantially reducing the quality of lower
bits, and hence the whole embedding. We empirically verify
this behavior in Section 5. Depending on the application, it
may make sense to pick a direction that is not necessarily
orthogonal to the previous directions but has high variance
as well as low empirical error on the labeled set. On the
other hand, one doesn’t want to pick a previous direction again
since the fixed thresholds will generate the same hash codes
in our case. Hence, instead of imposing hard orthogonality
constraints, we convert them into a penalty term added to the
objective function. This allows the learning algorithm to pick
suitable directions by balancing various terms. With this, one
can write the new objective function as,

J(W) =
1
2
tr{W⊤MW} − ρ

2
∥W⊤W − I∥2

F (25)

=
1
2
tr{W⊤MW}− ρ

2
tr
[
(W⊤W−I)⊤(W⊤W−I)

]
.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 7

The new formulation has certain tolerance to non-
orthogonality, which is modulated by a positive coefficient ρ.
However, the above objective function is non-convex and there
is no easy way to find the global solution unlike the previous
case. To maximize the objective function J with respect to
W, we set the derivative to zero and absorb all constants into
ρ as

∂J(W)
∂W

= 0 ⇒ (WW⊤ − I − 1
ρ
M)W = 0 (26)

Though the above equation admits infinite number of so-
lutions since W has a non-empty nullspace, we can obtain a
solution by ensuring

WW⊤W =
(
I +

1
ρ
M
)

W. (27)

One can get a simple solution for the above condition if
I + 1

ρM is positive definite. From (21), M is symmetric but
not necessarily positive definite. Let Q = I+ 1

ρM. Clearly, Q
is also symmetric. In the following proposition we show that Q
is positive definite if the coefficient ρ is chosen appropriately.

Proposition 4.1. The matrix Q is positive definite if ρ >
max(0,−λ̄min), where λ̄min is the smallest eigenvalue of M.

Proof: By definition in (25), ρ > 0. Since M is sym-
metric, it can be represented as M = Udiag(λ1, · · · , λD)U⊤

where all λi’s are real. Let λ̄min = min(λ1, · · · , λD). Then
Q can be written as

Q = I + Udiag

(
λ1

ρ
, · · · ,

λD

ρ

)
U⊤

= Udiag

(
λ1

ρ
+ 1, · · · ,

λD

ρ
+ 1
)

U⊤

Clearly, Q will have all eigenvalues positive if λmin

ρ + 1 >
0 ⇒ ρ > −λmin.

If Q is positive definite, it can be decomposed as
Q = LL⊤ using Cholesky decomposition. Then, one can
easily verify that W = LU satisfies Eq. (27). To achieve a
meaningful approximate solution to our problem, we truncate
the computed matrix W by selecting its first k columns. The
final non-orthogonal projections are derived as,

Wnonorth = LUk (28)

where Uk are the top k eigenvectors of M.

4.3 Sequential Projection Learning
The above non-orthogonal solution is achieved by adjusting
the previous orthogonal solution in a single step. However,
this is one of many possible solutions which tend to work
well in practice. One potential issue is that the above non-
orthogonal solution is sensitive to the choice of the penalty
coefficient ρ. To address these concerns, we further propose an
alternative solution to learn a sequence of projections, which
implicitly incorporates bit correlation by iteratively updating
the pairwise label matrix. In addition, this iterative solution
has the sequential error correction property where each hash
function tries to correct the errors made by the previous one.

Algorithm 1 Sequential projection learning for hashing
(SPLH)

Input: data X, pairwise labeled data Xl, initial pairwise
labels S1, length of hash codes K, constant α
for k = 1 to K do

Compute adjusted covariance matrix:
Mk = XlSkX⊤

l + ηXX⊤

Extract the first eigenvector e of Mk and set:
wk = e

Update the labels from vector wk:
Sk+1 = Sk − αT

(
S̃k,Sk

)
Compute the residual:

X = X − wkw⊤
k X

end for

The idea of sequential projection learning is quite intuitive.
The hash functions are learned iteratively such that at each
iteration, the pairwise label matrix S in (14) is updated
by imposing higher weights on point pairs violated by the
previous hash function. This sequential process implicitly
creates dependency between bits and progressively minimizes
empirical error. The sign of Sij , representing the logical
relationship in a point pair (xi,xj), remains unchanged in
the entire process and only its magnitude |Sij | is updated.
Algorithm 1 describes the procedure of the proposed semi-
supervised sequential projection learning method.

Suppose, S̃k ∈ Rl×l measures the signed magnitude of
pairwise relationships of the kth projections of Xl:

S̃k = X⊤
l wkw⊤

k Xl (29)

Mathematically, S̃k is simply the derivative of empirical
accuracy of kth hash function, i.e., S̃k = ∇SJk, where
Jk = w⊤

k XlSX⊤
l wk. The function T(·) implies the truncated

gradient of Jk:

T(S̃k
ij ,Sij)=

 S̃k
ij : sgn(Sij · S̃k

ij) < 0

0 : sgn(Sij · S̃k
ij) ≥ 0

(30)

The condition sgn(Sij · S̃k
ij) < 0 for a labeled pair (xi,xj)

indicates that hash bits hk(xi) and hk(xj) contradict the
given pairwise label. In other words, points in a neighbor
pair (xi,xi) ∈ M are assigned different bits or those in
(xi,xi) ∈ C are assigned the same bit. For each such violation,
Sij is updated as Sij = Sij −αS̃k

ij . The step size α is chosen
such that α ≤ 1

β where β = maxi ∥xi∥2, ensuring |αS̃k
ij | ≤ 1.

