
∝SVM for Learning with Label Proportions

Felix X. Yu† yuxinnan@ee.columbia.edu
Dong Liu† dongliu@ee.columbia.edu
Sanjiv Kumar§ sanjivk@google.com
Tony Jebara† jebara@cs.columbia.edu
Shih-Fu Chang† sfchang@cs.columbia.edu
†Columbia University, New York, NY 10027
§Google Research, New York, NY 10011

Abstract

We study the problem of learning with la-
bel proportions in which the training data
is provided in groups and only the propor-
tion of each class in each group is known.
We propose a new method called proportion-
SVM, or ∝SVM, which explicitly models the
latent unknown instance labels together with
the known group label proportions in a large-
margin framework. Unlike the existing work-
s, our approach avoids making restrictive as-
sumptions about the data. The ∝SVM mod-
el leads to a non-convex integer program-
ming problem. In order to solve it efficient-
ly, we propose two algorithms: one based on
simple alternating optimization and the oth-
er based on a convex relaxation. Extensive
experiments on standard datasets show that
∝SVM outperforms the state-of-the-art, es-
pecially for larger group sizes.

1. Introduction

The problem of learning with label proportions has
recently drawn attention in the learning communi-
ty (Quadrianto et al., 2009; Rüeping, 2010). In this
setting, the training instances are provided as groups
or “bags”. For each bag, only the proportions of the
labels are available. The task is to learn a model to
predict labels of the individual instances.

Learning with label proportions raises multiple issues.
On one hand, it enables interesting applications such
as modeling voting behaviors from aggregated propor-

Proceedings of the 30 th International Conference on Ma-
chine Learning, Atlanta, Georgia, USA, 2013. JMLR:
W&CP volume 28. Copyright 2013 by the author(s).

tions across different demographic regions. On the
other hand, the feasibility of such a learning method
also raises concerns about the sensitive personal in-
formation that could potentially be leaked simply by
observing label proportions.

To address this learning setting, this article explicitly
models the unknown instance labels as latent variables.
This alleviates the need for making restrictive assump-
tions on the data, either parametric or generative. We
introduce a large-margin framework called proportion-
SVM, or ∝SVM1, which jointly optimizes over the un-
known instance labels and the known label proportion-
s (Section 3). In order to solve ∝SVM efficiently, we
propose two algorithms - one based on simple alter-
nating optimization (Section 4), and the other based
on a convex relaxation (Section 5). We show that our
approach outperforms the existing methods for vari-
ous datasets and settings (Section 6). The gains are
especially higher for more challenging settings when
the bag size is large.

2. Related Works

MeanMap: Quadrianto et al. (2009) proposed a the-
oretically sound method to estimate the mean of each
class using the mean of each bag and the label pro-
portions. These estimates are then used in a condi-
tional exponential model to maximize the log likeli-
hood. The key assumption in MeanMap is that the
class-conditional distribution of data is independent
of the bags. Unfortunately, this assumption does not
hold for many real world applications. For example, in
modeling voting behaviors, in which the bags are dif-
ferent demographic regions, the data distribution can
be highly dependent on the bags.

Inverse Calibration (InvCal): Rüeping (2010) pro-

1∝ is the symbol for “proportional-to”.

∝SVM for Learning with Label Proportions

posed treating the mean of each bag as a “super-
instance”, which was assumed to have a soft label
corresponding to the label proportion. The “super-
instances” can be poor in representing the properties
of the bags. Our work also utilizes a large-margin
framework, but we explicitly model the instance labels.
Section 3.3 gives a detailed comparison with InvCal.

Figure 1 provides a toy example to highlight the prob-
lems with MeanMap and InvCal, which are the state-
of-the-art methods.

Related Learning Settings: In semi-supervised
learning, Mann & McCallum (2007) and Bellare et al.
(2009) used an expectation regularization term to en-
courage model predictions on the unlabeled data to
match the given proportions. Similar ideas were al-
so studied in the generalized regularization method
(Gillenwater et al., 2011). Li et al. (2009a) pro-
posed a variant of semi-supervised SVM to incorpo-
rate the label mean of the unlabeled data. Unlike
semi-supervised learning, the learning setting we are
considering requires no instance labels for training.

As an extension to multiple-instance learning, Kuck &
de Freitas (2005) designed a hierarchical probabilistic
model to generate consistent label proportions. Be-
sides the inefficiency in optimization, the method was
shown to be inferior to MeanMap (Quadrianto et al.,
2009). Similar ideas have also been studied by Chen
et al. (2006) and Musicant et al. (2007).

Stolpe & Morik (2011) proposed an evolutionary strat-
egy paired with a labeling heuristic for clustering with
label proportions. Different from clustering, the pro-
posed ∝SVM framework jointly optimizes the latent
instance labels and a large-margin classification mod-
el. The ∝SVM formulation is related to large-margin
clustering (Xu et al., 2004), with an additional objec-
tive to utilize the label proportions. Specifically, the
convex relaxation method we used is inspired by the
works of Li et al. (2009a) and Xu et al. (2004).

3. The ∝SVM Framework

3.1. Learning Setting

We consider a binary learning setting as follows. The
training set {xi}Ni=1 is given in the form of K bags,

{xi|i ∈ Bk}Kk=1, ∪Kk=1Bk = {1 · · ·N}. (1)

In this paper, we assume that the bags are disjoint,
i.e., Bk ∩ Bl = ∅, ∀k 6= l. The k-th bag is with label
proportion pk:

∀Kk=1, pk :=
|{i|i ∈ Bk, y∗i = 1}|

|Bk|
, (2)

in which y∗i ∈ {1,−1} denotes the unknown ground-
truth label of xi, ∀Ni=1. We use f(x) = sign(wTϕ(x) +
b) for predicting the binary label of an instance x,
where ϕ(·) is a map of the input data.

