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Abstract

We present a two-layer hierarchical formulation to ex-
ploit different levels of contextual information in imades
robust classification. Each layer is modeled as a condi-
tional field that allows one to capture arbitrary observatio Figure 1. Example images demonstrating that scene con-
dependent label interactions. The proposed framework has  text is important in different domains to achieve good
two main advantages. First, it encodes both the short-range  gjassification even though the local appearance is im-
interactions (e.g., pixelwise label smoothing) as wellfees t poverished. From left: first and second - scene labeling
long-range interactions (e.g., relative configurationsobf (region-regiorinteraction), third -  Object-regioninterac-
jects or regions) in a tractable manner. Second, the formu-  on, fourth - object-objectnteraction.
lation is general enough to be applied to different domains
ranging from pixelwise image labeling to contextual object
detection. The parameters of the model are learned using
a sequential maximume-likelihood approximation. The ben-
efits of the proposed framework are demonstrated on four
different datasets and comparison results are presented.

appearance but the relative configuration of monitor, key-
board and mouse helps disambiguate the detection. Simi-
larly, car detection is much easier given the configuration o
building and road (Figure 1). In this case, the global cantex
is provided byobject-regioninteraction.

i In the past, context has been advocated for the prob-
1. Introduction lems of pixelwise image labeling [13][5] and object detec-

The problem of detecting and classifying regions and ob- tion [2][15][12]. All these techniques are either specilliza
jects in images is a challenging task due to ambiguities in tuned for a certain application domain or use context only
the appearance of the visual data. The use of spatial contex@t a specific level. The key contribution of this paper is a
can help alleviate this problem significantly. For example, framework that provides a unified approach to incorporate
in Figure 1, the sky and the water patches may locally look the local as well as the global context of any of the three
very similar but their relative spatial configuration rereev  types in a single model.
this ambiguity. In [13], Singhal et al. presented an approach for la-

There are different levels of contexts one would like beling each region in the scene sequentially based on the
to use to improve classification accuracy. For instance,labels of the previous regions. This approach will give
for pixelwise image labeling problem, the local smooth- spurious results if the previously labeled regions were as-
ness of pixel labels will be a local context. On the other signed wrong labels. Markov Random Fields (MRFs) pro-
hand, global context will refer to the fact that the image re- vide a sound theoretical approach to model contextual in-
gions follow probable configurations e.g., sky tends to occu teractions among different components simultaneously [4]
above water or vegetation (Figure 1). We denote this typeHowever, a variety of applications require image observa-
of global context byegion-regioninteraction. Similarly, for ~ tions to model such interactions. For example, different
the problem of parts-based object detection, the local con-natural regions in a scene, or parts of an object are related
text will be the geometric relationship among parts of an through geometric constraints. Traditional MRFs do not
object while the relative spatial configurations of diffetre  allow the use of observed data to model interactions be-
objects will provide the global contextual information.i3h  tween labels. Conditional Random Fields (CRFs), proposed
type of global context is denoted lmbject-objectinterac- in [10], provide a principled approach to incorporate these
tion. As shown in Figure 1, the keyboard and the mouse data-dependent interactions. In our hierarchical apgroac
may be very hard to detect because of their impoverishedeach layer is modeled as a CRF. Another advantage of CRFs



X True Labels the long range interactions between groups of sites corre-

T e sponding to different coherent regions or objects. Thus, th
layer can take into account interactions between different
%Libglsé))((z) objects (monitor/keyboard) or regions (sky/water).
\ Y The two layers of the hierarchy are coupled with directed

links. A node in layer 1 may represent a single pixel or a
2NN Labels x® patch while a node in layer 2 represents a larger homoge-
e (Layer1) neous region or a whole object. Each node in the two layers
g : is connected to its neighbors through undirected links. In
\ Observed Imagey addition, each node in layer 2 is also connected to multiple
nodes in layer 1 through directed links. In the present work
we restrict each node in layer 1 to be connected to only one
node in the layer above. As noted by Hinton et al. [6], with
respect to hierarchical MRFs, the use of directed links be-
tween the two layers, instead of the undirected ones, avoids
the intractability of dealing with a large partition funai.
Being a conditional field, each node in layer 1 can poten-
tially use arbitrary features from the whole image to com-
pute its bias. The top layer uses the output of layer 1 as
input through the directed links.

