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Abstract

Knowledge distillation is an approach to im-
prove the performance of a student model
by using the knowledge of a complex teacher.
Despite its success in several deep learning ap-
plications, the study of distillation is mostly
confined to classification settings. In partic-
ular, the use of distillation in top-k ranking
settings, where the goal is to rank k most
relevant items correctly, remains largely un-
explored. In this paper, we study such rank-
ing problems through the lens of distillation.
We present a distillation framework for top-k
ranking and draw connections with the exist-
ing ranking methods. The core idea of this
framework is to preserve the ranking at the
top by matching the order of items of student
and teacher, while penalizing large scores for
items ranked low by the teacher. Building
on this, we develop a novel distillation ap-
proach, RankDistil, specifically catered to-
wards ranking problems with a large number
of items to rank, and establish statistical basis
for the method. Finally, we conduct experi-
ments which demonstrate that RankDistil
yields benefits over commonly used baselines
for ranking problems.

1 Introduction

Distillation is the process of using a teacher model to
improve the performance of a student model (Craven
and Shavlik, 1995; Breiman and Shang, 1996; Bucilǎ
et al., 2006; Xue et al., 2013; Ba and Caruana, 2014;
Hinton et al., 2015). The idea of distillation was orig-
inally devised as a way to transfer the knowledge of
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a complex teacher to a more compact student model,
thereby, providing model compression (Bucilǎ et al.,
2006; Hinton et al., 2015). Beyond this model compres-
sion view, recent works have also shown its benefit as a
training technique wherein a similar-or-larger capacity
model is used as a student to improve performance
(Furlanello et al., 2018; Xie et al., 2019). Distillation is
typically used for classification settings where rather
than fitting to raw class labels, the student fits to the
“smoothed” pseudo-labels obtained from a teacher. In
deep learning applications, this amounts to minimizing
the softmax cross-entropy loss between the teacher and
student logits.

Despite its widespread empirical successes in classifica-
tion settings, distillation methods for ranking problems
have been largely unexplored. Unlike classification,
ranking problems typically involve learning to rank a
list of items for a given context and are, hence, more
challenging. Such a setting is often referred to as
“learning to rank” and has been extensively studied in
information retrieval and machine learning communi-
ties (Joachims, 2002; Cao et al., 2007; Xia et al., 2008).
A prototypical example of this setting is document
ranking where the context is a query and the items
are documents (Joachims, 2002). This is achieved by
learning a ranking function that maps a query to a
list of the documents sorted by relevance to the query.
Given the prevalence of ranking problems in machine
learning, a principled study of distillation approaches
for this setting is important.

To this end, in this paper, we study distillation ap-
proaches for ranking problems. The ranking setting of
our interest has two key aspects: (1) the number of
items to rank, K, is large and (2) ranking at the first k
positions is crucial. Typically, k � K for many ranking
problems that arise in machine learning. The presence
of a large number of items makes distillation for this set-
ting particularly challenging. Furthermore, it is unclear
what constitutes a ranking equivalent of pseudo-labels
used for distillation in classification settings. To tackle
these issues, we develop a novel approach for distil-
lation for ranking problems. In summary, our main
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contributions are as follows:

(i) We study a distillation framework for top-k rank-
ing problems. The key idea of this framework is
to preserve the ranking at the top by matching
the order of items of student and teacher, while
penalizing items ranked low by the teacher. Using
this framework, we draw connections with existing
algorithms and present them in a unified view.

(ii) Building on this, we develop, RankDistil, a novel
algorithm for distillation for ranking problems. By
borrowing ideas from negative sampling/mining
literature in classification, we show RankDistil
scales seamlessly to ranking settings with a large
number of items to rank. Furthermore, we also
establish statistical basis for RankDistil.

(iii) We experimentally validate the value of our ap-
proach for both the tasks of ranking distillation
and as a ranking loss. We compare with several
baselines typically used in “learning to rank” setting.
Our results show that RankDistil outperforms
these baselines on popular ranking metrics such as
NDCG and MRR.

Related Work. The literature on distillation and
ranking problems is vast and hence, we only discuss
the works that are most relevant to our paper.

Knowledge Distillation. Initial works on distilla-
tion focused on model compression. In a seminal work,
Bucilǎ et al. (2006) demonstrated an approach to learn
a single neural network to mimic an ensemble of neu-
ral networks. Subsequently, Ba and Caruana (2014)
showed increase in learning performance of shallow neu-
ral networks, by training them to mimic deep neural
networks. There has been increased interest in dis-
tillation following the work of (Hinton et al., 2015),
who proposed minimizing the softmax cross entropy
between student and teacher logits. Thereafter, several
works later studied the utility of distillation in vari-
ous settings (Furlanello et al., 2016; Czarnecki et al.,
2017; Lopez-Paz et al., 2016; Menon et al., 2020). More
recent works have demonstrated the benefit of distil-
lation as a training technique (Furlanello et al., 2018;
Xie et al., 2019). However, most of these works in
supervised learning focus only on classification, which
is easier than the ranking setup of our interest.