3.2. Formulation

We explicitly model the unknown instance labels as
y = (y1, · · · , yN)T , in which yi ∈ {−1, 1} denotes the
unknown label of xi, ∀Ni=1. Thus the label proportion
of the k-th bag can be straightforwardly modeled as

p̃k(y) =
|{i|i ∈ Bk, yi = 1}|

|Bk|
=

∑
i∈Bk

yi

2|Bk|
+

1

2
. (3)

We formulate the ∝SVM under the large-margin
framework as below.

min
y,w,b

1

2
wTw+C

N∑
i=1

L(yi,w
Tϕ(xi)+b)+Cp

K∑
k=1

Lp (p̃k(y), pk)

s.t. ∀Ni=1, yi ∈ {−1, 1}, (4)

in which L(·) ≥ 0 is the loss function for classic super-
vised learning. Lp(·) ≥ 0 is a function to penalize the
difference between the true label proportion and the
estimated label proportion based on y. The task is
to simultaneously optimize the labels y and the model
parameters w and b.

The above formulation permits using different loss
functions for L(·) and Lp(·). One can also add
weights for different bags. Throughout this paper,
we consider L(·) as the hinge loss, which is widely
used for large-margin learning: L(yi,w

Tϕ(xi) + b) =
max

(
0, 1− yi(wTϕ(xi) + b)

)
. The algorithms in Sec-

tion 4 and Section 5 can be easily generalized to dif-
ferent L(·).

Compared to (Rüeping, 2010; Quadrianto et al., 2009),
∝SVM requires no restrictive assumptions on the data.
In fact, in the special case where no label proportions
are provided, ∝SVM becomes large-margin clustering
(Xu et al., 2004; Li et al., 2009a), whose solution de-
pends only on the data distribution. ∝SVM can natu-
rally incorporate any amount of supervised data with-
out modification. The labels for such instances will
be observed variables instead of being hidden. ∝SVM
can be easily extended to the multi-class case, similar
to (Keerthi et al., 2012).

3.3. Connections to InvCal

As stated in Section 2, the Inverse Calibration method
(InvCal) (Rüeping 2010) treats the mean of each bag
as a “super-instance”, which is assumed to have a soft
label corresponding to the label proportion. It is for-

∝SVM for Learning with Label Proportions

mulated as below.

min
w,b,ξ,ξ∗

1

2
wTw + Cp

K∑
k=1

(ξk + ξ∗k) (5)

∀Kk=1, ξk ≥ 0, ξ∗k ≥ 0

∀Kk=1, wTmk + b ≥ − log(
1

pk
− 1)− εk − ξk

wTmk + b ≤ − log(
1

pk
− 1) + εk + ξ∗k,

in which the k-th bag mean is mk = 1
|Bk|

∑
i∈Bk

ϕ(xi),

∀Kk=1. Unlike ∝SVM, the proportion of the k-th bag is
modeled on top of this “super-instance” mk as:

qk :=
(

1 + exp
(
−wTmk + b

))−1

. (6)

The second term of the objective function (5) tries to
impose qk ≈ pk, ∀Kk=1, albeit in an inverse way.

Though InvCal is shown to outperform other alterna-
tives, including MeanMap (Quadrianto et al., 2009)
and several simple large-margin heuristics, it has a
crucial limitation. Note that (6) is not a good way
of measuring the proportion predicted by the model,
especially when the data has high variance, or the data
distribution is dependent on the bags. In our formula-
tion (4), by explicitly modeling the unknown instance
labels y, the label proportion can be directly modeled
as p̃k(y) given in (3). The advantage of our method is
illustrated in a toy experiment shown in Figure 1 (for
details see Section 6.1).

3.4. Difficulties in Solving ∝SVM

The ∝SVM formulation is fairly intuitive and straight-
forward. It is, however, a non-convex integer program-
ming problem, which is NP-hard. Therefore, one key
issue lies in how to find an efficient algorithm to solve it
approximately. In this paper, we provide two solution-
s: a simple alternating optimization method (Section
4), and a convex relaxation method (Section 5).

4. The alter-∝SVM Algorithm

In ∝SVM, the unknown instance labels y can be seen
as a bridge between supervised learning loss and label
proportion loss. Therefore, one natural way for solving
(4) is via alternating optimization as,

• For a fixed y, the optimization of (4) w.r.t w and
b becomes a classic SVM problem.

• When w and b are fixed, the problem becomes:

min
y

N∑
i=1

L(yi,w
Tϕ(xi) + b) +

Cp
C

K∑
k=1

Lp (p̃k(y), pk)

s.t. ∀Ni=1, yi ∈ {1,−1}. (7)

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Positive
Negative
Mean

(a) Bag 1, with p1 = 0.6

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Positive
Negative
Mean

(b) Bag 2, with p2 = 0.4

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
Mean of Bag 1
Mean of Bag 2
MeanMap, InvCal

(c) MeanMap and InvCal
with 0% accuracy.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1
proportion−SVM

(d) ∝SVM with 100% accu-
racy.

Figure 1. An example of learning with two bags to illus-
trate the drawbacks of the existing methods. (a) Data of
bag 1. (b) Data of bag 2. (c) Learned separating hyper-
planes of MeanMap and InvCal. (d) Learned separating
hyperplane of ∝SVM (either alter-∝SVM or conv-∝SVM).
More details are given in Section 6.1. Note that the algo-
rithms do not have access to the individual instance labels.