Figure 2. A simple illustration of the two-layer hierarchi-
cal field for contextual classification. Squares and cir-
cles represent sites at the two layers. Only one node
along with its neighbors is shown for each layer for clar-
ity. Layer 1 models short-range interactions while layer
2 long range dependencies in images. The true labels x
are obtained from the top layer by a simple replication
mapping I'(.). Note that the partition shown in the top
layer is not necessarily a partition on the image.
2.1. Basic Formulation
over the traditional MRFs is that they use a discriminative
approach for classification rather than spending the affort . .
inerr)mdeIing the generation of the observzd datzg. L Wilies: Wher_eyi IS the data fromt.h site, an(_js '
Different forms of CRFs have been used by various re- is the set of all the image sites. We are mterestgd in find-
searchers in image modeling [7][5][15]. He et al. [5] have MY the labelsz = {z}cs, wherez; € £ and|L] is the
presented an approach where context is enforced througﬁ]umber of classes. For image labeling, a site is a pixel and

local and global learned features tuned to pixelwise scene? class may beky, grassetc., while for contextual object

labeling application. Torralba et al. [15] have combined detection, a site is a patch and a CI"?‘SS may refer T[O(SbjeCtS
boosting with CRFs to learn the graph structure and its po-e'g'r’]kteg b&?lrgjoimgusehfl;hethseit _Of |5|tes 'g _Iayder L ig db
tentials for contextual object detection, but do not prewad such tha = o, while that In fayer 2 1S denoted by

- . X @ i i iti
guiding framework for handling different levels of context S n The nodes in layer 2 mduce_ a partition over the set
for different applications in the same model S such that a subset of nodes in layer 1 correspond to

. . ; one node in layer 2. Formally, a partitidnis defined as
Various forms of hierarchical models have been sug- ) @) (1) ,
gested under both undirected [11] as well as directed [1] 7 : §' — 5% such that, ifS; (|25)a subs(elt) of nOd?S n

graph paradigms. However, these models have been rel@yer 1 corresponding to node= 5°%, thenS') = LTJST
stricted to simple local contextual information such as la- ands® A g

bel smoot_hmg to obtain good segmentgt!on. They do n_ot partitions be denoted ag. This partition should not be
use any h|gh_level global context. In addition, all the_ PHEVI confused with an image partition, since it is defined over
ous hierarchical models were based on MRFs. This paper,, qites in5(1), which may not correspond to the image

presents the first work on using a hierarchy of CRFs. pixels (e.g., in object detection, where sites are random im
age patches). Let the labels on the sites in the two layers
be given byz(!) = {fgl)}iesm andz(? = {I$“2)}TES(2)1

In this work, we are interested in modeling interactions wherez!" € £ and2'® € £®), where£® = £. The
in images at two different levels. Thus, we propose a two- nodes in layer 1 may take pseudo labels that are different
layer hierarchical field model as shown in Figure 2. Note from the final desired labels. For instance, in object detec-
that, in any of the two layers, the induced graph’s topol- tion, a node at layer 1 may be labeled as 'a certain part’ of
ogy is not restricted to regular 2D grid locations. In this an object rather than the object itself. In fact, the labéls a
model, each layer is a separate conditional field. The firstthis layer can be seen as noisy versions of the true desired
layer models short range interactions among the sites suchabels .
as label smoothing for pixelwise labeling, or geometric-con Given an imagey, we are interested in obtaining the
sistency among parts of an object. The second layer modelgonditional distributionP(x|y) over the true labels. Given

Let the observed data from an input image be given by

= ¢ Vrse S, Letthe space of all

2. Hierarchical Framework



y, let us define a space of valid partitiori€,,, such that  2.2. Conditional Field - Layer 1

