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Abstract

Distributed stochastic gradient descent is an important subroutine in distributed
learning. A setting of particular interest is when the clients are mobile devices,
where two important concerns are communication efficiency and the privacy of the
clients. Several recent works have focused on reducing the communication cost or
introducing privacy guarantees, but none of the proposed communication efficient
methods are known to be privacy preserving and none of the known privacy
mechanisms are known to be communication efficient. To this end, we study
algorithms that achieve both communication efficiency and differential privacy. For
d variables and n ≈ d clients, the proposed method uses O(log log(nd)) bits of
communication per client per coordinate and ensures constant privacy.
We also improve previous analysis of the Binomial mechanism showing that it
achieves nearly the same utility as the Gaussian mechanism, while requiring fewer
representation bits, which can be of independent interest.

1 Introduction

1.1 Background

Distributed stochastic gradient descent (SGD) is a basic building block of modern machine learn-
ing [25, 11, 9, 28, 1, 27, 5]. In the typical scenario of synchronous distributed learning, in every
round, each client obtains a copy of a global model which it updates based on its local data. The
updates (usually in the form of gradients) are sent to a parameter server, where they are averaged
and used to update the global model. Alternatively, without a central server, each client maintains
a global model and either broadcasts the gradient to all or a subset of other clients, and updates its
model with the aggregated gradient. In our paper we specifically consider the centralized setting, for
the decentralized case the authors are referred to [36] and references therein.

Often, the communication cost of sending the gradient becomes the bottleneck [30, 23, 22]. To address
this issue, several recent works have focused on reducing the communication cost of distributed
learning algorithms via gradient quantization and sparsification [32, 17, 33, 20, 21, 4, 34]. These
algorithms have been shown to improve communication cost and hence communication time in
distributed learning. This is especially effective in the federated learning setting where clients are
mobile devices with expensive up-link communication cost [26, 20].
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While communication is a key concern in client based distributed machine learning, an equally
important consideration is that of protecting the privacy of participating clients and their sensitive
information. Providing rigorous privacy guarantees for machine learning applications has been
an area of active recent interest [6, 35, 31]. Differentially private gradient descent algorithms in
particular were studied in the work of [2]. A direct application of these mechanisms in distributed
settings leads to algorithms with high communication costs. The key focus of our paper is to analyze
mechanisms that achieve rigorous privacy guarantees as well as have communication efficiency.

1.2 Communication efficiency

We first describe synchronous distributed SGD formally. Let F (w) : Rd → R be of the form
F (w) = 1

M ·
∑M
i=1 fi(w), where each fi resides at the ith client. For example, w’s are weights of a

neural network and fi(w) is the loss of the network on data located on client i. Let w0 be the initial
value. At round t, the server transmits wt to all the clients and asks a random set of n (batch size /
lot size) clients to transmit their local gradient estimates gti(w

t). Let S be the subset of clients. The
server updates as follows

gt(wt) =
1

n

∑
i∈S

gti(w
t), wt+1 , wt − γgt(wt)

for some suitable choice of γ. Other optimization algorithms such as momentum, Adagrad, or Adam
can also be used instead of the SGD step above.

Naively for the above protocol, each of the n clients needs to transmit d reals, typically using O(d ·
log 1/η) bits1. This communication cost can be prohibitive, e.g., for a medium size PennTreeBank
language model [39], the number of parameters d > 10 million and hence total cost is ∼ 38MB
(assuming 32 bit float), which is too large to be sent from a mobile phone to the server at every round.

Motivated by the need for communication efficient protocols, various quantization algorithms have
been proposed to reduce the communication cost [33, 20, 21, 38, 37, 34, 5]. In these protocols, the
clients quantize the gradient by a function q and send an efficient representation of q(gti(w

t)) instead
of its actual local gradient gti(w

t). The server computes the gradient as

g̃t(wt) =
1

n

∑
i∈S

q(gti(w
t)),

and updates wt as before. Specifically, [33] proposes a quantization algorithm which reduces
the requirement of full (or floating point) arithmetic precision to a bit or few bits per value on
average. There are many subsequent works e.g., see [21] and in particular [5] showed that stochastic
quantization and Elias coding [15] can be used to obtain communication-optimal SGD for convex
functions. If the expected communication cost at every round t is bounded by c, then the total
communication cost of the modified gradient descent is at most

T · c. (1)

All the previous papers relate the error in gradient compression to SGD convergence. We first state
one such result for completeness for non-convex functions and prove it in Appendix A. Similar (and
stronger) results can be obtained for (strongly) convex functions using results in [16] and [29].
Corollary 1 ([16]). Let F be L-smooth and ∀x ‖∇F (x)‖2 ≤ D. Let w0 satisfy F (w0)− F (w∗) ≤
DF . Let q be a quantization scheme, and γ , min

{
L−1,

√
2DF (σ

√
LT )−1

}
, then after T rounds

Et∼(Unif[T ])[‖∇F (wt)‖22] ≤ 2DFL

T
+

2
√

2σ
√
LDF√
T

+DB,

where σ2 = max
1≤t≤T

2E[‖gt(wt)−∇F (wt)‖22] + 2 max
1≤t≤T

Eq[‖gt(wt)− g̃t(wt)‖22], (2)

and B = max1≤t≤T ‖Eq[gt(wt) − g̃t(wt)]‖. The expectation in the above equations is over the
randomness in gradients and quantization.

1η is the per-coordinate quantization accuracy. To represent a d dimensional vectorX to an constant accuracy
in Euclidean distance, each coordinate is usually quantized to an accuracy of η = 1/

√
d.
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The above result relates the convergence of distributed SGD for non-convex functions to the worst-
case mean square error (MSE) and bias in gradient mean estimates in Equation (2). Thus smaller the
mean square error in gradient estimation, better convergence. Hence, we focus on the problem of
distributed mean estimation (DME), where the goal is to estimate the mean of a set of vectors.

1.3 Differential privacy

While the above schemes reduce the communication cost, it is unclear what (if any) privacy guarantees
they offer. We study privacy from the lens of differential privacy (DP). The notion of differential
privacy [13] provides a strong notion of individual privacy while permitting useful data analysis in
machine learning tasks. We refer the reader to [14] for a survey. Informally, for the output to be
differentially private, the estimated model should be indistinguishable whether a particular client’s
data was taken into consideration or not. We define this formally in Section 2.

In the context of client based distributed learning, we are interested in the privacy of the gradients
aggregated from clients; differential privacy for the average gradients implies privacy for the resulting
model since DP is preserved by post-processing. The standard approach is to let the server add the
noise to the averaged gradients (e.g., see [14, 2] and references within). However, the above only
works under a restrictive assumption that the clients can trust the server. Our goal is to also minimize
the need for clients to trust the central aggregator, and hence we propose the following model:

Clients add their share of the noise to their gradients gti before transmission. Aggregation of gradients
at the server results in an estimate with noise equal to the sum of the noise added at each client.

This approach improves over server-controlled noise addition in several scenarios:

Clients do not trust the server: Even in the scenario when the server is not trustworthy, the above
scheme can be implemented via cryptographically secure aggregation schemes [7], which ensures that
the only information about the individual users the server learns is what can be inferred from the sum.
Hence, differential privacy of the aggregate now ensures that the parameter server does not learn any
individual user information. This will encourage clients to participate in the protocol even if they do
not fully trust the server. We note that while secure aggregation schemes add to the communication
cost (e.g., [7] adds log2(k · n) for k levels of quantization), our proposed communication benefits
still hold. For example, if n = 1024, a 4-bit quantization protocol would reduce communication cost
by 67% compared to the 32 bit representation.

Server is negligent, but not malicious: the server may "forget" to add noise, but is not malicious
and not interested in learning characteristics of individual users. However, if the server releases the
learned model to public, it needs to be differentially-private.

