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Abstract

A crucial technique for scaling kernel methods to very lagig¢a sets reaching
or exceeding millions of instances is based on low-rank @gpration of kernel
matrices. We introduce a new family of algorithms based oxtumés of Nystom
approximationsensemble Nyshm algorithmsthat yield more accurate low-rank
approximations than the standard Ngstr method. We give a detailed study of
variants of these algorithms based on simple averagingxponential weight
method, or regression-based methods. We also present r@tibabanalysis of
these algorithms, including novel error bounds guaranteaibetter convergence
rate than the standard Ny8im method. Finally, we report results of extensive
experiments with several data sets containing up to 1M palamonstrating the
significant improvement over the standard Ngetrapproximation.

1 Introduction

Modern learning problems in computer vision, natural laggiprocessing, computational biology,
and other areas are often based on large data sets of tensughtids to millions of training in-
stances. But, several standard learning algorithms sushgsort vector machines (SVMs) [2, 4],
kernel ridge regression (KRR) [15], kernel principal coment analysis (KPCA) [16], manifold
learning [14], or other kernel-based algorithms do notestalsuch orders of magnitude. Even the
storage of the kernel matrix is an issue at this scale siniseoiften not sparse and the number of
entries is extremely large. One solution to deal with sudahpdalata sets is to use an approximation
of the kernel matrix. As shown by [19], later by [6,9, 18, 20}y-rank approximations of the kernel
matrix using the Nystim method can provide an effective technique for tacklimgdescale scale
data sets with no significant decrease in performance.

This paper deals with very large-scale applications whagesample size can reach millions of in-
stances. This motivates our search for further improvedrimk approximations that can scale to
such orders of magnitude and generate accurate approaimatiVe show that a new family of al-
gorithms based on mixtures of Ny&tn approximationsgnsemble Nysdm algorithmsyields more
accurate low-rank approximations than the standard Bgstnethod. Moreover, these ensemble al-
gorithms naturally fit distributed computing environmeritere their computational cost is roughly
the same as that of the standard N§strmethod. This issue is of great practical significancergive
the prevalence of distributed computing frameworks to kafedge-scale learning problems.

The remainder of this paper is organized as follows. Seigives an overview of the Nystm
low-rank approximation method and describes our ensemyéerdin algorithms. We describe sev-
eral variants of these algorithms, including one based miplsi averaging op Nystrom solutions,



an exponential weight method, and a regression method wbitsists of estimating the mixture pa-
rameters of the ensemble using a few columns sampled fromaléx. In Section 3, we present a
theoretical analysis of ensemble Nystr algorithms, namely bounds on the reconstruction erior fo
both the Frobenius norm and the spectral norm. These nomelglzation bounds guarantee a bet-
ter convergence rate for these algorithms in comparisonestandard Nyshm method. Section 4
reports the results of extensive experiments with thesaritihgns on several data sets containing up
to 1M points, comparing different variants of our ensemble Kystalgorithms and demonstrating
the performance improvements gained over the standarddvyshethod.

2 Algorithm

We first give a brief overview of the Nygtm low-rank approximation method, introduce the notation
used in the following sections, and then describe our enkeNystiom algorithms.

2.1 Standard Nystom method

We adopt a notation similar to that of [5, 10] and other prasiaork. The Nysiim approximation
of a symmetric positive semidefinite (SPSD) matixis based on a sample of < n columns
of K [5,19]. LetC denote ther x m matrix formed by these columns aMW the m x m matrix

consisting of the intersection of thesecolumns with the corresponding rows of K. The columns
and rows ofK can be rearranged based on this sampling sakhandC be written as follows:

_|W Kj _ | W
K= [K21 KQJ and C= |:K21:| . Q)
Note thatW is also SPSD sincK is SPSD. For a uniform sampling of the columns, the Nystr
method generates a rafkapproximationkK of K for £ <m defined by:

K =CW;/C" =K, (2)

where W, is the bestk-rank approximation ofW for the Frobenius norm, that i3, =
argmin,, .. v)—x [W — V|| and W, denotes the pseudo-inverse %f; [7]. W,  can be de-
rived from the singular value decomposition (SVD)W, W = USU ", whereU is orthonormal
andX = diag(oy, . . am) is a real diagonal matrix witlry >---> o, > 0. Fork <rank(W), it

is given byW; = ZL 1 a‘lUZUZ whereU? denotes théth column ofU. Since the running

time complexity of SVD |SO( 3) and O(nmk) is required for multiplication withC, the total
complexity of the Nysim approximation computation @&(m?+nmk).