V heMH,, z=a Vie S wherer = h(i). This im- The conditional distribution of the labels given the ob-
plies that multiple nodes in layer 1 make a hypothesis aboutserved data, i.e P(xM|y) is directly modeled as a homo-

a singlehomogeneougegion or an object in layer 2. Fur- geneous pairwise conditional random field proposed by [10]
ther, we define a replication mappifd. ), which takesany  as,
value (discrete or continuous) on nadand assigns it to all

(1) 1 (1)
the nodes in5t". Thus, given a partition € ,, and the PxMly) = H Pz H bz y),
corresponding labels(?), the labelse can be obtained sim- 165“) LIEN:
ply by replication. This impliesP(z|y) = P(x®|h,y) where Z is a normalizing constant known as the parti-

if h € H, . However, given an observed image the tion function, \V; is the set of neighbors of site Here,
constrainth € H, is too restrictive. Instead, we define a ¢(2" y) and(z”, §1),y) are the unary and the pair-
distribution, P(hly), that prefers partitions ift{,, over all wise potentials.
possible partitions, and, Generalizing the binary form in [7][14] to multiclass
problems, we model the unary potential as,
P(zly) = Y P@®|h,y)P(hly)

= log ¢(xi,y) = > (2l =k)log P'(a!" = kly),
(1)
=Y Y P@@in )PP y), O o 3)
heH z M wheres(z\") = k) is 1 if /") = k and0 otherwise, and

where bothP(z(V|y) and P(z? |h, (V) are modeled as P'(z{") = K|y) is an arbitrary domain-specific discrimi-
conditional fields which will be explained in Sections 2.2 nat|ve cIaSS|f|er This form of unary potential gives us the
and 2.3. In (1), computing the sum over all the possible desired flexibility to integrate different applicationsefer-
configurations ofz(1) is a NP-hard problem. One way to ring different types of local classifiers in a smgle frame-
reduce complexity is to do inference in layer 1 until equi- wor.k. Leth(y) be a feature vector (possibly in a kemel-
librium is reached and then using this configurahdH as proleCte.SL space), t.hat encodes appearance based features
input to the next layer, i.eP(zV|y) = d(z1) — A(1)) for the i*" site (a pixel, a patch or an object). To model

However, by doing this, one loses the power of model- ' (% i) = kly), in this paper we generalize the logistic
ing the uncertainty associated with the labels in Iayer 1, classmer used in [7] to a softmax function,
which was included explicitly in (1) througR(z)y). In exp(WIhi(y)) if ko< L)
principle, one can use Monte Carlo sampling or a varia- (1_ 13 2V e (wT hu ()
tional approach to approximate the sum in (1), but they Pl(z;"= kly)=
may be computationally expensive. In this work, instead, T 1 h if k=[]
we wanted to examine what could be achieved by making a Hin oW ()
very simplifying assumption, where along with the equilib- Here,w; are the model parameters for= 1...[£1)| —
rium configuration, we also propagate the uncertainty asso-1. For a|£(!| class classification problem, one needs only
ciated with it to the next layer. We use the sitewise max- |£")| — 1 independent hyperplanes.
imum marginal configuration asM. Let the marginals The pairwise potential predicts how the labels at two
at each sitei be b;(x (1)) _ me\mm P(x )|y) and sites should interact given the observations. Generglizin
the interaction potential in [7] for multiclass field,
b(x) = {b;(z{")},cs) . The belief setb(x()) is prop-

agated as an mput to the next layer. Note that the configu-log w( 7 Vy)= Z v (y (1) :k)é(x;.l) =l)
ration2!) can be obtained directly from(x()) by taking kleL®
its sitewise maximum configuration. Thus, in the future, we (4)