A natural way to extend the results of [14, 2] is to let individual users add Gaussian noise to their
gradients before transmission. Since the sum of Gaussians is Gaussian itself, differential privacy
results follow. However, the transmitted values now are real numbers and the benefits of gradient
compression are lost. Further, secure aggregation protocols [7] require discrete inputs. To resolve
these issues, we propose that the clients add noise drawn from an appropriately parameterized
Binomial distribution. We refer to this as the Binomial mechanism. Since Binomial random variables
are discrete, they can be transmitted efficiently. Furthermore, the choice of the Binomial is convenient
in the distributed setting because sum of Binomials is also binomially distributed i.e., if

Z1 ∼ Bin(N1, p), Z2 ∼ Bin(N2, p) then Z1 + Z2 ∼ Bin(N1 +N2, p).

Hence the total noise post aggregation can be analyzed easily, which is convenient for the distributed
setting2. Binomial mechanism can be of independent interest in other applications with discrete
output as well. Furthermore, unlike Gaussian it avoids floating point representation issues.

1.4 Summary of our results

Binomial mechanism: We first study Binomial mechanism as a generic mechanism to release
discrete valued data. Previous analysis of the Binomial mechanism (where you add noise Bin(N, p))
was due to [12], who analyzed the 1-dimensional case for p = 1/2 and showed that to achieve (ε, δ)
differential privacy, N needs to be≥ 64 log(2/δ)/ε2. We improve the analysis in the following ways:

2Another choice is the Poisson distribution. Different from Poisson, the Binomial distribution has bounded
support and has an easily analyzable communication complexity which is always bounded.
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• d-dimensions. We extend the analysis of 1-dimensional Binomial mechanism to d dimensions.
Unlike the Gaussian distribution, Binomial is not rotation invariant making the analysis more
involved. The key fact utilized in this analysis is that Binomial distribution is locally rotation-
invariant around the mean.

• Improvement. We improve the previous result and show that N ≥ 8 log(2/δ)/ε2 suffices for
small ε, implying that the Binomial and Gaussian mechanism perform identically as ε→ 0. We
note that while this is a constant improvement , it is crucial in making differential privacy practical.

Differentially-private distributed mean estimation (DME): A direct application of Gaussian mech-
anism requires n · d reals and hence n · d · log(nd) bits of communication. This can be prohibitive
in practice. We first propose a direct application of quantization [33] and Binomial mechanism and
characterize its privacy/error guarantees along with its communication costs. We further show that
coupling the scheme with random rotation can significantly improve communication further. In
particular, for ε = O(1), we provide an algorithm achieving the same privacy and error tradeoff as
that of the Gaussian mechanism with communication

≤ n · d ·
(

log2

(
1 +

d

n

)
+O

(
log log

(
nd

δ

)))
bits,

per round of distributed SGD. Hence when d ≈ n, the number of bits is n · d · log(log(nd)/δ).

The rest of the paper is organized as follows. In Section 2, we review the notion of differential privacy
and state our results for the Binomial mechanism. Motivated by the fact that the convergence of SGD
can be reduced to the error in gradient estimate computation per-round, we formally describe the
problem of DME in Section 3 and state our results in Section 4.

In Section 4.2, we provide and analyze the implementation of the binomial mechanism in conjunction
with quantization in the context of DME. The main idea is for each client to add noise drawn from
an appropriately parameterized Binomial distribution to each quantized value before sending to the
server. The server further subtracts the bias introduced by the noise to achieve an unbiased mean
estimator. We further show in Section 4.3 that the rotation procedure proposed in [33] which reduces
the MSE is helpful in reducing the additional error due to differential privacy.

2 Differential privacy

2.1 Notation

We start by defining the notion of differential privacy. Formally, given a set of data sets D provided
with a notion of neighboring data sets ND ⊂ D ×D and a query function f : D → X , a mechanism
M : X → O to release the answer of the query, is defined to be (ε, δ) differentially private if for any
measurable subset S ⊆ O and two neighboring data sets (D1, D2) ∈ ND,

Pr (M(f(D1)) ∈ S) ≤ eε Pr (M(f(D2)) ∈ S) + δ. (3)

Unless otherwise stated, for the rest of the paper, we will assume the output spaces X ,O ⊆ Rd. We
consider the mean square error as a metric to measure the error of the mechanismM. Formally,

E(M) , max
D∈D

E[‖M(f(D))− f(D)‖22].

A key quantity in characterizing differential privacy for many mechanisms is the sensitivity of a query
f : D → Rd in a given norm `q . Formally this is defined as

∆q , max
(D1,D2)∈ND

‖f(D1)− f(D2)‖q. (4)

The canonical mechanism to achieve (ε, δ) differential privacy is the Gaussian mechanismMσ
g [14]:

Mσ
g (f(D)) , f(D) + Z, where Z ∼ N (0, σ2Id). We now state the well-known privacy guarantee

of the Gaussian mechanism.
Lemma 1 ( [14]). For any δ, `2 sensitivity bound ∆2, and σ such that σ ≥ ∆2

√
2 log 1.25/δ,Mσ

g

is (∆2

σ

√
2 log 1.25/δ, δ) differentially private 3 and the error is bounded by d · σ2.

3All logs are to base e unless otherwise stated.
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2.2 Binomial Mechanism

We now define the Binomial mechanism for the case when the output space X of the query f is Zd.
The Binomial mechanism is parameterized by three quantities N, p, s where N ∈ N, p ∈ (0, 1), and
quantization scale s = 1/j for some j ∈ N and is given by

MN,p,s
b (f(D)) , f(D) + (Z −Np) · s, (5)

where for each coordinate i, Zi ∼ Bin(N, p) and independent. One dimensional binomial mechanism
was introduced by [12] for the case when p = 1/2. We analyze the mechanism for the general
d-dimensional case and for any p. This analysis is involved as the Binomial mechanism is not rotation
invariant. By carefully exploiting the local rotation invariant structure near the mean, we show that:
Theorem 1. For any δ, parameters N, p, s and sensitivity bounds ∆1,∆2,∆∞ such that

Np(1− p) ≥ max (23 log(10d/δ), 2∆∞/s) ,

the Binomial mechanism is (ε, δ) differentially private for

ε =
∆2

√
2 log 1.25

δ

s
√
Np(1− p)

+
∆2cp

√
log 10

δ + ∆1bp

sNp(1− p)(1− δ/10)
+

∆∞dp log 1.25
δ + ∆∞dp log 20d

δ log 10
δ

sNp(1− p)
, (6)

where bp, cp, and dp are defined in (16), (11), and (15) respectively, and for p = 1/2, bp = 1/3,
cp = 5/2, and dp = 2/3. The error of the mechanism is d · s2 ·Np(1− p).

The proof is given in Appendix B. We make some remarks regarding the design and the guarantee
for the Binomial Mechanism. Note that the privacy guarantee for the Binomial mechanism depends
on all three sensitivity parameters ∆2,∆∞,∆1 as opposed to the Gaussian mechanism which only
depends on ∆2. The ∆1 and ∆∞ terms can be seen as the added complexity due to discretization.

Secondly setting s = 1 (i.e. providing no scale to the noise) in the expression (6), it can be readily
seen that the terms involving ∆1 and ∆2 scale differently with respect to the variance of the noise.
This motivates the use of the accompanying quantization scale s in the mechanism. Indeed it is
possible that the resolution of the integer that is provided by the Binomial noise could potentially
be too large for the problem leading to worse guarantees. In this setting, the quantization parameter
s helps normalize the noise correctly. Further, it can be seen as long as the variance of the random
variable s · Z is fixed, increasing Np(1− p) and decreasing s makes the Binomial mechanism closer
to the Gaussian mechanism. Formally, if we let σ = s

√
Np(1− p) and s ≤ σ/(c

√
d), then using

the Cauchy-Schwartz inequality, the ε guarantee (6) can be rewritten as

ε = (∆2/σ)
√

2 log 1.25/δ (1 +O (1/c)) .