This leads to numerically stable updates without changing
the sign of Sij . Those pairs for which current hash function
produces the correct bits, i.e., sgn(Sij · S̃k

ij) > 0, Sij is kept
unchanged by setting T(S̃k

ij ,Sij) = 0. Thus, those labeled
pairs for which the current hash function does not predict the
bits correctly exert more influence on the learning of the next
function, biasing the new projection to produce correct bits
for such pairs. Intuitively, it has a flavor of boosting-based
methods commonly used for classification. However, unlike
the standard boosting framework used for supervised learning,
such as the one used in [19], the proposed method performs the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 8

Fig. 2. Potential errors due to thresholding (red line) of
the projected data to generate a bit. Points in r− and
r+, are assigned different bits even though they are quite
close. Also, points in R− (R+) and r− (r+) are assigned
the same bit even though they are quite far.

sequential learning in a semi-supervised scenario, where the
objective is to maximize the accuracy of the binary partition
while maintaining the balancing of the partition. Furthermore,
during the indexing and search process, the derived hash
functions are treated equally instead of being weighted as in
the boosting method.

After extracting a projection direction using Mk, the con-
tribution of the subspace spanned by that direction is removed
from X to minimize the redundancy in bits. Note that this
is not the same as imposing the orthogonality constraints
on W discussed earlier. Since the supervised term XlSkX⊤

l

still contains information potentially from the whole space
spanned by original X, the new direction may still have a
component in the subspace spanned by the previous directions.
Thus, the proposed formulation automatically decides the level
of desired correlations between successive hash functions. If
empirical accuracy is not affected, it prefers to pick uncorre-
lated projections. Unlike the non-orthogonal solution discussed
in Section 4.2, the proposed sequential method aggregates
various desirable properties in a single formulation leading
to superior performance on real-world tasks as shown in
Section 5. In fact, one can extend this sequential learning
method in unsupervised cases as well, as shown in the next
subsection.

4.4 Unsupervised Sequential Projection Learning
Unlike the semi-supervised case, pairwise labels are not avail-
able in the unsupervised case. To apply the general framework
of sequential projection learning to an unsupervised setting, we
propose the idea of generating pseudo labels at each iteration
of learning. While generating a bit via a binary hash function,
there are two types of boundary errors one encounters due
to thresholding of the projected data. Suppose all the data
points are projected on a one-dimensional axis as shown in
Figure 2, and the red vertical line is the partition boundary,
i.e. w⊤

k x = 0. The points left to the boundary are assigned a
hash value hk(x) = −1 and those on the right are assigned a
value hk(x) = 1. The regions marked as r−, r+ are located
very close to the boundary and regions R−, R+ are located
far from it. Due to thresholding, points in the pair (xi,xj),
where xi ∈ r− and xj ∈ r+, are assigned different hash bits
even though their projections are quite close. On the other

Algorithm 2 Unsupervised sequential projection learning for
hashing (USPLH)

Input: data X, length of hashing codes K
Initialize X0

MC = ∅,S0
MC = 0.

for k = 1 to K do
Compute adjusted covariance matrix:

Mk =
k−1∑
i=0

δk−iXi
MCS

i
MCX

i
MC

⊤ + ηXX⊤

Extract the first eigenvector e of Mk and set:
wk = e

Generate pseudo labels from projection wk:
Sample Xk

MC and construct Sk
MC

Compute the residual:
X = X − wkw⊤

k X
end for

hand, points in pair (xi,xj), where xi ∈ r− and xj ∈ R− or
xi ∈ r+ and xi ∈ R+, are assigned the same hash bit even
though their projected values are quite far apart. To correct
these two types of boundary “errors”, we first introduce a
neighbor-pair set M and a non-neighbor-pair set C:

M={(xi, xj)} : h(xi) · h(xj)=−1, |w⊤(xi−xj)| ≤ ϵ

C = {(xi, xj)} : h(xi) · h(xj) = 1, |w⊤(xi − xj)| ≥ ζ (31)

Then, given the current hash function, a desired number of
point pairs are sampled from both M and C. Suppose, XMC
contains all the points that are part of at least one sampled
pair. Using the labeled pairs and XMC , a pairwise label matrix
Sk
MC is constructed similar to Eq. (14). In other words, for a

pair of samples (xi,xj) ∈ M, a pseudo label Sk
MC = 1

is assigned while for those (xi,xj) ∈ C, Sk
MC = − 1

is assigned. In the next iteration, these pseudo labels enforce
point pair in M to be assigned the same hash values and those
in C different ones. Thus it sequentially tries to correct the
potential errors made by the previous hash functions. Note
that the above discussion is based on the assumption that
the pairs sampled from the close regions of opposite sides
of the boundary are potential neighbors. In general, when
the splitting hyperplane passes through the dense regions of
data distribution, this assumption will be met. But when the
hyperplane passes through sparse regions, it may be violated.
Moreover, the number of available pseudo pairs may be too
small to learn the next hash function reliably.

Note that each hash function hk(·) produces a pseudo label
set Xk

MC and the corresponding label matrix Sk
MC . The new

label information is used to adjust the data covariance matrix
in each iteration of sequential learning, similar to that for the
semi-supervised case. However, the unsupervised setting does
not have a boosting-like update of the label matrix unlike
the semi-supervised case. Each iteration results in its own
pseudo label matrix depending on the hash function. Hence,
to learn a new projection, all the pairwise label matrices
since the beginning are used but their contribution is decayed
exponentially by a factor δ at each iteration. Note that one does
not need to store these matrices explicitly since incremental
update can be done at each iteration resulting in the same
memory and time complexity as for the semi-supervised case.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 9

The detailed learning procedure is described in algorithm
chart 2. Since there exist no pseudo labels at the beginning, the
first vector w1 is just the first principal direction of the data.
Then, each hash function is learned to satisfy the pseudo labels
iteratively by adjusting the data covariance matrix, similar to
the SPLH approach.