2.2 Ensemble Nystém algorithm

The main idea behind our ensemble Ngstralgorithm is to treat each approximation generated by
the Nystbm method for a sample of columns as aexpertand to combing > 1 such experts to
derive an improved hypothesis, typically more accurata #ray of the original experts.

The learning set-up is defined as follows. We assume a fixetek&unction K: X' x X — R that
can be used to generate the entries of a kernel mEtrix he learner receives a sameof mp
columns randomly selected from matii& uniformly without replacements is decomposed into
p subsamples,. . ., S,. Each subsamplﬁ,, r € [1, p], containsm columns and is used to define

a rank4 Nystrom apprOX|mat|orK Dropping the rank subscrigt in favor of the sample index

r, K, can be written a¥, = C, WIC/, whereC, and W, denote the matrices formed from
the columns of5, andW' is the pseudo inverse of the raklkapproximation ofW,.. The learner
further receives a samplé of s columns used to determine the weighte R attributed to each
expertK,.. Thus, the general form of the approximati®d;”*, generated by the ensemble Nystr
algorithm, withk < rank(K*"*) < pk, is

p
K =3 K, (3)
r=1



The mixture weights:,. can be defined in many ways. The most straightforward chaiosists of
assigning equal weight to each expert,= 1/p, r € [1,p]. This choice does not require the addi-
tional samplel/, but it ignores the relative quality of each Ny@im approximation. Nevertheless,
this simpleuniform methodhlready generates a solution superior to any one of the gippations

K., used in the combination, as we shall see in the experimesttibs.

Another method, thexponential weight methpdonsists of measuring the reconstruction e¢yasf
each experf(r over the validation samplE and defining the mixture weight as =exp(—né,.)/Z,
wheren > 0 is a parameter of the algorithm avla normalization factor ensuring that the vector
= (p1,...,up,) belongs to the simpled of R?: A={p € RP: p > 0AY"_ pu. =1}. The
choice of the mixture weights here is similar to those usetiénveighted-majority algorithm [12].
Let Ky, denote the matrix formed by using the samples fidras its columns and Ieﬁi}’ denote
the submatrix ok, containing the columns corresponding to the columrig.iThe reconstruction
erroré, = ||I~{)f — Ky || can be directly computed from these matrices.

A more general class of methods consists of using the sabpdetrain the mixture weightg,. to
optimize a regression objective function such as the fatigw

p
min Aflell3 + 1 ) e KY — K[, @)
r=1

where)\ > 0. This can be viewed as a ridge regression objective funetimhadmits a closed form
solution. We will refer to this method as thielge regression method\ote that to ensure that the
resulting matrix is SPSD for use in subsequent kernel-bakgatithms, the optimization problem
must be augmented with standard non-negativity consgraiiihis is not necessary however for
reducing the reconstruction error, as in our experimentso Alearly, a variety of other regression
algorithms such as Lasso can be used here instead.

The total complexity of the ensemble Ny&tn algorithm isO(pm? + pmkn+C,,), whereC,, is
the cost of computing the mixture weighig, used to combine the Nystom approximations.
The mixture weights can be computed in constant time for thiftorm method, inO(psn) for the
exponential weight method, or i@ (p® + p?ns) for the ridge regression method whetép?ns)
time is required to compute & x p matrix andO(p?) time is required for inverting this matrix.
Furthermore, although the ensemble Ngstralgorithm requireg times more space and CPU cycles
than the standard Nysim method, these additional requirements are quite rebBoirapractice.
The space requirement is still manageable for even largle-spplications given thatis typically
O(1) andm is usually a very small percentageofsee Section 4 for further details). In terms of
CPU requirements, we note that our algorithm can be easiigllpbzed, as allp experts can be
computed simultaneously. Thus, with a clustepahachines, the running time complexity of this
algorithm is nearly equal to that of the standard Nistralgorithm withm samples.

3 Theoretical analysis

We now present a theoretical analysis of the ensemble diyistnethod for which we use as tools
some results previously shown by [5] and [10]. As in [10], welsuse the following generalization
of McDiarmid’s concentration bound to sampling withoutleeement [3].