The variance of the Binomial distribution is Np(1− p) and the leading term in ε matches exactly the
ε term in Gaussian mechanism. Furthermore, if s is o(1/

√
d), then this mechanism approaches the

Gaussian mechanism. This result agrees with the Berry-Esseen type Central limit theorems for the
convergence of one dimensional Binomial distribution to the Gaussian distribution. In Figure 1, we
plot the error vs ε for Gaussian and Binomial mechanism. Observe that as scale is reduced, error vs
privacy trade-off for Binomial mechanism approaches that of Gaussian mechanism.

Finally note that, while p = 1/2 will in general be the optimal choice as it maximizes the variance
for a fixed communication budget, there might be corner cases wherein the required variance is so
small that it cannot be achieved by an integer choice of N and p = 1/2. Our results working with
general p also cover these corner cases.

3 Distributed mean estimation (DME)

We have related the SGD convergence rate to the MSE in approximating the gradient at each step in
Corollary 1. Eq. (1) relates the communication cost of SGD to the communication cost of estimating
gradient means. Advanced composition theorem (Thm. 3.5 [19]) or moments accounting [2] can
be used to relate the privacy guarantee of SGD to that of gradient mean estimate at each instance
t. We also note that in SGD, we often sample the clients, standard privacy amplification results via
sampling [2], can be used to get tighter bounds in this case.
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Figure 1: Comparison of error
vs privacy for Gaussian and Bi-
nomial mechanism at different
scales

(a) ε = 4.0 (b) ε = 2.0

Figure 2: cpSGD with rotation on the infinite MNIST dataset.
k is the number of quantization levels, andm is the parameter
of the binomial noise (p = 0.5, s = 1). The baseline is
without quantization and differential privacy. δ = 10−9.

Therefore, akin to [33], in the rest of the paper we just focus on the MSE and privacy guarantees of
DME. The results for synchronous distributed GD follow from Corollary 1 (convergence), advanced
composition theorem (privacy), and Eq. (1) (communication).

Formally, the problem of DME is defined as given n vectors X , {X1 . . . Xn} where Xi ∈ Rd is on
client i, we wish to compute the mean X̄ = 1

n

∑n
i=1Xi at a central server. For gradient descent at

each round t, Xi is set to gti . DME is a fundamental building block for many distributed learning
algorithms including distributed PCA/clustering [24].

While analyzing private DME we assume that each vector Xi has bounded `2 norm, i.e. ‖Xi‖ ≤ D.
The reason to make such an assumption is to be able to define and analyze the privacy guarantees
and is often enforced in practice by employing gradient clipping at each client. We note that this
assumption appears in previous works on gradient descent and differentially private gradient descent
(e.g. [2]). Since our results also hold for all gradients without any statistical assumptions, we get
desired convergence results and privacy results for SGD.

3.1 Communication protocol

Our proposed communication algorithms are simultaneous and independent, i.e., the clients inde-
pendently send data to the server at the same time. We allow the use of both private and public
randomness. Private randomness refers to random values generated by each client separately, and
public randomness refers to a sequence of random values that are shared among all parties4.

Given n vectors X , {X1 . . . Xn} where Xi ∈ Rd resides on a client i. In any independent
communication protocol, each client transmits a function of Xi (say q(Xi)), and a central server
estimates the mean by some function of q(X1), q(X2), . . . , q(Xn). Let π be any such protocol and
let Ci(π,Xi) be the expected number of bits transmitted by the i-th client during protocol π, where
throughout the paper, expectation is over the randomness in protocol π.

Let Ci(π,Xi) be the number of bits transmitted by client i. The total number of bits transmitted
by all clients with the protocol π is C(π,Xn

1 )
def
=
∑n
i=1 Ci(π,Xi). Let the estimated mean be ˆ̄X .

For a protocol π, the MSE of the estimate is E(π,Xn
1 ) = E

[
‖ ˆ̄X − X̄‖22

]
. We note that bounds on

E((π,Xn
1 ), translates to bounds on gradients estimates in Eq. (2) and result in convergence guarantees

via Corollary 1.

3.2 Differential privacy

To state the privacy results for DME, we define the notion of data sets and neighbors as follows. A
dataset is a collection of vectors X = {X1, . . . Xn}. The notion of neighboring data sets typically
corresponds to those differing only on the information of one user, i.e. X,X⊗i are neighbors if they
differ in one vector. Note that this notion of neighbors for DME in the context of distributed gradient

4Public randomness can be emulated by the server communicating a random seed
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descent translates to two data sets F = f1, f2, . . . fn and F ′ = f ′1, f
′
2, . . . f

′
n being neighbors if they

differ in one function fi and corresponds to guaranteeing privacy for individual client’s data. The
bound ‖Xi‖2 ≤ D translates to assuming ‖gti‖ ≤ D, ensured via gradient clipping.

4 Results for distributed mean estimation (DME)

In this section we describe our algorithms, the associated MSE, and the privacy guarantees in the
context of DME. First, we first establish a baseline by stating the results for implementing the
Gaussian mechanism by adding Gaussian noise on each client vector.

4.1 Gaussian protocol

In the Gaussian mechanism, each client sends vector Yi = Xi + Zi, where Zis are i.i.d distributed as
N (0, σ2Id). The server estimates the mean by ˆ̄X = 1/n ·

∑n
i=1 Yi. We refer to this protocol as πg.

Since
∑n
i=1 Zi/n is distributed as N (0, σ2Id/n) the above mechanism is equivalent to applying the

Gaussian mechanism on the output with variance σ2/n. Since changing any of the Xi’s changes the
norm of X̄ by at most 2D/n, the following theorem follows directly from Lemma 1.
Theorem 2. Under the Gaussian mechanism, the mean estimate is unbiased and communication cost
is n · d reals. Moreover, for any δ and σ ≥ 2D√

n
·
√

2 log 1.25/δ, it is (ε, δ) differentially private for

ε =
2D√
nσ

√
2 log

1.25

δ
and E(πg, X) =

dσ2

n
,

We remark that real numbers can potentially be quantized to O(log dn/εδ) bits with insignificant
effect to privacy5. However this is asymptotic and can be prohibitive in practice [20], where we
have a small fixed communication budget and d is of the order of millions. A natural way to reduce
communication cost is via quantization, where each client quantizes Yis before transmitting. However
how privacy guarantees degrade as the quantization of the Gaussian mechanism is hard to analyze
particularly under aggregation. Instead we propose to use the Binomial mechanism which we describe
next.

4.2 Stochastic k-level quantization + Binomial mechanism

We now define the mechanism πsk(Bin(m, p)) based on k-bit stochastic quantization πsk proposed
in [33] composed with the Binomial mechanism. It will be parameterized by 3 quantities k,m, p.

First, the server sends Xmax to all the clients, with the hope that for all i, j, −Xmax ≤ Xi(j) ≤
Xmax. The clients then clip each coordinate of their vectors to the range [−Xmax, Xmax]. For every
integer r in the range [0, k), let B(r)represent a bin (one for each r), i.e.

B(r)
def
= −Xmax +

2rXmax

k − 1
, (7)

The algorithm quantizes each coordinate into one of the bins stochastically and adds scaled Binomial
noise. Formally client i computes the following quantities for every j

Ui(j) =

{
B(r + 1) w.p. Xi(j)−B(r)

B(r+1)−B(r)

B(r) otherwise.
Yi(j) = Ui(j) +

2Xmax

k − 1
· Ti(j). (8)

where r is such that Xi(j) ∈ [B(r), B(r + 1)] and Ti(j) ∼ Bin(m, p). The client sends Yi to the
server. The server now estimates X̄ by

ˆ̄Xπsk(Bin(m,p)) =
1

n

n∑
i=1

(
Yi −

2Xmaxmp

k − 1

)
. (9)

If ∀j, Xi(j) ∈ [−Xmax, Xmax], then E
[
Yi − 2Xmaxmp

k−1

]
= Xi, and ˆ̄Xπsk(Bin(m,p)) will be an

unbiased estimate of the mean.
5Follows by observing that quantizing all values to 1/poly(n, d, 1/ε, log 1/δ) accuracy ensures minimum

loss in privacy. In practice this is often implemented using 32 bits of quantization via float representation.
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Before stating the formal guarantees we will require the definitions of the following quantities
representing the sensitivity of the quantization protocol in the appropriate norm.