To summarize, besides the three different versions of semi-
supervised hashing methods, i.e., the orthogonal solution
SSHorth, the non-orthogonal solution SSHnonorth, and the
sequential solution SPLH, we also proposed an unsupervised
extension of the sequential learning method in this section,
named as USPLH.

5 EXPERIMENTS
We evaluated all the three versions of the proposed semi-
supervised hashing methods, including orthogonal solution
SSHorth, non-orthogonal solution SSHnonorth (with orthog-
onality constraint relaxed), and sequential solution SPLH,
as well as the unsupervised extension (USPLH) on several
benchmark datasets. Their performance is compared with other
popular binary coding methods, including Locality Sensitive
Hashing (LSH), Spectral Hashing (SH), Binary Reconstruc-
tive Embedding (BRE), Boosted Similarity Sensitive Coding
(BSSC), and Shift Invariant Kernel based Hashing (SIKH).
These methods cover both unsupervised and supervised cat-
egories. Previous works have shown that SH performs better
than other binary encoding methods [13], such as Restricted
Boltzmann Machines (RBMs) [20] and BSSC [19]. For both
SH and BRE, we used the best setting reported in previous
literature. For LSH, we randomly select projections from a
Gaussian distribution with zero-mean and identity covariance
and apply random partitioning to construct hash functions. In
addition, for all the supervised and semi-supervised methods,
a small set of labeled samples was used during training. For
example, only 1000 labeled images are used in the experi-
ments on CIFAR10 dataset and 2000 on Flickr image data.
Finally, for the proposed approach, we used cross validation
to determine some parameters, such as the weight coefficient
η and the step size α.

In the following subsections, we first discuss our evaluation
protocols, followed by brief description of the benchmark
datasets. Finally, extensive experimental results and compar-
isons are presented.

5.1 Evaluation Protocols
To perform fair evaluation, we adopt two criteria commonly
used in the literature:

1) Hamming ranking: All the points in the database are
ranked according to their Hamming distance from the
query and the desired neighbors are returned from the
top of the ranked list. The complexity of Hamming
ranking is linear even though it is very fast in practice.

2) Hash lookup: A lookup table is constructed using the
database codes, and all the points in the buckets that
fall within a small Hamming radius r of the query are
returned. The complexity of the hash lookups is constant
time.

Note that evaluations based on Hamming ranking and hash
lookup focus on different characteristics of hashing techniques.
For instance, hash lookup emphasizes more on the practical
search speed. However, when using many hash bits and single
hash table, the Hamming space becomes increasingly sparse;
and very few samples fall within the Hamming radius r (r = 2
in our setting), resulting in many failed queries without re-
turned data points. In this situation, Hamming ranking provides
better quality measurement of the Hamming embedding, while
neglecting the issue of the search speed. All the experiments
were conducted using a single hash table with relatively
compact codes (up to 64 bits for the largest image collection
dataset with around 80 million points). The search results are
evaluated based on whether the returned images and the query
sample share the same semantic labels for supervised and
semi-supervised tests. We use several metrics to measure the
quantitative performance of different methods. For Hamming
ranking based evaluation, we compute the retrieval precision
as the percentage of true neighbors among the top M returned
samples, where M is uniformly set as 500 in the experiments.
Finally, similar to [13], a Hamming radius of 2 is used to
retrieve the neighbors in the case of hash lookup. The precision
of the returned samples falling within Hamming radius 2 is
reported. If a query returns no neighbors inside Hamming ball
with radius 2, it is treated as a failed query with zero precision.

5.2 Datasets

We used three image datasets in our experiments, i.e., CIFAR-
10, a Flickr image collection, and the 80 million tiny images,
with the number of samples ranging from tens of thousands
to millions. In addition, we use 1 million SIFT feature vectors
for the experiments with unsupervised hashing methods. For
the first two datasets, since they are fully annotated, we focus
on the quantitative evaluation of the search accuracy. For
the 80 million image data, we demonstrate the scalability of
the proposed methods and provide qualitative evaluation by
providing the search results of some exemplar queries.

CIFAR-10 dataset
The CIFAR-10 dataset is a labeled subset of the 80-million
tiny images collection [32]. It consists of a total of 60000
32 × 32 color images in 10 classes, each of which has 6000
samples.1 Each sample in this dataset is associated with a
mutually exclusive class label. A few example images from
CIFAR10 dataset are shown in Figure 3. Since this dataset is
fully annotated, the ground truth semantic neighbors can be
easily retrieved based on the class labels. The entire dataset is
partitioned into two parts: a training set with 59000 samples
and a test set with 1000 samples. The training set is used
for learning hash functions and constructing the hash look-
up tables. For BSSC, BRE and the proposed semi-supervised
hashing methods, we additionally sample 1000 random points
from the training set and assign semantic nearest neighbor
information (i.e. construct the pairwise label matrix S) based
on the image labels. The binary encoding is performed in the
384-dim GIST feature space [33].

1. http://www.cs.toronto.edu/ kriz/cifar.html

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 10

Fig. 3. A few example images from the CIFAR10 dataset.
From top row to bottom row, the image classes are
airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck.