We show that the second step above can be solved effi-
ciently. Because the influence of each bag {yi|i ∈ Bk},
∀Kk=1 on the objective is independent, we can opti-
mize (7) on each bag separately. In particular, solving
{yi|i ∈ Bk} yields the following optimization problem:

min
{yi|i∈Bk}

∑
i∈Bk

L(yi,w
Tϕ(xi) + b) +

Cp
C
Lp (p̃k(y), pk)

s.t. ∀i ∈ Bk, yi ∈ {1,−1}. (8)

Proposition 1 For a fixed p̃k(y) = θ, (8) can be op-
timally solved by the steps below.

• Initialize yi = −1, i ∈ Bk. The optimal solution
can be obtained by flipping the signs as below.
• By flipping the sign of yi, i ∈ Bk, suppose the re-
duction of the first term in (8) is δi. Sort δi, i ∈ Bk.
Then flip the signs of the top-R yi’s which have the
highest reduction δi. R = θ|Bk|.

For bag Bk, we only need to sort the corresponding δi,
i ∈ Bk once. Sorting takes O(|Bk| log(|Bk|)) time. Af-
ter that, for each θ ∈ {0, 1

|Bk| ,
2
|Bk| , · · · , 1}, the optimal

solution can be computed incrementally, each taking
O(1) time. We then pick the solution with the smallest
objective value, yielding the optimal solution of (8).

∝SVM for Learning with Label Proportions

Algorithm 1 alter-∝SVM

Randomly initialize yi ∈ {−1, 1}, ∀Ni=1. C∗ = 10−5C.
while C∗ < C do
C∗ = min{(1 + ∆)C∗, C}
repeat

Fix y to solve w and b.
Fix w and b to solve y (Eq. (7) with C ← C∗).

until The decrease of the objective is smaller than a
threshold (10−4)

end while

Proposition 2 Following the above steps, (7) can be
solved in O(N log(J)) time, J = maxk=1···K |Bk|.

The proofs of the above propositions are given in the
supplementary material.

By alternating between solving (w, b) and y, the ob-
jective is guaranteed to converge. This is due to the
fact that the objective function is lower bounded, and
non-increasing. In practice, we terminate the proce-
dure when the objective no longer decreases (or if it-
s decrease is smaller than a threshold). Empirically,
the alternating optimization typically terminates fast
within tens of iterations, but one obvious problem is
the possibility of local solutions.

To alleviate this problem, similar to T-SVM (Joachim-
s, 1999; Chapelle et al., 2008), the proposed alter-
∝SVM algorithm (Algorithm 1) takes an additional
annealing loop to gradually increase C. Because the
nonconvexity of the objective function mainly comes
from the second term of (4), the annealing can be
seen as a “smoothing” step to protect the algorithm
from sub-optimal solutions. Following (Chapelle et al.,
2008), we set ∆ = 0.5 in Algorithm 1 throughout this
work. The convergence and annealing are further dis-
cussed in the supplementary material.

In the implementation of alter-∝SVM, we consider
Lp(·) as the absolute loss: Lp(p̃k(y), pk) = |p̃k(y)−pk|.
Empirically, each alter-∝SVM loop given an anneal-
ing value C∗ terminates within a few iterations. From
Proposition 2, optimizing y has linear complexity in N
(when J is small). Therefore the overall complexity of
the algorithm depends on the SVM solver. Specifical-
ly, when linear SVM is used (Joachims, 2006), alter-
∝SVM has linear complexity. In practice, to further
alleviate the influence of the local solutions, similar to
clustering, e.g., kmeans, we repeat alter-∝SVM multi-
ple times by randomly initializing y, and then picking
the solution with the smallest objective value.

5. The conv-∝SVM Algorithm

In this section, we show that with proper relaxation of
the ∝SVM formulation (4), the objective function can

be transformed to a convex function of M := yyT .
We then relax the solution space of M to its con-
vex hull, leading to a convex optimization problem of
M . The conv-∝SVM algortihm is proposed to solve
the relaxed problem. Unlike alter-∝SVM, conv-∝SVM
does not require multiple initializations. This method
is motivated by the techniques used in large-margin
clustering (Li et al., 2009b; Xu et al., 2004).

5.1. Convex Relaxation

We change the label proportion term in the objective
function (4) as a constraint y ∈ Y, and we drop the
bias term b2. Then, (4) is rewritten as:

min
y∈Y

min
w

1

2
wTw + C

N∑
i=1

L(yi,w
Tϕ(xi)) (9)

Y =
{
y
∣∣|p̃k(y)− pk| ≤ ε, yi ∈ {−1, 1}, ∀Kk=1

}
,

in which ε controls the compatibility of the label pro-
portions. The constraint y ∈ Y can be seen as a special
loss function:

Lp(p̃k(y), pk) =

{
0, if |p̃k(y)− pk| < ε,

∞, otherwise.
(10)

We then write the inner problem of (9) as its dual:

min
y∈Y

max
α∈A
−1

2
αT
(
K� yyT

)
α+αT1, (11)

in which α ∈ RN , � denotes pointwise-multiplication,
K is the kernel matrix with Kij = ϕ(xi)

Tϕ(xj), ∀Ni,j=1,
and A = {α|0 ≤ α ≤ C}.