∆∞(Xmax, D)
def
= k + 1

∆1(Xmax, D)
def
=

√
dD(k − 1)

Xmax
+

√
2
√
dD log(2/δ)(k − 1)

Xmax
+

4

3
log

2

δ

∆2(Xmax, D)
def
=
D(k − 1)

Xmax
+

√√√√
∆1 +

√
2
√
dD log(2/δ)(k − 1)

Xmax
. (10)

For brevity of notation we have suppressed the parameters k, δ from the LHS. With no prior informa-
tion on Xmax, the natural choice is to set Xmax = D. With this value of Xmax we characterize the
MSE, sensitivity, and communication complexity of πsk(Bin(m, p)) below leveraging Theorem 1.
Theorem 3. If Xmax = D, then the mean estimate is unbiased and

E (πsk(Bin(m, p)), Xn) ≤ dD2

n(k − 1)2
+
d

n
· 4mp(1− p)D2

(k − 1)2
,

Furthermore if
mnp(1− p) ≥ max (23 log(10d/δ), 2∆∞(D,Xmax)) ,

then for any δ, ˆ̄Xπsk(Bin(m,p)) is (ε, 2δ) differentially private where ε (as given by Theorem 1) is

ε =
∆2

√
2 log 1.25

δ√
mnp(1− p)

+
∆2cp

√
log 10

δ + ∆1bp

mnp(1− p)(1− δ/10)
+

∆∞dp log 1.25
δ + ∆∞dp log 20d

δ log 10
δ

mnp(1− p)
,

with sensitivity parameters {∆1(Xmax, D),∆2(Xmax, D),∆∞(Xmax, D)} as defined in (10).

Furthermore,
C(πsk(Bin(m, p)), Xn) = n · (d log2(k +m) + Õ(1)).6

We provide the proof in Appendix D. The first term in the expression for ε in the above theorem
recovers the same guarantee as that of the Gaussian mechanism (Theorem 2). Further, it can be seen
that the trailing terms are negligible when k >>

√
d. Formally this leads to the following corollary

summarizing the communication cost for ε ≤ 1 for achieving the same guarantee as the Gaussian
mechanism.
Corollary 2. There exists an implementation of πsk(Bin(m, p)), which achieves the same privacy
and error as the full precision Gaussian mechanism with a total communication complexity of

n · d ·
(

log2

(√
d+

d

nε2

)
+O

(
log log

(
nd

εδ

)))
bits.

The communication cost of the above algorithm is Ω(log d) bits per coordinate per client, which can
be prohibitive. In the next section we show that these bounds can be further improved via rotation.

4.3 Error reduction via randomized rotation

As seen in Corollary 2, for πsk(Bin(m, p)) to have error and privacy same as that of the Gaussian
mechanism, the best bound on the communication cost guaranteed is Ω(log(d)) bits per coordinate
irrespective of how large n is. The proof reveals that this is due to the error being proportional to
O(d(Xmax)2/n). Therefore MSE reduces when Xmax is small, e.g., when Xi is uniform on the unit
sphere, Xmax is O

(√
(log d)/d

)
(whp) [10]. [33] showed that the same effect can be observed by

randomly rotating the vectors before quantization. Here we show that random rotation reduces the
leading term in the error as well as improves the privacy guarantee.

Using public randomness, all clients and the central server generate a random orthogonal matrix
R ∈ Rd×d according to some known distribution. Given a protocol π for DME which takes inputs

6Õ is used to denote poly-logarithmic factors.
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X1 . . . Xn, we define Rot(π,R) as the protocol where each client i first computes, X ′i = RXi, and

runs the protocol on X ′1, X
′
2, . . . X

′
n. The server then obtains the mean estimate ˆ̄X ′ in the rotated

space using the protocol π and then multiplies by R−1 to obtain the coordinates in the original basis,
i.e., ˆ̄X = R−1 ˆ̄X ′.

Due to the fact that d can be huge in practice, we need orthogonal matrices that permit fast matrix-
vector products. Naive matrices that support fast multiplication such as block-diagonal matrices
often result in high values of ‖X ′i‖2∞. Similar to [33], we propose to use a special type of orthogonal
matrix R = 1√

d
HA, where A is a random diagonal matrix with i.i.d. Rademacher entries (±1 with

probability 0.5) and H is a Walsh-Hadamard matrix [18]. Applying both rotation and its inverse
takes O(d log d) time and O(1) space (with an in-place algorithm).

The next theorem provides the MSE and privacy guarantees for Rot(πsk(Bin(m, p)), HA).

Theorem 4 (Appendix E). For any δ, let Xmax = 2D
√

log(2nd/δ)
d , then

E(Rot(πsk(Bin(m, p))), HA) ≤
2 log 2nd

δ ·D
2

n(k − 1)2
+

8 log 2nd
δ ·mp(1− p)D

2

n(k − 1)2
+ 4D2δ2.

The bias of mean estimate is bounded by ≤ 2Dδ. Furthermore if

mnp(1− p) ≥ max (23 log(10d/δ), 2∆∞(D,Xmax)) ,

then ˆ̄X(Rot(πsk(Bin(m, p)))) is (ε, 3δ) differentially private where ε (as given by Theorem 1) is

ε =
∆2

√
2 log 1.25

δ√
mnp(1− p)

+
∆2cp

√
log 10

δ + ∆1bp

mnp(1− p)(1− δ/10)
+

∆∞dp log 1.25
δ + ∆∞dp log 20d

δ log 10
δ

mnp(1− p)
,

with sensitivity parameters {∆1(Xmax, D),∆2(Xmax, D),∆∞(Xmax, D)} (Eq. (10)). Further-
more,

C(Rot(πsk(Bin(m, p))), Xn) = n · (d log2(k +m) + Õ(1)).

The following corollary now bounds the communication cost for Rot(πsk(Bin(m, p)), HA) when
ε ≤ 1 akin to Corollary 2.
Corollary 3. There exists an implementation of Rot(πsk(Bin(m, p)), HA), that achieves the same
error and privacy of the full precision Gaussian mechanism with a total communication complexity:

n · d
(

log2

(
1 +

d

nε2

)
+O

(
log log

dn

εδ

))
bits.

Note that k is no longer required to be set to Ω(
√
d) and hence if d = o(nε2), then

Rot(πsk(Bin(m, p)), HA) has the same privacy and utilities as the Gaussian mechanism, but with
just O(nd log log(nd/δε)) communication cost.

5 Discussion

We trained a three-layer model (60 hidden nodes each with ReLU activation) on the infinite MNIST
dataset [8] with 25M data points and 25M clients. At each step 10,000 clients send their data to the
server. This setting is close to real-world settings of federated learning where there are hundreds
of millions of users. The results are in Figure 2. Note that the models achieve different levels of
accuracy depending on communication cost and privacy parameter ε. We note that we trained the
model with exactly one epoch, so each sample was used at most once in training. In this setting, the
per batch ε and the overall ε are the same.