Flickr Images
Here we use a set of Flickr consumer images collected by
NUS lab, i.e. NUS-WIDE dataset [34]. It was created as a
benchmark for evaluating multimedia search techniques. This
dataset contains around 270000 images associated with 81
ground truth concept tags. Unlike the CIFAR10 dataset, each
sample in NUS-WIDE could be assigned multiple labels, since
this kind of multiple tagging occurs very often in real-world
annotation scenario. Compared to the CIFAR-10 dataset, NUS-
WIDE dataset contains images with much higher resolutions,
which allow us to use a Bag-of-Visual-Word model with
local SIFT features for extracting the image descriptor [35].
Particularly, a visual vocabulary with 500-length code book
and a soft assignment strategy was used for deriving the image
features, as described in [36].

Similar to CIFAR10 dataset, we partitioned this set into
two parts, 1K for query test and around 269K for training and
constructing hash tables. In addition, 2K images are randomly
sampled with labels for BSSC, BRE and our semi-supervised
hashing methods. The precision is evaluated based on whether
the returned images and the query share at least one common
semantic label. The performance was evaluated with different
code lengths varying from 8-bit to 64-bit.

SIFT-1M Dataset
We also test the performance of our unsupervised sequential
learning method (USPLH) using SIFT-1M dataset. It contains
1 million local SIFT descriptors extracted from a large set of
images described in [28]. Each point in the dataset is a 128-
dim vector representing histograms of gradient orientations.
We use 1 million samples for training and additional 10K for
testing. Euclidean distance is used to determine the nearest
neighbors. Following the criterion used in [37][13], a returned
point is considered a good neighbor if it lies in the top
2 percentile points closest to a query. Since no labels are
available in this experiment, both SSHorth and SSHnonorth

have no adjustment term. Because it results in the same hash
functions by using just principal projections, we named it as

PCA based hashing (PCAH). We also compared with a few
unsupervised hashing techniques, including LSH, SH, SIKH
on this dataset. For USPLH, to learn each hash function
sequentially, we select 2000 samples from each of the four
boundary and margin regions r−, r+, R−, R+. A label matrix
S is constructed by assigning pseudo-labels to pairs generated
from these samples.

80 Million Tiny Images
Besides the quantitative evaluation on the above three datasets,
we also apply our techniques on a large collection of images
with Gist features, i.e., 80 million tiny images dataset [32],
which has been used as a benchmark dataset for designing
binary encoding approaches [13][21][38][23]. However, only
a small portion of the dataset is manually labeled and the
associated meta information is fairly noisy. Since CIFAR10
is a fully annotated subset of this gigantic image collection,
we combine these two datasets in our experiments. The
experimental protocol for evaluation is described as below.
A subset of two million data points is sampled to construct
the training set, especially for computing the data covariance
matrix for all the eigen-decomposition based approaches, and
a separate set of 2K samples from CIFAR10 dataset is used
as labeled samples. For SH, the hash functions were designed
using this two-million dataset. For BRE and the proposed semi-
supervised hashing methods, both the two-million dataset and
2K labeled data were used to learn the hash functions. After
obtaining the hash functions, the Hamming embedding of the
entire dataset with a total of 79, 302, 017 samples is computed
with 64-bit hash codes. Finally, some examples are randomly
selected for query test, and qualitative comparison is made
with other methods.

5.3 Results

For quantitative evaluation on CIFAR10 and Flickr datasets,
the number of bits is varied from 8 to 48 for CIFAR10 dataset
and Flickr image dataset. The performance curves are shown
in Figure 4 and 5, respectively, where the precision curves of
both Hamming ranking and hash lookup (within Hamming
radius 2) show accuracy of the returned top results. From
these figures, it is not very surprising to see that LSH provides
the worst performance since the random hash functions lack
discrimination for small bit lengths. The orthogonal solution
for SSH described in Section 4, i.e. SSHorth, has comparable
performance to the non-orthogonal solution, SSHnonorth, for
small number of bits (i.e. 8, 12, and 16 bits) since there is
enough variance in top few orthogonal directions computed in
our semi-supervised formulation. But when using large num-
ber of bits, SSHorth performs much worse since the orthogonal
solution forces one to progressively pick the low variance
projections, substantially reducing the quality of the whole
embedding. Both Figure 4 and 5 clearly show that SSHnonorth

is significantly better than SSHorth when using long hash
codes. Note that although SH also uses principal projections
directions, it can somewhat alleviate the negative impact of low
variance projections by reusing the large variance projections
with higher frequency sinusoidal binarization. The sequential
method of SSH, i.e., SPLH, provides the best performance for

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 11

8 12 16 24 32 48
0

0.1

0.2

0.3

The number of bitsP
re

c
is

io
n

 w
it

h
in

 H
a
m

m
in

g
 r

a
d

iu
s
 2

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(a)

8 12 16 24 32 48
0.1

0.2

0.3

The number of bitsP
re

c
is

io
n

 o
f

th
e

 f
ir

s
t

5
0

0
 s

a
m

p
le

s

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(b)

0 1 2 3 4 5 6
x 10

4

0

0.2

0.4

0.6

0.8

1

The number of the returned samples

R
e
c
a
ll

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(c)

0 1 2 3 4 5 6
x 10

4

0

0.2

0.4

0.6

0.8

1

The number of the returned samples

R
e
c
a
ll LSH [12]

BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(d)

Fig. 4. Results on CIFAR10 dataset. a) Precision within
Hamming radius 2 using hash lookup; b) Precision of
the top 500 returned samples using Hamming ranking; c)
Recall curves with 24 bits; d) Recall curves with 32 bits.
LSH: Locality Sensitive Hashing, BSSC: Boosted Similar-
ity Sensitive Coding, SH: Spectral Hashing, BRE: Binary
Reconstructive Embedding, SSHorth: Orthogonal Semi-
Supervised Hashing, SSHnonorth: Non-orthogonal Semi-
Supervised Hashing, and SPLH: Sequential Projection
Learning based Hashing.

all bits. Particularly, in the evaluation of hash lookup within
Hamming radius 2 (Figure 4(a) and 5(a)), the precision for
most of the compared methods drops significantly when longer
codes are used. This is because, for longer codes, the number
of points falling in a bucket decrease exponentially. Thus,
many queries fail by not returning any neighbor even in a
Hamming ball of radius 2. This shows a practical problem
with hash lookup tables even though they have faster query
response than Hamming ranking. Even in this case, SPLH
provides the best performance for most of the cases. Also,
the drop in precision for longer codes is much less compared
to others, indicating less failed queries for SPLH.