The objective in (11) is non-convex in y, but convex in
M := yyT . So, following (Li et al., 2009b; Xu et al.,
2004), we instead solve the optimal M . However, the
feasible space of M is

M0 = {yyT |y ∈ Y}, (12)

which is a non-convex set. In order to get a convex
optimization problem, we relaxM0 to its convex hull,
the tightest convex relaxation of M0:

M =
{∑

y∈Y

µ(y)yy
T
∣∣∣µ ∈ U}, (13)

in which U = {µ|
∑

y∈Y µ(y) = 1, µ(y) ≥ 0}.

2If the bias term is not dropped, there will be constraint
αTy = 0 in the dual, leading to non-convexity. Such diffi-
culty has also been discussed in (Xu et al., 2004). Fortu-
nately, the effect of removing the bias term can be allevi-
ated by zero-centering the data or augmenting the feature
vector with an additional dimension with value 1.

∝SVM for Learning with Label Proportions

Thus solving the relaxed M is identical to finding µ:

min
µ∈U

max
α∈A
−1

2
αT
(∑

y∈Y

µ(y)K� yyT
)
α+αT1. (14)

(14) can be seen as Multiple Kernel Learning (MKL)
(Bach et al., 2004), which is a widely studied problem.
However, because |Y| is very large, it is not tractable
to solve (14) directly.

5.2. Cutting Plane Training

Fortunately, we can assume that at optimality only a
small number of y’s are active in (14). Define Yactive ⊂
Y as the set containing all the active y’s. We show that
y ∈ Yactive can be incrementally found by the cutting
plane method.

Because the objective function of (14) is convex in µ,
and concave in α, it is equivalent to (Fan, 1953),

max
α∈A

min
µ∈U
−1

2
αT
(∑

y∈Y

µ(y)K� yyT
)
α+αT1. (15)

It is easy to verify that the above is equivalent to:

max
α∈A,β

− β (16)

s.t. β ≥ 1

2
αT
(
K� yyT

)
α+αT1,∀y ∈ Y.

This form enables us to apply the cutting plane
method (Kelley Jr, 1960) to incrementally include the
most violated y into Yactive, and then solve the MKL
problem, (14) with Y replaced as Yactive. The above
can be repeated until no violated y exists.

In the cutting plane training, the critical step is to
obtain the most violated y ∈ Y:

arg max
y∈Y

1

2
αT
(
K� yyT

)
α+αT1, (17)

which is equivalent to

arg max
y∈Y

N∑
i,j=1

αiαjyiyjϕ(xi)
Tϕ(xj). (18)

This is a 0/1 concave QP, for which there exists no ef-
ficient solution. However, instead of finding the most
violated constraint, if we find any violated constraint
y, the objective function still decreases. We therefore
relax the objective in (18), which can be solved effi-
ciently. Note that the objective of (18) is equivalent

to a `2 norm
∑N

i=1 ‖ αiyiϕ(xi) ‖2. Following (Li et al.,
2009b), we approximate it as the `∞ norm:

N∑
i=1

‖ αiyiϕ(xi) ‖∞≡ max
j=1···d

∣∣∣∣∣
N∑
i=1

αiyix
(j)
i

∣∣∣∣∣ , (19)

Algorithm 2 conv-∝SVM

Initialize αi = 1/N , ∀Ni=1. Yactive = ∅. Output: M ∈M
repeat

Compute y ∈ Y based on (18) − (21).
Yactive ← Yactive ∪ {y}.
Solve the MKL problem in (14) with Yactive to get
µ(y), y ∈ Yactive.

until The decrease of the objective is smaller than a
threshold (10−4)

in which x
(j)
i is the j-th dimension of the i-th feature

vector. These can be obtained by eigendecomposition
of the kernel matrix K, when a nonlinear kernel is
used. The computational complexity is O(dN2). In
practice, we choose d such that 90% of the variance is
preserved. We further rewrite (19) as:

max
j=1···d

max

(
N∑
i=1

αiyix
(j)
i ,−

N∑
i=1

αiyix
(j)
i

)
(20)

= max
j=1···d

max

 K∑
k=1

∑
i∈Bk

αiyix
(j)
i ,

K∑
k=1

∑
i∈Bk

−αiyix(j)i

 .

Therefore the approximation from (18) to (19) enables
us to consider each dimension and each bag separately.
For the j-th dimension, and the k-th bag, we only need

to solve two sub-problems maxy∈Y
∑

i∈Bk
αiyix

(j)
i ,

and maxy∈Y −
∑

i∈Bk
αiyix

(j)
i . The former, as an ex-

ample, can be written as

min
{yi|i∈Bk}

∑
i∈Bk

(
−αix(j)i

)
yi, |p̃k(y)− pk| ≤ ε. (21)

This can be solved in the same way as (8), which takes
O(|Bk| log |Bk|) time. Because we have d dimensions,
similar to Proposition 2, one can show that:

Proposition 3 (18) with the `2 norm approximated
as the `∞ norm can be solved in O(dN log(J)) time,
J = maxk=1···K |Bk|.

5.3. The Algorithm

The overall algorithm, called conv-∝SVM, is shown
in Algorithm 2. Following (Li et al., 2009b), we use
an adapted SimpleMKL algorithm (Rakotomamonjy
et al., 2008) to solve the MKL problem.

As an additional step, we need to recover y from M .
This is achieved by rank-1 approximation of M (as
yyT)3. Because of the convex relaxation, the comput-

3Note that yyT = (−y)(−y)T . This ambiguity can be
resolved by validation on the training bags.

