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(CO)ENDS FOR REPRESENTATIONS OF TENSOR CATEGORIES

NOELIA BORTOLUSSI AND MARTÍN MOMBELLI

Abstract. We generalize the notion of ends and coends in category theory to the
realm of module categories over finite tensor categories. We call this new concept module
(co)end. This tool allows us to give different proofs to several known results in the
theory of representations of finite tensor categories. As a new application, we present
a description of the relative Serre functor for module categories in terms of a module
coend, in a analogous way as a Morita invariant description of the Nakayama functor of
abelian categories presented in [4].

Introduction

Throughout this paper, k will denote a field, all categories will be finite (in the sense of
[3]) abelian k-linear categories, and all functors will be additive k-linear. Given categories

M,A, and a functor S :Mop×M→ A the notion of the end
∫
M∈M S and coend

∫M∈M
S

is a standard and very useful concept in category theory. The end of the functor S is an
object

∫
M∈M S ∈ A together with dinatural transformations

πM :

∫
M∈M

S
..−→ S(M,M)

with the following universal property; for any pair (B, d) consisting of an object B ∈ A
and a dinatural transformation dM : B

..−→ S(M,M), there exists a unique morphism
h : B →

∫
M∈M S in A such that

dM = πM ◦ h for any M ∈M.

The notion of coend is defined dually.

IfM is a finite abelian, k-linear category,M can be thought of as a module category
over vect k, the tensor category of finite dimensional vector k-spaces. If M = mA is the
category of finite dimensional right A-modules, where A is a finite dimensional k-algebra,
then M has a left vect k-action

vect k ×mA → mA

(V,M) 7→ V⊗kM,
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where the right action on V⊗kM is given on the second tensorand. If S : (mA)op×mA → A
is any functor, it posses a canonical natural isomorphism

βVM,N : S(M,V⊗kN)→ S(V ∗⊗kM,N),

for any V ∈ vect k, M,N ∈ mA. See Proposition 3.14. The existence of β essentially
follows from the additivity of the functor S.

If in addition pM : E
..−→ S(M,M) is any dinatural transformation, it satisfies equation

S(evV⊗kidM , idM)pM = S(mV ∗,V,M , idM)βVV⊗kM,MpV⊗kM , (0.1)

for any V ∈ vect k. This is proven also in Proposition 3.14. This equation follows from
the dinaturality of p. Here evV : V ∗⊗kV → k is the evaluation map, and mW,V,M :
(W⊗kV )⊗kM → W⊗k(V⊗kM) is the canonical associativity of vector spaces. This
implies that the end of S is the universal object among all dinatural transformations that
satisfy (0.1). A similar observation can be made for the coend. This is the starting point
to generalize the notion of (co)end, where we will replace the category vect k with an
arbitrary tensor category.

Let C be a tensor category, and M be a left C-module category with action given by
B : C ×M→M. This action induces a right action of C on the opposite category Mop:

J:Mop × C →Mop.

M J X = X∗ . M,

Here M is the object M thought as an object in Mop. Assume S : Mop ×M → A is a
functor. We can produce then two functors:

S ◦ (Id × .), S ◦ (J ×Id ) :Mop × C ×M→ A.

Assume there exists a natural isomorphism β : S ◦ (Id × .)→ S ◦ (J ×Id ), that is

βXM,N : S(M,X . N)→ S(X∗ . M,N).

We call this isomorphism a pre-balancing of S. In this general case, the pre-balancing is
an extra structure of the functor S. We define the module end of S to be an object E ∈ A
that comes with dinatural transformations πM : E

..−→ S(M,M) such that the equation

S(evX . idM , idM)πM = S(mX∗,X,M , idM)βXX.M,MπX.M , (0.2)

is fulfilled, and it is universal among all objects in A with dinatural transformations that
satisfy (0.2). Unlike the case C = vect k, it may happen that a dinatural transformation
does not satisfy (0.2). We denote the module end as

∮
M∈M(S, β), or sometimes simply as∮

M∈M S whenever the pre-balancing β is undertstood from the context.
An analogous definition can be made to define module coend, and also to define module

ends and coends starting from right C-module categories.
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In Section 3 we introduce the module (co)ends, and we prove several results that
extend known properties of (co)ends. We prove that, when the tensor category C = vect k
our definition coincides with the usual (co)ends. See Proposition 3.14. We also study what
happens when we restrict the module (co)ends to a tensor subcategory. See Proposition
3.12.

In Section 4 we give several applications. If M,N are left C-module categories, and
F,G :M→N are C-module functors, the functor

HomN (F (−), G(−)) :Mop ×M→ vect k

has a canonical pre-balancing γ, and we prove that, there is an isomorphism

Natm(F,G) '
∮
M∈M

(HomN (F (−), G(−)), γ).