will omit explicit conditioning on". Now, we can write ~ where, u;;(y) is the pairwise feature vector, and,; are
the model parameters. For example, in the case of object
P(x|y) ~ Z P m(2)|h b(z ))P(h|b(m(1)))' (2) detection, the vecton,;(y) encodes the pairwise features
hen required for modeling geometric and possibly photometric
consistency of a pair of parts. The sitewise label smoothing
Note that both terms in the sx)Jm(r?)atmn implicitly include can be achieved by forcing;; (y) to be 1.
the transition probapllltlez?( |2;). Fpr the first term, 2 3. Conditional Field - Layer 2
these are absorbed in the unary potential of the conditional _ - )
field in layer 2 as explained in Section 2.3. Section 2.4 will  The formulation of the conditional field for layer 2 can be
describe a simple design choice B(h|b(z(1)). We first qbtalned in th_e same way as .descrlbed in the previous sec-
describe the modeling of the conditional field in layer 1. tion by changing the observationstitr'), the set of sites



to S, and the label set t6(2). The main differenceliesin  (2). Although suboptimal, the drawbacks of the sequential
the form of the unary potential. Each node S in this approach are somewhat moderated by the fact that the parti-
layer receives beliefs as input from the nodes contained intion functions for the fields in the two layers are decoupled
setSM from the layer below. Taking into consideration the due to the directed connections.

transition probabilities on the directed links betweenewod Starting with parameter learning in layer 1, since the la-

and the nodes i5{", the unary potential can be written as, P€ls at this layer are not known, we assign pseudo labels
x(D on S using the true labels. In the image labeling ap-

log (), b(x Z {5 plications, since the nodes at both the layers take thedabel

ker(® from the same set, one can assume the pseudo labels to be

(2) ) @) a1 the same as the true labels. For object detection, where the
(logP (2,7 =k|b(z"™))+ S0 (2" =kl|2; ))} labels at layer 1 are part identifiers rather than being objec
|5 |¢es$” identifiers, one possible way to generate pseudo labels will

) ] ] _ beto use soft clustering on the object parts and assign a part
Here, |5 | is a normalizer that takes into account the dif- 3¢ to each node as in [8]. It is clear that the labels gen-
ferent cardinalities of sets!". erated in this way are going to be noisy. That is where the
2.4. Modeling Partitioning hierarchi_cal model becom_es more relevant, where the top

layer refines the label estimates from the layer below and
The distributionP(h|b(x("))) should be designed such the directed connections incorporate the transition proba
that it gives high weight to a partitioh € H,, given the bilities from the noisy labels to the true labels.
belief set from layer 1. Since a good partition should drive  To learn the parameters of the conditional field in layer
all the nodes in a sef'" to take the same true labels, the 1 using gradient ascent, the derivative of the log-liketitio
conditional distribution over the partitions is modeled as ~ from the distributionP(x (") |y, (1)) can be written as,

Pebl@™oc TT [ ax [T 30 (bl 210) L5 5 (et = (30l 00 o™

res® ies® zWerw il !
° m ;850
(1) (2)

Paa)] ©
The term in the product overis the probability that the (1) Z Z Z ( (Hm _ k)é(z§1)m =1)
noder, connected to sité will take labelz'? . AIso,|S§1)| m €S jEN:
and|S(®)| compensate for the differences in the number of _<5(x(_1) —k)o(zV = l)> )N* (y™), (6)
nodes in se5'") and the overall number of nodes induced ’ !
by the partition respectively. where(.) denotes expectation with respect to the distribu-

tion P(x(M|y™, (1)), Generally the expectation in (5) and

(6) cannot be computed exactly due to the exponential num-
The set of paramete, to be learned in the hierarchical ber of configurations of(™). In this work, we estimate

model, includes the parameters of the conditional fields atexpectations using the pseudo-marginals returned by loopy

layer 1 and layer 2, and the transition probability matrices Belief Propagation (BP) [3].

P (2", The field parameters for each layer are the  The transition probability matrices were assumed to be

3. Parameter Learning and Inference

parameters of the unary and pairwise potentialsd(e), = the same for all the directed links in the graph to avoid over-
(@) () *= 12 fitting. The entries in this matrix were estimated using the
{wk * Ykt }Vk,l ' normalized expected counts of transition fr@rW to 2\,
Given M i.id. labeled training images, the which are known at the training time. Note that the counts
maximum likelihood estimates of the parameters are gre computed using the refined label estimafésobtained
glven by maximizing the log-likelihoodL(©) = directly fromb(z™).