∝SVM for Learning with Label Proportions

ed y is not binary. However, we can use the real-valued
y directly in our prediction model (with dual):

f(x) = sign

(
N∑
i=1

αiyiϕ(xi)
Tϕ(x)

)
. (22)

Similar to alter-∝SVM, the objective of conv-∝SVM is
guaranteed to converge. In practice, we terminate the
algorithm when the decrease of the objective is smaller
than a threshold. Typically the SimpleMKL converges
in less than 5 iterations, and conv-∝SVM terminates in
less than 10 iterations. The SimpleMKL takes O(N2)
(computing the gradient) time, or the complexity of
SVM, whichever is higher. Recovering y takes O(N2)
time and computing eigendecomposition with the first
d singular values takes O(dN2) time.

6. Experiments

MeanMap (Quadrianto et al., 2009) was shown to
outperform alternatives including kernel density esti-
mation, discriminative sorting and MCMC (Kuck &
de Freitas, 2005). InvCal (Rüeping, 2010) was shown
to outperform MeanMap and several large-margin al-
ternatives. Therefore, in the experiments, we only
compare our approach with MeanMap and InvCal.

6.1. A Toy Experiment

To visually demonstrate the advantage of our ap-
proach, we first show an experiment on a toy dataset
with two bags. Figure 1 (a) and (b) show the data
of the two bags, and Figure 1 (c) and (d) show the
learned separating hyperplanes from different meth-
ods. Linear kernel is used in this experiment. For
this specific dataset, the restrictive data assumption-
s of MeanMap and InvCal do not hold: the mean of
the first bag (60% positive) is on the “negative side”,
whereas, the mean of the second bag (40% positive) is
on the “positive side”. Consequently, both MeanMap
and InvCal completely fail, with the classification ac-
curacy of 0%. On the other hand, our method, which
does not make strong data assumptions, achieves the
perfect performance with 100% accuracy.

6.2. Experiments on UCI/LibSVM Datasets

Datasets. We compare the performance of different
techniques on various datasets from the UCI reposi-
tory4 and the LibSVM collection5. The details of the
datasets are listed in Table 1.

In this paper, we focus on the binary classification set-
tings. For the datasets with multiple classes (dna and

4http://archive.ics.uci.edu/ml/
5http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

Dataset Size Attributes Classes
heart 270 13 2
heart-c 303 13 2
colic 366 22 2
vote 435 16 2
breast-cancer 683 10 2
australian 690 14 2
credit-a 690 15 2
breast-w 699 9 2
a1a 1,605 119 2
dna 2,000 180 3
satimage 4,435 36 6
cod-rna.t 271,617 8 2

Table 1. Datasets used in experiments.

satimage), we test the one-vs-rest binary classification
performance, by treating data from one class as posi-
tive, and randomly selecting same amount of data from
the remaining classes as negative. For each dataset,
the attributes are scaled to [−1, 1].

Experimental Setup. Following (Rüeping, 2010),
we first randomly split the data into bags of a fixed
size. Bag sizes of 2, 4, 8, 16, 32, 64 are tested. We then
conduct experiments with 5-fold cross validation. The
performance is evaluated based on the average classi-
fication accuracy on the individual test instances. We
repeat the above processes 5 times (randomly select-
ing negative examples for the multi-class datasets, and
randomly splitting the data into bags), and report the
mean accuracies with standard deviations.

The parameters are tuned by an inner cross validation
loop on the training subset of each partition of the
5-fold validation. Because no instance-level labels are
available during training, we use the bag-level error on
the validation bags to tune the parameters:

Err =

T∑
k=1

|p̃k − pk| , (23)

in which p̃k and pk denote the predicted and the
ground-truth proportions for the k-th validation bag.

For MeanMap, the parameter is tuned from λ ∈
{0.1, 1, 10}. For InvCal, the parameters are tuned
from Cp ∈ {0.1, 1, 10}, and ε ∈ {0, 0.01, 0.1}. For
alter-∝SVM, the parameters are tuned from C ∈
{0.1, 1, 10}, and Cp ∈ {1, 10, 100}. For conv-∝SVM,
the parameters are tuned from C ∈ {0.1, 1, 10}, and
ε ∈ {0, 0.01, 0.1}. Two kinds of kernels are considered:
linear and RBF. The parameter of the RBF kernel is
tuned from γ = {0.01, 0.1, 1}.

We randomly initialize alter-∝SVM 10 times, and pick
the result with the smallest objective value. Empiri-
cally, the influence of random initialization to other
algorithms is minimal.

http://archive.ics.uci.edu/ml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

∝SVM for Learning with Label Proportions

Dataset Method 2 4 8 16 32 64

heart

MeanMap 81.85±1.28 80.39±0.47 79.63±0.83 79.46±1.46 79.00±1.42 76.06±1.25
InvCal 81.78±0.55 80.98±1.35 79.45±3.07 76.94±3.26 73.76±2.69 73.04±6.46
alter-∝SVM 83.41±0.71 81.80±1.25 79.91±2.11 79.69±0.64 77.80±2.52 76.58±2.00
conv-∝SVM 83.33±0.59 80.61±2.48 81.00±0.75 80.72±0.82 79.32±1.14 79.40±0.72

colic

MeanMap 80.00±0.80 76.14±1.69 75.52±0.72 74.17±1.61 76.10±1.92 76.74±6.10
InvCal 81.25±0.24 78.82±3.24 77.34±1.62 74.84±4.14 69.63±4.12 69.47±6.06
alter-∝SVM 81.42±0.02 80.79±1.48 79.59±1.38 79.40±1.06 78.59±3.32 78.49±2.93
conv-∝SVM 81.42±0.02 80.63±0.77 78.84±1.32 77.98±1.14 77.49±0.66 76.94±1.07