Here Natm(F,G) is the space of natural module transformations between F and G. See
Proposition 4.2. Using this result we can set up a triangle of adjoint equivalences of
categories

Mop�CN

FunC(Mbop,N ) FunC(M,N ),

LM,N L̃M,N

ΘM,N

χM,N ΥM,N

generalizing the triangle presented in [4]. Here it is required thatM,N are exact module
categories. Here Mop is the opposite category endowed with a right C-action that comes
from the action ofM twisted by a (right) dual. AlsoMbop = (Mop)op. See Subsection 2.2
for these definitions. Observe that,Mbop =M as categories, but as a C-module category
Mbop has the deformed action of M by a double dual.

The equivalences presented above are:

LM,N :Mop �C N → FunC(Mbop,N ),

M�CN 7→ HomMop(−,M) . N,

χM,N : FunC(Mbop,N )→Mop �C N ,

F 7→
∮ U∈Mop

U�CF (U),

and on the other side of the triangle we have equivalences

L̃M,N :Mop �C N → FunC(M,N )

M�CN 7→ HomMop(M,−)∗ . N,
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ΥM,N : FunC(M,N )→Mop �C N ,

F 7→
∮
M∈M

M �C F (M).

Here ΘM,N = L̃M,N ◦ χM,N . The proof that L̃ and L are equivalences is given in Lemma

4.5. The explicit description of a quasi-inverse of L̃ is given in Theorem 4.7.
As a consequence of these equivalences, in Corollary 4.8 we obtain a kind of Peter-

Weyl theorem for the regular A-bimodule A = AAA; that is, if A ∈ C is an algebra such
that, the module category CA is exact, there is an isomorphism of A-bimodules:

A '
∮
M∈M

∗M ⊗M.

We also prove that the module functor ΘM,Mbop(Id ) is equivalent, as module functors,
to the (right) relative Serre functor of M. See Theorem 4.14. This description is an
analogous form of the Morita invariant description of the Nakayama functor presented in
[4].

If C and D are Morita-equivalent tensor categories, this means that there exists an
invertible (C,D)-bimodule category B; we prove that the correspondence

M 7→ FunC(B,M), N 7→ FunD(Bop,N )

is in fact part of a 2-equivalence between the 2-categories of C-module categories and
D-module categories. This result was proven in [3]. We show in Theorem 4.19 that, for
any D-module category N , the functor

FunC(B,FunD(Bop,N ))→ N

H 7→
∮
B∈B

H(B)(B)

is an equivalence of D-module categories.

In the last Section we show that, the functor Υ : (C∗M)∗M → C defined as

Υ(G) =

∮
M∈M

Hom(M,G(M))

is a quasi-inverse of the canonical functor

can : C → (C∗M)∗M, can(X)(M) = X BM.

See Theorem 4.21.

Acknowledgments. This work was partially supported by CONICET and Secyt (UNC),
Argentina. We would like to thank the referee for his/her many comments that sig-
nificantly improved the presentation of the paper. In particular, Proposition 3.16 was
suggested by him/her.
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Preliminaries and Notation. We denote by vect k the category of finite-dimensional
k-vector spaces. If M,N are categories, and F : M → N is a functor, we shall denote
by F r.a., F l.a. : N →M its right and left adjoint, respectively.

For any categoryM, the opposite category will be denoted byMop. We shall denote
by M, f objects and morphisms in Mop that correspond to M and f . We shall also
denote by F op : Mop → N op the opposite functor to F ; that is, the functor defined as
F op(M) = F (M), F op(f) = F (f) for any object M and any morphism f .

1. Finite tensor categories

For basic notions on finite tensor categories we refer to [2], [3]. Let C be a tensor category
over k; that is a rigid monoidal category with simple unit object 1.

If C has associativity constraint given by

aX,Y,Z : (X⊗Y )⊗Z → X⊗(Y⊗Z),

we shall denote by Crev, the tensor category whose underlying abelian category is C, with
reverse monoidal product

⊗rev : C × C → C, X⊗revY = Y⊗X,

and associativity constraints

arev
X,Y,Z : (X⊗revY )⊗revZ → X⊗rev(Y⊗revZ),

arev
X,Y,Z := a−1

Z,Y,X ,

for any X, Y, Z ∈ C. It is well known that for any pair of objects X, Y ∈ C there are
canonical isomorphisms

φrX,Y : (X⊗Y )∗ → Y ∗⊗X∗,
φlX,Y : ∗(X⊗Y )→ ∗Y⊗∗X.

(1.1)

For any X ∈ C we shall denote by

evX : X∗⊗X → 1, coevX : 1→ X⊗X∗

the evaluation and coevaluation. Abusing of the notation, we shall also denote by

evX : X⊗∗X → 1, coevX : 1→ ∗X⊗X

the evaluation and coevaluation for the left duals. If f : X → Y is an isomorphism in C
then

evY (f⊗id Y ) = evX(idX⊗∗f). (1.2)

For any X, Y ∈ C the following identities hold

evX⊗Y = evX(idX⊗evY⊗id ∗X)(idX⊗Y⊗φlX,Y ),

(φlX,Y⊗idX⊗Y )coevX⊗Y = (id ∗Y⊗coevX⊗id Y )coevY .
(1.3)

Off course that similar identities hold for the right duals, but they won’t be needed.
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1.1. Algebras in tensor categories. In this subsection we assume that C is a strict
tensor category, this means in particular that the associativity constraints are the identi-
ties. Let A,B ∈ C be algebras. We shall denote by

CA, AC, ACB

the categories of right A-modules, left A-modules and (A,B)-bimodules in C, respectively.
If V ∈ CA is a right A-module with action given by ρV : V⊗A→ V , andW ∈ AC is a left A-
module with action given by λW : A⊗W → W , we shall denote by πAV,W : V⊗W → V⊗AW
the coequalizer of the maps

ρV⊗idW , id V⊗λW : (V⊗A)⊗W −→ V⊗W.