Ranking problems. Earlier works on ranking prob-
lems focused on pairwise loss functions (Herbrich et al.,
1999; Burges et al., 2005; Crammer and Singer, 2001).
Pairwise approaches to ranking use classification of
pair of items into two classes – correctly and incor-
rectly ranked (e.g. ranking SVM (Herbrich et al., 1999;
Joachims, 2002)). Generalization of pairwise approach
based on list of items later became popular in informa-
tion retrieval and machine learning (Cao et al., 2007;

Xia et al., 2008). These approaches are usually based
on probabilistic models for ranking used in statistics
(see e.g. seminal work of Luce (Luce, 1959) and Plack-
ett (Plackett, 1975)). However, these approaches are
typically unsuitable for ranking of large set of items
of our interest (Luo et al., 2015). Furthermore, these
methods are typically not geared towards distillation
settings. To our knowledge, Tang and Wang (2018);
Gao et al. (2020) are the only works that study distilla-
tion for general ranking problems. However, both these
work study only a specific position-aware binary loss
for distillation. Furthermore, Tang and Wang (2018)
discard items ranked low by the teacher, which typi-
cally degrades performance. Building upon (Tang and
Wang, 2018), Lee et al. (2019) propose a distillation
approach for collaborative filtering, which is different
from the setting we consider in the paper. In fact, as
we shall see later, these works are simple instances of
our framework (see Section 3.4). Thus, these works
focus on a specific loss function or discard valuable
information, which are addressed by our work in a
principled manner.

2 General Framework for TOP-k
Ranking

Notation. We use vi to denote the ith element of any
vector v. For a vector v ∈ RK and subset S ⊆ [K],
vS denotes vector (vi)i∈S . We use Topk(v) to denote
the indices of largest k elements of vector v (with ties
broken in ascending order of the indices). For any index
set S ⊆ [K], we use Topk,S(v) to denote the largest k
indices of vector v that are in S. For v ∈ RK , sort(v)
is used to denote the indices corresponding to values of
v sorted in descending order. Also, argmaxiv is used
to denote the index of ith largest element of v (again
breaking ties in ascending order of the indices). For a
vector v, we use v[i] to denote the ith largest element of
v. For a distribution Q, supp(Q) represents its support.
Finally, for sets S1 and S2, we use S1 − S2 to denote
the set difference of S1 and S2. For a set S ⊆ [K], P(S)
denotes set of all permutations of S.

Problem Setting. In the classical ranking setting, we
are given a training sample S

.
= {(xi, yi)}ni=1 ∼ Pn, for

unknown distribution P over instances X and relevance
labels Y ⊆ RK (Tewari and Chaudhuri, 2016). Note
that the sorted indices of values in label y naturally
define a ranking in P(K) where P(K) is the set of
all permutations of {1, 2, . . . ,K} , [K]; however, the
relevance scores and the corresponding ranking are typ-
ically noisy. This setting contrasts with the standard
classification setting where the labels are categorical.
Our goal is to learn a predictor f : X → RK so as to



Reddi, Pasumarthi, Menon, Rawat, Yu, Kim, Veit, Kumar

minimize the risk of f ,

R(f)
.
= E

(x,y)∼P
[φ0−1(x, y, f(x))] . (1)

Here, φ0−1 is the following loss function:

φ0−1(x, y, f(x)) =

{
0, Topk(y) = Topk(f(x))

1, otherwise.

We use f∗ to denote a minimizer of the function R(f).
Since this loss function is discontinuous and non-convex,
surrogate loss functions that are easy to optimize are
used (Xia et al., 2009). In this paper, we use φ to
denote a surrogate loss function. In particular, φ : X×
RK × RK → R+ is a loss function, where for label
y ∈ RK and prediction vector f(x) ∈ RK , φ(x, y, f(x))
is the loss incurred for predicting f(x) when the true
label is y. For the ease of exposition, we assume the
following about f∗.

Assumption 1. The top (p+ 1) (where p ≥ k) values
of f∗(x) are unique for all x ∈ X i.e., [f∗(x)]i 6= [f∗(x)]j
for all i 6= j, i, j ∈ Topp+1(f∗(x)) and x ∈ X.

This assumption is mainly for simplicity in stating the
theoretical results in the presence of ties and does not
alter the conceptual nature of our results. Our ranking
setting differs from the classical ranking setting in one
key manner: we are interested in partial rankings and
in particular, ranking at the first k positions (see e.g.
(Xia et al., 2009)). Thus, we measure the success in
terms of ranking metrics at the top k positions. Also,
recall that K is assumed to be large. Both of these
aspects are fairly common in machine learning and
information retrieval settings (Joachims, 2002; Luo
et al., 2015). In the distillation setting of our interest,
we have access to a teacher model, f t which is usually
a more complex model or an ensemble of models. We
assume that f t is bounded from below. This model is
assumed to have good performance in terms of ranking
measures like MRR, NDCG (see (Chen et al., 2009)
for more details on these measures) and our goal is to
mimic the teacher in the sense of ranking of the top k
positions. To formalize this, we define the following.