vote

MeanMap 87.76±0.20 91.90±1.89 90.84±2.33 88.72±1.45 87.63±0.26 88.42±0.80
InvCal 95.57±0.11 95.57±0.42 94.43±0.24 94.00±0.61 91.47±2.57 91.13±1.07
alter-∝SVM 95.62±0.33 96.09±0.41 95.56±0.47 94.23±1.35 91.97±1.56 92.12±1.20
conv-∝SVM 91.66±0.19 90.80±0.34 89.55±0.25 88.87±0.37 88.95±0.39 89.07±0.24

australian

MeanMap 86.03±0.39 85.62±0.17 84.08±1.36 83.70±1.45 83.96±1.96 82.90±1.96
InvCal 85.42±0.28 85.80±0.37 84.99±0.68 83.14±2.54 80.28±4.29 80.53±6.18
alter-∝SVM 85.42±0.30 85.60±0.39 85.49±0.78 84.96±0.96 85.29±0.92 84.47±2.01
conv-∝SVM 85.51±0.00 85.54±0.08 85.90±0.54 85.67±0.24 85.67±0.81 85.47±0.89

dna-1

MeanMap 86.38±1.33 82.71±1.26 79.89±1.55 78.46±0.53 80.20±1.44 78.83±1.73
InvCal 93.05±1.45 90.81±0.87 86.27±2.43 81.58±3.09 78.31±3.28 72.98±2.33
alter-∝SVM 94.93±1.05 94.31±0.62 92.86±0.78 90.72±1.35 90.84±0.52 89.41±0.97
conv-∝SVM 92.78±0.66 90.08±1.18 85.38±2.05 84.91±2.43 82.77±3.30 85.66±0.20

dna-2

MeanMap 88.45±0.68 83.06±1.68 78.69±2.11 79.94±5.68 79.72±3.73 74.73±4.26
InvCal 93.30±0.88 90.32±1.89 87.30±1.80 83.17±2.18 79.47±2.55 76.85±3.42
alter-∝SVM 94.74±0.56 94.49±0.46 93.06±0.85 91.82±1.59 90.81±1.55 90.08±1.45
conv-∝SVM 94.35±1.01 92.08±1.48 89.72±1.26 88.27±1.87 87.58±1.54 86.55±1.18

satimage-2

MeanMap 97.21±0.38 96.27±0.77 95.85±1.12 94.65±0.31 94.49±0.37 94.52±0.28
InvCal 88.41±3.14 94.65±0.56 94.70±0.20 94.49±0.31 92.90±1.05 93.82±0.60
alter-∝SVM 97.83±0.51 97.75±0.43 97.52±0.48 97.52±0.51 97.51±0.20 97.11±0.26
conv-∝SVM 96.87±0.23 96.63±0.09 96.40±0.22 96.87±0.38 96.29±0.40 96.50±0.38

Table 2. Accuracy with linear kernel, with bag size 2, 4, 8, 16, 32, 64.

Method 211 212 213

InvCal 88.79±0.21 88.20±0.62 87.89±0.79

alter-∝SVM 90.32±1.22 90.28±0.94 90.21±1.53

Table 3. Accuracy on cod-rna.t, with linear kernel, with
bag size 211, 212, 213.

Results. Table 2 and Table 4 show the results with
linear kernel, and RBF kernel, respectively. Addition-
al experimental results are provided in the supplemen-
tary material. Our methods consistently outperform
MeanMap and InvCal, with p-value < 0.05 for most
of the comparisons (more than 70%). For larger bag
sizes, the problem of learning from label proportions
becomes more challenging due to the limited amount
of supervision. For these harder cases, the gains from
∝SVM are typically even more significant. For in-
stance, on the dna-2 dataset, with RBF kernel and bag
size 64, alter-∝SVM outperforms the former works by
19.82% and 12.69%, respectively (Table 4).

A Large-Scale Experiment. We also conduct a
large-scale experiment on the cod-rna.t dataset con-
taining about 271K points. The performance of In-
vCal and alter-∝SVM with linear kernel are compared.
The experimental setting is the same as for the other
datasets. The results in Table 3 show that alter-∝SVM
consistently outperforms InvCal. For smaller bag sizes
also, alter-∝SVM outperforms InvCal, though the im-

provement margin reduces due to sufficient amount of
supervision.

7. Discussion

7.1. Robustness to {pk}Kk=1

In Section 6.2, because the bags were randomly gener-
ated, distribution of {pk}Kk=1 is approximately Gaus-
sian for moderate to large K. It is intuitive that the
performance will depend on the distribution of propor-
tions {pk}Kk=1. If pk is either 0 or 1, the bags are most
informative, because this leads to the standard super-
vised learning setting. On the other hand, if pk’s are
close to each other, the bags will be least informative.
In fact, both MeanMap and InvCal cannot reach a nu-
merically stable solution in such case. For MeanMap,
the linear equations for solving class means will be ill-
posed. For InvCal, because all the “super-instances”
are assumed to have the same regression value, the
result is similar to random guess.