An object in the category ACB will be denoted as (V, λV , ρV ) ∈ ACB, where λV : A⊗V → V
is the left action, and ρV : V⊗B → V is the right action. Since the tensor product is
exact in both variables, then

πAV,W⊗U = πAV,W⊗id U ,

for any V ∈ CA,W ∈ AC, U ∈ C. We are going to freely use this fact without further
mention.

1.2. Lemma. Assume that C is a tensor category and A,B ∈ C are algebras. The following
statements hold:

(i) If M ∈ CA then ∗M ∈ AC.

(ii) There are natural isomorphisms

HomB(M⊗AV, U) ' Hom(A,B)(V,
∗M⊗U), (1.4)

HomA(M,X⊗N) ' HomC(M⊗A∗N,X), (1.5)

HomA(M,X⊗N) ' HomA(X∗⊗M,N), (1.6)

for any X ∈ C,M,N ∈ CA, V ∈ ACB, U ∈ CB.

Proof. (i). If M ∈ CA then ∗M has structure of left A-module via λ M : A⊗∗M → ∗M
defined as

λ∗M = (id ∗M⊗evM)(id ∗M⊗ρM⊗id ∗M)(coevM⊗id A⊗∗M). (1.7)

(ii). Let us prove only the first isomorphism. The others follow similarly. The object
M⊗AV has a right B-module structure as follows. Consider φ : M⊗V⊗B → M⊗AV ,
φ = πM,V (idM⊗ρV ). Then, ρM⊗AV : M⊗AV⊗B → M⊗AV is defined as the unique
morphism such that

ρM⊗AV (πM,V⊗id B) = φ. (1.8)
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Define Φ : HomB(M⊗AV, U)→ Hom(A,B)(V,
∗M⊗U) as

Φ(f) = (id ∗M⊗fπM,V )(coevM⊗id V ), (1.9)

for any f ∈ HomB(M⊗AV, U). Let us show Φ(f) is a morphism of (A,B)-bimodules. We
need to prove that

(λ∗M⊗id U)(id A⊗Φ(f)) = Φ(f)λV , (1.10)

and
(id ∗M⊗ρU)(Φ(f)⊗id B) = Φ(f)ρV , (1.11)

for any (M,ρM) ∈ CA, (V, λV , ρV ) ∈ ACB and (U, ρU) ∈ CB. Here λ∗M is the left action of
A on ∗M presented in (1.7).

The left hand side of (1.10) is equal to

(λ∗M⊗id U)(id A⊗Φ(f)) =

= (id ∗M⊗evM⊗id U)(id ∗M⊗ρM⊗id ∗M⊗U)(coevM⊗id A⊗∗M⊗U)

(id A⊗∗M⊗fπM,V )(id A⊗coevM⊗id V )

= (id ∗M⊗evM⊗id U)(id ∗M⊗ρM⊗id ∗M⊗U)(id ∗M⊗M⊗A⊗∗M⊗fπM,V )

(coevM⊗id A⊗∗M⊗M⊗V )(id A⊗coevM⊗id V )

= (id ∗M⊗evM⊗id V )(id ∗M⊗M⊗∗M⊗fπM,V )(id ∗M⊗ρM⊗id ∗M⊗M⊗V )

(id ∗M⊗M⊗A⊗coevM⊗id V )(coevM⊗id A⊗V )

= (id ∗M⊗fπM,V )(id ∗M⊗evM⊗idM⊗V )(id ∗M⊗M⊗coevM⊗id V )

(id ∗M⊗ρM⊗id V )(coevM⊗id A⊗V )

= (id ∗M⊗f)(id ∗M⊗πM,V (ρM⊗id V ))(coevM⊗id A⊗V )

= (id ∗M⊗fπM,V )(id ∗M⊗M⊗λV )(coevM⊗id A⊗V )

= (id ∗M⊗fπM,V )(coevM⊗id V )λV

= Φ(f)λV .

The first equality is by the definition of λ∗M and Φ(f). The fifth equality follows from
the rigidity axioms. The sixth equality is consequence of πM,V being the coequalizer of
ρM⊗id V , idM⊗λV . The last equality follows by the definition of Φ(f).