Definition 1. A prediction function f : X→ Y is said
to be k-compatible if argmaxif(x) = argmaxif

∗(x) for
all i ∈ [k] and x ∈ X. A loss function φ : X × RK ×
RK → R+ is said to be k-consistent if argmaxifφ(x) =
argmaxif

∗(x) where fφ(x) ∈ argmins∈RKEy|xφ(x, y, s)
for all x ∈ X.

Recall that argmaxiv denotes the index of ith largest
element of vector v and f∗ is the minimizer of R(f)
(Equation 1). We observe that while k-compatibility is
a property of a prediction function, k-consistency is a
property of a loss function. This definition essentially

states that a loss function is consistent if for any x ∈ X,
the prediction function that minimizes that loss func-
tion is k-compatible. Note that the definition is based
on the first k positions and thus, the ranking of items
after the k positions does not affect our consistency re-
sults. With slight abuse of terminology, for any x ∈ X,
we refer to the indices corresponding to top p scores of
the teacher, Topp(f t(x)) (where p ≥ k), as “positives”
in our paper. The rest of the indices are referred to as
“negatives”. For any x, a natural segregation of items
into two buckets — top-p items and the rest — makes
this notation appropriate for our setting.

2.1 Distillation loss for TOP-k Ranking

In this section, we develop a general framework for
distillation of ranking problems. In particular, we
define a family of loss function that are well-suited for
the setting of our interest.
Definition 2. Let `d : RK × RK → R+ be a loss
function, fd(x) ∈ argmins∈RK `d(f

t(x), s). The loss
function `d is called p-focused distillation loss (p-FDL)
for f t if the following conditions hold:

1. The top p items according to fd(x) and f t(x)
and their order match i.e., argmaxifd(x) =
argmaxif

t(x) for all i ∈ [k] and x ∈ X.

2. The score [fd(x)][p+1] < [fd(x)][p] for all x ∈ X.

The first condition states that the top p items accord-
ing to the teacher scores and the minimizer fd exactly
match. The second condition, when combined with
the first, ensures that the scores of the items that are
ranked low by the teacher are penalized in fd. Note
that for FDL, the order of the items not at the top is not
important; thus, the order of items not in the top may
necessarily be preserved. When ranking performance
of the teacher is good, by satisfying these conditions,
we can ensure good student performance with respect
to top-k ranking measures. The simple result described
below formalizes this intuition. Note that the distil-
lation loss `d that satisfies the above conditions only
depends on the teacher score and student score. Thus,
we are not using the labels from our training dataset
S. However, we can easily modify our distillation pro-
cedure to use the training data labels in addition to
the teacher scores. The following is a straightforward
observation regarding FDL loss functions.
Claim 3. Suppose Assumption 1 holds and the teacher
predictor f t is k-compatible. Then, loss function
φd(x, y, s) = `d(f

t(x), s), where `d is a p-FDL loss,
is k-consistent when p ≥ k.

This claim establishes the statistical consistency of
the FDL family of loss functions when the teacher
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Algorithm 1 RankDistil
Initialization: Initial predictor f , Teacher predictor
f t, negative sampling distribution Q(.|t), loss func-
tion `RankDistil, integer p ≥ k, batch size m, mined
batch size b ≤ m
for h = 0, · · · , R− 1 do
Uniformly randomly select an example {x, y}
Sample index set B of sizem using the distribution
Q(.|f t(x))
Compute P = Topp(f t(x)) and

N = Topb,B(f(x))
Compute sl = fl(x) for l ∈ P ∪N
Compute gh = ∇`RankDistil(f

t(x), s, P,N) (e.g.
Equation 3 & 4)
Update predictor f using the gradient gh

end for

predictor is compatible (as per Definition 1). While
FDL provides a basic framework to study distillation
losses for ranking problems, it is not clear what loss
functions satisfy these conditions and, more generally,
how such loss functions can be optimized efficiently
when K is large. Next, we delve into these questions
in more detail and provide concrete instantiations of
our framework.

3 RankDistil

Building upon our framework in the previous section,
we propose a novel distillation procedure, RankDis-
til, for ranking settings where the number of items K
is large. To describe the RankDistil algorithm, we
define the loss function `RankDistil(t, s, P,N), where
s, t ∈ RK and P,N ⊆ [K]. Here P and N represent a
set of indices which will be used as “positives” and “neg-
atives” respectively in the loss function. The vectors t
and s are used to denote teacher’s and student’s output
vectors for a particular training sample respectively. As
we shall see in specific instantiations, the loss function
`RankDistil(t, s, P,N) aims to

• match the order of scores sP and tP i.e., preserve
the score order (or equivalently rank) for items in
the positive set P , and

• penalize large student scores sN , but the order of
items within the negative set N is not necessarily
preserved.

