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(CO)ENDS FOR REPRESENTATIONS OF TENSOR CATEGORIES

NOELIA BORTOLUSSI AND MARTIN MOMBELLI

ABSTRACT. We generalize the notion of ends and coends in category theory to the
realm of module categories over finite tensor categories. We call this new concept module
(co)end. This tool allows us to give different proofs to several known results in the
theory of representations of finite tensor categories. As a new application, we present
a description of the relative Serre functor for module categories in terms of a module
coend, in a analogous way as a Morita invariant description of the Nakayama functor of
abelian categories presented in [4].

Introduction

Throughout this paper, k will denote a field, all categories will be finite (in the sense of
[3]) abelian k-linear categories, and all functors will be additive k-linear. Given categories

M, A, and a functor S : M°P x M — A the notion of the end fMEM S and coend fMeM S
is a standard and very useful concept in category theory. The end of the functor S is an
object [ vem O € A together with dinatural transformations

7TMZ/ S = S(M, M)
MeM

with the following universal property; for any pair (B, d) consisting of an object B € A
and a dinatural transformation dy, : B = S(M, M), there exists a unique morphism
h:B = [1;eqS in Asuch that

dy =myoh  forany M € M.

The notion of coend is defined dually.

If M is a finite abelian, k-linear category, M can be thought of as a module category
over vecty, the tensor category of finite dimensional vector k-spaces. If M = my, is the
category of finite dimensional right A-modules, where A is a finite dimensional k-algebra,
then M has a left vect g-action

vect X my — My

(V, M) — V®kM,
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where the right action on V@, M is given on the second tensorand. If S : (m4)®Pxmy — A
is any functor, it posses a canonical natural isomorphism

By i S(M,V@eN) = S(V*®xM, N),

for any V € vecty, M, N € my. See Proposition 3.14. The existence of [ essentially
follows from the additivity of the functor S.
If in addition py : E = S(M, M) is any dinatural transformation, it satisfies equation

S(evy@iid ar,id ar)par = S(mvevar, id ar) BY g PV (0.1)

for any V' € vecty. This is proven also in Proposition 3.14. This equation follows from
the dinaturality of p. Here evy : V*®kV — k is the evaluation map, and mwyar :
(WerV)okM — Weg(VegM) is the canonical associativity of vector spaces. This
implies that the end of S is the universal object among all dinatural transformations that
satisfy (0.1). A similar observation can be made for the coend. This is the starting point
to generalize the notion of (co)end, where we will replace the category vect, with an
arbitrary tensor category.

Let C be a tensor category, and M be a left C-module category with action given by
> : C x M — M. This action induces a right action of C on the opposite category M°P:

<« M?P xC — MP.

M4X=X*>M,

Here M is the object M thought as an object in M°P. Assume S : M®P x M — A is a
functor. We can produce then two functors:

So(Id x»), So(axId): MPxCx M — A
Assume there exists a natural isomorphism £ : S o (Id x>) — S o (4 xId), that is
Ban t S(M, X >N) — S(X*>M,N).

We call this isomorphism a pre-balancing of S. In this general case, the pre-balancing is
an extra structure of the functor S. We define the module end of S to be an object £ € A
that comes with dinatural transformations 7y, : E = S(M, M) such that the equation

S(evX > id M, id M)7TM = S(mX*7X7M, id M)5§>M7M7TXDM7 (02)

is fulfilled, and it is universal among all objects in A with dinatural transformations that
satisfy (0.2). Unlike the case C = vecty, it may happen that a dinatural transformation
does not satisfy (0.2). We denote the module end as §,,_, (S, 3), or sometimes simply as
fM cm O whenever the pre-balancing 8 is undertstood from the context.

An analogous definition can be made to define module coend, and also to define module
ends and coends starting from right C-module categories.
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In Section 3 we introduce the module (co)ends, and we prove several results that
extend known properties of (co)ends. We prove that, when the tensor category C = vect
our definition coincides with the usual (co)ends. See Proposition 3.14. We also study what
happens when we restrict the module (co)ends to a tensor subcategory. See Proposition
3.12.

In Section 4 we give several applications. If M, N are left C-module categories, and
F,G: M — N are C-module functors, the functor

Homy (F (=), G(—)) : M x M — vecty

has a canonical pre-balancing ~, and we prove that, there is an isomorphism

Nat, (F.G) = §  (Homy(F(-). G(-)).7).

MeM
Here Nat,,(F,G) is the space of natural module transformations between F' and G. See

Proposition 4.2. Using this result we can set up a triangle of adjoint equivalences of
categories

MPRN

XM N TN
Lan L

O MmN

Func(MbOp,N> ’ Func(M,N),

generalizing the triangle presented in [4]. Here it is required that M, N are ezact module
categories. Here M°P is the opposite category endowed with a right C-action that comes
from the action of M twisted by a (right) dual. Also MP"°P = (M°P)°P. See Subsection 2.2
for these definitions. Observe that, MP°P = M as categories, but as a C-module category
MP°P has the deformed action of M by a double dual.

The equivalences presented above are:

LMJ\/ s MOP &CN — Func(MbOp,N),
MIXCN ’_> HOmMop(_7 M) > ]\[7
XMN - Func(MbOP,N) — M°P &c N,
Uemep —
FH%I 0% F(T),
and on the other side of the triangle we have equivalences
Ly : M® R N — Fung(M, N)

MReN s Hom yop (M, —)* & N,
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Ty Fung( M, N) = MP K N,
F M Re F(M).
MeM

Here Oy n = L MAN © Xmn- The proof that L and L are equivalences is given in Lemma

4.5. The explicit description of a quasi-inverse of L is given in Theorem 4.7.

As a consequence of these equivalences, in Corollary 4.8 we obtain a kind of Peter-
Weyl theorem for the regular A-bimodule A = 4Ay4; that is, if A € C is an algebra such
that, the module category C4 is exact, there is an isomorphism of A-bimodules:

A:f Mo M.
MeM

We also prove that the module functor © v yper(Id) is equivalent, as module functors,
to the (right) relative Serre functor of M. See Theorem 4.14. This description is an
analogous form of the Morita invariant description of the Nakayama functor presented in

[4].
If C and D are Morita-equivalent tensor categories, this means that there exists an
invertible (C, D)-bimodule category B; we prove that the correspondence

M = Fune(B, M), N +— Funp(B°®,N)

is in fact part of a 2-equivalence between the 2-categories of C-module categories and
D-module categories. This result was proven in [3]. We show in Theorem 4.19 that, for
any D-module category N, the functor

Fune (B, Funp (B, N)) = N

H— H(B)(B)

is an equivalence of D-module categories.

In the last Section we show that, the functor Y : (Ci,)4 — C defined as

16 = § How(M.G(M)
MeM
is a quasi-inverse of the canonical functor
can :C = (Cy)u, can(X)(M) =X M.
See Theorem 4.21.

ACKNOWLEDGMENTS. This work was partially supported by CONICET and Secyt (UNC),
Argentina. We would like to thank the referee for his/her many comments that sig-
nificantly improved the presentation of the paper. In particular, Proposition 3.16 was
suggested by him/her.
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PRELIMINARIES AND NOTATION. We denote by vect the category of finite-dimensional
k-vector spaces. If M, N are categories, and F' : M — N is a functor, we shall denote
by F7 Flta: N'— M its right and left adjoint, respectively.

For any category M, the opposite category will be denoted by M°P. We shall denote
by M, f objects and morphisms in M that correspond to M and f. We shall also
denote by F°P : M° — N°P the opposite functor to F; that is, the functor defined as

Fo°(M) = F(M), F°°(f) = F(f) for any object M and any morphism f.

1. Finite tensor categories

For basic notions on finite tensor categories we refer to [2], [3]. Let C be a tensor category
over k; that is a rigid monoidal category with simple unit object 1.
If C has associativity constraint given by

axyz: (XQY)®Z = Xe(Y®Z),

we shall denote by C™, the tensor category whose underlying abelian category is C, with
reverse monoidal product

RV :CxC—=C, XY =YRX,
and associativity constraints

CLE??’KZ (X®I'GVY)®I'6VZ _) X®I'6V(Y®I'GVZ)’

rev

-1
axy,z ‘= Azyx:
for any X,Y,Z € C. It is well known that for any pair of objects X,Y € C there are
canonical isomorphisms

Py 1 (XRY)" = Y'@X",
Py F(XQY) = 'YX,
For any X € C we shall denote by

(1.1)

evy : X'®X — 1, coevy:1— X®X"
the evaluation and coevaluation. Abusing of the notation, we shall also denote by
evy : X®*X — 1, coevy:1—"X®X

the evaluation and coevaluation for the left duals. If f: X — Y is an isomorphism in C
then

evY(f®id y) = er(id X®*f) (12)
For any X,Y € C the following identities hold

evxey = evx(id y®evy®id - x)(id X®Y®¢lx,y)a

1.3
(gﬁlX’Y(}Z)id Xoy )C0evxgy = (id «y®coevx®id y )coevy. (1.3)

Off course that similar identities hold for the right duals, but they won’t be needed.
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1.1. ALGEBRAS IN TENSOR CATEGORIES. In this subsection we assume that C is a strict

tensor category, this means in particular that the associativity constraints are the identi-
ties. Let A, B € C be algebras. We shall denote by

CA7 Aca ACB

the categories of right A-modules, left A-modules and (A, B)-bimodules in C, respectively.
If V € C,is aright A-module with action given by py : VRA — V, and W € 4C is a left A-
module with action given by Ay : AQW — W we shall denote by 7r{j‘7W VoW = Ve Ww
the coequalizer of the maps

An object in the category 4Cp will be denoted as (V, Ay, py) € 4aCp, where Ay : AQV — V
is the left action, and py : V®B — V is the right action. Since the tensor product is
exact in both variables, then

Twer = Tw®idy,

for any V. € Ca,W € 4C, U € C. We are going to freely use this fact without further
mention.

1.2. LEMMA. Assume that C is a tensor category and A, B € C are algebras. The following
statements hold:

(i) If M € Cq then *M € 4C.