Zmzllogp( x™|y™, ), where the conditional distribu- Givenb(z™) andP(xr )|x(1) the field parameters of

tion in the sum for each image: is given by (1). Sinceé  zver 5 e 92 were obtained by maximizing the lower
this likelihood is hard to evaluate, following the assurapti bound on the log likelihood of (2),

made in Section 2.1, we use a sequential learning approach

in which, f_wgt the paramgters of layer 1 are estimated sep- Z Z { (hlb(z 1)m))

arately. Fixing these estimates, the parameters of the next

layer and the transition matrices are estimated by maximiz-

ing the likelihood for the conditional distribution given i log P(z™|h, b(zM™), 9(2))} (7



The derivatives of the above lower bound also have similar neighborhood was defined to be th@earest neighbors on
forms as in (5) and (6) except that the gradients are nowa grid. Similar to [9], three HSV color features and two tex-
the expectations with respect #(h|b(z"). In addition, ture features, based on the eigenvalues of the second mo-
the gradient for the unary parametemg) at a siter will ment matrix, gave & dim unary feature vector. Further,
have the features scaled by the product of transition proba-We used a quadratic kernel to obtaizadim feature vec-
bilities for all the nodes ir6{"). To deal with the problem O hi. To implement label smoothing, the pairwise fea-
of summing over, in principle, one can use full MCMC ~ turé vectoru;; was set tol, resulting in a Potts model
sampling. However, by using a data-driven heuristic de- € vk = 0 if k # . The parameters of layer 1 i.e.,
scribed in Section 4, samples from high probability regions 6% = {wi" v} }vi. were all learned simultaneously us-
of P(h|b(xz™) can be obtained using local search. Usu- ing the maximum likelihood procedure described Section 3.
ally, the resulting partitions will not be restricted to treid The training time was abou® min on a2.8 GHz Pentium
spaceH,,. In that case, the training label at nodé layer class processor.
2 is obtained by using a majority vote of labels at the nodes Before proceeding to layer 2, we describe how we do
in Sr(l). local sampling of partitiom in a high probability region
For inference, in this work we used the sum-product ver- of P(h|b(z(!))). As explained in Section 2.4, good parti-
sion of loopy BP to find the maximum marginal estimates tions are those that promote homogeneous labeling within
of the labels on the image sites. The desired label estimate@ region. So, given the beliefs from layer 1, first a binary

for each nodé in setS can be obtained as, map is generated for each class by thresholding the pixel-
wise beliefs at a small value. Then, a partition is obtained

#; = argmax Z {P,‘ (22 = k|h, b(zM)) by simply intersecting these binary maps for all the classes
k hories® i.e., by dividing bigger regions into smaller ones whenever

there is an overlap between regions from any two maps. By
P(h|b(‘”(l)))} , (8 varying the threshold for generating the binary maps, one
) ) o ) can have the desired number of samples. We observed that
where thel sum is carried out over alby picking the site  g,/en |ess than samples were sufficient to give good results.
r:i € S\ for each h, and’,(.) is the marginal for sitt  This was because the beliefs from layer 1 are smoothed due
in layer 2 estimated using loopy BP. to message passing between the nodes in this layer while
implementing the local context.
The layer 2 encodes interactions among different regions
We conducted experiments to test the capability of the given the beliefs at layer 1 and a partition. Each region of
proposed hierarchical approach to incorporate three dif-the partition is a site in layer 2. Note that the sites are not
ferent types of contextual interactions i.eegion-region ~ placed in a regular grid as in layer 1. For this dataset, the
object-regionand object-objectas described in Section 1. number of sites at layer 2 varied frota to 49 for different
Four datasets for two different applications (image laigeli  images. Since we want every region in the scene to influ-
and contextual object detection) were used for testing. Fore€nce every other region, each node in the graph was con-
the object detection experiments, the aim was to investigat nected to every other node. The computations over these
if the performance of the existing classifiers could be im- complete graphs are still efficient because of the small num-
proved by feeding their outputs in the hierarchical model. ber of nodes in the graph. The unary feature vector for each
noder consists of normalized product of beliefs from all
the sitesi in Sﬁl) and the normalized centroid location of
The first set of experiments was conducted on the the regionr. This gives arg dim feature vector. Further,
'Beach’ dataset from [9], which contains a collection of quadratic transforms were used to obtaifdadim vector
consumer photographs. The goal was to assign each im#;. Similar to [13], we use pairwise features between re-
age pixel one of thé class labels{sky, water, sand skin gions to be binary indicator attributes. These were: a regio
grass other}. This dataset is particularly challenging due is above besideor enclosedwithin another region. The
to wide within-class variance in the appearance of the datamaximum likelihood learning took aboa@tminutes.
(see Figure 5 or [9] for more images). The dataset contained Two example results from the test set are shown in Figure
123 images, each of sid€4 x 218 pixels. This setwas ran- 5. The top row shows that good accuracy is obtained even
domly split into a training set of8 images and a test set of for the pixels from theother class which has traditionally
75 images. been hard to model because of large within class variations.
The layer 1 of the proposed hierarchical model imple- Table 1 gives a quantitative comparison of the results on
mented the smoothness of pixel labels as the local contextthe test set. The use of the local context (label smoothing)
Hence, the sites in layer 1 were the image pixels and theimproves the accuracy slightly (Layer 1’ in Table 1) over