As a complementary evaluation, the recall curves for CI-
FAR10 set are given in Figure 4(c) and 4(d), and the precision-
recall curves for Flickr set are given in Figure 5(c) and 5(d).
The results demonstrate significant performance improvement
using the proposed semi-supervised hashing approaches, espe-
cially SPLH, over other methods. Different from the CIFAR10
dataset, the Flickr dataset contains images with multiple labels.
Therefore, the performance measure solely based on recall is
incomplete for this multi-label problem [39]. Instead, average
precision, approximated by the area under the precision-recall
curves, is a more appropriate measure.

We implemented the proposed methods and other hashing
approaches in Matlab and ran the experiments on a Lenovo
workstation with 3.16 GHz Quad Core CPU. Figure 6 reports
the comparison of the computational cost, including training

10 12 16 24 32 48
0

0.1

0.2

0.3

0.4

The number of bitsP
re

c
is

io
n

 w
it

h
in

 H
a
m

m
in

g
 r

a
d

iu
s

 2

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth
SSH

nonorth
SPLH

(a)

8 12 16 24 32 48
0.2

0.25

0.3

0.35

0.4

The number of bitsP
re

c
is

io
n

 o
f

th
e
 f

ir
s
t

5
0
0
 s

a
m

p
le

s

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth
SSH

nonorth
SPLH

(b)

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

Recall

P
re

c
is

io
n

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth
SSH

nonorth
SPLH

(c)

0 0.2 0.4 0.6 0.8 1
0.2

0.25

0.3

0.35

0.4

Recall

P
re

c
is

io
n

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth
SSH

nonorth
SPLH

(d)

Fig. 5. Results on Flickr image dataset. a) Precision
within Hamming radius 2 using hash lookup; b) Precision
of the top 500 returned samples using Hamming ranking;
c) Precision-Recall curve with 24 bits; d) Precision-Recall
curve with 32 bits. LSH: Locality Sensitive Hashing, BSSC:
Boosted Similarity Sensitive Coding, SH: Spectral Hash-
ing, BRE: Binary Reconstructive Embedding, SSHorth:
Orthogonal Semi-Supervised Hashing, SSHnonorth: Non-
orthogonal Semi-Supervised Hashing, and SPLH: Se-
quential Projection Learning based Hashing.

time and compression time, for different techniques. The
training time indicates the cost of learning the hash functions
from training data and the compression time measures the
encoding time from the original test data to binary codes. It is
not surprising that LSH needs negligible training time since the
projections are randomly generated, instead of being learned.
The three eigenvalue decomposition based techniques, i.e. SH,
SSHorth, and SHnonorth, incur similar training cost. Since
SPLH needs to update pairwise label matrix and performs
eigenvalue decomposition at each iteration, its training time
is longer but comparable to BRE, and much less than BSSC.
Compared with off line training cost, the compression time
is usually more important in practice since it is done in real
time. As shown in Figure 7(b) and 6(d), BRE is the most
expensive method in terms of computing the binary codes.
SH requires a little more time than the remaining methods
due to the calculation of the sinusoidal function. The code
generation time can be ranked as: BRE ≫ SH > LSH ≃
BSSC ≃ SSHorth ≃ SSHnonorth ≃ SPLH.

In all the above experiments, we fixed the size of the training
subset, e.g., 2000 for the Flickr dataset. To study the impact
of the amount of supervision on the search performance, we
conducted further experiments on the Flickr dataset using
24-bit hash functions while varying the number of training
samples from 1000 to 3000. Since BRE achieved comparable
performance, we also compared against its performance in
these tests. Figure 7 gives the precision curves for both
hash lookup and Hamming ranking for the proposed semi-

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 12

8 12 16 24 32 48
−1

0

1

2

3

4

The number of bits

T
ra

in
in

g
 T

im
e

 −
 S

e
c
.

(l
o

g
1

0
)

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(a)

8 12 16 24 32 48
0

2

4

6

8

10

12

The number of bits

C
o

m
p

re
s
s
io

n
 T

im
e

 −
 S

e
c
.

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(b)

8 12 16 24 32 48
0

1

2

3

4

5

The number of bits

T
ra

in
in

g
 T

im
e

 −
 S

e
c
.

(l
o

g
1

0
)

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(c)

8 12 16 24 32 48
0

20

40

60

80

The number of bits

C
o

m
p

re
s
s
io

n
 T

im
e

 −
 S

e
c
.

LSH [12]
BSSC [18]
SH [13]
BRE [20]
SSH

orth

SSH
nonorth

SPLH

(d)

Fig. 6. Computational cost for different binary encod-
ing methods. a) Training cost on CIFAR10 dataset; b)
Compression cost on CIFAR10 dataset; c) Training cost
on Flickr dataset; d) Compression cost on Flickr dataset.
LSH: Locality Sensitive Hashing, BSSC: Boosted Similar-
ity Sensitive Coding, SH: Spectral Hashing, BRE: Binary
Reconstructive Embedding, SSHorth: Orthogonal Semi-
Supervised Hashing, SSHnonorth: Non-orthogonal Semi-
Supervised Hashing, and SPLH: Sequential Projection
Learning based Hashing.

supervised methods and supervised BRE approach. It is clear
that 2000 points were sufficient for the Flickr dataset to obtain
reasonable performance for most of the approaches. Further
adding more training data increases the training cost without
adding much benefit.