There are several interesting future directions. On the theoretical side, it is not clear if our analysis
of Binomial mechanism is tight. Furthermore, it is interesting to have better privacy accounting for
Binomial mechanism via a moments accountant. On the practical side, we plan to explore the effects
of neural network topology, over-parametrization, and optimization algorithms on the accuracy of the
privately learned models.
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A Proof of biased SGD

The proof is similar to the SGD proof of [16], however we account for bias in gradient estimates.
Define the random variable δt , g̃t(wt)−∇F (wt−1). By the definitions of L and γ,

F (wt+1)− F (wt) ≤ ∇F (wt)
T (wt+1 − wt) +

L

2
‖wt+1 − wt‖2

≤ −∇F (wt)
T (γg̃t(wt)) + γ2L

2
‖g̃t(wt)‖2

≤ −γ(1− γL

2
)‖∇F (wt)‖2 + γ(1− γL)‖∇F (wt)‖‖δt‖+ γ2L

2
‖δt‖2,

where the last inequality uses the fact that γL ≤ 1. Rearranging the above inequality and summing
over all t we get that

Et∈Uniform(T )[‖∇F (wt)‖2]

≤ 1

Tγ(2− γL)

(
2(F (w0)− F (w∗)) + Tγ2LE‖δt‖2

)
+

2γ(1− γL)

γ(2− γL)

(
1

T

T∑
t=1

‖∇F (wt)‖‖E[δt]‖

)

≤ 1

Tγ(2− γL)

(
2DF + Tγ2Lσ2

)
+

2γ(1− γL)

γ(2− γL)
DB

≤ 2DF

T
max

{
L,
σ
√
LT√

2DF

}
+
σ
√

2LDF√
T

+DB

≤ 2DFL

T
+

2
√

2LDFσ√
T

+DB.

B Binomial Mechanism - Proof of Theorem 1

To remind the reader, the binomial mechanism for releasing discrete valued queries on a database is
defined as follows. Given a set of databases D and an integer valued query f : D → Zd, the binomial
mechanism samples a vector Z ∈ Zd such that all its coordinates are distributed as the binomial
distribution with parameters N, p, i.e.

Z(j) ∼ Bin(N, p)

The Binomial mechanism releases the vector s(Z −Np) + f(D) as the output to the query. For the
analysis the reader is referred to the definition of `q norm sensitivity ∆q for any q > 0 defined in (4).
The q of interest to us for the Binomial mechanism will be q = {1, 2,∞}. Since our requirement
from the Binomial mechanism will be symmetric w.r.t. p and 1− p, throughout this proof, we assume
that p ≤ 1/2.

To prove Theorem 1, we need few auxiliary lemmas. We first state two inequalities which we use
through-out the proof.
Lemma 2 (Bernstein’s inequality). Let X1, X2 . . . Xn be independent random variables such that
E[Xi] = 0 and |Xi| ≤M w.p. 1. Let σ2

i , E[X2
i ]. Then for any δ ≥ 0,

Pr

(∑
Xi ≥

√
2
∑

σ2
i log

1

δ
+

2

3
·M log

1

δ

)
≤ δ.

Lemma 3 (Efron-Stein inequality). Let f be a symmetric function of n independent random variables
X1, X2, . . . Xn. Let X ′1 be an i.i.d. copy of X1, then

Var(f) ≤ n

2
· E
[
(f(X1, X2, . . . Xn)− f(X ′1, X2, . . . Xn))2

]
.

We use the above two results in the next two lemmas.
Lemma 4. Let T ∼ Bin(N, p), i ∈ [0, N ], t ∈ Z, i− t ∈ [0, N ]. Then

Pr(T = i− t)
Pr(T = i)

≤ exp

(
t · log

(i+ 1)(1− p)
(N − i+ 1)p

)

13



Proof.

Pr(T = i− t)
Pr(T = i)

,

(
N
i−t
)(

N
i

) pi−t(1− p)N−i+t
pi(1− p)N−i

=
i!(N − i)!

(i− t)!(N − i+ t)!

(
1− p
p

)t
≤
(

(i+ 1)(1− p)
(N − i+ 1)p

)t
,

where the inequality follows from considering the two cases when t can be positive or negative.

Lemma 5. Let t1, t2, . . . td be d real numbers. Let vi ∼ Bin(N, p) independently such that Np(1−
p) ≥ 39. Let A be the event that ‖vi −Np‖∞ ≤ β for some β, such that β ≤ N min(p, 1− p)/3.
Then for any δ, with probability ≥ 1− δ conditioned on A,
d∑
i=1

ti

(
· log

(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)

)

≤ 2‖t‖1(p2 + (1− p)2)

3Np(1− p)(Pr(A))
+

‖t‖2cp
Np(1− p)

√
Pr(A)

·
√

log
1

δ
+

4‖t‖∞(β + 1)2(p2 + (1− p)2)

9N2p2(1− p)2
log

1

δ
,

where cp is given by

cp ,
√

2(3p3 + 3(1− p)3 + 2p2 + 2(1− p)2). (11)

Proof. Since β ≤ N min(p, 1− p)/3 and for any z ≥ −1/3, | log(1 + z)− z| ≤ 1.95z2/3,∣∣∣∣log
(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)

∣∣∣∣
≤ 1.95

3

∣∣∣∣vi + 1−Np
Np

∣∣∣∣2 +
1.95

3

∣∣∣∣N − vi + 1−N −Np
N(1− p)

∣∣∣∣2 .
Hence we can bound the expectation as

E
[
log

(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)

∣∣∣∣A]
≤ E

[
1.95

3

∣∣∣∣vi + 1−Np
Np

∣∣∣∣2 +
1.95

3

∣∣∣∣N − vi + 1−N −Np
N(1− p)

∣∣∣∣2 ∣∣∣∣A
]

(a)

≤ 1

Pr(A)
· E

[
1.95

3

∣∣∣∣vi + 1−Np
Np

∣∣∣∣2 +
1.95

3

∣∣∣∣N − vi + 1−N −Np
N(1− p)

∣∣∣∣2
]

(b)

≤ 1

Pr(A)
· 2(p2 + (1− p)2)

3Np(1− p)
,

Where (a) uses the fact that for any positive random variable X and any event A, E[X] ≥
Pr(A)E[X|A]. (b) uses the fact that Np(1 − p) ≥ 39. Note that the function we are consider-
ing is a sum of functions of d independent binomial random variables and hence we can apply
Bernstein’ inequality. To this end, we bound σ2

i and M . Since ‖vi −Np‖∞ is bounded,∣∣∣∣log
(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)

∣∣∣∣ ≤ 2

3

∣∣∣∣vi + 1−Np
Np

∣∣∣∣2 +
2

3

∣∣∣∣N − vi + 1−N −Np
N(1− p)

∣∣∣∣2
≤ 2

3

(β + 1)2(p2 + (1− p))2

N2p2(1− p)2
,

where the first inequality follows from the fact that β ≤ N min(p, 1− p)/3 and for any z ≥ −1/3,
| log(1 + z)− z| ≤ 2z2/3. Hence we can set M = 2

3
(β+1)2(p2+(1−p))2

N2p2(1−p)2 . We now bound the variance:

Var

(
d∑
i=1

ti · log
(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)

∣∣∣∣A
)
.
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We now bound σ2
i . Observe that the term corresponding to i, is a function of n independent Bernoulli

p random variables Xi(j), for 1 ≤ j ≤ d. We bound the expected square change in the function
for any of these variables Xi(j) and then use Efron-Stein inequality. Let EA denote the expectation
conditioned on the event A. Without loss of generality we first consider the contribution of the term
Xi(j). Let w =

∑n
j′ 6=j Xi(j

′), then

EA
[
ti · log

(vi + 1)(1− p)
(N − vi + 1)p

− vi + 1

Np
+
N − vi + 1

N(1− p)
− ti · log

(v′i + 1)(1− p)
(N − v′i + 1)p

− v′i + 1

Np
+
N − v′i + 1

N(1− p)

]2

= t2iEA
[
· log

(w +Xi(j) + 1)(1− p)
(N − w −Xi(j) + 1)p

− w +Xi(j) + 1

Np
+
N − w −Xi(j) + 1

N(1− p)

]
− t2iEA

[
· log

(w +X ′i(j) + 1)(1− p)
(N − w −X ′i(j) + 1)p

− w +X ′i(j) + 1

Np
+
N − w −X ′i(j) + 1

N(1− p)

]2

(a)
= 2t2i p(1− p)EA

[
log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

)
− 1

Np
− 1

N(1− p)

]2

(b)

≤ 2t2i p(1− p)E
[
log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

)
− 1

Np
− 1

N(1− p)