∝SVM, on the other hand, can achieve good perfor-
mance even in this challenging situation. For exam-
ple, when using the vote dataset, with bag sizes 8
and 32, pk = 38.6%, ∀Kk=1(same as prior), with lin-
ear kernel, alter-∝SVM has accuracies(%) 94.23±1.02
and 86.71 ± 1.30, and conv-∝SVM has accuracies(%)
89.60 ± 0.59 and 87.69 ± 0.51, respectively. These re-

∝SVM for Learning with Label Proportions

Dataset Method 2 4 8 16 32 64

heart

MeanMap 82.69±0.71 80.80±0.97 79.65±0.82 79.44±1.21 80.03±2.05 77.26±0.85
InvCal 83.15±0.56 81.06±0.70 80.26±1.32 79.61±3.84 76.36±3.72 73.90±3.00
alter-∝SVM 83.15±0.85 82.89±1.30 81.51±0.54 80.07±1.21 79.10±0.96 78.63±1.85
conv-∝SVM 82.96±0.26 82.20±0.52 81.38±0.53 81.17±0.55 80.94±0.86 78.87±1.37

colic

MeanMap 82.45±0.88 81.38±1.26 81.71±1.16 79.94±1.33 76.36±2.43 77.84±1.69
InvCal 82.20±0.61 81.20±0.87 81.17±1.74 78.59±2.19 74.09±5.26 72.81±4.80
alter-∝SVM 83.28±0.50 82.97±0.39 82.03±0.44 81.62±0.46 81.53±0.21 81.39±0.34
conv-∝SVM 82.74±1.15 81.83±0.46 79.58±0.57 79.77±0.84 78.22±1.19 77.31±1.76

vote

MeanMap 91.15±0.33 90.52±0.62 91.54±0.20 90.28±1.63 89.58±1.09 89.38±1.33
InvCal 95.68±0.19 94.77±0.44 93.95±0.43 93.03±0.37 87.79±1.64 86.63±4.74
alter-∝SVM 95.80±0.20 95.54±0.25 94.88±0.94 92.44±0.60 90.72±1.11 90.93±1.30
conv-∝SVM 92.99±0.20 92.01±0.69 90.57±0.68 88.98±0.35 88.74±0.43 88.62±0.60

australian

MeanMap 85.97±0.72 85.88±0.34 85.34±1.01 83.36±2.04 83.12±1.52 80.58±5.41
InvCal 86.06±0.30 86.11±0.26 86.32±0.45 84.13±1.62 82.73±1.70 81.87±3.29
alter-∝SVM 85.74±0.22 85.71±0.21 86.26±0.61 85.65±0.43 83.63±1.83 83.62±2.21
conv-∝SVM 85.97±0.53 86.46±0.23 85.30±0.70 84.18±0.53 83.69±0.78 82.98±1.32

dna-1

MeanMap 91.53±0.25 90.58±0.34 86.00±1.04 80.77±3.69 77.35±3.59 68.47±4.30
InvCal 89.32±3.39 92.73±0.53 87.99±1.65 81.05±3.14 74.77±2.95 67.75±3.86
alter-∝SVM 95.67±0.40 94.65±0.52 93.71±0.47 92.52±0.63 91.85±1.42 90.64±1.32
conv-∝SVM 93.36±0.53 86.75±2.56 81.03±3.58 75.90±4.56 76.92±5.91 77.94±2.48

dna-2

MeanMap 92.08±1.54 91.03±0.69 87.50±1.58 82.21±3.08 76.77±4.33 72.56±5.32
InvCal 89.65±4.05 93.12±1.37 89.19±1.17 83.52±2.57 77.94±2.82 72.64±3.89
alter-∝SVM 95.63±0.45 95.05±0.75 94.25±0.50 93.95±0.93 92.74±0.93 92.46±0.90
conv-∝SVM 94.06±0.86 90.68±1.18 87.64±0.76 87.32±1.55 85.74±1.03 85.33±0.79

satimage-2

MeanMap 97.08±0.48 96.82±0.38 96.50±0.43 96.45±1.16 95.51±0.73 94.26±0.22
InvCal 97.53±1.33 98.33±0.13 98.38±0.23 97.99±0.54 96.27±1.15 94.47±0.27
alter-∝SVM 98.83±0.36 98.69±0.37 98.62±0.27 98.72±0.37 98.51±0.22 98.25±0.41
conv-∝SVM 96.55±0.13 96.45±0.19 96.45±0.39 96.14±0.49 96.16±0.35 95.93±0.45

Table 4. Accuracy with RBF kernel, with bag size 2, 4, 8, 16, 32, 64.

sults are close to those obtained for randomly gener-
ated bags in Table 2. This indicates that our method
is less sensitive to the distribution of {pk}Kk=1.

7.2. Choice of Algorithm

Empirically, when nonlinear kernel is used, the run
time of alter-∝SVM is longer than that of conv-∝SVM,
because we are repeating alter-∝SVM multiple times
to pick the solution with the smallest objective val-
ue. For instance, on a machine with 4-core 2.5GHz
CPU, on the vote dataset with RBF kernel and 5-fold
cross validation, the alter-∝SVM algorithm (repeat-
ing 10 times with the annealing loop, and one set of
parameters) takes 15.0 seconds on average, while the
conv-∝SVM algorithm takes only 4.3 seconds. But as
shown in the experimental results, for many dataset-
s, the performance of conv-∝SVM is marginally worse
than that of alter-∝SVM. This can be explained by
the multiple relaxations used in conv-∝SVM, and also
the 10 time initializations of alter-∝SVM. As a heuris-
tic solution for speeding up the computation, one can
use conv-∝SVM (or InvCal) to initialize alter-∝SVM.
For large-scale problems, in which linear SVM is used,
alter-∝SVM is preferred, because its computational
complexity is O(N).