(i) There are natural isomorphisms

Homp(M®4V,U) ~ Homa gy(V, " M®U), (1.4)
Hom (M, X®N) ~ Home(M®4*N, X), (1.5)
Homy (M, X®N) ~ Homa(X*®@M, N), (1.6)

forany X € C,M,N € C4,V € 4Cp,U € Cp.

PROOF. (i). If M € C4 then *M has structure of left A-module via A 5y : AQ*M — *M
defined as
Aepg = (ld *M®evM)(1d *M®pM®1d *M)(COGVM®id A®*M)- (17)

(ii). Let us prove only the first isomorphism. The others follow similarly. The object
M®4V has a right B-module structure as follows. Consider ¢ : MRQVRB — M®4V,
¢ = muy(id y®pv). Then, pyg,v @ MR4VRB — M®4V is defined as the unique
morphism such that

pre v (T y®id g) = ¢. (1.8)



150 BORTOLUSSI AND MOMBELLI
Define ® : Homp(M®4V,U) — Homa p)(V, " M®U) as

(I)(f) = (id*M®f7Tij)(COeVM®id V), (19)

for any f € Homp(M®4V,U). Let us show ®(f) is a morphism of (A, B)-bimodules. We
need to prove that

(A @id )(id A@B(f)) = B(f)Av. (1.10)
and
(id i ®pu ) (P(f)@id 5) = (f)pv, (1.11)
for any (M, prr) € Ca, (V, Ay, pv) € 4aCp and (U, py) € Cg. Here A\« is the left action of
A on *M presented in (1.7).
The left hand side of (1.10) is equal to
(A p®id ) (id 4@P(f)) =
= (id « y®evy®id ) (id » y R ®id « mer ) (coev iy @id ag-mer)
(id ag M@ frary ) (id a®coevy ®id )
= (id -y ®evy®id 1) (id « p@par@id < pev ) (id «meme s M@ fTary)
(coevy®id agmemev)(id A®coev)®id )
= (ld rRevrid V) (ld *M®M®*M®f7TM7V) (ld M Qpp®id *M®M®V)
(id « o mea®coevy@id v ) (coevy ®id 4gy)
= (id»p @ frpry) (id < ®ev iy @id prev ) (id « e p @coevy®id v )
(id « py®ppRid v ) (coev@id agy )
(id «p@ f) (id <y @7arv (par®id v ) ) (coev iy @id agy )
= (id«p @ frpry) (id « prem @Ay ) (coevpr®id agy)
= (id @ frar,1 ) (coevy@id v ) Ay
= O(f)Av.
The first equality is by the definition of A«j; and ®(f). The fifth equality follows from
the rigidity axioms. The sixth equality is consequence of 7y being the coequalizer of
pu®id v, id @Ay The last equality follows by the definition of ®(f).
Since f is a B-module morphism,
pu(f®idp) = fpue,v. (1.12)

Using (1.8), this equation implies
pu(frarv®id p) = fpug,v(mTauy®id p) = frary (id y®@py ). (1.13)
Let us prove (1.11). The left hand side of (1.11) is equal to
(id« i ®pu ) (P(f)®id p) = (id - n@pu (fTar,y ®id p))(coevy ®id vep)
= (id+p @ frpry (id y®py ) (coevy®id yep)

= (1d« @ frary ) (coevy®id v ) py
= O(f)pv.
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The first equality is by the definition of ®(f). The second equality follows from (1.13).
And the last equality again follows from the definition of ®(f).
Now, let us show that ® has an inverse. Let us define

U : Homa,p)(V,"M®U) = Homp(M®4V,U)

as follows. Let g € Homa p)(V,*M®U). Define ¥(g) = h where h : M®,V — U is the
unique morphism such that

h7TM7V = (evM®1d U)(ld M®g) (114)

Let us show ¥(g) is a B-module morphism. That is

pu(h®id p) = hpme v

For this, it is enough to prove

pU(hﬂ'M,V®id B) = hpM®AV(7TM,V®id B)-

Starting from the left hand side

pu(hmay®id p) = py(evy®id pgp)(id y®g®id p)

= (evy®id ) (id pre-r®pr)(id 4 Qg®Rid 5)

= (evy®idy)(id y®gpv)

= hmay (id ®py)

= hpye v (Tay®id p).
The first equality is by (1.14). The third equality is consequence of g being a B-module
morphism. The fourth equality follows from (1.14) and the last equality follows from
(1.8). Let us show ® and ¥ are inverses of each another. Let be f € Homg(M®4V,U).

We have
\I/q)(f) = \IJ((ld *M®f7TM,V)(COeVM®id V)) =h

where
hryy = (evy®id ) (id «pem®@ fray) (id pr®coevid v)
= fﬂ'Myv(eVM@id M®V)(1d M®CO€VM®id V)

= f7TM,V

The first equality is the definition of h, and the last equality follows from the rigidity
axioms. Therefore, h = f and U®(f) = f. The proof of ¥ = Id follows similarly.

We shall only sketch the proof of isomorphism (1.5). Define
®4; x.n : Homu (M, X®N) — Home(M®4*N, X),

: . (1.15)
O3 x ()T .y = (id x®evy) (a®id ),
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and
U4 : Home(M®,4*N, X) — Homs (M, X®N), (1.16)
\Ilf\‘LX’N(a) = (cwrﬁ[’*N®id ~)(id p®coevy).

It follows by a direct calculation that @ﬁ xn and \Df\}’ x.n are well-defined and they are
one the inverse of the other. (]

2. Representations of tensor categories

A left module category over C is a category M together with a k-bilinear bifunctor
>:C x M — M, exact in each variable, endowed with natural associativity and unit
isomorphisms

mxy,um: (X@Y)DM%XD(YDM), gM 1o M — M.
These isomorphisms are subject to the following conditions:

mxy,zoM MXQY,Z,M = (idX > mY,Z,M) mX,Y®Z,M(aX,Y,Z > id M)7 (2-1)

(idxbgM)mXJ’M :Txl>idM, (22)
for any X,Y,Z € C,M € M. Here a is the associativity constraint of C. Sometimes we
shall also say that M is a C-module category or a representation of C.

Let M and M’ be a pair of C-modules. A module functor is a pair (F,c), where
F: M — M is a functor equipped with natural isomorphisms

cxm F(X>M)— X F(M),
X e€C, M € M, such that for any X, Y € C, M € M:
(idx > CY,M>CX,YI>MF(mX,Y,M> = Mx )y, F(M) CXRY,M (2-3)

There is a composition of module functors: if M” is a C-module category and (G, d) :
M’ — M” is another module functor then the composition

(GoF,e): M — M", ex.m = dx,r() © G(exm), (2.5)

is also a module functor.

A natural module transformation between module functors (F, ¢) and (G, d) is a natural
transformation 6 : F' — G such that

dx mOxens = (id x > Onr)ex o, (2.6)

for any X € C, M € M. The vector space of natural module transformations will be
denoted by Nat,,(F,G). Two module functors F, G are equivalent if there exists a natural
module isomorphism 6 : ' — G. We denote by Fune (M, M) the category whose objects
are module functors (F,c) from M to M’ and arrows module natural transformations.
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Two C-modules M and M’ are equivalent if there exist module functors F' : M — M/,
G : M'" — M, and natural module isomorphisms Id ,y =+ F o G, Idy — Go F.

A module is indecomposable if it is not equivalent to a direct sum of two non trivial
modules. Recall from [3], that a module M is ezact if for any projective object P € C
the object P> M is projective in M, for all M € M. If M is an exact indecomposable
module category over C, the dual category C}, = End¢(M) is a finite tensor category [3].
The tensor product is the composition of module functors.

A right module category over C is a finite category M equipped with an exact bifunctor
<4: M x C — M and natural isomorphisms

ﬁ”LM’X’y:Md(X®Y)%(M<X)<1Y, T’MIM<]]_—>M
such that

Muax,y,z Mux,yez(id w Qaxyz) = (M xy <id z) M, xev,z, (2.7)

(TMQidx)TAT/LM,LX :idM<1lX. (28)

If M, M’ are right C-modules, a module functor from M to M’ is a pair (T, d) where
T: M — M is afunctor and dy x : T(M <« X) — T(M) < X are natural isomorphisms
such that for any X, Y € C, M € M:

(dM,X®id Y)dMqX,YT(mM,X,Y) = Mmrm),X,y dM7X®Ya (2-9)
rrovy A = T(ru). (2.10)
The next result is well-known. See for example [1, Corollary 2.13.], [10, Prop. 2.2.4].

2.1. LEMMA. Let M, N be left C-module categories, and F,G : M — N are C-module
functors.

(i) The right and left adjoint of F, if they exist, have structure of C-module functor.
(ii) If F ~ G as C-module functors, then F'* ~ G“%, F™% ~ G™* as C-module functors.

(111) If Fy, Fy are composable C-module functors, there exists an isomorphism of C-module

functors
(Fl o F2)l.a ~ F2l.a o };vll.(z7 (Fl o F2>r.a ~ F27‘.a o F{'a.
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2.2. BIMODULE CATEGORIES. Assume that C, D, £ are tensor categories. A (C,D)—
bimodule category is a category M with left C-module category structure > : C x M —
M, and right D-module category structure < : M x D — M, equipped with natural
isomorphisms

{vxmy : (X>M)aY - X (M<Y),Xe€C,Y €D, Me M}

satisfying certain axioms. For details the reader is referred to [7], [8].
If M is a right C-module category then the opposite category M°P has a left C-action
given by
C x MP — M,

(X, M)~ M X",

and associativity isomorphisms my ;= masy« x-(id »r 9 @ y). Analogously, if M is a
left C-module category then M°P has structure of right C-module category, with action
given by

MP x C — M,

(M, X) — X"> M,
with associativity constraints mf; 1 = my« x« m(@% y >id y) for all X, Y € C, M € M.
If M is a (C, D)-bimodule category then M°P is a (D, C)-bimodule category.

If M is a left C-module category, we shall denote by MPP = (M°P)°P. That is,
MPP = M as categories, but the left action of C on MPP is
»: C x MPP — AMPoP,

Xp»M=X">M,
forany X € C, M € M.
2.3. REMARK. There is no problem to define the actions on the category M using left

duals instead of right duals. Our choice of using right duals is related to the choice of
functors L, L presented later in (4.4), (4.5).