Since f is a B-module morphism,

ρU(f⊗id B) = fρM⊗AV . (1.12)

Using (1.8), this equation implies

ρU(fπM,V⊗id B) = fρM⊗AV (πM,V⊗id B) = fπM,V (idM⊗ρV ). (1.13)

Let us prove (1.11). The left hand side of (1.11) is equal to

(id ∗M⊗ρU)(Φ(f)⊗id B) = (id ∗M⊗ρU(fπM,V⊗id B))(coevM⊗id V⊗B)

= (id ∗M⊗fπM,V (idM⊗ρV ))(coevM⊗id V⊗B)

= (id ∗M⊗fπM,V )(coevM⊗id V )ρV

= Φ(f)ρV .
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The first equality is by the definition of Φ(f). The second equality follows from (1.13).
And the last equality again follows from the definition of Φ(f).

Now, let us show that Φ has an inverse. Let us define

Ψ : Hom(A,B)(V,
∗M⊗U)→ HomB(M⊗AV, U)

as follows. Let g ∈ Hom(A,B)(V,
∗M⊗U). Define Ψ(g) = h where h : M⊗AV → U is the

unique morphism such that

hπM,V = (evM⊗id U)(idM⊗g). (1.14)

Let us show Ψ(g) is a B-module morphism. That is

ρU(h⊗id B) = hρM⊗AV .

For this, it is enough to prove

ρU(hπM,V⊗id B) = hρM⊗AV (πM,V⊗id B).

Starting from the left hand side

ρU(hπM,V⊗id B) = ρU(evM⊗id U⊗B)(idM⊗g⊗id B)

= (evM⊗id U)(idM⊗∗M⊗ρU)(idM⊗g⊗id B)

= (evM⊗id U)(idM⊗gρV )

= hπM,V (idM⊗ρV )

= hρM⊗AV (πM,V⊗id B).

The first equality is by (1.14). The third equality is consequence of g being a B-module
morphism. The fourth equality follows from (1.14) and the last equality follows from
(1.8). Let us show Φ and Ψ are inverses of each another. Let be f ∈ HomB(M⊗AV, U).
We have

ΨΦ(f) = Ψ((id ∗M⊗fπM,V )(coevM⊗id V )) = h

where

hπM,V = (evM⊗id U)(id ∗M⊗M⊗fπM,V )(idM⊗coevM id V )

= fπM,V (evM⊗idM⊗V )(idM⊗coevM⊗id V )

= fπM,V

The first equality is the definition of h, and the last equality follows from the rigidity
axioms. Therefore, h = f and ΨΦ(f) = f . The proof of ΦΨ = Id follows similarly.

We shall only sketch the proof of isomorphism (1.5). Define

ΦA
M,X,N : HomA(M,X⊗N)→ HomC(M⊗A∗N,X),

ΦA
M,X,N(α)πAM,∗N = (idX⊗evN)(α⊗id ∗N),

(1.15)
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and

ΨA
M,X,N : HomC(M⊗A∗N,X)→ HomA(M,X⊗N),

ΨA
M,X,N(α) = (απAM,∗N⊗idN)(idM⊗coevN).

(1.16)

It follows by a direct calculation that ΦA
M,X,N and ΨA

M,X,N are well-defined and they are
one the inverse of the other.

2. Representations of tensor categories

A left module category over C is a category M together with a k-bilinear bifunctor
B : C ×M → M, exact in each variable, endowed with natural associativity and unit
isomorphisms

mX,Y,M : (X ⊗ Y ) . M → X . (Y . M), `M : 1 . M →M.

These isomorphisms are subject to the following conditions:

mX,Y,Z.M mX⊗Y,Z,M = (idX . mY,Z,M) mX,Y⊗Z,M(aX,Y,Z . idM), (2.1)

(idX . `M)mX,1,M = rX . idM , (2.2)

for any X, Y, Z ∈ C,M ∈ M. Here a is the associativity constraint of C. Sometimes we
shall also say that M is a C-module category or a representation of C.

Let M and M′ be a pair of C-modules. A module functor is a pair (F, c), where
F :M→M′ is a functor equipped with natural isomorphisms

cX,M : F (X .M)→ X . F (M),

X ∈ C, M ∈M, such that for any X, Y ∈ C, M ∈M:

(idX . cY,M)cX,Y .MF (mX,Y,M) = mX,Y,F (M) cX⊗Y,M (2.3)

`F (M) c1,M = F (`M). (2.4)

There is a composition of module functors: ifM′′ is a C-module category and (G, d) :
M′ →M′′ is another module functor then the composition

(G ◦ F, e) :M→M′′, eX,M = dX,F (M) ◦G(cX,M), (2.5)

is also a module functor.

A natural module transformation between module functors (F, c) and (G, d) is a natural
transformation θ : F → G such that

dX,MθX.M = (idX . θM)cX,M , (2.6)

for any X ∈ C, M ∈ M. The vector space of natural module transformations will be
denoted by Natm(F,G). Two module functors F,G are equivalent if there exists a natural
module isomorphism θ : F → G. We denote by FunC(M,M′) the category whose objects
are module functors (F, c) from M to M′ and arrows module natural transformations.
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Two C-modulesM andM′ are equivalent if there exist module functors F :M→M′,
G :M′ →M, and natural module isomorphisms IdM′ → F ◦G, IdM → G ◦ F .