The overall distillation loss (RankDistil-Loss) func-
tion `d(t, s) is defined as

EB∼Qm(.|t)

[
`RankDistil(t, s,Topp(t),Topb,B(s))

]
,

where B ⊆ [K] such that |B| = m, b ≤ m and
Q(.|t) is a categorical distribution over [K] with sup-
port [K] − Topp(t). Recall that Topb,B(s) repre-
sents the top b indices of score vector s that are in
B. RankDistil-Loss is the population expectation
of `RankDistil where P and N are chosen to be Topp(t)
and a subset of m random samples drawn from Q re-
spectively. Algorithm 1 provides the pseudo-code for
optimizing this loss function. The key idea of the al-
gorithm is to get an unbiased estimate of gradient of
RankDistil-Loss. This is accomplished by randomly
sampling m negatives according to the distribution
Q and picking the items with largest b scores (where
b ≤ m) according to the student score s to obtain the
negative set used in RankDistil-Loss. The distri-
bution Q is used to sample the negative set since K
is large. The strategy of picking the b largest scoring
negatives is similar to the one explored by Reddi et al.
(2019) in the classification setting.

Overall, the time complexity of each iteration of the
algorithm is O((p+m)C(p,m)) (where C(p,m) is the
time for computing gradient of `RankDistil) and is,
thus, independent of K. Since we can compute an
unbiased estimate of the gradient in a cheap manner,
RankDistil-Loss can be optimized efficiently. Note
that computing top-p items of f t(x) in Algorithm 1
takes O(K); however, since it is computed only once
and can be done offline, we ignore it in time complexity
analysis.

Before we look at different settings for `RankDistil, it
is instructive to examine a simple concrete example of
RankDistil. Consider the following modified variant
of softmax cross-entropy:

`RankDistil(t, s, P,N) =

−
∑
j∈P

exp(tj)∑
l∈P exp(tl)

log

(
exp(sj)∑

l∈P∪N exp(sl)

)
. (2)

Note that the loss function only depends on the scores
sP , tP and sN and is thus, efficient to compute when
P and N are small. The set N is sampled from a
distribution Q(.|t). A simple instance of Q is a uniform
categorical distribution whose support is [K]−Topp(t).
However, more complex distributions can be used to
improve the optimization and generalization perfor-
mance. In the subsequent sections, we consider three
families of RankDistil-Loss which differ in the way
scores sP and sN interact in the loss function.

3.1 Coupled RankDistil-Loss

We now consider the case where the scores sP and sN
in `RankDistil are coupled, i.e., the loss function is not
separable with respect to these scores. We define the
following probability model.
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Definition 4 (r-Plackett’s Probability Model). Sup-
pose S ⊆ [K] such that |S| ≥ r. Then, for π ∈ P(S),
the probability of the permutation π given the scores
s ∈ RK is given by

Ps(π|S) =
1

(|S| − r)!

r∏
j=1

exp(sπ(j))∑|S|
l=j exp(sπ(l))

.

The r-Plackett probability model generalizes the Plack-
ett probability model for ranking (Luce, 1959; Plackett,
1975). The following result shows the r-Plackett model
indeed defines a probability distribution over permuta-
tions over subsets of [K].

Proposition 5. Suppose Ps satisfies r-Plackett’s Prob-
ability Model, then

∑
π∈P(S) Ps(π|S) = 1 for all S ⊆

[K] and |S| ≥ r.

Using this probability model, we define the coupled
loss function as:

`RankDistil(t, s, P,N)

= −
∑

π∈P(P∪N)

Pτ(αt,P )(π|P ∪N) logPs(π|P ∪N)

= Eπ∼Pτ(αt,P )(.|P∪N) [− logPs(π|P ∪N)] . (3)

where α > 0 is the inverse temperature of softmax
probability and τ is a threshold function such that,
for any s ∈ RK and S ⊆ [K], τi(s, S) = si if s ∈ S
and −M otherwise (where M is a large positive real
number) or identity function i.e., τi(s, S) = si for all
i ∈ [K]. The loss is essentially cross-entropy between
r-Plackett’s probability of student and (possibly thresh-
olded) teacher.

Theorem 6. Suppose Assumption 1 holds, r ≥ 1,
p ≥ k, supp(Q(.|s)) = [K] − Topp(s) and τ is
thresholding function with sufficiently large M. Then
RankDistil-Loss with `RankDistil as defined in Equa-
tion 3 is p-FDL.

The result above shows consistency of our coupled loss
function. Note that `RankDistil defined in Equation 3
requires iterating over all permutations P(P ∪N). How-
ever, this can be computed in O(prr + m) when τ is
thresholding function with M =∞ (see Appendix A.2
for more details). When r = 1 and p is small, this com-
putation is tractable. In the general case, we resort to a
Monte Carlo approximation by sampling permutations
from the corresponding r-Plackett’s model probability
model (Definition 4). For the purpose of clarity, the
complete algorithm is provided in Appendix A.