Theorem 1. Let 74, ..., Z,, be a sequence of random variables sampled uniformly witresut
placement from a fixed set of + u elementsZ, and let¢: Z™ — R be a symmetric function
such that for alli € [1,m] and for all z1,...,2, € Z and z1,...,z,, € Z, |¢p(z1,. .., 2m) —
d(21y -y 2im1, 2y Zig1, - -+, 2m)| <. Then, for alle >0, the following inequality holds:

2

Pr[¢ —E[¢] > €] < exp [a(%;)g]a ©)
wherea(m, u) =

mu 1
m+u—1/2 1-1/(2max{m,u})"

We define theselection matrixcorresponding to a sample of columns as the matri® € R™*"
defined byS,; =1 if the ith column ofK is among those sample#;; =0 otherwise. ThusC=KS
is the matrix formed by the columns sampled. SikCés SPSD, there existX € RV*" such that
K = X"X. We shall denote b¥,,., the maximum diagonal entry &, K., = max; K;;, and
by d¥.. the distancenax;; \/K;; + K;; — 2Kj;.

max



3.1 Error bounds for the standard Nystrom method

The following theorem gives an upper bound on the norm-2r@frthe Nystbm approximation of
the form||K —K||2/|K|l2 < |K—Kg|2/||K|2+O(1//m) and an upper bound on the Frobenius
error of the Nystbm approximation of the formjK — K| /| K|z < |K — Ki||#/|K]| r +
O(l/mi). Note that these bounds are similar to the bounds in The8remnj10], though in this
work we give new results for the spectral norm and preserghaer Lipschitz condition (9), the
latter of which is needed to derive tighter bounds in Secsién

Theorem 2. Let K denote the rank Nystivm approximation oK based onn columns sampled
uniformly at random without replacement froK), and K, the best rank: approximation ofK.
Then, with probability at least — ¢, the following inequalities hold for any sample of size

1K~ Kll2 < 1K ~ Killo + 22 Kumax |1+ /755 57577 108 3 0B/ Koo

K : nm 'k
1K = K[ < [|K — Kpllr + [52]F 0K o [1 n \/M/z S log & dgax/K;;m} ,

.
2max{m,n—m} "

wheref(m,n) =1—

Proof. To bound the norm-2 error of the Ny8tn method in the scenario of sampling without re-
placement, we start with the following general inequalityeg by [5][proof of Lemma 4]:

1K — K2 < |K — Kl + 2| XX - ZZ" |5, (6)

whereZ = /2 XS. We then apply the McDiarmid-type inequality of Theorem 14@®) =
[XXT—~ZZT||,. LetS’ be a sampling matrix selecting the same columrS except for one, and
letZ’ denote, /- XS'. Letz andz’ denote the only differing columns @ andZ’, then

6(S) = o(S)| < |22 —zz'|> = ||(2' —2)2"" +2(z —2) |2 ()
< 2||z’ — z[|a max{]|z]|2, [|2'[|}- (8)

Columns ofZ are those oX scaled by,/n/m. The norm of the difference of two columns Xf
can be viewed as the norm of the difference of two featureovsassociateg t& and thus can be
bounded byixk. Similarly, the norm of a single column & is bounded byK 2,.. This leads to the
following inequality:

2n 1
‘QS(S/) - ¢(S)| S EdgaxKﬁlaxo (9)
The expectation op can be bounded as follows:
E[®] = B XX T — ZZT||s] < B[|XXT = ZZT|[5] < ——K,pux 10
[@] = E[| [l2] < E[| ] < N , (10)

where the last inequality follows Corollary 2 of [10]. Theegualities (9) and (10) combined with
Theorem 1 give a bound gfXX " — ZZ |, and yield the statement of the theorem.

The following general inequality holds for the Frobeniusenf the Nystdm method [5]:
1K — K7 < [|K — K| + V64k [ XXT - ZZ7 || F nK3™. 11)

Bounding the term| XX " —ZZ"||% as in the norm-2 case and using the concentration bound of
Theorem 1 yields the result of the theorem. O

3.2 Error bounds for the ensemble Nystbm method

The following error bounds hold for ensemble Nysir methods based on a convex combination of
Nystrom approximations.
Theorem 3. Let S be a sample opm columns drawn uniformly at random without replacement

from K, decomposed intp subsamples of size, Sy,...,S,. Forr € [1,p], let K, denote the
rank-: Nystiom approximation oK based on the sampl€,., and letK; denote the best rank-



approximation ofi. Then, with probability at least — ¢, the following inequalities hold for any
sampleS of sizepm and for anyu in the simplexA andKens = P, urKr

[ ens n 1 n—pm 3
HK -K ||2 < HK - Kk||2 + \2/*Kmax |:1 + fmaxP? \/n f/Q 7[3(1),”1 n) 10g 5 EaX/Klgﬂax}

Nl

1
HK Kens” < HK Kk:HF + [64]6} nKde |:1 + HmaxP? \/n 1/2 5(1)1—” n) IOg 5 Eax/K’%ax} ’

whereg(pm,n) = 1— 5———1——— and i, = maxi_, p,.