A module is indecomposable if it is not equivalent to a direct sum of two non trivial
modules. Recall from [3], that a module M is exact if for any projective object P ∈ C
the object P . M is projective in M, for all M ∈ M. If M is an exact indecomposable
module category over C, the dual category C∗M = EndC(M) is a finite tensor category [3].
The tensor product is the composition of module functors.

A right module category over C is a finite categoryM equipped with an exact bifunctor
/ :M×C →M and natural isomorphisms

m̃M,X,Y : M / (X⊗Y )→ (M /X) / Y, rM : M / 1→M

such that

m̃M/X,Y,Z m̃M,X,Y⊗Z(idM / aX,Y,Z) = (m̃M,X,Y / id Z) m̃M,X⊗Y,Z , (2.7)

(rM / idX)m̃M,1,X = idM / lX . (2.8)

IfM,M′ are right C-modules, a module functor fromM toM′ is a pair (T, d) where
T :M→M′ is a functor and dM,X : T (M / X) → T (M) / X are natural isomorphisms
such that for any X, Y ∈ C, M ∈M:

(dM,X⊗id Y )dM/X,Y T (mM,X,Y ) = mT (M),X,Y dM,X⊗Y , (2.9)

rT (M) dM,1 = T (rM). (2.10)

The next result is well-known. See for example [1, Corollary 2.13.], [10, Prop. 2.2.4].

2.1. Lemma. Let M,N be left C-module categories, and F,G : M → N are C-module
functors.

(i) The right and left adjoint of F , if they exist, have structure of C-module functor.

(ii) If F ' G as C-module functors, then F l.a ' Gl.a, F r.a ' Gr.a as C-module functors.

(iii) If F1, F2 are composable C-module functors, there exists an isomorphism of C-module
functors

(F1 ◦ F2)l.a ' F l.a
2 ◦ F l.a

1 , (F1 ◦ F2)r.a ' F r.a
2 ◦ F r.a

1 .

�
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2.2. Bimodule categories. Assume that C,D, E are tensor categories. A (C,D)−
bimodule category is a category M with left C-module category structure . : C ×M →
M, and right D-module category structure / : M× D → M, equipped with natural
isomorphisms

{γX,M,Y : (X .M) / Y → X . (M / Y ), X ∈ C, Y ∈ D,M ∈M}

satisfying certain axioms. For details the reader is referred to [7], [8].
IfM is a right C-module category then the opposite categoryMop has a left C-action

given by
C ×Mop →Mop,

(X,M) 7→M / X∗,

and associativity isomorphisms mop
X,Y,M = mM,Y ∗,X∗(idM / φrX,Y ). Analogously, if M is a

left C-module category then Mop has structure of right C-module category, with action
given by

Mop × C →Mop,

(M,X) 7→ X∗ . M,

with associativity constraints mop
M,X,Y = mY ∗,X∗,M(φrX,Y . idM) for all X, Y ∈ C,M ∈M.

If M is a (C,D)-bimodule category then Mop is a (D, C)-bimodule category.

If M is a left C-module category, we shall denote by Mbop = (Mop)op. That is,
Mbop =M as categories, but the left action of C on Mbop is

I: C ×Mbop →Mbop,

X IM = X∗∗ . M,

for any X ∈ C, M ∈M.

2.3. Remark. There is no problem to define the actions on the category Mop using left
duals instead of right duals. Our choice of using right duals is related to the choice of
functors L, L̃ presented later in (4.4), (4.5).

Assume that M is a (C,D)-bimodule category, and N is a (C, E)-bimodule category.
The category FunC(M,N ) has a structure of (D, E)-bimodule category. Let us briefly
describe this structure. For more details, the reader is referred to [7]. The left and right
actions are given by

. : D × FunC(M,N )→ FunC(M,N ),

/ : FunC(M,N )× E → FunC(M,N ),

where
(X . F )(M) = F (M /X), (F / Y )(M) = F (M) / Y, (2.11)

for any X ∈ D, Y ∈ E , F ∈ FunC(M,N ) and M ∈M.
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2.4. The internal Hom. Let C be a tensor category andM be a left C-module category.
For any pair of objects M,N ∈ M, the internal Hom is an object Hom(M,N) ∈ C
representing the left exact functor

HomM(− . M,N) : Cop → vect k.

This means that, there are natural isomorphisms, one the inverse of each other,

φXM,N : HomC(X,Hom(M,N))→ HomM(X .M,N),

ψXM,N : HomM(X .M,N)→ HomC(X,Hom(M,N)),
(2.12)

for all M,N ∈ M, X ∈ C. Sometimes we shall denote the internal Hom of the module
categoryM by HomM to emphasize that it is related to this module category. Similarly,
if N is a right C-module category, for any pair M,N ∈ N the internal hom is the object
Hom(M,N) ∈ C representing the left exact functor

HomM(M /−, N) : Cop → vect k.

2.5. Lemma. The following statements hold.

1. Let M be a left C-module category. There are natural isomorphisms

HomM(X .M,N) ' HomM(M,N)⊗X∗,

HomM(M,X . N) ' X⊗HomM(M,N).

for any M,N ∈M, X ∈ C.