]2

· 1

Pr(A)

= 2t2i p(1− p)E
[
log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

)
− 1

Np(1− p)

]2

· 1

Pr(A)
,

where (a) uses the fact that the term is non-zero only ifXi(j) = 1, X ′i(j) = 0 orXi(j) = 0, X ′i(j) =
1 and the probability of this event is 2p(1− p). (b) uses the fact that for any positive random variable
X and any event A, E[X] ≥ Pr(A)E[X|A]. We first upper bound the term inside the expectation:(

log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

)
− 1

Np(1− p)

)2

=

(
log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

))2

+
1

N2p2(1− p)2
−

2

Np(1− p)

(
log

(
1 +

1

w + 1

)
+ log

(
1 +

1

N − w

))
≤ 1

(w + 1)2
+

1

(N − w)2
+

2

w(N − w)
+

1

N2p2(1− p)2
−

2

Np(1− p)

(
1

w + 1
− 1

2(w + 1)2
+

1

N − w
− 1

2(N − w)2

)
=

1

(w + 1)(w + 2)
− 2

Np(1− p)
1

w + 1
+

1

(N − w)(N − w + 1)
− 2

Np(1− p)
1

N − w

+
2

w(N − w)

+
1

(w + 1)2(w + 2)
+

1

(N − w)2(N − w + 1)
+

1

Np(1− p)

(
1

(w + 1)2
+

1

(N − w)2

)
+

1

N2p2(1− p)2
,

where the inequality uses the fact that for any positive x, x − x2/2 ≤ log x ≤ x. Observe that
w ∼ Bin(n−1, p) andN−1−w ∼ Bin(n−1, 1−p). We use the following three inequalities, to bound
the expectation of the term above. Similar results apply for N −w as N −1−w ∼ Bin(n−1, 1−p).
Since 1/w and 1/(N − w) are negatively correlated,

E
[

1

w(N − w)

]
≤ E

[
1

w

]
· E
[

1

N − w

]
.

Furthermore, for any i

E
[

w!

(w + i)!

]
≤ 1

(Np)i
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and if Np(1− p) ≥ 2,

E
[

1

(w + 1)(w + 2)
− 2

Np(1− p)
1

w + 1

]
≤ 1

(Np)2
− 2

N2p2(1− p)
.

Combining the above results and simplifying the terms, we get that the expectation of the required
quantity is bounded by

=
1

N3p3(1− p)3
· (3p3 + 3(1− p)3 + 2p2 + 2(1− p)2).

Hence σ2
i is bounded by

1

Pr(A)
· t2i
N2p2(1− p)2

· (3p3 + 3(1− p)3 + 2p2 + 2(1− p)2),

and the lemma follows by Bernstein’s inequality.

Proof of Theorem 1. Firstly note that it is sufficient to consider the differential privacy of the quantity
f(D)
s + Z where Z is a Binomial random variable. Note that since s is defined to be 1/j for some

integer j the output f(D)/s remains integral. Further note that in this setting the lq norm sensitivity
scales ∆q/s. The above reduction shows that the scale s can be considered to be 1 in the rest of the
proof.

Consider any two neighboring data sets D1, D2 and let ∆ , f(D2)− f(D1). Note that showing the
(ε, δ) differential privacy of the Binomial mechanism is equivalent to showing the following. Let T
be a vector such that T (j) ∼ Bin(N, p) then for any vector v ∈ [N ]d we have that

Pr(T = v) ≤ eεPr(T = v −∆) + δ

To show the above we will first define a set V such that

Pr(T ∈ V ) ≥ 1− δ,

and for every element v ∈ V ,

Pr(T = v) ≤ eε Pr(T = v −∆).

Define V as follows: v ∈ V if and only if,

‖v −Np‖∞ ≤ β ,
√

2Np(1− p) log(20d/δ) +
2

3
max(p, 1− p) log

20d

δ
. (12)

|∆ · (v −Np)| ≤ ‖∆‖2
√

2Np(1− p) log(1.25/δ) +
2

3
log(1.25/δ)‖∆‖∞. (13)

∀j, v(j)−∆(j) ∈ [0, N ] and v(j) ∈ Np±Np(1− p)/3.
d∑
i=1

∆(j) ·
(

log
(v(j) + 1)(1− p)
p(N − v(j) + 1)

− v(j) + 1

Np
+
N − v(j) + 1

N(1− p)

)
≤ 2‖∆‖1(p2 + (1− p)2)

3Np(1− p)(1− δ/10)

+
‖∆‖2cp

Np(1− p)
√

1− δ/10
·
√

log
10

δ
+

4‖∆‖∞(β + 1)2(p2 + (1− p)2)

9N2p2(1− p)2
log

10

δ
. (14)

We will first show that the probability of this event is large.

The first condition follows from Bernstein’s inequality with probability ≥ 1− δ/10. For the second
condition, observe that ∆ · (s −Np) is a function of Nd independent random variables. A direct
application of Bernstein’s inequality yields that Equation (13) holds with probability ≥ 1− δ/1.25.
The third condition follows from the first condition as ‖∆‖∞ ≤ Np − β and Np(1 − p)/3 ≥ β.
Applying Lemma 5 with A being event that ‖v −Np‖∞ ≤ β and δ = δ/10, yields that the fourth
equation holds with probability at least 1− δ/10. Hence, by the union bound,

Pr(T /∈ V ) ≤ δ.
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We now prove the ratio of probabilities. For any v,

Pr(T = v −∆)

Pr(T = v)

=

d∏
i=1

Pr(T (j) = v(j)−∆(j))

Pr(T (j) = v(j))

≤ exp

(
d∑
i=1

∆(j) · log
(v(j) + 1)(1− p)
p(N − v(j) + 1)

)

= exp

(
d∑
i=1

∆(j)(v(j)−Np)
Np(1− p)

+

d∑
i=1

∆(j) ·
(

log
(v(j) + 1)(1− p)
p(N − v(j) + 1)

− v(j) + 1

Np
+
N − v(j) + 1

N(1− p)

)

+

∑d
j=1 ∆(j)(1− 2p)

Np(1− p))

)
where the inequality follows from Lemma 4. Since v ∈ V , applying Equations (12), (13), (14),
together with the fact that β ≤

√
2.5Np(1− p) log(20d/δ) (by the assumptions in the theorem)

yields the following bound on the exponent.

‖∆‖2 ·

√
2 log 1.25

δ

Np(1− p)
+

2‖∆‖∞
3Np(1− p)

log
1.25

δ
+

‖∆‖2cp
√

log 10
δ

Np(1− p)
√

1− δ/10
+
‖∆‖∞dp log 20d

δ log 10
δ

Np(1− p)

+
bp‖∆‖1

Np(1− p)(1− δ/10)
,

where cp is defined in Equation (11) and

dp ,
4

3
· (p2 + (1− p)2) (15)

and

bp ,
2(p2 + (1− p)2)

3
+ (1− 2p). (16)

C High probability sensitivity

To describe our main lemma formally we need the following definition. Let Q , {qi ∈ N} represent
a set of natural numbers and ∆Q , {∆qi} represent a subset of real numbers. For two random
vectors v1, v2, the event ‖v1 − v2‖Q ≤ ∆Q is defined as

(‖v1 − v2‖Q ≤ ∆Q) ,
⋃
i

(‖v1 − v2‖qi ≤ ∆qi)

Definition 1 ((∆Q, δ) sensitivity). Given a set of integers Q and values ∆Q, δ, we call a randomized
function f : D → X , (∆Q, δ) sensitive, if for any two neighboring data sets D1, D2 ∈ ND, there
exist coupled random variables X1, X2 ∈ X such that the marginal distributions of X1, X2 are
identical to that of f(D1) and f(D2) and

Pr
X1,X2

(‖X1 −X2‖Q ≤ ∆Q) ≥ 1− δ. (17)

We show the following result for high-probability sensitivity and the proof is provided in Appendix C.