Figure 8 shows the experimental results of the unsupervised
tests on SIFT-1M dataset. Figure 8(a) shows precision curves
for different methods using hash lookup table, and Figure 8(b)
shows the precision curves using Hamming ranking. Methods
that learn data-dependent projections i.e., USPLH, SH and
PCAH, perform generally much better than LSH and SIKH.
SH performs better than PCAH for longer codes since, for
this dataset, SH tends to pick the high-variance directions
again. USPLH gives the best performance for most cases. Also,
for Hamming radius lookup experiments, the performance of
USPLH does not drop as rapidly as SH and PCAH with
increase in bits. Thus, USPLH leads to less query failures
in comparison to other methods. Figure 8(c) and 8(d) show
the recall curves for different methods using 24-bit and 48-
bit codes. Higher precision and recall for USPLH indicate the
advantage of learning hash functions sequentially even with
noisy pseudo labels.

Finally, we present the experimental results on the large
80-million image data set to show the scalability of the
proposed semi-supervised hashing methods. We use 64-bit
codes to index the 384-dim Gist descriptor, which dramatically
reduces the storage of the entire dataset from hundreds of

1000 1500 2000 2500 3000
0.25

0.3

0.35

0.4

The number of labelsP
re

c
is

io
n

 w
it

h
in

 H
a

m
m

in
g

 r
a

d
iu

s
 2

BRE [20]
SSH

orth
SSH

nonorth
SPLH

(a)

1000 1500 2000 2500 3000
0.3

0.35

0.4

The number of labelsP
re

c
is

io
n

 o
f

th
e
 f

ir
s
t

5
0
0
 s

a
m

p
le

s

BRE [20]
SSH

orth
SSH

nonorth
SPLH

(b)

Fig. 7. Evaluation of the performance using different
amounts of training samples. a) Precision within Ham-
ming radius 2 using hash lookup on Flickr dataset; b)
Precision of the top 500 returned samples using Hamming
ranking on Flickr dataset. BRE: Binary Reconstructive
Embedding, SSHorth: Orthogonal Semi-Supervised Hash-
ing, SSHnonorth: Non-orthogonal Semi-Supervised Hash-
ing, and SPLH: Sequential Projection Learning based
Hashing.

gigabytes to a few hundred megabytes. A random set of
queries was sampled from the database and used for tests.
Here we compared the visual search results of the three best
performing methods, i.e., BRE, SSHnonorth, and SPLH. After
obtaining the search results in hash lookup (within Hamming
radius r = 2), we computed the Euclidian distance of the
collected nearest neighbors and query images in Gist feature
space and then sorted the results. The top ten returned images
for a few exemplar queries are shown in Figure 9. SPLH
presents more visually consistent search results than BRE and
SSHorth. This exhaustive search usually involved only around
0.005% ∼ 0.01% samples from the entire 80 million set
leading to dramatic reduction in search time.”

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a semi-supervised paradigm to
learn efficient hash codes by simple linear mapping which can
handle semantic similarity/dissimilarity among the data. The
proposed method minimizes empirical loss over the labeled
data coupled with an information theoretic regularizer over
both labeled and unlabeled data. A series of relaxations lead
to a very simple eigen-decomposition based solution which is
extremely efficient. Based on this framework, we proposed the
following family of solutions:

1. Orthogonal hash functions (SSHorth): By adding or-
thogonality as hard constraints, the hash codes can be
directly obtained by conducting eigen-decomposition
over an adjusted covariance matrix.

2. Non-orthogonal hash functions (SSHnonorth): The or-
thogonality constraints can be relaxed as a soft penalty
term in the objective function. Then, an approximate
non-orthogonal solution can be obtained through adjust-
ing the learned orthogonal solution.

3. Sequential hash functions (SPLH): The sequential
method iteratively learns new hash functions such that in
each iteration new function tends to minimize the errors
made by the previous one. For this, the pairwise labels

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 13

12 16 24 32 48 64
0

0.2

0.4

0.6

0.8

Number of bitsP
re

c
is

io
n

 w
it

h
in

 H
a
m

m
in

g
 R

a
d

iu
s
 2

LSH [12]
SH [13]
SIKH [14]
PCAH
USPLH

(a)

12 16 24 32 48 64
0

0.1

0.3

0.5

0.7

Number of bitsP
re

c
is

io
n

 o
f

th
e

 f
ir

s
t

5
0
0
 s

a
m

p
le

s

LSH [12]
SH [13]
SIKH [14]
PCAH
USPLH

(b)

0 2 4 6 8 10
x 10

5

0

0.2

0.4

0.6

0.8

1

The number of the returned samples

R
e

c
a

ll

LSH [12]
SH [13]
SIKH [14]
PCAH
USPLH

(c)

0 2 4 6 8 10
x 10

5

0

0.2

0.4

0.6

0.8

1

The number of the returned samples

R
e

c
a

ll

LSH [12]
SH [13]
SIKH [14]
PCAH
USPLH

(d)

Fig. 8. Results on SIFT-1M dataset. a) precision of the
top 500 returned samples using Hamming ranking; b)
precision within Hamming radius 2 using hash lookup.
Recall curves (c) with 24 bits, and (d) with 48 bits. LSH:
Locality Sensitive Hashing, SH: Spectral Hashing, SIKH:
Shift Invariant Kernel based Hashing, and USPLH: Unsu-
pervised Sequential Projection Learning based Hashing.

are updated by imposing higher weights on point pairs
violated by the previous hash function.