Assume that M is a (C, D)-bimodule category, and N is a (C, £)-bimodule category.
The category Fune(M,N) has a structure of (D, E)-bimodule category. Let us briefly
describe this structure. For more details, the reader is referred to [7]. The left and right
actions are given by

>:Dx Func(M,N) — Func(./\/l,./\/),
4 Fung(M,N) x € = Fung(M, N),

where

(X5 F)(M) = F(M<X), (FaY)(M)=F(M)aY, (2.11)
forany X € D, Y € €, F € Fung(M,N) and M € M.
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2.4. THE INTERNAL HoM. Let C be a tensor category and M be a left C-module category.
For any pair of objects M, N € M, the internal Hom is an object Hom(M,N) € C
representing the left exact functor

Hompa(—> M, N) : C°® — vecty.
This means that, there are natural isomorphisms, one the inverse of each other,

¢ar.n + Home (X, Hom(M, N)) — Hom (X > M, N),

M (2.12)
Yy - Homp (X > M, N) — Home(X, Hom(M, N)),

for all M, N € M, X € C. Sometimes we shall denote the internal Hom of the module
category M by Hom ,, to emphasize that it is related to this module category. Similarly,
if A is a right C-module category, for any pair M, N € N the internal hom is the object
Hom(M, N) € C representing the left exact functor

Hompy (M <« —, N) : C°? — vect.
2.5. LEMMA. The following statements hold.
1. Let M be a left C-module category. There are natural isomorphisms
Hom (X > M, N) ~ Hom (M, N)® X",
Hom (M, X > N) ~ X®Hom (M, N).
for any M;,N e M, X € C.
2. Analogously, if N is a right C-module category, there are natural isomorphisms
Hom, (M <X, N) ~ *X®@Hom,(M, N),
Hom, (M, N < X) ~ Hom, (M, N)®X.
for any M,N e N', X € C.

PrOOF. The functor Hom (M, —) : M — C is the right adjoint of the functor Ry : C —
M, Ry (X) = X M. Since Ry is a C-module functor then, it follows from Lemma 2.1
that, Hom (M, —) is also a C-module functor. This implies in particular that there are
natural isomorphisms

Hom (M, X > N) ~ X®Hom ,, (M, N).

The other three isomorphisms follow in a similar way. [
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Let M be a left C-module category. There is a relation between the internal hom of
M and M°P, stated in the next Lemma.

2.6. LEMMA. For any M € M, the functors
“*Hom ,,(M, —), Hom yop(—, M) : M P — C,
are equivalent C-module functors. Also the functors
Hom y0p (M, —)*, "Hom (=, M) : M = C
are equivalent C-module functors. In particular, there are natural isomorphisms
“Hom (M, N) = Hom yop (N, M),

for any M, N € M.

PROOF. The functors D : C — C, D(X) = X** and Ly : C*P — MPP [y(X) =
X > M, are C-module functors. A straightforward computation shows that

(La o D)™ > Hom pgop (—, M),

D" ~"(—=), (Lm)"" ~Hom,, (M, —).

Since D and L,; are C-module ﬂmctors, then, using Lemma 2.1 (i), it follows that, functors
**Hom (M, —), Hom y4op (—, M) : MP°P — C, are C-module functors. Since (Lys0D)"% ~
D"% o (Lp)™*, it follows from Lemma 2.1 (iii) that, functors

**I_Io_m/\/l(M7 _)7 MMOP(_7M) : Mbop — C7
are equivalent as C-module functors. The proof that functors
Hom yop (M, —)*, "Hom y((—, M) : M — C

are equivalent is done by showing that both functors are left adjoint of Ly, : C —
M,LM(X):XDM. |

2.7. PROPOSITION. Let A € C be an algebra. The following statements hold.
(i) For any M,N € C4, Hom,,(M,N) = (M®4*N)*.
(ii) For any M, N € Ca, Hom oo (M, N) = *(N®4*M).

PROOF. Both calculations of the internal hom follow from (1.5). n
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The following result is [6, Lemma 3]. We include the proof since we will need later an
explicit description of certain isomorphism.

2.8. LEMMA. Let M be an exact module category overC, and F : M — M be a C-module
functor with left adjoint F* : M — M. Then, there are natural isomorphisms

&+ Hom(M, F(N)) — Hom(F"*(M), N).

PROOF. Since F is a module functor, then F*® is also a module functor. Let us denote
by
bxar: FY(X > M) = X > FH (M)

its module structure. Let Qy;n : Homp (M, F(N)) — Homp(F"*(M), N) be natural
isomorphisms. Take X € C. The desired natural isomorphism is the one induced by the
composition of isomorphisms

Home (X, Hom(M, F(N))) ~ Homy (X > M, F(N))
~ Hom y((F"*(X > M), N) ~ Hom (X > F**(M),N) ~
~ Home (X, Hom(F"* (M), N).
Using isomorphisms (2.12), one can describe explicitly this isomorphism as
EvN = Ve ary v (2.5 (D37 pony (id 2))b7 ) (2.13)
where Z = Hom(M, F(N)). =

2.9. THE RELATIVE SERRE FUNCTOR. Let M be a left C-module category. Following
[11], [5] we recall the definition of the relative Serre functor of a module category. The
reader is also referred to [15].

2.10. DEFINITION. A relative Serre functor for M is a pair (Syq, @), where Sy : M —
M is a functor equipped with natural isomorphisms

éun - Hom(M, N)* ~ Hom(N, Sy (M)), (2.14)
for any M,N € M.

In the next Proposition we summarize some known facts about relative Serre functors
that will be used later.

2.11. PROPOSITION. Let M be a left module category over C. The following holds.
(i) M posses a relative Serre functor if and only if M is ezact.

(ii) The functor Sy : M — MP°P is an equivalence of C-module categories.

(11i) The natural isomorphism ¢y : Hom(M, N)* — Hom(N,Sy(M)), is an isomor-
phism of C-bimodule functors.

(iv) The relative Serre functor is unique up to isomorphism of C-module functors.
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2.12.  BALANCED TENSOR FUNCTORS AND DELIGNE TENSOR PRODUCT. We shall
briefly recall the definition of the relative Deligne tensor product over a tensor category.
The reader is referred to [1], [7] for more details. Assume that M is a right C-module
category and N a left C-module category. Let A be a category.

A C-balanced functor is a pair (®,b), where ® : M x N — A is a functor, right exact in
each variable, equipped with natural isomorphisms by x v : (M <X, N) = ®(M, X>N)
such that it satisfies the pentagon

O(id ar, MYy v )bar,xev.n = barxye NOmax v, N @(myf ¢y, id N, (2.15)

for any X,Y € C, M € M, N € N. The natural isomorphism b is called the balanc-
ing of ®. If (®,b),(P®,b) : M x N — A are C-balanced functors, a C-balanced natural

transformation o : ® — ® is a natural transformation such that

OéM,X»NbM,X,N = bM,X,NOéqu,N, (2- 16)

for any X € C, M € M, N € N. The balanced tensor product (or sometimes called
relative Deligne tensor product) is a category M K¢ N, equipped with a C-balanced
functor X¢ : M x N' — M K¢ N such that for any category A the functor

Rex (M X N, A) = Bal(M x N, A)

F— FolKX

is an equivalence of categories. Here Bal(M x N, A) denotes the category of C-balanced
functors and C-balanced natural transformations.

2.13. LEMMA. Let /\A/l/,//\/lv be right C-module categories and /\/'JV be left C-module cat-
egories. If (F,c) : M — M, (G,d) : N — N are right exact module functors, and
(®,0) : M x N — A is a C-balanced functor, then ® o (F x G) : MxN = Aisa
C-balanced functor with balancing given by

emx,n = P(d pany, dxin)bran,x.an @ (e, id g ), (2.17)

foranyMGM,NEJV,XGC.

PROOF. We must show that e satisfies (2.15). In this case we have to prove

O(id poary, G(MA v y))emrxavy = erxyonenmaxyn@(F(mif xv),id a)), (2.18)

forany X, Y € C, M € /W, N € N. The left hand side of (2.18) is equal to

= ®(id p(ary, G(m/)\([,KN)d)_(}gY,N)bF(M),X(@Y,G(N) P(cm xay,id o))

= (id pary, dilysn (id x > dy )My bru xeviam
P(cm,xay,id o)

= ®(id pury, dxyon) P (id poar), id x > dy 3)bp(n), X, yeG0) DP(DX,Y.G(N)

O (mpfan xy»1da) ®leaxey, id auv)-
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The first equality is by the definition of e. The second equality is a consequence of (G, d)
being a module functor, and the last equality is because (®,b) is a C-balanced functor.
The right hand side of (2.18) is equal to

= enx,yonP(id rorax), d{/}N)bF(qu),Y,G(N)‘I)(Cqu,YF(mﬁx,y), id ¢(v))
= earx,yen®(d parax), dy iy )brorax)vemn (¢ x <idy)
m?“/(lM),X,YCM7X®Y7 id ()
= O(id gy, dxlyon)bron x.cem @(earx, id gron)) @(id posax), dy )
bF(M<X),KG(N)q)((CJT/11,X <id Y)m%M),X,YCM,X@)Ya id g(vy)
= ®(id p(ar), dxlyun)bron.x.cvem) (e x, id arven) P(id rosax), dy )
‘I)(CX;,X, id Y1>G(N))bF(M)qX,Y,G(N)q)<m%M)7X,yCM,X®Y7 id g(ny)
= ®(id F(M)> d)_c,lmN)bF(M),X,G(YDN)@(id F(M<aX)s d;}v)bF(M)dX,Y,G’(N)
q)(m%M),X,YcM,XV@YJ id G(N))
= ®(id p(ar), d)_(,lbe)‘b(id F(m),id x > d}_fi\f)bF(M),X,YDG(N) br(M)<X,Y,G(N)
q)(m'}*\‘/éM),X,YCM,XQ@Ya id ¢(w))-
The first and third equalities follow by the definition of e. The second equality follows
since (F|c) is a module functor. The fourth equality is consequence of the naturality of b

for cps x, and the sixth equality is the naturality of b for dy x. Since both sides are equal,
we get the result.