2 max{pm,n—pm}

Proof. Forr € [1,p], letZ, = \/n/m XS,, whereS, denotes the selection matrix corresponding

to the samples,.. By definition of K"* and the upper bound dfK — I~<r||2 already used in the
proof of theorem 2, the following holds:

P P
I =R = || > (K - K| <D K =K, s (12)
r=1 r=1
P
< (K = Kl +2)XX T — Z,Z] ||2) (13)
- p
= ”I{_I<k||2"’22:#7‘”){){T _ZT‘ZI||2' (14)

r=1

We apply Theorem 1 ta(S) = >F_, 11, | XX — Z,Z||>. Let S’ be a sample differing from
S by only one column. Observe that changing one column of theséunple S changes only one
subsamplé5,. and thus only one term,.|| XX " — Z,Z, ||». Thus, in view of the bound (9) on the
change td| XX " — Z,Z |, the following holds:

2n 1
|9(S") — ¢(9)] < EumaxdﬁaxK&am (15)

The expectation oft can be straightforwardly bounded B{®(S)] = >F_, u, E[|XXT —
Z,Z ) <SP, MTﬁKmaX = ﬁKmaX using the bound (10) for a single expert. Plugging
in this upper bound and the Lipschitz bound (15) in Theorenieldg our norm-2 bound for the
ensemble Nystrm method.

For the Frobenius error bound, using the convexity of theb&nius norm squarg-||%. and the
general inequality (11), we can write

~ p 2 p .
e e DL Sl D Sy 8 & (16)
r=1 r=1
P
<> e[ IK — Kl + VOIRXXT - Z,2] | pnKE]. (@7)
- p
= |K — K[} + V64k Y | XXT — 2,2, || nKE™. (18)
r=1

The result follows by the application of Theorem 146S)=>""_, 1| XX — Z,Z | r in a way
similar to the norm-2 case. O

The bounds of Theorem 3 are similar in form to those of Thederdowever, the bounds for the
ensemble Nystim are tighter than those for any Ny@&tn expert based on a single sample of size
m even for a uniform weighting. In particular, far=1/p, the last term of the ensemble bound for

norm-2 is smaller by a factor larger thaglaxp% =1/\p.



Dataset Type of data | # Points ) | # Featuresd) | Kernel
PIE-2.7K [17]|| face images 2731 2304 linear
MNIST [11] digitimages 4000 784 linear
ESS [8] proteins 4728 16 RBF
AB-S [1] abalones 4177 8 RBF
DEXT [1] bag of words 2000 20000 linear
SIFT-1M [13]|| Image features 1M 128 RBF

Table 1:A summary of the datasets used in the experiments.

4 Experiments

In this section, we present experimental results thattithte the performance of the ensemble
Nystrom method. We work with the datasets listed in Table 1. IniSect.1, we compare the
performance of various methods for calculating the mixiuegghts («,.). In Section 4.2, we show
the effectiveness of our technique lamge-scaledatasets. Throughout our experiments, we mea-

sure the accuracy of a low-rank approximatﬁrby calculating the relative error in Frobenius and
spectral norms, that is, if we lét= {2, F'}, then we calculate the following quantity:

% error= IK = Klle 100, (19)
1K

4.1 Ensemble Nystdm with various mixture weights

In this set of experiments, we show results for our ensempkrdin method using different tech-
nigues to choose the mixture weights as discussed in SezttonWe first experimented with the
first five datasets shown in Table 1. For each dataset, we fieacttiuced rank tb=>50, and set the
number of sampled columns ta = 3%n.! Furthermore, for the exponential and the ridge regres-
sion variants, we sampled an additional set ef 20 columns and used an additiorl columns

(s") as a hold-out set for selecting the optimal valueg ehd . The number of approximations,
was varied fron® to 30. As a baseline, we also measured the minimal and mean p@&rmenacross

the p Nystrom approximations used to constrd€t™s. For the Frobenius norm, we also calculated
the performance when using the optimalthat is, we used least-square regression to find the best
possible choice of combination weights for a fixed set approximations by setting=mn.