4. Unsupervised sequential hash functions (USPLH):
The sequential learning method was extended to the
unsupervised setting, where a set of pseudo-labels are
generated sequentially using the probable mistakes made
by the previous bit. Each new hash function tries to
minimize these errors subject to the same regularizer
as in the semi-supervised case.

We conducted extensive experiments on four large datasets
containing up to 80 million points and provided both quan-
titative and qualitative comparison with the state-of-the-art
hashing techniques. The experimental results show superior
performance of the proposed semi-supervised hashing meth-
ods. Particularly, SPLH achieved the best performance for
semi-supervised and supervised cases and USPLH performs
the best for unsupervised cases. The sequential techniques,
i.e. SPLH and USPLH, need more time for (offline) training
than LSH or eigen-decomposition based methods such as SH,
SSHorth, and SSHnonorth, but comparable to or even faster
than BRE method, and much faster than BSSC. In terms of
(online) run time, all the four proposed hashing methods are
as fast as LSH, which is significantly faster than SH and
BRE methods. In the future, we would like to investigate if
any theoretical guarantees could be provided for the proposed
semi-supervised hashing methods.

ACKNOWLEDGMENTS

We thank the reviewers for their helpful comments and in-
sights. J. Wang was supported in part by Google Intern Schol-
arship and a Chinese Government Scholarship for Outstanding

Self-Financed Students Abroad. S.-F. Chang was supported in
part by National Science Foundation Awards CNS-07-51078
and CNS-07-16203.

REFERENCES
[1] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image retrieval: Ideas,

influences, and trends of the new age,” ACM Computing Surveys, vol. 40,
no. 2, pp. 1–60, 2008.

[2] G. Shakhnarovich, T. Darrell, and P. Indyk, Nearest-neighbor methods
in learning and vision: theory and practice. MIT Press, 2006.

[3] P. Indyk and R. Motwani, “Approximate nearest neighbors: towards
removing the curse of dimensionality,” in Proc. of 30th ACM Symposium
on Theory of Computing, 1998, pp. 604–613.

[4] J. Bentley, “Multidimensional binary search trees used for associative
searching,” Communications of the ACM, vol. 18, no. 9, p. 517, 1975.

[5] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1977.

[6] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” in Proc. of the IEEE Conference on Computer
Vision and Pattern Recognition, 2008, pp. 1–8.

[7] S. Omohundro, “Efficient algorithms with neural network behavior,”
Complex Systems, vol. 1, no. 2, pp. 273–347, 1987.

[8] J. Uhlmann, “Satisfying general proximity/similarity queries with metric
trees,” Information Processing Letters, vol. 40, no. 4, pp. 175–179, 1991.

[9] P. Yianilos, “Data structures and algorithms for nearest neighbor search
in general metric spaces,” in Proc. of the fourth annual ACM-SIAM
Symposium on Discrete algorithms, 1993, pp. 311–321.

[10] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” in International Conference on
Computer Vision Theory and Applications, Algarve, Portugal, 2009, pp.
331–340.

[11] P. Indyk, “Nearest-neighbor searching in high dimensions,” in Hand-
book of discrete and computational geometry, J. E. Goodman and
J. O’Rourke, Eds. Boca Raton, FL: CRC Press LLC, 2004.

[12] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. of 25th International Conference on
Very Large Data Bases, 1999, pp. 518–529.

[13] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc.
of Advances in Neural Information Processing Systems, D. Koller,
D. Schuurmans, Y. Bengio, and L. Bottou, Eds., 2008, vol. 21, pp. 1753–
1760.

[14] M. Raginsky and S. Lazebnik, “Locality-sensitive binary codes from
shift-invariant kernels,” in Advances in Neural Information Processing
Systems 22, Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams,
and A. Culotta, Eds., 2009, pp. 1509–1517.

[15] B. Kulis and K. Grauman, “Kernelized locality-sensitive hashing for
scalable image search,” kyoto, Japan, 2009, pp. 2130 – 2137.

[16] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proceedings of the 28th International Conference on Machine Learning,
2011, pp. 1–8.

[17] A. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain, “Content-
based image retrieval at the end of the early years,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, vol. 22, no. 12, pp. 1349–
1380, 2000.

[18] B. Kulis, P. Jain, and K. Grauman, “Fast similarity search for learned
metrics,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 31, no. 12, pp. 2143–2157, 2009.

[19] G. Shakhnarovich, “Learning task-specific similarity,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2005.

[20] G. Hinton and R. Salakhutdinov, “Reducing the dimensionality of data
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, 2006.

[21] B. Kulis and T. Darrell, “Learning to Hash with Binary Reconstructive
Embeddings,” in Proc. of Advances in Neural Information Processing
Systems, vol. 20.

[22] Y. Mu, J. Shen, and S. Yan, “Weakly-Supervised Hashing in Kernel
Space,” in IEEE Computer Society Conference on Computer Vision and
Pattern Recognition, San Francisco, USA, June, pp. 3344–3351.

[23] A. Torralba, R. Fergus, and Y. Weiss, “Small codes and large image
databases for recognition,” in IEEE Conference on Computer Vision and
Pattern Recognition, Anchorage, Alaska, USA, 2008, pp. 1–8.