The speed of both alter-∝SVM and conv-∝SVM can
be improved further by solving the SVM in their inner

loops incrementally. For example, one can use war-
m start and partial active-set methods (Shilton et al.,
2005). Finally, one can linearize kernels using explicit
feature maps (Rahimi & Recht, 2007; Vedaldi & Zisser-
man, 2012), so that alter-∝SVM has linear complexity
even for certain nonlinear kernels.

8. Conclusion and Future Work

We have proposed the ∝SVM framework for learning
with label proportions, and introduced two algorithms
to efficiently solve the optimization problem. Experi-
ments on several standard and one large-scale dataset
show the advantage of the proposed approach over
the existing methods. The simple, yet flexible form
of ∝SVM framework naturally spans supervised, un-
supervised and semi-supervised learning. Due to the
usage of latent labels, ∝SVM can also be potential-
ly used in learning with label errors. In the future,
we will design algorithms to handle bags with overlap-
ping data. Also, we plan to investigate the theoretical
conditions under which the label proportions can be
preserved with the convex relaxations.

Acknowledgment. We thank Novi Quadrianto and
Yu-Feng Li for their help. We thank Jun Wang,
Yadong Mu and anonymous reviewers for the insight-
ful suggestions.

∝SVM for Learning with Label Proportions

References

Bach, F.R., Lanckriet, G.R.G., and Jordan, M.I. Mul-
tiple kernel learning, conic duality, and the smo al-
gorithm. In Proceedings of the 21th International
Conference on Machine learning, pp. 6, 2004.

Bellare, K., Druck, G., and McCallum, A. Alternat-
ing projections for learning with expectation con-
straints. In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence, pp. 43–50,
2009.

Chapelle, O., Sindhwani, V., and Keerthi, S.S. Op-
timization techniques for semi-supervised support
vector machines. The Journal of Machine Learning
Research, 9:203–233, 2008.

Chen, B.C., Chen, L., Ramakrishnan, R., and Mu-
sicant, D.R. Learning from aggregate views. In
Proceedings of the 22nd International Conference on
Data Engineering, pp. 3, 2006.

Fan, K. Minimax theorems. Proceedings of the Na-
tional Academy of Sciences of the United States of
America, 39(1):42, 1953.

Gillenwater, J., Ganchev, K., Graça, J., Pereira, F.,
and Taskar, B. Posterior sparsity in unsupervised
dependency parsing. The Journal of Machine Learn-
ing Research, 12:455–490, 2011.

Joachims, T. Transductive inference for text classifi-
cation using support vector machines. In Proceed-
ings of the 16th International Conference on Ma-
chine Learning, pp. 200–209, 1999.

Joachims, T. Training linear SVMs in linear time.
In Proceedings of the 12th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pp. 217–226, 2006.

Keerthi, S.S., Sundararajan, S., and Shevade, S.K.
Extension of TSVM to multi-class and hierarchical
text classification problems with general losses. In
Proceeding of the 24th International Conference on
Computational Linguistics, pp. 1091–1100, 2012.

Kelley Jr, J.E. The cutting-plane method for solving
convex programs. Journal of the Society for Indus-
trial & Applied Mathematics, 8(4):703–712, 1960.

Kuck, H. and de Freitas, N. Learning about individu-
als from group statistics. In Proceedings of the 21st
Conference on Uncertainty in Artificial Intelligence,
pp. 332–339, 2005.

Li, Y.F., Kwok, J.T., and Zhou, Z.H. Semi-supervised
learning using label mean. In Proceedings of the 26th
International Conference on Machine Learning, pp.
633–640, 2009a.

Li, Y.F., Tsang, I.W., Kwok, J.T., and Zhou, Z.H.
Tighter and convex maximum margin clustering. In
Proceeding of the 12th International Conference on
Artificial Intelligence and Statistics, pp. 344–351,
2009b.

Mann, G.S. and McCallum, A. Simple, robust, scal-
able semi-supervised learning via expectation regu-
larization. In Proceedings of the 24th Internation-
al Conference on Machine Learning, pp. 593–600,
2007.

Musicant, D.R., Christensen, J.M., and Olson, J.F.
Supervised learning by training on aggregate out-
puts. In Proceedings of the 7th International Con-
ference on Data Mining, pp. 252–261, 2007.

Quadrianto, N., Smola, A.J., Caetano, T.S., and Le,
Q.V. Estimating labels from label proportions. The
Journal of Machine Learning Research, 10:2349–
2374, 2009.

Rahimi, A. and Recht, B. Random features for large-
scale kernel machines. Advances in Neural Informa-
tion Processing Systems, 20:1177–1184, 2007.

Rakotomamonjy, A., Bach, F., Canu, S., and Grand-
valet, Y. SimpleMKL. The Journal of Machine
Learning Research, 9:2491–2521, 2008.

Rüeping, S. SVM classifier estimation from group
probabilities. In Proceedings of the 27th Internation-
al Conference on Machine Learning, pp. 911–918,
2010.

Shilton, A., Palaniswami, M., Ralph, D., and Tsoi,
A.C. Incremental training of support vector ma-
chines. Neural Networks, IEEE Transactions on, 16
(1):114–131, 2005.

Stolpe, M. and Morik, K. Learning from label
proportions by optimizing cluster model selection.
In Proceedings of the 2011 European Conference
on Machine Learning and Knowledge Discovery in
Databases-Volume Part III, pp. 349–364, 2011.

Vedaldi, A. and Zisserman, A. Efficient additive ker-
nels via explicit feature maps. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 34(3):
480–492, 2012.

Xu, L., Neufeld, J., Larson, B., and Schuurmans, D.
Maximum margin clustering. Advances in Neural
InformationProcessingSystems,17:1537–1544, 2004.