4. Experiments and Discussion

4.1. Region-Region Interactions
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[S— R B
Table 1. Pixelwise classification accuracy (%) for image . ogl Lo ’ No R 14.12 22.86
Iébeling.on two different datasets.. Final results of the ‘é 056 Context B 6.48 56.54
hlerarchlcz‘al approach are shown in bol.d. The column goa " R B
'Others’ gives the results for the techniques proposed 02 Wit R 36.02 0.96
Context i '
by other researchers. 0 BT B 0.99 62.03
false positives per image

| Datasets| Softmax Layerl Full MRF Otherg

Beach| 62.3 63.8 74.0 61.5 64.0 9]
Sowerby| 85.4  85.8 89.3 81.8 89.5[5]

Figure 3. Left: The ROC curves for contextual car de-
tection compared to a boosting based detector. Right:

Confusion matrices (as % of overall pixels) for building

the softmax which uses no context. However, the main use and road detection. Rows contain the ground truth. No

of the local context is to propagate improved beliefs and  context implies the output of the Softmax classifier.

partitions to layer 2. The full hierarchical model ('Fulhi i

Table 1) performs significantly better than the others. The the performance of a standard boosting-based detector, we

time taken for inference was abofitsec for each image. use the detector outputin layer 1. Rectangular patches cen-

For the MRF, results were obtained using the Potts model. tered at the locations that have a score above a threshold are
Next, the hierarchical model was applied to the stan- designated as sites for both layer 1 and 2. The threshold is

dard Sowerby dataset. The dataset contained 104 imageshosen to be small enough to make the false negatives rel-

(64 x 96 pixels). The training and the test set contaifeéd  atively rare. Of course, it increases the false positives co

and44 images respectively. As used by [5], the CIE Lab siderably. So, the question is: can our framework handle a

color features and oriented DoG filters based texture fea-large number of false positives?

tures gave 80 dim feature vector that was used as input  In the hierarchical model, the set of sit§§") in layer

to layer 1. The rest of the features, parameter learning andl contains all the image pixels and the object patches. The

inference were the same as for our implementation on theneighborhood structure for the pixels whsiearest neigh-

Beach dataset. Figure 5 shows two typical test results. Notebors. Since each object patch represents a possible hypothe

the road marking in the bottom image, which is preserved sis about the full object, there is no interaction amongehes

in the final result even though layer 1 tends to smooth it out. patches in layer 1. The set of sites in laye5%?), consists

The quantitative comparisons are given in Table 1. Note of image regions and the same object patches as in layer 1.