2. Analogously, if N is a right C-module category, there are natural isomorphisms

HomN (M /X,N) ' ∗X⊗HomN (M,N),

HomN (M,N / X) ' HomN (M,N)⊗X.

for any M,N ∈ N , X ∈ C.

Proof. The functor HomM(M,−) :M→ C is the right adjoint of the functor RM : C →
M, RM(X) = X .M . Since RM is a C-module functor then, it follows from Lemma 2.1
that, HomM(M,−) is also a C-module functor. This implies in particular that there are
natural isomorphisms

HomM(M,X . N) ' X⊗HomM(M,N).

The other three isomorphisms follow in a similar way.
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Let M be a left C-module category. There is a relation between the internal hom of
M and Mop, stated in the next Lemma.

2.6. Lemma. For any M ∈M, the functors

∗∗HomM(M,−), HomMop(−,M) :Mbop → C,

are equivalent C-module functors. Also the functors

HomMop(M,−)∗, ∗HomM(−,M) :M→ C

are equivalent C-module functors. In particular, there are natural isomorphisms

∗∗HomM(M,N) ' HomMop(N,M),

for any M,N ∈M.

Proof. The functors D : C → Cbop, D(X) = X∗∗, and LM : Cbop → Mbop, LM(X) =
X .M , are C-module functors. A straightforward computation shows that

(LM ◦D)r.a. ' HomMop(−,M),

Dr.a. ' ∗∗(−), (LM)r.a. ' HomM(M,−).

Since D and LM are C-module functors, then, using Lemma 2.1 (i), it follows that, functors
∗∗HomM(M,−), HomMop(−,M) :Mbop → C, are C-module functors. Since (LM◦D)r.a. '
Dr.a. ◦ (LM)r.a., it follows from Lemma 2.1 (iii) that, functors

∗∗HomM(M,−), HomMop(−,M) :Mbop → C,

are equivalent as C-module functors. The proof that functors

HomMop(M,−)∗, ∗HomM(−,M) :M→ C

are equivalent is done by showing that both functors are left adjoint of LM : C →
M, LM(X) = X .M .

2.7. Proposition. Let A ∈ C be an algebra. The following statements hold.

(i) For any M,N ∈ CA, HomCA(M,N) = (M⊗A∗N)∗.

(ii) For any M,N ∈ CA, Hom(CA)op(M,N) = ∗(N⊗A∗M).

Proof. Both calculations of the internal hom follow from (1.5).
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The following result is [6, Lemma 3]. We include the proof since we will need later an
explicit description of certain isomorphism.

2.8. Lemma. LetM be an exact module category over C, and F :M→M be a C-module
functor with left adjoint F l.a. :M→M. Then, there are natural isomorphisms

ξM,N : Hom(M,F (N))→ Hom(F l.a.(M), N).

Proof. Since F is a module functor, then F l.a. is also a module functor. Let us denote
by

bX,M : F l.a.(X .M)→ X . F l.a.(M)

its module structure. Let ΩM,N : HomM(M,F (N)) → HomM(F l.a.(M), N) be natural
isomorphisms. Take X ∈ C. The desired natural isomorphism is the one induced by the
composition of isomorphisms

HomC(X,Hom(M,F (N))) ' HomM(X .M,F (N))

' HomM(F l.a.(X .M), N) ' HomM(X . F l.a.(M), N) '
' HomC(X,Hom(F l.a.(M), N).

Using isomorphisms (2.12), one can describe explicitly this isomorphism as

ξM,N = ψZF l.a.(M),N

(
ΩZ.M,N(φZM,F (N)(id Z))b−1

Z,M

)
, (2.13)

where Z = Hom(M,F (N)).

2.9. The relative Serre functor. Let M be a left C-module category. Following
[11], [5] we recall the definition of the relative Serre functor of a module category. The
reader is also referred to [15].

2.10. Definition. A relative Serre functor for M is a pair (SM, φ), where SM :M→
M is a functor equipped with natural isomorphisms

φM,N : Hom(M,N)∗ ' Hom(N, SM(M)), (2.14)

for any M,N ∈M.

In the next Proposition we summarize some known facts about relative Serre functors
that will be used later.

2.11. Proposition. Let M be a left module category over C. The following holds.

(i) M posses a relative Serre functor if and only if M is exact.

(ii) The functor SM :M→Mbop is an equivalence of C-module categories.

(iii) The natural isomorphism φM,N : Hom(M,N)∗ → Hom(N,SM(M)), is an isomor-
phism of C-bimodule functors.

(iv) The relative Serre functor is unique up to isomorphism of C-module functors.

�
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2.12. Balanced tensor functors and Deligne tensor product. We shall
briefly recall the definition of the relative Deligne tensor product over a tensor category.
The reader is referred to [1], [7] for more details. Assume that M is a right C-module
category and N a left C-module category. Let A be a category.