Lemma 6. LetM : X → O be an (ε, δ) differentially private mechanism for sensitivity ∆Q and let
f : D → X be a (∆Q, δ

′) sensitive function. Then the composed mechanismM(f(D)) is (ε, δ + δ′)
differentially private.

17



Proof. To show (ε, δ + δ′) differential privacy we need to show that for any two neighboring data
sets D1, D2 and O ⊆ O,

Pr(M(f(D1)) ∈ O) ≤ eε Pr(M(f(D2)) ∈ O) + δ + δ′.

Given any two neighboring data sets D1, D2 let Pr∆Q,δ(X1, X2) represent the joint distribution of
the coupled random variables X1, X2 guaranteed by Definition 1. Now for any O ∈ O we have that

Pr(M(f(D1)) ∈ O) ,
∫
s∈S

Pr(f(D1) = s) Pr(M(s) ∈ O)

(a)
=

(∫
s1,s2|‖s1−s2‖Q≤∆Q

Pr
∆Q,δ

(s1, s2)(Pr(M(s2) ∈ O)

)

+

(∫
s1,s2|‖s1−s2‖Q≥∆Q

Pr
∆Q,δ

(s1, s2)(Pr(M(s2) ∈ O)

)
(b)
=

(∫
s1,s2|‖s1−s2‖Q≤∆Q

Pr
∆Q,δ

(s1, s2)(Pr(M(s2) ∈ O)

)
+ δ

(c)

≤

(∫
s1,s2|‖s1−s2‖Q≤∆Q

Pr
∆Q,δ

(s1, s2)(eε Pr(M(s2) ∈ O) + δ)

)
+ δ′

(d)

≤ eε
(∫

s∈S
Pr(f(D2) = s) Pr(M(s) ∈ O)

)
+ δ + δ′

, eε Pr(M(f(D2)) ∈ O) + δ + δ′.

In the above (a), (d) follow from the fact that Pr∆q,δ is a coupling, (b) follows from the condition
(17) guaranteed by the coupling and (c) follows from the (ε, δ) differential privacy guarantee of the
mechanismM.

D Application of Binomial Mechanism to Distributed Mean Estimation -
Proof of Theorem 3

Proof of Theorem 3. We refer the readers to the definition of the protocol (Section 4.2) and in
particular the definitions of the random variables Ui, Ti, and the estimator ˆ̄Xπsk(Bin(m,p)) given in
equations (8) and (9) respectively.

The communication complexity follows immediately by noting that the protocol only transmits
integers in the range [0, k +m) and therefore only needs log(k +m) bits. We now prove the bound
on the Mean Square Error of the protocol and then prove the sensitivity guarantee.

Mean Square Error

‖ ˆ̄X − X̄‖22 =
1

n2

d∑
j=1

n∑
i=1

E[( ˆ̄Xi(j)−Xi(j))
2]

≤ 1

n2

d∑
j=1

n∑
i=1

E

[(
2Xmax

k − 1

)2

(Var(Ber(pi(j))) + Var(Bin(mp)))

]

≤ (2Xmax)2

(
d

4n(k − 1)2
+

d

n2

mnp(1− p)
(k − 1)2

)
,

where the equality follows from the fact that ˆ̄Xi(j) are independent of each other and ˆ̄X is an
unbiased estimator of ˆ̄X . Setting m, p, k as defined in the theorem proves the bound on MSE.

Differential Privacy

Given two neighboring data sets X , {X1 . . . Xn} and X⊗n , {X ′1 . . . X ′n} (where X ′i = Xi
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for i ∈ [1, n − 1]) we will first provide a high probability bound on the `1, `2, `∞ sensitivity of
quantization protocol πsk. In particular the following lemma provides the high probability sensitivity
bounds.

Lemma 7. For every δ, given two neighboring data setsX , {X1 . . . Xn} andX⊗n , {X ′1 . . . X ′n}
(where X ′i = Xi for i ∈ [1, n − 1]) we have that the protocol πsk is ({∆1,∆2,∆∞}, δ)-sensitive
(c.f. Definition 1) where ∆1,∆2,∆∞ satisfy the following equations.

∆∞ ≤
‖Xn −X ′n‖∞

2Xmax/(k − 1)
+ 2 (18)

∆1 ≤
‖Xn −X ′n‖1

2Xmax/(k − 1)
+

√
2
‖Xn −X ′n‖1 log(2/δ)

2Xmax/(k − 1)
+

4

3
log(2/δ) (19)

∆2 ≤
‖Xn −X ′n‖2

2Xmax/(k − 1)
+

√√√√ ‖Xn −X ′n‖1
2Xmax/(k − 1)

+

√
8‖Xn −X ′n‖1 log(2/δ)

2Xmax/(k − 1)
+

4

3
log(2/δ). (20)

Further we note that the protocol πsk(Bin(m, p)) is a composition of the binomial mechanism and
the protocol πsk. A direct application of Theorem 1 and Lemma 6 gives us that the mechanism
πsk(Bin(m, p)) is (ε, 2δ) differentially private for any δ ∈ (0, 1) and ε satisfying the below conditions.
7 Note that the conditions required by Theorem 1 can be verified from the given conditions in Theorem
3.

We now provide a proof of Lemma 7.

Proof of Lemma 7. To this end we recall the definition of the random variables Ui(j). Given Xmax

and Xmin we associate to every integer r in [0, k) a bin B(r) defined as

B(r) , −Xmax +
2rXmax

k − 1

Further given a number X ∈ [−Xmax, Xmax], let r(X) be the integer such that X ∈
[B(r(X)), B(r(X) + 1)]. We can now define the random variable

U(X) =

{
r(X) + 1 w.p. X−B(r(X))

B(r(X)+1)−B(r(X))

r(X) otherwise.

Now define the random variables UXi (j) , U(Xi(j)) and similarly UX⊗n

i (j) , U(X ′i(j)). To
provide high probability sensitivity bounds in accordance with Lemma 6, we need to define a coupling
between the random variables

∑
i U

X
i and

∑
i U

X⊗n

i . To do the above we will define a coupling
between the random variables UXi (j) and UX⊗n

i (j). The coupled random variables will be sampled
as follows.

The defined coupling will have two cases. Define the set S = {(i, j)|r(Xi(j)) = r(X ′i(j))}. We first
consider the case when (i, j) ∈ S. In this case we sample a random variable αij ∈ [0, 1] uniformly
at random and define the random variables

Yi(j) =

{
r(Xi(j)) + 1 if αij ≤ Xi(j)−B(r(Xi(j)))

B(r(Xi(j))+1)−B(r(Xi(j)))

r(Xi(j)) otherwise.

Y ⊗ni (j) =

{
r(X ′i(j)) + 1 if αij ≤ X′i(j)−B(r(X′i(j)))

B(r(X′i(j))+1)−B(r(X′i(j)))

r(X ′i(j)) otherwise,

7we choose δ, δ′ as δ in the application of Lemma 6
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Additionally wlog consider Xi > X ′i (the roles of i and i′ can be reversed in the following definitions
otherwise) and define the auxiliary variables

ai(j) ,
B(r(Xi(j)) + 1)−Xi(j)

2Xmax/(k − 1)
and bi(j) ,

X ′i(j)−B(r(X ′i(j)))

2Xmax/(k − 1)

Zi(j) =

{
0 w.p. ai(j) + bi(j)

1 otherwise,

Further define
Lij , |Yi(j)− Y ⊗ni (j)| = Zi(j) if (i, j) ∈ S (21)

Otherwise if (i, j) /∈ S or equivalently r(Xi(j)) 6= r(X ′i(j)), we sample the bins independently and
the random variables are defined as

Yi(j) =

{
r(Xi(j)) + 1 w.p. Xi(j)−B(r(Xi(j)))

B(r(Xi(j))+1)−B(r(Xi(j)))

r(Xi(j)) otherwise.