Coupled RankDistil-Loss proposed here has connec-
tions with many existing algorithms. When r = 1, this
reduces to the modified variant of softmax cross-entropy
defined in Equation 2. Note that this also corresponds

to a distillation variant of ListNet (Cao et al., 2007)
with the distinction about handling of negatives set
N and that the scores are only matched for the top
p positions. Our coupled loss function also captures
other generalizations of ListNet (e.g. see (Xia et al.,
2009; Luo et al., 2015)) as special cases. Furthermore,
p = K and α→∞ corresponds to our distillation vari-
ant of ListMLE loss function (Xia et al., 2008). Note
that high α corresponds to low temperature regime of
softmax probability. Thus, coupled RankDistil-Loss
generalizes several existing loss function.

3.2 Binary RankDistil-Loss

Next, we consider a separable case where P and N can
be decomposed.

`RankDistil(t, s, P,N) = Ψ(t, s, P ) +
∑
i∈N

ϕ(−si), (4)

where Ψ is a (multiclass-like) loss function such that
sP = tP at the minimizer and ϕ is any binary classi-
fication loss function. As seen in Equation 4, the loss
function naturally decomposes over the sets N and P .
This family captures a wide range of loss functions.
Table 1 shows a list of possible options for Ψ and ϕ.
This table covers a few popular options and is not ex-
haustive. The following simple result can be shown for
binary RankDistil-Loss.

Theorem 7. Suppose Assumption 1 holds, p ≥ k
and supp(Q(.|s)) = [K] − Topp(s). Also, sup-
pose [f t(x)][p+1] < γ for all x ∈ X. Then
RankDistil-Loss with `RankDistil in Eq 4 is p-FDL
when

1. We have argmaxis
∗
P = argmaxif

t
P (x) for all

x ∈ X, P ⊆ [K], i ∈ [p] where s∗ ∈
argminsΨ(f t(x), s, P ) and,

2. The function ϕ : R→ R+ is a non-increasing and
strictly decreasing on (−∞,−γ].

This result essentially shows consistency of all the loss
functions listed in Table 1. The case where Ψ is q-
Regression (with q = 2) and ϕ is hinge loss is of par-
ticular interest. This is the ranking equivalent of logit
matching used in usual classification setting (Ba and
Caruana, 2014; Hinton et al., 2015). Also, when p = 1,
Ψ is 2-Regression, ϕ is square hinge loss and scores are
in [−1, 1], the loss corresponds to a distillation variant
of the cosine contrastive loss used in classification.

3.3 Pairwise RankDistil-Loss

In this section, we consider pairwise RankDistil-Loss
functions. For this family of loss functions, `RankDistil
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Table 1: Example instantiations of Binary RankDistil-Loss. Here q is a positive real number in q-Regression and
γ is the margin in Hinge loss. These instantiations of Ψ and ϕ can also be used for the pairwise RankDistil-Loss
(see Equation 5).

Ψ(t, s, P ) ϕ(si)

Softmax CE
∑
i∈P

{
− eti∑

j∈P e
tj
· log esi∑

j∈P e
sj

}
Logistic log(1 + e−si)

Sigmoid CE
∑
i∈P

∑
z∈{−1,1}−

1
1+ezti

· log 1
1+ezsi Hinge max{0, γ − si}

q-Regression ‖tP − sP ‖qq Square Hinge max{0, γ − si}2

is of the following form:

`RankDistil(t, s, P,N) = Ψ(t, s, P ) +
∑
i∈N

∑
j∈P

ϕ(sj − si).

(5)

In contrast to the binary RankDistil-Loss, these loss
functions use pairwise comparisons between the items
in P and N . We can essentially use the same Ψ and
ϕ as listed in Table 1. The following result shows that
this class of loss functions are p-FDL under fairly mild
conditions.
Theorem 8. Suppose Assumption 1 holds, p ≥
k and supp(Q(.|s)) = [K] − Topp(s). Then
RankDistil-Loss with `RankDistil as defined in Equa-
tion 5 is p-FDL when

1. We have argmaxis
∗
P = argmaxif

t
P (x) for all

x ∈ X, P ⊆ [K], i ∈ [p] where s∗ ∈
argminsΨ(f t(x), s, P ) and,

2. The function ϕ : R→ R+ is a non-increasing and
strictly decreasing on (−∞, 0].

For pairwise RankDistil-Loss, in addition to the loss
functions in Table 1, pairwise comparison based loss can
also be used for Ψ(t, s, P ) in Equation 5. In particular,
we can use Ψ of the form:

Ψ(t, s, P ) = 1(ti − tj)ϕ(si − sj) + 1(tj − ti)ϕ(sj − si)
(6)

where ϕ is as defined in Table 1 and 1(x) is the
indicator function. Here, the exact scores of the
teacher are not used, rather just the order of items
in P based on teacher’s score is used. Also, pairwise
RankDistil-Loss decomposes over the P and N and
furthermore, can be decomposed over pairs of items.
Such a property typically makes it amenable to efficient
optimization. Note that the assumption on f t used in
Theorem 7 is not required for the pairwise setting.