The next result is well-known.

2.14. PROPOSITION. Let A, B € C be algebras. Thus, the categories C4,Cpg are left C-
module categories. The following assertions hold.

(i) The functor *(—) : (Ca)°® — AC is an equivalence of right C-module categories.

(ii) The restriction of the tensor product @ : sC x Cp — ACp is a C-balanced functor,
and induces an equivalence of categories ® : ,C We Cg — ACp, such that

@ O &C ~ ®,
as C-balanced functors.

(11i) Assume that C4 is an exact module category. The functor R : aCp — Fune(Ca,Cp),
V= —®4V is an equivalence of categories.

PROOF. (i) The duality functor *(—) : (C4)°® — AC has structure of module functor with
isomorphisms given by
Oons P T(XTOM) = "M®X,
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for any X € C, M € C4. Here ¢ is the natural isomorphisms described in (1.1). Note
that we are omitting the canonical natural isomorphism *(X*) ~ X. For (ii) see [1]. The
proof of (iii) can be found for example in [9, Prop. 3.3]. Exactness of the module category
Ca implies that ®,4 is biexact. This fact was used in [9] to prove that R is a category
equivalence. [

3. The (co)end for module categories

Let C be a tensor category and M be a left C-module category. Assume that A is a
category and S : M x M — A a functor equipped with natural isomorphisms

Ban : S(M, X > N) = S(X*>M,N), (3.1)

for any X € C, M, N € M. We shall say that (3 is a pre-balancing of the functor S.

3.1. DEFINITION. The module end of the pair (S, /) is an object E € A equipped with
dinatural transformations wy » E = S(M, M) such that

S(evx > id M, id M)7TM = S(mX*7X’M, id M)ﬁ§>M7MWXDM7 (32)

for any X € C,M € M, universal with this property. This means that, if E € Ais
another object with dinatural transformations &y @ E = S(M, M), such that they verify
(3.2), there ezists a unique morphism h: E — E such that £y = wpy 0 h.

Sometimes we will denote the module end as §,, cm (S, B), or simply as [ em s when
the pre-balancing /3 is understood from the context. The module coend of the pair (S, )
is defined dually. This is an object C' € A equipped with dinatural transformations
w2 S(M, M) = C such that

™ = WX*DMBJ\);X*DMS(id M, mX7x*’M)S(id M, CO€eVx D id M); (33)

for any X € C,M € M, universal with this property. This means that, if C e Ais
another object with dinatural transformations Ay : S(M, M) = C such that they satisfy
(3.3), there exists a unique morphism g : C' — C such that g o7y = Ay. The module
coend will be denoted j;MeM(S, f3), or simply as fMeM S.

A similar definition can be made for right C-module categories. Let B be a category,
and N be a right C-module category endowed with a functor S : NP x N' — B with a
pre-balancing

Yarn i S(M<aX,N)— S(M,N <a*X),

forany M,N e N/, X € C.
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3.2. DEFINITION. The module end for S is an object E € B equipped with dinatural
transformations Ay : E = S(N, N) such that

)\N = S(ld N, idN < evX)S(id N, mK/’lXﬁX)’y])\%NQX)\qu, (34)

for any N € N', X € C. We shall also denote this module end by fNeN(S’ v).
Similarly, the module coend is an object C' € B with dinatural transformations Ay :
S(N,N) = C such that

AnS(id y < coevx,id n) = AvexTaex v S (Myhx x> 1d v), (3.5)

for any N e N, X € C. We shall also denote this module coend by fNEN(S, 7).

In the next Proposition we collect some results about module ends that generalize
well-known results in the theory of (co)ends. The proofs follow the same lines as the ones
in usual ends. For the sake of completeness we include them.

3.3. PROPOSITION. Assume that M, N are left C-module categories, and S,§ : MOP x
M — A are functors equipped with pre-balancings

Ban : S(M, X > N) = S(X*>M,N),
B n : S(M, X >N) — S(X* > M,N),
X eC,M,N € M. The following assertions holds

(i) Assume that the module ends $,,_,,(S, 5),§M€M(§, 3) exist and have dinatural

transformations w, 7, respectively. If v : S — S is a natural transformation such
that

51\)/(1,N7(M,X>N) = V(X*DM,N)BJ\);J\M (3.6)

then there exists a unique map 7 : §M€M(S, B) — fMeM(S,@\) such that Ty~ =
Yoy for any M€ M. If v is a natural isomorphism, then 7 is an isomorphism.

(i) If the end fMeM(S, B) ezists, then for any object U € A, the end

$rreng Homua(U, S(—, —)) ewists, and there is an isomorphism

j{ Homy (U, S(—,—)) ~ HomA(U,f (S,8)).
MeM

MeM
Moreover, if §,,. ., Homa(U, S(—, —)) eists for any U € A, then the end §,,_, (S, 5)

exists.

(iii) Assume F: A — A’ is a right exact functor. Then, there is an isomorphism

F(§. 5= f P8 F()

() If F: M — N is an equivalence of C-module categories, then there is an isomor-

phism
7{\76]\/’5 = 7{%6/\4 S(F (=), F(=))-
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PROOF. (i). For any M € N define Ay, : fNEN(S, g) — §(M, M) as Ay = Y v T
It follow straightforward that A is dinatural and since v satisfies (3.6), then A satisfies
(3.2). By the universality of the module end, there exists a morphism 7 : fMGM(S, B) —

fMEM(S’ 5) such that %M;}? = >\M = ’Y(M,M)TFM'

(ii). Let us assume that ¢, (S, B) exists, and has associated to it dinatural transfor-
mations my : fMeM(S, ) — S(N,N). For any U € A, the pre-balancing for the functor
Homy (U, S(—, —)) is defined as

BY pn - Homu(U, S(M, X > N)) — Hom4(U, S(X* > M, N)),

B%MN(]C) = ﬁj)\fuv o f.
Also define

5 HomA(U,% (S,5)) — Homu(U, S(N, N)),
MeM

mn(f) =mnof.
It follows by a straightforward computation that, 7V is a dinatural transformation, and

they satisfy (3.2) using 8Y. It also follows easily that Hom 4(U, fMeM(S, 3)) together with
7V satisfy the universal property of the module end, thus

7{ Hom (U, S(—, —)) ~ HomA(U,j{ (S, B)).
MeM MeM

Now, let us assume that ¢, _, Hom4(U,S(—,—)) exists for any U € A. Using item (i),
we can define a functor
F: A — vecty,

FU) = ﬂEM Hom (U, S(—, —)).

We shall prove that F' es left exact, and thus it is representable. The object representing
the functor F* will be a candidate for the module end §,,_ (S, ).
For any M € M, and any f: U — V in A, denote

(ct)ar - Homa(V, S(M, M)) — Hom4(U, S(M, M))

(ap)u(g) =gof.
To prove that F' is left exact, we need to show that, for any morphism f : U — V in

A, F(coKer (f)) = Ker (F(f)). Let be ¢ = coKer (f) : V — C,and [ : K — F(V) be a
k-linear map such that F'(f) ol = 0. Then

(s ool = 7l o F(f) ol =0
The second equality follows from item (i). Since ker(ay) = a, there exists a map

hy : K — Homy(C, S(M, M)))
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such that () 0 hay = myy o I It is not difficult to prove that h is a dinatural transfor-
mation, and they satisfy (3.2) (using the isomorphisms $). By the universal property
of the module end, there exists a morphism ¢ : K — F(C) such that hy, = 7§, 0 ¢. It
follows from item (i) that

(ag)rr oy 0 ¢ =m0 F(q) 0 ¢,

But also
(aq)M 071](\’;[ 0p= (O‘q)M ohy = 7TJ‘\//[ ol,

whence | = F(q) o ¢ and therefore F'(q) = ker(F(f)). Hence F is represented by an
object E € A; F(U) = Homyu (U, E). The maps oy : E — S(M, M), 6y = w&;(id )
are dinatural transformations, and they satisfy (3.2). It follows by a straightforward
computation that E together with § satisfy the universal property of the module end,

thus B~ ¢ . (S,5).
The proof of (iii) and (iv) is straightforward. n

3.4. REMARK. Off course that, similar results to those presented in Proposition 3.3 can
be stated for module coends, and also for module (co)ends for right module categories.

3.5. RELATION BETWEEN MODULE (CO)ENDS FOR RIGHT AND LEFT MODULE CAT-
EGORIES. Let A be a category. Let M be a left C-module category, and a functor
S M x M — A equipped with a pre-balancing 83 y : S(M, X > N) — S(X*> M, N).
Then N = M°®P is a right C-module category. We can consider the functor

SP NP x N — AP,
It posses a pre-balancing
Yarn P SP(M <X, N) — SP(M,N <*X),
VA);,N = B]\);,N'

Note that, the pre-balancing  is considered as a morphism in A°P. The next result is
straightforward.

3.6. LEMMA. There are isomorphisms

'ICEE fMENwOw,

fMeMw, D=p (57,
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A similar result also holds starting from a right C-module category N, and a functor
T : NP x N — A equipped with a pre-balancing

Yarn : T(M<X,N) = T(M,N<*X).
If M = N°, then M is a left C-module category, and we can consider the functor
T : M x M — AP
together with a pre-balancing
By : TP(M, X > N) = T®(X*>M,N)

X o X **
/BM,N = TMN-

The next result is a straightforward consequence of the definitions of module (co)end.