that we achieve almost the same accuracy as reported in [5SNote that the sites i5(?) induce a partition on the nodes

even though their technique is specifically tuned for the im- in S(*). The label set«L") and £(?) for the sites in the

age labeling problems, while our approach is more general two layers were the same &suilding, road} for pixels and

integrating different applications in a single framework. regions, and car, background for the patches.
] ) ) The features used by layers 1 and 2 for image pixels and
4.2. Object-Region Interactions regions were the same as described for the Sowerby dataset

in the previous section. The output of the object detector
was used as a feature for a patch in layer 2. All the nodes in
layer 2 were connected with each other inducing a complete

images, each of size less tha) » 100 pixels. The size raph. The pairwise features between the object patches
and pose of the object (car) was roughly the same in all thedraPn- > panr ) ' ODject p:
and the regions in layer 2 were simply the difference in the

images. As shown in Figure 6, the local appearance of cars : ) :
o ; . . coordinates of the centroids of a region and a patch.
is impoverished due to low resolution, making the car de- : :
; . o . In all the experiments we used a detector trained by gen-
tection hard using stand-alone detectors. In additior hig . e
S . tle boosting as the base detector [15]. The classification re
variability in the appearance of the building data also nsake sults for two tvoical examples from the test set are given in
it difficult to disambiguate them from roads just on the basis yp b 9

. . ., Figure 6. The classification accuracy of building and road
of intensity and texture features. However, the relatigrssh detection 0oes up froffD.66% t0 98.05% as shown in Fia-
among the object (car) and the two regions (building and 9 b D0 B 9

. ; . ure 3. Also, the ROC curve for the car detection shows that
road) provide strong context to improve the detection of all s . X
i . the number of false positives is reduced considerably com-
the three entities simultaneously.

For object detection, layer 1 models the relationship pared to the base detector.
among parts of an object. Ideally, in layer 1 one can im- 4.3. Object-Object Interactions
plement a CRF on object parts similar to [12][8]. However,
to investigate if our framework can be used for improving

We conducted the next set of experiments on a build-
ing/road/car dataset from [15].The dataset containetd

The final set of experiments was conducted on the mon-
itor/keyboar/mouse dataset from [15], which contaihéd
10nly a partial dataset was available in the public domain. images of size less tham0 x 100 pixels each. The dataset




o
©

o
o

o
~

---no context
with context

false positives per image

detection rate
detection rate

---no context
with context

o
N

20 40 60 80 100
false positives per image

problems of image labeling and contextual object detection
In the future, we will explore the use of variational approxi
mations to relax some of the assumptions made in this work.
We also plan to develop efficient ways of learning the pa-
rameters of the two layers simultaneously. Finally, it will
be interesting to explore the possibility of adding othgr la
ers in the hierarchy, which could encode more complex re-

lations between different scenes in a video, leading toteven

Figure 4. The ROC curves for the detection of keyboard
(left) and mouse (right). Relatively high false alarm rates
for mouse were due to very small size of mouse (about
8 X 5 pixels) in the input images.

was randomly split in half to generate the training and the

tion of the keyboard and the mouse, which spanned only

or activity recognition.
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by taking interactions among the three objects, one can de-
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For each object, we use a detector which was also trained
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Figure 5. Results on the Beach dataset (top two rows) and the S owerby dataset (bottom two rows) using context based on
region-regioninteractions. Note the correct classification of "other’ ¢l ass in top row. In the bottom row, road markings are
preserved in the final result. In a belief map, higher intensi ty indicates higher confidence.

Input image Build/road (NC) Detector score Car (NC) Buitd/d (WC) Car (WC)

Figure 6. Detection results for buildings, road and car usin g context based on Object-regiOﬁnteractions. 'Build’ - Building,
NC - No Context, WC - With Context. Detector score shows the ou  tput of the base detector. Black indicates road’ and white
'buildings’. Green and red indicate true detections and fal se alarms respectively.

Input image Monitor (NC)  Keyboard (NC) Mouse (NC) KeyboanCC) Mouse (WC)

Figure 7. Detection results for monitor, keyboard and mouse using context based on  Object-objecinteractions. NC - No
Context, WC - With Context. Monitor detection was good with t he base detector itself due to less appearance ambiguity. No te
the impoverished appearances of the keyboard and the mouse. The detection color coding is the same as above.