3.4 Discussion

Relation with previous works. We would like to
briefly mention the distinction with existing literature.

Tang and Wang (2018) and Ranker Distill in Gao et al.
(2020) are the most relevant to our work. At a high
level, both these works can be seen as simple instances
of binary RankDistil-Loss with Ψ being sigmoid
cross-entropy. Note that Tang and Wang (2018) uses a
combination of loss on relevance labels and ranking dis-
tillation loss as their final loss. While we do not utilize
relevance labels during distillation, it is straightforward
to incorporate it in our framework. We will use these
methods as baselines in our empirical analysis.

When employing distillation in a top-k ranking setting,
access to an accurate teacher model provides a clean
classification of items as positives and negatives. Such
a classification is typically not reliable in settings with
noisy relevance labels (e.g. (Cao et al., 2007; Xia et al.,
2008)). This natural partition of items is exploited
in RankDistil to design generic loss functions that
are well-aligned with our goal (e.g. refer to the role
of sets P and N in RankDistil-Loss). Furthermore,
the presence of a large set of items to rank poses a
unique challenge in top-k ranking setting. RankDistil
presents a novel negative sampling/mining approach to
handle ranking setting for large K. To our knowledge,
this is the first work to propose a general strategy for
distillation in large-scale top-k ranking settings.

Position-aware loss. Finally, note that loss functions
in the paper treat the first p positions equally. In
practice, using a discount factor to weigh each position
differently aligns well with metrics like NDCG. This
can be easily incorporated in our framework (e.g. q-
Regression can be modified to

∑p
i=1 β

i−1|tπ(i)− sπ(i)|q
where π = sort(t) and β ∈ (0, 1]). All our experiments
use such a discount factor.

4 Experiments

In this section, we present empirical results for
RankDistil. We focus on two aspects in our empirical
analysis: (i) performance gain by using RankDistil
for distillation and ranking purpose, and (ii) compari-
son of RankDistil-Loss proposed in the paper with
standard ranking losses.
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Table 2: Statistics of ranking datasets. Documents indicates number of documents across all queries and not
number of unique documents.

Dataset Train Validation Test
# queries # documents # queries # documents # queries # documents

MSLR-WEB30K 18,919 2,270,296 6,306 747,218 6,306 753,611
YAHOO LETOR 19,944 473,134 2,994 71,083 6,983 165,660

Istella 20,317 6,410,040 2,902 915,585 9,799 3,129,004

MSMARCO 479,484 430,215,247 53,276 47,801,694 6,971 6,668,940

Table 3: Performance comparison of RankDistil for distillation task on MSLR WEB30K and Yahoo LETOR. The
student model is a simple linear model with 128 hidden units and the teacher is a 3-layer FC-BN-ReLU model of hidden
units of sizes 1024,512,256. 4 indicates statistically significant increase of RankDistil compared to best baseline using
paired t-test with significance level 0.05.

Distillation Loss MSLR WE30K YAHOO LETOR
NDCG1 NDCG5 NDCG10 MRR NDCG1 NDCG5 NDCG10 MRR

Teacher 0.4725 0.4668 0.4877 0.8777 0.6921 0.7221 0.7637 0.9433

Studentrelevance 0.4248 0.4404 0.4632 0.8654 0.6231 0.6749 0.7261 0.9272
Tang and Wang (2018) 0.4136 0.4276 0.4512 0.8584 0.6474 0.6835 0.7311 0.9204
Gao et al. (2020) 0.3382 0.3654 0.3654 0.8294 0.6269 0.6616 0.7094 0.9113

RankDistilp 0.45764 0.45734 0.47924 0.87824 0.6751 0.7103 0.7503 0.94454

RankDistilc 0.4515 0.4537 0.4757 0.8727 0.69364 0.72054 0.76224 0.9415

RankDistil Loss functions. We compare
RankDistil-Loss with other popular ranking losses.
To ensure diversity in the loss functions, we use
loss functions from coupled, binary and pairwise
RankDistil-Loss functions. For the binary case, we
pick Ψ and ϕ as sigmoid cross-entropy and logistic
loss respectively. We denote this as RankDistilb.
The pairwise case of RankDistil-Loss (denoted by
RankDistilp) uses logistic loss for both Ψ and ϕ in
Equation 6. Finally, the coupled case (denoted by
RankDistilc) uses the loss function in Equation 3.
These loss functions are compared against popular
ranking losses used in the literature. In particular, we
consider RankNet (Burges et al., 2005), ListNet (Cao
et al., 2007) and ListMLE (Xia et al., 2008).