3.7. LEMMA. There are isomorphisms

§ @)= § @,

f " § @)

MeM

3.8. PARAMETER THEOREM FOR MODULE ENDS. Let C be a tensor category and M a left
C-module category. Also, let A, B be categories. We start with a functor S : MP x M —
Fun(A, B) equipped with pre-balancing ﬁﬁ’N : S(M, X > N) = S(X*> M, N), for any
X eC,M,N € M. If the end fMGM(S, B) exists, it is an object in the category Fun(.A, B);
we denote this functor as

(jém(s,ﬁ))(_) A B

Alternatively, we can do the following construction. For any A € A we get a functor
Sa: MPx M — B, Sa(M,N)=S(M,N)(A). This functor comes with a pre-balancing

B)I?,M,N :Sa(M, X >N)—= Sa(X*">M,N),

5§,M,N = (BJ\)SI,N)Av

for any X € C, M, N € M. If the module end fMeM(SA, B4) exists, it is an object in B,
and it defines a functor & : A — B. The proof of the next result follow straightforward.
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3.9. THEOREM. Provided all ends fMeM(SA,BA) exist, the functor & has a canonical
structure of module end for the functor S. We write

o= (¢ SO,
[ |

3.10. REMARK. Similar results can be obtained for module coends, and also for right
C-module categories.

3.11. RESTRICTION OF MODULE (CO)ENDS TO TENSOR SUBCATEGORIES. In this Sec-
tion, we shall show that the module (co)end coincides with the usual (co)end in the case
the tensor category is vecty. We also study what happens with the module (co)end when
we restrict to a tensor subcategory.

Let C be a tensor category and D C C be a tensor subcategory of C. Assume also
that M is a left C-module category. We can consider the restricted D-module category
ResZ M. The next result is a straightforward consequence of the definition of module
(co)ends.

3.12. PROPOSITION. Let S : M? x M — A be a functor equipped with pre-balancing
Ban :S(M,X>N)— S(X*>M,N).

(i) There exists a monomorphism in A

ﬁJGM (5,6) = jieRes oM (5,6)

(i1) There exists an epimorphism in A

%MeRes eM 5.5) ]{MGM 5.5)

[ |

3.13. REMARK. Similar result obtained in Proposition 3.12, is valid for right module
categories.

The next result says that, the module (co)end coincides with the usual one in the case

C = vecty.

3.14. PROPOSITION. Let M, A be categories, and S : M°® x M — A be a functor. In
particular M is a left vect x-module category. The functor S has a canonical pre-balancing
(B such that there are isomorphisms

/MeM o= ﬁ/IGM(S7 2
/MeM . %MGM(S, 8
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ProoF. We shall prove the first isomorphism concerning the usual end and the module
end. The other isomorphism for the coend follows similarly. For this, we will show that,
for such a functor S there exists a canonical pre-balancing § such that any dinatural
transformation my : E = S(M, M) satisfies (3.2).

Since M is a finite abelian k-linear category, there exists a finite dimensional k-algebra
A such that, M is equivalent to the category of finite dimensional right A-modules m4.
The action of vecty on my4 is

>:vecty X My — My,

XM= XM,

for any X € vecty, M € m,. The right action of A on X®, M is on the second tensorand.
For any X,Y € vecty, M € my the associativity of this module category is

mxym (XY )M — X (YRrM),

mxyu((T@y)@m) = z@(yom).

For any X € vecty, x € X, we denote by ¢, : X — k the unique linear transformation
that sends x to 1, and any element of a direct complement of < x > to 0. If M € my,
X € vecty, x € X we shall denote by

MM = XM, pM:XoM— M,

Mm) = zom, pMyeom) = 8,.(y)m

T

for any y € X,m € M. Let (z;),(f;) be a pair of dual basis of X and X* respectively.
For any x € X, f € X* it is easy to verify that

Z 0a, ()05, (f) = f(2).

This equality implies that

evX®idM = Zp%p‘;i®kaX*7X7M. (37)
i

Also, one can verify that

For any M, N € m,4 let us denote
Barn : S(M, X >N) = S(X*>M,N),
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where (z;), (f;) is a pair of dual basis of X and X*, respectively. Using (3.8), one can
check that, 3 v is an isomorphism with inverse

®iS(vy,n): S(X*>M,N) — S(M,X>N).

Ty

Let E € A be an object and mpy : E = S(M, M) a dinatural transformation. Let us show
that, 7 satisfies equation (3.2). Let X € vecty, M € my and let (z;), (f;) be a pair of
dual basis of X and X*. The right hand side of equation (3.2) is

S(mxe x 1,1 a) BonrarTxonr = BiS(muxe xar, id ar)S(pE™, pE)mxom

= ;S (mx+ x.um,id M)S(p%p;fDM7 id pr) s

= @is(p%pj‘?MmX*,X,Ma id ar) s

= S<€VX®id M, id M)?TM.
The second equality follows from the dinaturality of 7, and the last equality follows from
(3.7). n

Combining Proposition 3.12 and Proposition 3.14 we have the next result.

3.15. COROLLARY. Assume M is a left C-module category, A is a category, and S :
MP x M — A is a functor. Let \y : fMeM S = S(M, M) be the associated dinatural
transformation of the usual end. There exists a monomorphism

. f;\/IEM<S7 5) - MEMS

S(SUX >id M, id M))\M(,O = S(mX*VX,M, id M)B)?DM,MAXDMQQ (39)
forany X € C,M € M.

such that

Using the above Corollary, we can give another characterization of the module end.
Essentially, this new description says that the module end is a subobject of the usual end,
and it is universal among those subobjects with morphisms that satisfy (3.9).

3.16. PROPOSITION. Let (E, ) be a pair, where
e [ is an object in A;

® V:E— [\, \,S is a morphism such that
S(evx & id ar, id ar) Aty = S(moxce xar, id ar) BRoar s Axenr . (3.10)

Then, there exists a unique map h : E — fMeM(S, B) such that ¥ = @ o h.
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4. Applications to the theory of representations of tensor categories
Throughout this section C will denote a tensor category.

4.1. NATURAL MODULE TRANSFORMATIONS AS AN END. For a pair of functors F,G :
A — B between two abelian categories A, B, it is well known that, there is an isomorphism

Nat (F,G) ~ /A _ Homg(F(4), G(A).

In this Section, we generalize this result when F' and G are C-module functors.
Let M, N be C-module categories, and (F,c), (G,d) : M — N be module functors.
The functor
Homp (F(—),G(—)) : M x M — vecty

evaluated on functions f: M — M', g: N — N'in M, is
Homy (F(f), G(g))(e) = G(g) o a0 F(f),

for any a € Homy (F (M), G(N)).

4.2. PROPOSITION. For any pair of C-module functors (F,c), (G,d) the functor
Homp (F'(—),G(—)) : M°P x M — vect

has a pre-balancing given by

Bayn : Homy (F(M),G(X > N)) — Homy (F(X* > M),G(N)) (4.1)

6])\51,]\[(&) = (GUX > id G(N))m;(i,X,G(N)(ldX* > dX’NO[)Cx*’M’

for any X € C,M,N € M. There is an isomorphism
Nat,(F.G) = §  (Hom(F(-),G(-). ).
MeM

ProoF. It follows straightforward that, /Bﬁ ~ are natural isomorphisms with inverses given
by

(B n) (@) = dyly(id x > acyt y )mx xe ran (coevy b id pan)- (4.2)

For any M € M, define 7y, : Nat,,(F,G) — Hompy (F(M),G(M)) by ma(a) = an.

It follows easily that, 7 is a dinatural transformation. Let us show that 7 satisfies (3.2).

Let o € Nat,,,(F,G), M € M, then the left hand side of (3.2) evaluated in « is equal to

aMF(eVX l>ldM)
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The right hand side of (3.2) evaluated in « is equal to

= (GUX l>idG M))mX* X,G M)<1dX* l>dX MaXDM)CX* XDMF(mX* XM)
(evxbldg )mX*XGM)de* (1dX[>&M)CX,M)CX*,XDMF(mX*,X,M)
le>1dG )(ldx*@)){DOéM)CXff@XM

= (e
o (evx >id poary) exrax,m = anFevy >id ay).

The second equality follows since « is a module natural transformation and satisfies (2.6),
the third equality follows by the naturality of m and since ¢ satisfies (2.3) and the last
one follows from the naturality of c.

Let E be a vector space equipped with a dinatural transformation &, : £ —
Homp (F(M),G(M)) such that (3.2) is satisfied. Define h : E — Nat,,(F,G) as follows.
For any v € E, M € M, h(v)y = Ep(v). 1t is clear, by definition, that m o h = . We
must prove that, for any v € F, h(v) is a natural module transformation, that is, we must
show that equation (2.6) is fulfilled, which in this case is

dx méxenm(v) = (id x > &y (v))ex ms (4.3)

for any X € C, M € M. Since ¢ satisfies (3.2), then
(Bonrar) ™ (En(0) F(evx v ida) F(mi ) = Exonr(v)

for any v € E. Using the definition of (6§>M7 M)_l given in (4.2), this equation is equiva-
lent to

dx préxonr (v) = (id x > Ear(v) F((evx > id ar)miy X, )Cx X1>M)
mx, x+ p(xem)(coevy >id p(xear))
= (id x > &nr(v) F(evx > id ar)) (id x B €t x 2 My X.F(M)
(id x+ > cx,0r))mx x+ p(xsn) (coevy >id)
= (idX > fM(v))(ld x®evx >id pr)(id xgx+ > ex ) (coevy >id)
= (id x > &nr(v)) ex m-
The second equality follows from (2.3), the third equality follows from the naturality of c,

and the last one follows from the rigidity of C. Hence, Nat,,(F, G) satisfies the required
universal property. n

4.3. ON THE CATEGORY OF MODULE FUNCTORS. Assume that C, &, D, are tensor cate-
gories. Assume also that M is a (C, £)-bimodule category, and that A is a (C, D)-bimodule
category. Then, we can consider the functors

L= Lyn: M®Ke N — Funeg(MPP N, (4.4)

L(MReN) = Hom yop(—, M) > N,
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L= Lyx: M®Re N — Fung(M,N) (4.5)
L(MXN) = Hom y op (M, =)* > N,
Both functors are equivalences of (€, D)-bimodule categories. This fact was proven in [7,
Thm. 3.20], see also [1]. The bimodule structure on the functor category Fune(M,N)
is described in (2.11). We will give another proof of the fact that L and L are category
equivalences, and we shall show an explicit description of a quasi-inverse using the module
end of some functor in an analogous way as [13, Lemma 3.5].

4.4. REMARK. Our choice of the definition of the action on the right module category
MEOP given in Section 2.2, using the right dual, is justified by the definition of the functors
L and L. If one changes the action on M°P using left duals, then one has to modify the
definition of the functors L and L, so that they are well-defined.