[24] M. Datar, N. Immorlica, P. Indyk, and V. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proceedings of the
twentieth annual Symposium on Computational Geometry, 2004, pp.
253–262.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XX, NO. XX, XXX 2012 14

(a) (b) (c) (d)

Fig. 9. Qualitative evaluation over the 80 million tiny image dataset using 64-bit codes. a) query images; top 10 returned
images using b) BRE method; c) SSHnonorth method, and d) SPLH method. BRE: Binary Reconstructive Embedding,
SSHnonorth: Non-orthogonal Semi-Supervised Hashing, and SPLH: Sequential Projection Learning based Hashing.

[25] M. Bawa, T. Condie, and P. Ganesan, “LSH forest: self-tuning indexes
for similarity search,” in Proceedings of the 14th international confer-
ence on World Wide Web, Chiba, Japan, 2005, pp. 651–660.

[26] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe LSH: efficient indexing for high-dimensional similarity search,”
in Proceedings of the 33rd international conference on Very large data
bases, 2007, pp. 950–961.

[27] L. Cayton and S. Dasgupta, “A learning framework for nearest neighbor
search,” in Advances in Neural Information Processing Systems 20.

[28] J. Wang, S. Kumar, and S.-F. Chang, “Sequential projection learning for
hashing with compact codes,” in Proceedings of the 27th International
Conference on Machine Learning, 2010, pp. 1127–1134.

[29] Y. Freund and R. Schapire, “A desicion-theoretic generalization of on-
line learning and an application to boosting,” in Computational Learning
Theory, 1995, pp. 23–37.

[30] C. Fowlkes, S. Belongie, F. Chung, and J. Malik, “Spectral grouping
using the Nyström method,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, no. 2, pp. 214–225, 2004.

[31] S. Baluja and M. Covell, “Learning to hash: forgiving hash functions and
applications,” Data Mining and Knowledge Discovery, vol. 17, no. 3,
pp. 402–430, 2008.

[32] A. Torralba, R. Fergus, and W. Freeman, “80 million tiny images: A
large data set for nonparametric object and scene recognition,” IEEE
Trans. on Pattern Analysis and Machine Intelligence, vol. 30, no. 11,
pp. 1958–1970, 2008.

[33] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” International Journal
of Computer Vision, vol. 42, no. 3, pp. 145–175, 2001.

[34] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng, “Nus-wide:
A real-world web image database from national university of singapore,”
in Proc. of ACM Conf. on Image and Video Retrieval, Santorini, Greece,
July 2009.

[35] D. G. Lowe, “Distinctive Image Features from Scale-Invariant Key-
points,” International Journal of Computer Vision, vol. 60, no. 2, pp.
91–110, 2004.

[36] Y.-G. Jiang, C.-W. Ngo, and J. Yang, “Towards optimal bag-of-features
for object categorization and semantic video retrieval,” in Proceedings
of the 6th ACM international conference on Image and video retrieval,
2007, pp. 494–501.

[37] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for
scalable image retrieval,” in IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, San Francisco, USA, June
2010, pp. 3424–3431.

[38] R. Fergus, Y. Weiss, and A. Torralba, “Semi-supervised learning in gi-
gantic image collections,” in Advances in Neural Information Processing
Systems 22.

[39] R. Schapire and Y. Singer, “Boostexter: A boosting-based system for text
categorization,” Machine learning, vol. 39, no. 2, pp. 135–168, 2000.

Jun Wang received the M.Phil. and Ph.D. de-
grees from Columbia University, NY, in 2010 and
2011, respectively. Currently, he is a Research
Staff Member in the business analytics and
mathematical sciences department at IBM T. J.
Watson Research Center, Yorktown Heights, NY.
He also worked as an intern at Google Research
in 2009, and as a research assistant at Harvard
Medical School, Harvard University in 2006. He
has been the recipient of several awards and
scholarships, including the Jury thesis award

from the Department of Electrical Engineering at Columbia University
in 2011, the Google global intern scholarship in 2009, and a Chinese
government scholarship for outstanding self-financed students abroad
in 2009. His research interests include machine learning, business ana-
lytics, information retrieval and hybrid neural-computer vision systems.

Sanjiv Kumar received his B.E. from Birla Insti-
tute of Science and Technology, Pilani, India and
M.S. from Indian Institute of Technology, Chen-
nai, India in 1997. From 1997 to 1999, he was a
Research Fellow at the Department of Surgery,
National University of Singapore working in the
field of medical robotics and imaging. In 2000,
he joined the Ph.D. program at The Robotics In-
stitute, Carnegie Mellon University. Since 2005,
he has been working at Google Research, NY
as a Research Scientist. His primary research

interests include large scale computer vision and machine learning,
graphical models and medical imaging.

Shih-Fu Chang (S’89-M’90-SM’01-F’04) is
Richard Dicker Professor in the Departments
of Electrical Engineering and Computer
Science, and Director of Digital Video and
Multimedia Lab at Columbia University. He has
made significant contributions to multimedia
search, visual communication, media forensics,
and international standards. He has been
recognized with ACM SIGMM Technical
Achievement Award, IEEE Kiyo Tomiyasu
Award, Navy ONR Young Investigator Award,

IBM Faculty Award, ACM Recognition of Service Award, and NSF
CAREER Award. He and his students have received many Best Paper
Awards, including the Most Cited Paper of the Decade Award from
Journal of Visual Communication and Image Representation. He has
worked in different advising/consulting capacities for industry research
labs and international institutions. He is an IEEE Fellow and a Fellow of
the American Association for the Advancement of Science. He served
as Editor-in-Chief for IEEE Signal Processing Magazine (2006-8), and
Chair of Columbia’s Electrical Engineering Department (2007-2010).