Experimental Setup. We conduct ranking distilla-
tion experiments on four datasets: MSLR-WEB30K
(Fold1) (Qin and Liu, 2013), Yahoo! Learning to Rank
(LETOR) challenge (Set1) (Chapelle and Chang, 2011),
and Istella LETOR full dataset (Dato et al., 2016) and
MSMARCO passage ranking task (Nguyen et al., 2016).
These experiments are designed to look at the effec-
tiveness of RankDistil for ranking distillation task,
where a complex teacher is used for distillation to learn
a simpler model.

For baselines, we compare RankDistil for ranking dis-
tillation task with Gao et al. (2020), Tang and Wang
(2018). Both these works are specifically catered to

the ranking distillation setting of our interest and are,
thus, the most relevant baselines. We also compare
our performance with teacher model (for headroom
analysis) and a student model trained on graded rel-
evance or clicks. Gao et al. (2020) uses a distilled
BERT model with a sigmoid cross entropy loss over
all of teacher scores. Tang and Wang (2018) combines
a sigmoid cross entropy loss over ground-truth rele-
vance scores with a distillation loss of sigmoid cross
entropy loss applied only over top-k. As discussed
in Section 3.4, both these losses are instances of bi-
nary RankDistil-Loss. For the task of ranking loss,
we compare RankDistil-Loss with standard rank-
ing losses used in literature such as ListNet, ListMLE,
RankNet etc. We would like to emphasize that the
model architectures for RankDistil and the corre-
sponding baseline are exactly the same, and they only
differ in the nature of the distillation loss for ranking.

The performance is measured in terms of ranking met-
rics. In particular, we use Normalized Discounted Cu-
mulative Gain (NDCG) which is typically used for
measuring ranking performance, and used for all com-
parisons. We describe the statistics of these datasets in
Table 2. For MSMARCO dataset, we split the training
data into a random 90 − 10% split for training and
validation, respectively. For RankDistilc, 100 sam-
ples from Plackett’s model were used for Monte Carlo
approximation. A uniform categorical distribution Q
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Table 4: Performance comparison of RankDistil for distillation task on MSMARCO passage ranking dataset and
Istella dataset. The student model for MSMARCO dataset is Bert-Tiny, which is distilled using ranking losses from a
Bert-Base ranking teacher. The student model for Istella dataset is a simple linear model with 128 hidden units and the
teacher is a 3-layer FC-BN-ReLU model of hidden units of sizes 1024,512,256. 4 indicates statistically significant increase
of RankDistil compared to best baseline using paired t-test with significance level 0.05.

Distillation Loss MSMARCO Istella
NDCG1 NDCG5 NDCG10 MRR NDCG1 NDCG5 NDCG10 MRR

Teacher 0.7228 0.8423 0.8548 0.8185 0.6458 0.6279 0.6844 0.9536

Studentclicks 0.6031 0.7460 0.7671 0.7221 0.5688 0.5336 0.5779 0.8728
Tang and Wang (2018) 0.6190 0.7643 0.7827 0.7373 0.5483 0.4895 0.5246 0.8306
Gao et al. (2020) 0.6275 0.7684 0.7871 0.7428 0.5491 0.4846 0.5201 0.8181

RankDistilp 0.6600 0.7974 0.8144 0.7715 0.5066 0.4806 0.5276 0.8257
RankDistilc 0.68394 0.81024 0.82644 0.78714 0.58204 0.53954 0.57984 0.87904

is used in our experiments for RankDistil. In all
experiments, the values of p, r, b and decay factor β
were tuned to give the best performance on a held out
validation dataset.

MSLR WEB30K, Yahoo LETOR and Istella.
All of these datasets comprise of around 30K query-
document pairs with 136, 700 and 200 dense features
per query-document pair respectively (see Table 2 for
more details). Each query-document pair is rated with
a graded relevance score from 0 (not relevant) to 4
(highly relevant). For the task of ranking distillation,
a 3-hidden layer feedforward network of layer sizes
(1024,512,256) with ReLU activation and batch nor-
malization (Ioffe and Szegedy, 2015) is used to learn
a teacher model using ListNet loss. A simple linear
model with 128 units is used to learn a student model.
For the task of ranking loss, we use the 3 layer model
used in previous experiment to learn ranking model
and report performance of RankDistil-Lossc, which
performs best among variants of RankDistil-Loss.
In both experiments, we also apply batch normalization
on the inputs, which was found to be effective. The
value of m was set to 200.

MSMARCO. The MSMARCO passage ranking
dataset contains around 1M anonymized Bing search
queries with top 1000 relevant passages retrieved by
BM25 score (see Table 2). The objective is to rank
the passages by relevance to the query. We use a large
Bert (Devlin et al., 2018) based model as a teacher for
this setting. In particular, Bert-Base, consisting of
a stack of 12-layer 12-head Transformer of hidden size
of 768, and a feedforward network of hidden layer size
3072, is used as the teacher model. The transformer
block uses gelu activations. Query and passages are
tokenized using wordpieces to a maximum sequence
length of 64, concatenated and passed as inputs to
the teacher or student model. ListNet ranking loss
was used to train student on clicks and the teacher as

it gave the best performance among baseline ranking
losses. The teacher is trained for 200K steps using
Adagrad (Duchi et al., 2011) with a batch size of 8
and a learning rate of 10−5.