For later use, let us explain explicitly what it means that L is a bimodule functor. For
any Z € D, W €&, M € M,N € N we have natural isomorphisms

LW MKe N) ~ LM N)o (—<aW), (4.6)
LIMXe N<Z) ~(—<aZ)oL(M®&cN). (4.7)

Assume that, M, N are exact indecomposable as left C-module categories, then there
exist algebras A, B € C such that M ~ C4, N ~ Cp as module categories. Recall that,
if M € C4 then, by Lemma 1.2 (i), *M has structure of left A-module. Exactness of the
module category M is needed to use Proposition 2.14 (iii).

4.5. LEMMA. Assume as above that M = Ca, N = Cg. Denote by (Sym, ¢) a relative
Serre functor associated to M. Then, the following statements hold.

(i) The functor EM,./\/’ : M Ko N — Fung (M, N) is equivalent to the composition of
functors
*(—)=ld
(CA)® B Cp ~2% 108 Cp S 4Cs B Fune(Ca, C).

Recall the definition of the functor R given in Proposition 2.14, R : sCp —
Fune(Ca,Cp), R(V)(X) = X®4V. In particular, it follows that L is a category
equivalence.

(i) For any M € M, N € N, there exists a natural isomorphism of module functors
L (MReN) ~ Ly (MReN) 0 Spy. (4.8)

In particular L is also an equivalence of categories.
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PRrOOF. Existence of the relative Serre functor S, is ensured by the fact that M is exact.
Part (i) follows from the computation of the internal hom given in Proposition 2.7 (ii).
Let us prove (ii). It follows from Lemma 2.6 that, functors

Hom yop (M, —)*, *Hom \((—, M) : M — C,
are equivalent as C-module functors. Also, it follows from Lemma 2.6 that, functors
“*Hom (M, Sp(—)), Hom pgop (Spt(—), M) : M — C

are equivalent as C-module functors. This implies that, L MmN (MXeN) is equivalent to
the C-module functor
“Hom ,(—, M)> N : M — N,

and Ly (MXeN) oSy is equivalent to the C-module functor
“Hom y((M,Spm(=))> N : M = N.

The natural isomorphisms ¢y : Hom(U, V)* — Hom(V, Sy (U)) induce an isomorphism
of C-module functors

oy >idy : "Hom  (—, M) >N — “Hom \(M,Sp(—)) > N.

And this finishes the proof of the Lemma. [

In what follows, we shall give an explicit description of a quasi-inverse of the functor L
using the module end. For any module functor (F,c) € Fune(Ca,Cg) we introduce some
auxiliary functors Sz, D, Lz, Rr that, later, we will compute its module end.

Define
SF . (CA)OP X CA — (CA)Op &(; CB,

. (4.9)
Sp(M,N)=MRX: F(N),
endowed with a pre-balancing
Brn : Sp(M,X>N)— Sp(X*>M,N)
BJ\)SI,N = bJT/Il,X,N(idM &C CX,N)-
Also
Dp: (Ca)™® x Ca — (Cp) K Ca, (4.10)

Dp(M,N)=F(M)X: N,
endowed with a pre-balancing

San i Dr(M, X > N) = Dp(X*>M,N)
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X -1 . -1
5M,N = (CX*,M&CId N)bM,X,N-

Here by xn : X*> M Ke N — M X X > N is the balancing associated to the Deligne
tensor product X, see Section 2.12.
We also have functors

Lrp,Rr:(Ca)® xCyq — ACp,
) ="M®F(N), (4.11)
) = "F(M)®N,
equipped with pre-balancing

Yarw i Re(M, X > N) = Rp(X*> M, N),

X 1 —1 - . (412)
TMN = ((¢X*,M) ®id peyy) (id < ®cx n),

My i Le(M,X>N) = Lp(X*>M,N), 1
nﬁ,N = *(CX*’M)(%(*’F(M))*l@idN_ :

Here we are omitting the isomorphisms X ~ *(X*), for any X € C, and isomorphisms ¢'
are those presented in (1.1).

4.6. LEMMA. Let A, B € C be algebras such that module categories C4,Cp are exact. Let
(F,c) € Fune(Ca,Cp) be a C-module functor. The following statements hold.

(i) There ezists an equivalence of categories *(—)XcId : C¥ReCp — 4CXeCp such that
<*(—) E’C Id) o &C ~ ®C ¢} (*(—) X Id)
as C-balanced functors.

(i) If the module end fMecA(SF,B) exists, then

8o (*(—) K 1d>(7f (Sr. 8)) :]gm (Re).

MeCy

(iii) If the module end fMEcA(DF,(5) exists, then

B o (*(—) K Id)(j{ (Dr,96)) :fém (Lr,m).

MeCy

Here @ : 4C Ke Cg — ACp is the induced functor from the tensor product, that we have
presented in Proposition 2.14 (ii).
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PRrooF. Exactness of module categories C4,Cp is needed to ensure existence of functors
Sr, Dp, see [1, Thm. 3.3 (4)]. Part (i) follows since X o (*(—) x Id) is a C-balanced
functor. There are isomorphisms of C-balanced functors

®o(*(-)Beld)oSr~Bo("(—)Keld) oKeo (Id x F)
~ & oMo (=) x F)
~®0 ((=) x F) = R
The first isomorphism follows by the definition of S, the second isomorphism follows from

part (i), and the third isomorphism is the one presented in Proposition 2.14 (ii). Now,
part (ii) follows by applying Proposition 3.3 (i). The proof of (iii) follows similarly. =

4.7. THEOREM. Let A, B € C be algebras such that C5,Cgr are exact module categories.
The functor
T: FUHC(CA,CB) — Czp &c CB,

given by
)= § (Skp)=§  WFO

MeCxy
is well-defined and is a quasi-inverse of the functor L.

PROOF. Recall the definition of the functor R given in Proposition 2.14, R : 1.Cg —
Fune(C4,Cp), R(V)(X) = X®4V. It follows from Lemma 4.5 that, the composition of

functors -
(CA)OP &c CB i) AC IXC CB g) ACB i Func(CA,CB)

is isomorphic to L. Thus, it is enough to show that, the functor
U : Fune(Ca,Cp) — ACp,

given by
W(F)—]gj . (RF,’Y>—?£/[ . *M @ F(M) (4.14)

is well-defined and it is a quasi-inverse of R. Since we know that R is an equivalence, we
denote by ¥ an adjoint equivalence to R. Take F' € Fung(C4,Cp), and V € 4Cp, then

Hom (4.5 (V, ¥ (F)) = Nat o (R(V), F)
:ji . (Homp(M®4V, F(M)), 5)

~ ¢ (Homuum (V"M @ F(M)).0)
MeCz

~ Hom(A,B)(V,f *M® F(M))

MeCy
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The second isomorphism follows from Proposition 4.2. Here, the isomorphism g is the
one described in (4.1). The third isomorphism follows from Lemma 1.2 (ii); one can easily
verify that if

ar.n : Homea p)(V,"M @ F(X®N)) — Homa,p)(V,*M @ XQF(N))
is defined as &3 y(h) = (id«p®cx,n) © b, then the naturality of ® implies that
55 1(®(0)) = DB (),
for any a € Homp(M® 4V, F(X®N)). Here
® : Homp(M®4V, F(X®N)) — Homa )(V," M @ F(X@N))

is the natural isomorphism described in (1.9). Thus, the third isomorphism follows by
applying Proposition 3.3 (i). The last isomorphism follows from Proposition 3.3 (ii). =

As an immediate consequence of the above Theorem, we have the following results.

4.8. COROLLARY. Let A € C be an algebra such that C4 is an exact module category.
There is an isomorphism of A-bimodules

A:f M@ M.
MeCy
[ |

4.9. COROLLARY. Let M, N be exact indecomposable C-module categories. If U € M,
V eN and F € Fung(M, N), there are isomorphisms

jf Tain (M Re F(M)) ~ F, (4.15)
MeM
M Re Ly (UKo V(M) ~T K V. (4.16)
MeM
n

4.10. REMARK. If C = vecty, Corollary 4.8 reduces to [4, Corollary 2.9].

In [4, Lemma 3.8] it was proven that, for a right exact functor F : M — N, where
M, N are abelian categories, there is an isomorphism

/ Fra(N)X N ~ MX F(M).

NeN MeM

The next result is a generalization of that result; essentially it says that, for a C-module
functor F : M — N, there is an isomorphism

][ Fra(N)XeN ~ MXeF(M).
NeN MeM

The proof, however, is more complicated than the proof of [4, Lemma 3.8], since in module
ends there is a new ingredient (the pre-balancing ) that has to be taken into account.



(CO)ENDS FOR REPRESENTATIONS OF TENSOR CATEGORIES 175

4.11. PROPOSITION. Let M, N be ezact indecomposable left C-module categories. As-
sume that, (F,c) € Fung(M,N) is a module functor with right adjoint (F"™*,d) €
Fune (N, M). Recall the functors Dp, Sp defined in (4.10), (4.9) with their pre-balancings
0, 3. There is an isomorphism

7{ (Fm(N)&cN,(S)g]{ (MReF(M), ). (4.17)
NeN MeM

PROOF. Since M, N are exact indecomposable, we can assume that, there are algebras
A, B € C such that M = C4, N' = Cp. Using Lemma 4.6 (ii), (iii), it will be enough to
prove that there are isomorphisms

% (ﬁFT'“'an) = % (RF77)7
NeCp MeCa

as objects in 4Cp. Here n,~ are defined in (4.13), (4.12). Since the functor R : .Cp —
Fune(Ca,Cp), R(V)(X) = X®4V is an equivalence of categories, using Proposition 3.3
(iii), it will be enough to prove that, there is an isomorphism

§CFENEN).RG) = § (RCMEFOD).RG).  (415)

Since the functor R is a quasi-inverse of the functor ¥ : Fung(C4,Cp) — 4Cp, presented
in (4.14), it follows that

f (ReMEFQD).RG) =

and

%V . (REN®N), R(7)) ~1de,.