A C-balanced functor is a pair (Φ, b), where Φ :M×N → A is a functor, right exact in
each variable, equipped with natural isomorphisms bM,X,N : Φ(M /X,N)→ Φ(M,X .N)
such that it satisfies the pentagon

Φ(idM ,m
N
X,Y,N)bM,X⊗Y,N = bM,X,Y BNbM/X,Y,NΦ(mMM,X,Y , idN), (2.15)

for any X, Y ∈ C, M ∈ M, N ∈ N . The natural isomorphism b is called the balanc-
ing of Φ. If (Φ, b), (Φ̃, b̃) : M×N → A are C-balanced functors, a C-balanced natural

transformation α : Φ→ Φ̃ is a natural transformation such that

αM,X.NbM,X,N = b̃M,X,NαM/X,N , (2.16)

for any X ∈ C, M ∈ M, N ∈ N . The balanced tensor product (or sometimes called
relative Deligne tensor product) is a category M �C N , equipped with a C-balanced
functor �C :M×N →M�C N such that for any category A the functor

Rex (M�C N ,A)→ Bal(M×N ,A)

F 7→ F ◦�C
is an equivalence of categories. Here Bal(M×N ,A) denotes the category of C-balanced
functors and C-balanced natural transformations.

2.13. Lemma. Let M,M̃ be right C-module categories and N , Ñ be left C-module cat-
egories. If (F, c) : M̃ → M, (G, d) : Ñ → N are right exact module functors, and

(Φ, b) : M× N → A is a C-balanced functor, then Φ ◦ (F × G) : M̃ × Ñ → A is a
C-balanced functor with balancing given by

eM,X,N = Φ(id F (M), d
−1
X,N)bF (M),X,G(N)Φ(cM,X , idG(N)), (2.17)

for any M ∈ M̃, N ∈ Ñ , X ∈ C.

Proof. We must show that e satisfies (2.15). In this case we have to prove

Φ(id F (M), G(mÑX,Y,N))eM,X⊗Y,N = eM,X,Y .NeM/X,Y,NΦ(F (mM̃M,X,Y ), idG(N)), (2.18)

for any X, Y ∈ C, M ∈ M̃, N ∈ Ñ . The left hand side of (2.18) is equal to

= Φ(id F (M), G(mÑX,Y,N)d−1
X⊗Y,N)bF (M),X⊗Y,G(N)Φ(cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N(idX . d

−1
Y,N)mNX,Y,G(N))bF (M),X⊗Y,G(N)

Φ(cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N)Φ(id F (M), idX . d

−1
Y,N)bF (M),X,Y .G(N)bF (M)/X,Y,G(N)

Φ(mMF (M),X,Y , idG(N))Φ(cM,X⊗Y , idG(N)).
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The first equality is by the definition of e. The second equality is a consequence of (G, d)
being a module functor, and the last equality is because (Φ, b) is a C-balanced functor.
The right hand side of (2.18) is equal to

= eM,X,Y .NΦ(id F (M/X), d
−1
Y,N)bF (M/X),Y,G(N)Φ(cM/X,Y F (mM̃M,X,Y ), idG(N))

= eM,X,Y .NΦ(id F (M/X), d
−1
Y,N)bF (M/X),Y,G(N)Φ((c−1

M,X / id Y )

mMF (M),X,Y cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N)bF (M),X,G(Y .N)Φ(cM,X , idG(Y .N))Φ(id F (M/X), d

−1
Y,N)

bF (M/X),Y,G(N)Φ((c−1
M,X / id Y )mMF (M),X,Y cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N)bF (M),X,G(Y .N)Φ(cM,X , idG(Y .N))Φ(id F (M/X), d

−1
Y,N)

Φ(c−1
M,X , id Y .G(N))bF (M)/X,Y,G(N)Φ(mMF (M),X,Y cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N)bF (M),X,G(Y .N)Φ(id F (M/X), d

−1
Y,N)bF (M)/X,Y,G(N)

Φ(mMF (M),X,Y cM,X⊗Y , idG(N))

= Φ(id F (M), d
−1
X,Y .N)Φ(id F (M), idX . d

−1
Y,N)bF (M),X,Y .G(N)bF (M)/X,Y,G(N)

Φ(mMF (M),X,Y cM,X⊗Y , idG(N)).

The first and third equalities follow by the definition of e. The second equality follows
since (F, c) is a module functor. The fourth equality is consequence of the naturality of b
for cM,X , and the sixth equality is the naturality of b for dY,N . Since both sides are equal,
we get the result.

The next result is well-known.

2.14. Proposition. Let A,B ∈ C be algebras. Thus, the categories CA, CB are left C-
module categories. The following assertions hold.

(i) The functor ∗(−) : (CA)op → AC is an equivalence of right C-module categories.

(ii) The restriction of the tensor product ⊗ : AC × CB → ACB is a C-balanced functor,
and induces an equivalence of categories ⊗̂ : AC �C CB → ACB, such that

⊗̂ ◦�C ' ⊗,

as C-balanced functors.

(iii) Assume that CA is an exact module category. The functor R : ACB → FunC(CA, CB),
V 7→ −⊗AV is an equivalence of categories.