The results of these experiments are presented in Figurethéd-robenius norm and in Figure 2
for the spectral norm. These results clearly show that teerable Nystm performance is signifi-
cantly better than any of the individual Ny&tn approximations. Furthermore, the ridge regression
technique is the best of the proposed techniques and ges@erly the optimal solution in terms of
the percent error in Frobenius norm. We also observed thehwis increased to approximatedys,

to 10% of n, linear regression without any regularization performsudtas well as ridge regression
for both the Frobenius and spectral norm. Figure 3 showstnigarison between linear regression
and ridge regression for varying valuessofising a fixed number of experts £ 10). Finally we
note that the ensemble Ny8in method tends to converge very quickly, and the most sogmifi
gain in performance occurs asncreases fron2 to 10.

4.2 Large-scale experiments

Next, we present an empirical study of the effectivenesshefensemble Nysim method on the
SIFT-1M dataset in Table 1 containifgnillion data points. As is common practice with large-scale
datasets, we worked on a cluster of several machines fod#téset. We present results comparing
the performance of the ensemble Nystrmethod, using both uniform and ridge regression mixture
weights, with that of the best and mean performance acregs Mystrom approximations used to
constructK*s. We also make comparisons with a recently propdseteans based sampling tech-
nigue for the Nysidm method [20]. Although th&-means technique is quite effective at generating
informative columns by exploiting the data distributiohetcost of performing:.-means becomes

!Similar results (not reported here) were observed for other valuesotim as well.
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Figure 1: Percent error in Frobenius norm for ensemble Mgstmethod using uniform (‘uni’),
exponential (‘exp’), ridge (‘ridge’) and optimal (‘optiripmixture weights as well as the best (‘best
b.l") and mean (‘mean b.l.") of thg base learners used to create the ensemble approximations.
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Figure 2: Percent error in spectral norm for ensemble Nystmethod using various mixture
weights and the best/mean of thapproximations. Legend entries are the same as in Figure 1.

expensive for even moderately sized datasets, makinditwltifto use in large-scale settings. Nev-
ertheless, in this work, we include themeans method in our comparison, and we present results
for various subsamples of the SIFT-1M dataset, wittanging frombK to 1M.

To fairly compare these techniques, we performed ‘fixecetiaxperiments. We first searched for an
appropriaten such that the percent error for the ensemble Nystmethod with ridge weights was
approximatelyl0%, and measured the time required by the cluster to constriscapproximation.
We then allotted an equal amount of time (withisecond) for the other techniques, and measured
the quality of the resulting approximations. For these expents, we sek =50 andp =10, based

on the results from the previous section. Furthermore,deto speed up computation on this large
dataset, we decreased the size of the validation and holsetaitos =2 ands’ =2, respectively.
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Figure 4: Large-scale performance comparison with SIFTel¥aset. Given fixed computational
time, ensemble Nysbm with ridge weights tends to outperform other techniques.

The results of this experiment, presented in Figure 4, glesttow that the ensemble Ny8m
method is the most effective technique given a fixed amourttnoé. Furthermore, even with
the small values of ands’, ensemble Nystm with ridge-regression weighting outperforms the
uniform ensemble Nysbm method. We also observe that due to the high computatmosilof
k-means for large datasets, theneans approximation does not perform well in this ‘fixedéi
experiment. It generates an approximation that is worse tiva mean standard Ny8tn approxi-
mation and its performance increasingly deteriorates agproachesM. Finally, we note that al-
though the space requirements &bagimes greater for ensemble Ny&tn in comparison to standard
Nystrom (sincep = 10 in this experiment), the space constraints are nonethgléss reasonable.
For instance, when working withM points, the ensemble Nygitm method with ridge regression
weights only required approximatelys of the columns oK to achieve a percent error ©6%.

5 Conclusion

We presented a novel family of algorithnesemble Nystm algorithmsfor accurate low-rank ap-
proximations in large-scale applications. The consistgwt significant performance improvement
across a number of different data sets, along with the fadtttiese algorithms can be easily par-
allelized, suggests that these algorithms can benefit atyaof applications where kernel methods
are used. Interestingly, the algorithmic solution we hangppsed for scaling these kernel learning
algorithms to larger scales is itself derived from the maeHearning idea of ensemble methods.
We also gave the first theoretical analysis of these methdsexpect that finer error bounds and
theoretical guarantees will further guide the design ofahsemble algorithms and help us gain a
better insight about the convergence properties of ouritfgos.
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