Hence, to prove isomorphism (4.18) of functors, it is sufficient to prove that, there is an
isomorphism

$ o (RCFNEN), RO)O) = §  (RCMEM)RO)(FO)

For any U € C4. Applying Theorem 3.9, it will be enough to prove that, there is an
isomorphism

7{ (Uga*F™*(N)@N,7) :]{ (FU)@s"MaM),7),
Necs MeCp

where
My = Rmu = idu®a"(dx- ) (e pro )~ ®id

Yy = ROV rw) = id ren@p(de ) ' @id v,
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for any X € C, M, N € Cg. For this purpose, we shall construct natural isomorphisms
apy : F(U)R"M — UQA"F™* (M)

such that

My (auar®id xen) = (v, x-ou®id ¥ )T N - (4.19)

It will follow then from Proposition 3.3 (i) the desired isomorphism between module ends,
and this will finish the proof of the Proposition.

Recall the isomorphisms @4 y n, U4 v v defined in (1.15), (1.16

@f/[,X,N(a)Wﬁ,*N = (id x®evy)(a®id « ),

)
®4; xn - Homu (M, X®N) — Home(M®4*N, X),
)
U x.n : Home(M®4*N, X) — Homa(M, X®N),
\Ilf\‘LX’N(a) = (oz7rﬁw®id ~)(id pr®coevy).
We shall also denote natural isomorphisms

wym,n : Homp(F (M), N) — Homyu (M, F™*(N)),

comming from the adjunction (F, F™*). Naturality of w implies that for any morphism
f: N — N in Cg, and any o € Homg(F (M), N) we have that

wy w(f o) = F(flwmn(a). (4.20)
This equation implies in particular that
WU,Y®N(\Ijg(U),Y,M<id ) = Fr'a'(q’g(U),Y,M(id))WU,F(U)(id ). (4.21)

Define isomorphisms
ay,mM - F(U)@B*M — U®A*FT'Q’(M)

induced by the natural isomorphisms
Home(F(U)®5*M, Z) X2 Homp(F(U), Z&M) % Homa (U, F™*(Z&M))
— Hom (U, Z&F"™(M)) 25 Home(U® 4* F™ (M), Z),
for any Z € C. This means that
Ay = ‘I)g,Y,Fm(M) (dY,M WU,Y®N(\IJ§(U),Y,M(id )))7
where Y = F(U)®p*M. Using the definition of ®4 one gets that

Clav’l]\/[ﬂ'é’*Fr.a.(M) - (ld Y®€VFT-a-(M)) (422)
(dY,M WU,Y@M(\Ijg(U),Y,M (id ) ®id « pra. (M)) :
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Here we are again denoting Y = F(U)®p*M. Equation (4.19) is equivalent to

(a[;iX*®M®id N)ﬁ]\);,N(Wé,*FTﬂ'(M)@id XeN) =

= iy (ag 3 ®id X®N)(7T§,*Fr~a~(M)®id X®N),
which in turn (forgetting the last id y) is equivalent to
(aUlX*@)MTrU*FT“ (X*®M) )(id r®"(dx-, )(Cblx Fr-a-(M))_l) =
= (id p) @ 5O 1) N ag TG pro (1 @id x).-

Using (4.22), the right hand side of (4.23) is equal to

(4.23)

= (id pv ®B(¢X* M) 1)(a5,11\4775,*Fr-a-(M)®id x)
= (id rny®5(d'x- 1)) (1d Fye g M@eVEra (i @id x ) (@
WUF(U)®B*M®M(\IJ?(U F(U)@B*M,M(id))®id*FN-(M)®X)

= (id py@5 (P 1)) (i F)o g @V pra (i @id x ) (dpw)e g
Fra (\IIF(U) F()@n (M)7M(id ) wu,p@)(id )®id *FT.w(M)@X)

The last equality follows from (4.21). It follows from (4.22), that the left hand side of
(4.23) is equal to

= (id F(U)@B*(X*®M)®6VFr.a.(X*®M)) (dF(U)®B*(X*®M),X*®M
wU,F(U)®B*(X*®M)®X*®M(\Ijg(U),F(U)@)B*(X*@M),X*@M(id ))®id *FT-“‘(X*®M))
(id y®@* (dx= ) (Dxe praan) )
= (id rne s+ (x-ean@eVrra (xeam) ) (Id P)o 5+ (X eM)eFre (X o) @
®*(dX*,M)(QSlX*,F“ﬂ»(M))_l)
(dF(U)®B*(X*®M),X*®M T (‘I’F(U) F(U )®B*(X*®M),X*®M(id))®id)
(wu,p) (id )®id )
= (id ryep- (x* o) @eVxegrra () (dx M@ (S pra.ary) )
(dF(U)®B*(X*®M)7X*®M Fr'a'(\I’g(U),F(U)QaB*(X*@M),X*@M(id )®id)
(wo.r) (id )®id)
= (id F(U)®B*(X*®M)®6VX*®FT-“-(M)(id ®(¢IX*,Fr-a<(M))_1>)
(dr@)on (X omox- u®@id « pra(inex)
(Fm' (\Ijljg(U),F(U)@)B*(X*®M),X*®M(id )@id ) (wU,F(U) (id )®id ) :

The second equation follows from (4.21), the third equality follows from (1.2), the fourth

equality follows from (2.3) for the module functor (F"*,d), which in this case implies
that

(id @dx+ m)dp) 5+ (x*oM), X oM = ApU)25*(X*@M)2X* M
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At last, using the definition of WZ, (1.3) and the rigidity axioms one can see that

(id )@ s- (xr 010 @eVxsgrre () (id D (S pran) )
(dF(U)®B*(X*®M)®X*7M®id ) (Fm‘ (\I’g(U),F(U)c@B*(X*@M),X*@M(id ))®id )
(wu,p@y (id )@id «pra(anex)
= (id ) ®@5(dx- 1) ") (id p)@p- 1 ®evpre.(an®id x ) (dpw)eg
Fr(YZ 0 pnes- (v (1)) (@o,p@) (id )®id « pre(anx ) -
This implies (4.23), and finishes the proof of the Proposition. ]

4.12. A FORMULA FOR THE RELATIVE SERRE FUNCTOR. Let M, N be exact indecom-
posable left C-module categories, and recall the functors

L= LM,N : MP [chN — Func(./\/lb()p,./\f),

Z = ZN7Mbop s NoP IXC MbOP — FUHC(N, MbOp)

described in (4.4) and (4.5). Note that subindices of L are different to those presented in
(4.5).

4.13. LEMMA. Use the above notation. For any M € M, N € N there exists an equiva-
lence of module functors

L (MR N o Ly qvon (NR M) (4.24)

PRrOOF. If B is an exact indecomposable right C-module category, define the auxiliary

functors
HB.B® =C, RY:C—N,

Hf, = Homg(—, B), Ry =->N,
for any B € B, N € N. A straightforward computation shows that
(HE)"(X) =BaX", (RY)"“(N') = "Homy(N', N)
for any X € C, N’ € N. Since L(MX:N) = R} o H'™, then
L(MTRN Y™ o (") o (RY)™
~ M <Hom/(—, N) = Hom,/(—, N)* > M
(2.6) _

~ HomNop(—, N> M = Z(W&cﬁ)

In the second equivalence, we are using the canonical isomorphisms *X* ~ X. [
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The next result is a formula for the relative Serre functor similar to the formula for
the Nakayama functor given in [5]. Let M be an exact indecomposable left C-module
category. Let us denote by €: M x C — M the action of the opposite module
category, that is, the one determined by

M4X=X">M, (4.25)
for any M € M, X € C. For any M € M the functor
Ty 2 (MP)P x MP — M,

Ty (U, V) =Hom (M, V)" > U,

has a pre-balancing
Yov : Tu(U 4« X, V) = Ty(U,V 4*X),
given as the composition
Ty(U 4 X, V)=Hom (M, V) > (X*">U) Q (Hom (M, V)*@X*) > U

— (X®Hom (M, V))* > U — Hom (M, X 6 V) > U = Ty, (U, V < *X).

Thus we can consider the coend

UecMoP
74 (Tur, ).

Since T can be thought of as a functor 7" : (M) x M — Fun(M, M), T(U,V)(M) =

Ty (U, V), then using the parameter theorem described in Section 3.8, we have a functor

UeMoP
M s f (Tar, ).

We shall denote this functor as

UeMeP UeMeP
§ o m=¢ Homu-v) el

It follows from Lemma 2.5 that, fﬁeMop(T,, ¥) : M — MP°P is a C-module functor.

4.14. THEOREM. Let M be an ezact indecomposable left C-module category. There exists
an equivalence of C-module functors

UeMoP
Sy = 74 (Hom,, (—, U)* 5 U, ), (4.26)
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PROOF. Let M, N be a pair of exact indecomposable left C-module categories. To prove
the expression for the relative Serre functor, we will first compute a quasi-inverse of the
functor L = L and then use equivalence (4.8).

Recall that €: M°P x C — M°®P is the action of the opposite module category. That
is,
M4X=X*>M,
for any M € M, X € C. Let us denote by D : (MPReN)®P — NP M, the functor

determined by D(MXN) = NXcM, M € M, N € N. The functor D is an equivalence
of categories.

Take (F,c) € Fune(MP°, ). This means that, we have isomorphisms cx pr : F(X** >
M) — X > F(M), for any M € M, X € C. Define

Op : (MP)P x MP — MPKN,

Or(U,V) = VRF(D).

The functor ©p has a pre-balancing

vy Op(U 4 X,V) = 65T,V «*X),

X _ -1 .

Here by xpy : V €4« XU — VX > U is the balancing of the C-balanced functor X.
Define y : Fung(MPP, N') — M°PXKN the functor given by

= o= TRr@®

The existence of these coends follows from the existence of the ends presented in Theorem
4.7 and the relation between ends and coends for left and right module categories given
in Lemma 3.6. Let us prove that x is a quasi-inverse of L. Since we already know that L
is a category equivalence, it is enough to prove that

for any M € M, N € N. Since D is a category equivalence, this is equivalent to prove
that

D(x(L(M&¢N))) ~ D(MR¢N) = NXc M. (4.27)
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for any M € M, N € N. The left hand side of (4.27) is equal to

_ UeMer . _
D(x(L(MXN))) = D(% U&cL(M&cN)(U))

))

<l

TeMbop

j[ L(MRN) (U)K U
UeMPbop

12

12

7{ Ve L(MXeN)-(V)
VeN
(4.24) (4.16) —

VeN

The first isomorphism follows from Lemma 3.7, the second one follows from Proposition
3.3 (iii), and the third isomorphism follows from Proposition 4.17.