Y ⊗ni (j) =

{
r(X ′i(j)) + 1 w.p. X′i(j)−B(r(X′i(j)))

B(r(X′i(j))+1)−B(r(X′i(j)))

r(X ′i(j)) otherwise,

Additionally wlog consider Xi > X ′i (the roles of i and i′ can be reversed in the following definitions
otherwise) and define the auxiliary variables

ai(j) ,
Xi(j)−B(r(Xi(j)))

2Xmax/(k − 1)
and bi(j) ,

B(r(X ′i(j)) + 1)−X ′i(j)
2Xmax/(k − 1)

Zi(j) =


0 w.p. 1− ai(j)− bi(j) + ai(j)bi(j)

1 w.p. ai(j) + bi(j)− 2ai(j)bi(j)

2 otherwise,

In this case define Li,j , r(Xi(j))− r(X ′i(j)) + 1 + Zi(j) and note that

|Yi(j)− Y ⊗ni (j)| ≤ Lij (22)

With these definitions, it can be seen that the marginal distributions of Yi(j), Y ⊗ni (j) are equal to
the marginal distributions of UXi (j), UX⊗n

i (j) respectively. Further note that since X ′i = Xi for all
i ∈ [1, n− 1] we have that Yi = Y ⊗ni w.p. 1 for all i ∈ [1, n− 1]. Therefore

‖
∑
i

Yi −
∑
i

Y ⊗ni ‖qq = ‖Yn − Y ⊗nn ‖qq ≤
∑
j

Lqnj ,

where the inequality follows from (21) and (22). We wish to bound the RHS above. To that end
consider the following claim which follows from the definitions.

Claim 1.
Zi(j) ≤ 2 w.p. 1

E[Zi(j)] =

{
ai(j) + bi(j) if (i, j) /∈ S
1− (ai(j) + bi(j)) otherwise

E[Zi(j)− E[Zi(j)]
2] ≤

{
ai(j) + bi(j) if (i, j) /∈ S
1− (ai(j) + bi(j)) otherwise

= E[Zi(j)]

E[Zi(j)− E[Zi(j)]
4] ≤ 4E[Zi(j)− E[Zi(j)]

2] ≤ 4E[Zi(j)].
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Further note that∑
j

E[Zn(j)] =
∑

(n,j)/∈S

(ai(j) + bi(j)) +
∑

(n,j)∈S

1− (ai(j) + bi(j)) ≤
‖Xn −X ′n‖1

2Xmax/(k − 1)
. (23)

A direct application of Bernstein’s Inequality gives us that with probability at least 1− δ/2∑
j

Zn(j) ≤ E[
∑
j

Zn(j)] +

√
2E[
∑
j

Zn(j)] log(2/δ) +
4

3
log(2/δ). (24)

This gives us that∑
j

|Yn(j)− Y ⊗n (j)|
a
≤
∑
j

Lnj

b
≤

∑
(i,j)∈S

Zi(j) +
∑

(i,j)/∈S

(r(Xi(j))− r(X ′i(j)) + 1 + Zi(j))

c
≤ ‖Xn −X ′n‖1

2Xmax/(k − 1)
+

√
2
‖Xn −X ′n‖1

2Xmax/(k − 1)
log(2/δ) +

4

3
log(2/δ)

where a, b follow from (21) and (22) and c follows from Claim 1 and (23). This proves the `1 norm
bound.

We now focus on the `2 norm case. For this we note that

∀(i, j) Lij =

{
Xi(j)−X′i(j)
2Xmax/(k−1) + Zi(j)− E[Zi(j)] if Xi(j) ≥ X ′i(j)
X′i(j)−Xi(j)
2Xmax/(k−1) + Zi(j)− E[Zi(j)] if Xi(j) < X ′i(j).

Therefore √∑
j

L2
nj =

√√√√∑
j

(
Xi(j)−X ′i(j)
2Xmax/(k − 1)

)2

+

√∑
j

(Zn(j)− EZn(j))2. (25)

We now bound
√∑

j(Zn(j)− EZn(j))2. We can now apply Bernstein’s inequality on the random

variable (Zn(j)− EZn(j))2 to get that with probability at least 1− δ/2∑
j

(Zn(j)− EZn(j))2 ≤
∑
j

E[Znj ] +

√
8
∑
j

E[Znj ] log(2/δ) +
4

3
log(2/δ), (26)

where the RHS uses Claim 1 for bounding expectation and variance.

Therefore combining (25) and (26), we get that

‖Yn − Y ′n‖2 ≤
√∑

j

L2
nj

≤ ‖Xn −X ′n‖2
2Xmax/(k − 1)

+

√√√√ ‖Xn −X ′n‖1
2Xmax/(k − 1)

+

√
8

(
‖Xn −X ′n‖1

2Xmax/(k − 1)

)
log(2/δ) +

4

3
log(2/δ).

The proof is finished using a union bound.
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E Quantization with Rotation

We prove Theorem 4 here.

Differential Privacy
Given any two neighboring data sets X = {X1, . . . Xn}, X⊗n = {X1, . . . X

′
n} we define a set of

good rotations Ugood as follows

Ugood =

R ∈ U |∀ i ∈ [n] ‖RXi‖∞ ≤
2
√

log( 2nd
δ )D2

√
d

, ‖RX ′n‖∞ ≤
2
√

log( 2nd
δ )D2

√
d


where U is the set of d× d orthonormal matrices. The following lemma follows from [3]. We note
that similar analysis holds for uniformly sampled R over real domain and we refer the reader to [10]
for details.
Lemma 8 ([3]).

P (HA ∈ Ugood) ≥ 1− δ

Let Rot(π,HA)(X),Rot(π,HA)(X⊗n) represent the random output of the protocol Rot(π,HA)
on X,X⊗n respectively and let S be any subset of the output range of Rot(π,HA). Given δ let ε be
given by Theorem 1 with sensitivity parameters {∆1(Xmax, D),∆2(Xmax, D),∆∞(Xmax, D)}.
Given a set of vectors V and a rotation matrix R define R · V = {Rv|v ∈ V }.

Pr(Rot(π,HA)(X) ∈ S)

≤
∫
R∈Ugood

(Pr(Rot(πsk(Bin(m, p)), HA)(X) ∈ S|R)) dR+ Pr(R /∈ Ugood)

=

∫
R∈Ugood

Pr(Rot(πsk(Bin(m, p)), HA)(R ·X) ∈ R · S)dR+ Pr(R /∈ Ugood)

a
≤
∫
R∈Ugood

(eεPr(πsk(Bin(m, p))(R ·X⊗n) ∈ R · S) + 2δ) dR+ Pr(R /∈ Ugood)

=

∫
R∈Ugood

eε (Pr(Rot(πsk(Bin(m, p)), HA)(X⊗n) ∈ S|R) + 2δ) dR+ Pr(R /∈ Ugood)

≤ eεPr(Rot(πsk(Bin(m, p)), HA)(X⊗n) ∈ S) + 3δ

a follows from (ε, 2δ) differential privacy guarantee for πsk(Bin(m, p)) from Theorem 3 and noting
that R ∈ Ugood in the integral. Hence Rot(πsk(Bin(m, p))) offers (ε, 3δ) differential-privacy.

Mean Square Error
The bound on the MSE can be observed by noting that the total change the entire protocol can cause
on any individual client vector is bounded by 2D in `2 norm, therefore the total MSE can be at most
4D2 irrespective of the choice of rotation. Therefore

E(Rot(πsk(Bin(m, p))), HA) = E(Rot(πsk(Bin(m, p))), HA|R ∈ Ugood)+
E(Rot(πsk(Bin(m, p))), HA|R /∈ Ugood)

a
≤ E(Rot(πsk(Bin(m, p))), HA|R ∈ Ugood) + 4D2δ2

b
≤

2 log 2nd
δ ·D

2

n(k − 1)2
+

8 log 2nd
δ

n
· mp(1− p)D

2

(k − 1)2
+ 4D2δ2

a follows from the argument above and b follows from the MSE guarantee in Theorem 3 and by
noting that the rotation is in Ugood.
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