The student model in this setting is Bert-Tiny (Turc
et al., 2019), which is similar to the teacher, but of much
smaller size. Bert-Tiny consists of 2-layer 2-head
Transformer with hidden size of 128, and feedforward
network of hidden layer size 512. The student is trained
using Adagrad optimizer with learning rate 10−4 for
1M steps. The value of m in Algorithm 1 is set to 50.
An identity function τ was used in this experiment.
The values of p, r and decay factor β were tuned for
RankDistil losses. These values were chosen such
that they give the best performance on a held out
validation set. We use TF-Ranking (Pasumarthi et al.,
2019) to implement ranking losses, metrics and training
the models.

Ranking Task. Finally, we also compare the effective-
ness of RankDistil-Loss as a ranking loss on MSLR-
WEB30K and Yahoo! Learning to Rank (LETOR).
This experiment is designed to understand the value
of RankDistil in settings where graded relevance
score is used instead of teacher scores. We do not
use MSMARCO dataset for this task since it only
consists of binary relevance scores. For this task, we
compare RankDistil-Loss against popular ranking
losses in the literature. In particular, we use RankNet
(Burges et al., 2005), ListNet (Cao et al., 2007) and
ListMLE (Xia et al., 2008) for our baseline comparison.

4.1 Model Effectiveness

For ranking distillation task, Tables 3 and 4 provides
the comparison of variants of RankDistil with base-
line approaches on the test set for LETOR datasets
and MSMARCO dataset respectively. We observe
that RankDistil significantly outperforms baseline
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Table 5: Performance comparison of RankDistil-Loss for ranking task on MSLR WEB30K and Yahoo LETOR. The
ranking model is a 3 layer FC-BN-ReLU model of hidden units of sizes 1024,512,256. 4 indicates statistically significant
increase of RankDistil compared to best baseline using paired t-test with significance level 0.05.

Ranking Loss MSLR WE30K YAHOO LETOR
NDCG1 NDCG5 NDCG10 NDCG1 NDCG5 NDCG10

Sigmoid Cross Entropy 0.4765 0.4685 0.4847 0.6513 0.6988 0.7462
RankNet 0.4605 0.4667 0.4898 0.6826 0.7195 0.7623
ListMLE 0.4659 0.4648 0.4853 0.6899 0.7216 0.7628
ListNet 0.4768 0.4679 0.4879 0.6821 0.7125 0.7566

RankDistil-Lossc 0.48074 0.47714 0.49534 0.69774 0.72674 0.76694

Table 6: Number of parameters of teacher and student
models for distillation task on all the datasets.

# parameters
Dataset Student Teacher %reduction

MSLR-WEB30K 0.018M 0.795M 97.8%
Yahoo LETOR 0.090M 1.372M 93.5%
Istella 0.028M 0.881M 96.8%
MSMARCO 4.4M 110.1M 96.0%

approaches. Furthermore, the results are statistically
significant when measured using a paired t-test with
significance level 0.05. We also observe the distilling stu-
dent model from a teacher model improves over simply
training student on clicks or relevance scores, illustrat-
ing the benefit of distillation. Table 6 provides details
about the model size of the teacher and student model
used in our experiments. The number of parameters can
be used as a proxy of the inference speedup of student
over teacher. Table 6 shows the number of parameters
for student and teacher models for distillation task on
all three datasets, and demonstrates that the student
models have a significant reduction in number of param-
eters compared to the teacher model; thereby, leading
to significant gains in inference speed. For the task of
ranking loss, Table 5 shows that on MSLR-WEB30K
and Yahoo LETOR datasets, RankDistil-Loss sig-
nificantly outperforms other ranking losses, showing its
effectiveness not just for distillation, but as a ranking
loss as well. We observed that RankDistilc is either
competitive or better in all our experiments. Note that
these results are statistically significant when measured
using paired t-test with significance level 0.05.

Recall that the model architectures for RankDistil
and the baseline are exactly the same. Thus, the pro-
posed and baseline approaches have the same infer-
ence speed. Furthermore, the training speed is also
roughly similar due to the change in the distillation
loss. Therefore, under the same inference latency con-
straints, RankDistil outperforms other distillation
losses for ranking.

5 Conclusion

In this paper, we studied distillation algorithms for top-
k ranking problems. We developed a novel distillation
approach, RankDistil, for this setting and established
statistical basis for the algorithm. The core idea behind
the approach is to preserve the order of the top-k
items scored by the teacher while penalizing the items
ranked low by the teacher. As part of this approach,
we proposed several loss functions that are amenable to
efficient optimization when the number of items to rank
is large. Our empirical results comparing RankDistil
with popular ranking losses demonstrate the practical
efficacy of RankDistil for knowledge distillation in
ranking problems.
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