Taking ' = MP° and using (4.8), it follows that

Ly avor (X (1)) 22 Lg pgoon (x(Id ) © Sps 2 S,
and we obtain the desired description of the relative Serre functor. [

4.15. REMARK. If C = vecty and M is a semisimple category, the (right) relatvie Serre
functor coincides with the (right) Nakayama functor. In this case, formula (4.26) coin-
cides with the formula for the (right) Nakayama functor presented in [/, Definition 3.14].

4.16. CORRESPONDENCE OF MODULE CATEGORIES FOR MORITA EQUIVALENT TENSOR
CATEGORIES. Assume that C,D are Morita equivalent tensor categories. This means
that, there is an invertible exact (C,D)-bimodule category B. We can assume that D =
Ende(B)™Y, and the right action of D on B is given by evaluation

4:BxD— B, BaF =F(B).
It was proven in [3, Theorem 3.31] that, the maps
M — Fune(B, M), N — Funp(B® ,N)

are bijections, one the inverse of the other, between equivalence classes of exact C-module
categories and exact D-module categories. We shall give another proof of this fact by
showing an explicit equivalence of D-module categories

N =~ Fune (B, Funp (B, N)),

for any exact indecomposable D-module category N
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For any (H,d) € Fune(B, Funp (B, N)), define
Sy :BPxB— N, Sy(B,C)=H(C)B).
This functor comes with isomorphisms

B Su(B,Xv>C)— Sy(X* > B,C),

Bgc - (dX,C)Bv

forany X € C, B,C € B.

4.17. LEMMA. The functor Sy is a C-balanced functor with balancing given by bp x.c :
Sug(X*>B,C) = Suy(B,Xv> (), bpxc = (dX,(;)];l. In particular, there exists a right
exact functor §H : BPX.B — N such that §H oXe ~ Sy as C-balanced functors.

PROOF. Since (H,d) is a module functor, the natural isomorphism d satisfy (2.3). This
axiom implies that b satisfy (2.15). n

We can consider the functor

U : Fune(B, Funp(B®,N)) — N,

Y(H) = 75 Su=f HEB)D)

4.18. PROPOSITION. The functor ¥ is well-defined.

PROOF. The existence of the module end W(H) follows from applying the functor Su
to the module end fB o BX¥c B, whose existence follow from Proposition 4.7, and using
Proposition 3.3 (iii). "

4.19. THEOREM. Let C be a tensor category and B an indecomposable exact left C-module
category. Consider the finite tensor category D = Ende(B)™Y, and the functor L = L :
BPX.B — Endc(B) introduced in Section 4.3. Let N be an exact indecomposable left
D-module category. Define

® : N — Fune (B, Funp (B, N)),

$(N)(B)(C) = L(CE:B) » N,

for any B,C € B, N € N. The functors ® and ¥ are well-defined, and they establish an
adjoint equivalence of left D-module categories

N ~ Fune(B, Funp(B°P, N)).
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PROOF. Take N € N, B € B. It follows immediately that, ®(N) is a C-module functor.
That ® and ®(N)(B) are D-module functors follow from the bimodule structure of the

functor L (4.6), (4.7). Let us show that the pair of functors ®, ¥ is an adjoint equivalence.
Take H € Fune(B, Funp(B°P, N)), C1,Cy € B, then

B(U(H))(C1)(Ca) = L(C:ReC) > ¢ H(B)(B)

BeB

12

H(B)(L(C3R:Ch)*(B))

BeB

(L(CoReCh)*(B)XeB)

BeB

12

12
CQ> &e\

Sy
j’{ L(CR:CL ) (B)ReB)

)

~ Sy BXcL (02&201)( ))

BeB
~ SH(CQ&CC&) = (Cl)(02>

The first isomorphism follows since H(B) is a D-module functor, the second isomorphism
follows from the definition of S  given in Lemma 4.17, the third one follows from Propo-
sition 3.3 (iii), the fourth isomorphism follows from (4.17), and the fifth isomorphism
follows from (4.16).

Now, let us take N € N, then

YoV = ¢ eWB)B) = § L(BED)e N
~Id>N ~ N.

The isomorphism follows from (4.15). One can verify, in the above proof of ®(V(H)) ~ H
and in the proof of ¥(®(N)) ~ N, that each pre-balancing is used properly. [

4.20. THE DOUBLE DUAL TENSOR CATEGORY. Let M be an exact indecomposable left
C-module category. Then the dual tensor category Ci, = Ende(M) is again a finite tensor
category [3]. The category Ci, acts on M by evaluation:

Cy x M —= M,
(F, M) — F(M).

The category M is exact indecomposable over C},, see [3, Lemma 3.25]. Whence, we can
consider the tensor category (Ci,)i, = Endey, (M). There is a canonical tensor functor

can : C — (Ch) v
can(X)(M) = X > M,

for any X € C, M € M. One can see that can(X) is a C},-module functor. It was proven
in [3, Theorem 3.27] that the functor can is an equivalence of categories. We shall give
an expression of a quasi-inverse of this functor.
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Take (G, d) € (C}yy)i This means that we have natural isomorphisms
dey 2 G(F(M)) = F(G(M)),
for any F' € Cy,, M € M. Let us denote
Hga : MP X M = C,

Hica)(M, N) = Hom(M, G(N)).

The functor H ¢ q) has a pre-balancing 7 (seeing M as a left module category over Cj).
For any F' € Cj, define

Mt Hieay (M, F(N)) = Ha(F* (M), N),
(Recall that F* = F'*) as the composition

Hom(id ,dp n)
_—

Hom(M, G(F(N))) Hom(M, F(G(N))) —

CI Hom(F' (M), G(N)).

Explicitly, using (2.13), this isomorphism is
Tin = Vit anyaon (Qzeaa) (D37, riavy) (14 2))b7 ) © Hom(id , dr v)

where Z = Hom(M, F(G(N))), and isomorphism b is the module structure of the functor
F'a Recall the isomorphisms presented in (2.12)

¢rry : Home(X, Hom(M, N)) — Homu (X > M, N),
Yay.n + Homy (X > M, N) — Home (X, Hom(M, N)),

associated to the pair of adjoint functors (— > M, Hom(M, —)).

4.21. THEOREM. Let M be an exact indecomposable left C-module category. The functor
T : (Ci)wu — C given by

T(G) = ;{w (Hom(M.G(M)).7)

is well-defined. The pair of functors (Y, can) is an adjoint equivalence of categories.
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Proor. We shall prove that, there are natural isomorphisms
Nat,,(can(X),G) ~ Home(X, T(G)).
Let us fix X € C and (G, d) € (C}y,) . Using Proposition 4.2 we have that
Naty(can(X), @) ~ ]§ (Hom (X > M, G(M)), §). (4.98)
MeM
Recall that M is thought of as a module category over C},. According to (4.1), the
pre-balancing [ is, in this case,
B]@[,N : HomM(X > M, G(F(N))) - HOHIM(X > Fl.a'(M)a G<N)>7

Brrn(a) = (evp)au) F (drya)byy.

Here evp : F'% o F — Id is the evaluation of the adjoint pair (F“%, F'). If we denote by
Qury : Hompy (M, F(N)) — Hom (F“*(M), N) natural isomorphisms, then (evg)y =
QF(M),M(ldF(M))a for any M e M

Using Proposition 3.3 (ii) we can consider the module end

74 (Home(X, Hom(M, G(M)).7).
MeM

where, the pre-balancing in this case is

Yt + Home (X, Hom (M, G(F(N))) — Home (X, Hom(F"* (M), G(M))),

51@,]\/(04) = 7]@,1\/ o .

4.22. CLAIM. Isomorphisms
Ui a - Homu (X > M, G(N)) = Home (X, Hom(M, G(N)))
commutes with the pre-balancings, that is

Farn © Vararvy = Vita (any.ao © Bar - (4.29)

As a consequence of this claim, using Proposition 3.3 (i), we get an isomorphism of
module ends

j[ (HomM(X>M,G(M)),5)27{ (Home (X, Hom(M, G(M)),7)
MeM MeM

~ Home (X, - (Hom(M, G(M)),~) = Home (X, T(G)).

The second isomorphism follows from Proposition 3.3 (ii). Combining this isomorphism
with (4.28) we get the result.
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It remains to prove the claim. Naturality of ¢, ¢ and b implies that

Ui (a(heid ) = vy n(e) o b, (4.30)
Hom(id, f)tiy,v(a) = iy (f 0 @), (4.31)
Oy (o h) =@y n(a)(h>id ), (4.32)

by hy (R id pra.an) = FH*(heid a)bxyy, (4.33)

for any morphism A: X - Y inC and any f: N — N', M, N',N € M.
Let o € Hompm(X > M,G(F(N))), and Z = Hom(M, F(G(N))), then the left hand
side of (4.29) evaluated in « is equal to

YN © Vagaray) (@) =
= @Z}gz,a.(M)g(N) (Qzoar.cv) (D51 riaony (id 2))by ) Hom(id , dp )

Vi ary (@)
@/)Fla (M),G(N (QZDM G(N)(¢MF ( dZ))bE,lM)@bJ\)f[,F(G(N))(dF,Na)
= ¢Fl a-(M),G(N) (QZDM G(N)<¢MF ( dZ))bE,lM

(Vi raay (dena) > id pro )
= @Z’Fl»a-(M),G(N) (Qzoar.60) (D31, po(ay (i 2))
F' (431 ey (drne) & id a)by )
= wFl a(M),G(N (QF(G(N)) G(N) (ld)F (h)b;(,lM)
The second equality follows from (4.31), the third equality follows from (4.30), the fourth

follows from (4.33), the fifth equality follows from the naturality of 2. In the last equality
the map h is

h = 651 paoy (d 2) (Uar pao (deve) > id a).
The right hand side of (4.29) evaluated in « is equal to
Virta. an.con (QrGa).am) (id) ™ (dpna)byly).

It remains to observe that h = dp nc, which follows from (4.32). n
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