Proof. (i) The duality functor ∗(−) : (CA)op → AC has structure of module functor with
isomorphisms given by

φlX∗,M : ∗(X∗⊗M)→ ∗M⊗X,
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for any X ∈ C, M ∈ CA. Here φl is the natural isomorphisms described in (1.1). Note
that we are omitting the canonical natural isomorphism ∗(X∗) ' X. For (ii) see [1]. The
proof of (iii) can be found for example in [9, Prop. 3.3]. Exactness of the module category
CA implies that ⊗A is biexact. This fact was used in [9] to prove that R is a category
equivalence.

3. The (co)end for module categories

Let C be a tensor category and M be a left C-module category. Assume that A is a
category and S :Mop ×M→ A a functor equipped with natural isomorphisms

βXM,N : S(M,X . N)→ S(X∗ . M,N), (3.1)

for any X ∈ C,M,N ∈M. We shall say that β is a pre-balancing of the functor S.

3.1. Definition. The module end of the pair (S, β) is an object E ∈ A equipped with
dinatural transformations πM : E

..−→ S(M,M) such that

S(evX . idM , idM)πM = S(mX∗,X,M , idM)βXX.M,MπX.M , (3.2)

for any X ∈ C,M ∈ M, universal with this property. This means that, if Ẽ ∈ A is
another object with dinatural transformations ξM : Ẽ

..−→ S(M,M), such that they verify

(3.2), there exists a unique morphism h : Ẽ → E such that ξM = πM ◦ h.

Sometimes we will denote the module end as
∮
M∈M(S, β), or simply as

∮
M∈M S, when

the pre-balancing β is understood from the context. The module coend of the pair (S, β)
is defined dually. This is an object C ∈ A equipped with dinatural transformations
πM : S(M,M)

..−→ C such that

πM = πX∗.Mβ
X
M,X∗.MS(idM ,mX,X∗,M)S(idM , coevX . idM), (3.3)

for any X ∈ C,M ∈ M, universal with this property. This means that, if C̃ ∈ A is
another object with dinatural transformations λM : S(M,M)

..−→ C̃ such that they satisfy

(3.3), there exists a unique morphism g : C → C̃ such that g ◦ πM = λM . The module

coend will be denoted
∮M∈M

(S, β), or simply as
∮M∈M

S.

A similar definition can be made for right C-module categories. Let B be a category,
and N be a right C-module category endowed with a functor S : N op × N → B with a
pre-balancing

γXM,N : S(M /X,N)→ S(M,N / ∗X),

for any M,N ∈ N , X ∈ C.
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3.2. Definition. The module end for S is an object E ∈ B equipped with dinatural
transformations λN : E

..−→ S(N,N) such that

λN = S(idN , idN / evX)S(idN ,m
−1
N,X,∗X)γXN,N/XλN/X , (3.4)

for any N ∈ N , X ∈ C. We shall also denote this module end by
∮
N∈N (S, γ).

Similarly, the module coend is an object C ∈ B with dinatural transformations λN :
S(N,N)

..−→ C such that

λNS(idN / coevX , idN) = λN/∗Xγ
X
N/∗X,NS(m−1

N,∗X,X , idN), (3.5)

for any N ∈ N , X ∈ C. We shall also denote this module coend by
∮ N∈N

(S, γ).

In the next Proposition we collect some results about module ends that generalize
well-known results in the theory of (co)ends. The proofs follow the same lines as the ones
in usual ends. For the sake of completeness we include them.

3.3. Proposition. Assume that M,N are left C-module categories, and S, S̃ : Mop ×
M→ A are functors equipped with pre-balancings

βXM,N : S(M,X . N)→ S(X∗ . M,N),

β̃XM,N : S̃(M,X . N)→ S̃(X∗ . M,N),

X ∈ C,M,N ∈M. The following assertions holds

(i) Assume that the module ends
∮
M∈M(S, β),

∮
M∈M(S̃, β̃) exist and have dinatural

transformations π, π̃, respectively. If γ : S → S̃ is a natural transformation such
that

β̃XM,Nγ(M,X.N) = γ(X∗.M,N)β
X
M,N , (3.6)

then there exists a unique map γ̂ :
∮
M∈M(S, β) →

∮
M∈M(S̃, β̃) such that π̃M γ̂ =

γ(M,M)πM for any M ∈M. If γ is a natural isomorphism, then γ̂ is an isomorphism.

(ii) If the end
∮
M∈M(S, β) exists, then for any object U ∈ A, the end∮

M∈MHomA(U, S(−,−)) exists, and there is an isomorphism∮
M∈M

HomA(U, S(−,−)) ' HomA(U,

∮
M∈M

(S, β)).

Moreover, if
∮
M∈MHomA(U, S(−,−)) exists for any U ∈ A, then the end

∮
M∈M(S, β)

exists.

(iii) Assume F : A → A′ is a right exact functor. Then, there is an isomorphism

F (

∮
N∈N

(S, β)) '
∮
N∈N

(F ◦ S, F (β)).

(iv) If F : M → N is an equivalence of C-module categories, then there is an isomor-
phism ∮

N∈N
S '

∮
M∈M

S(F (−), F (−)).
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Proof. (i). For any M ∈ N define λM :
∮
N∈N (S, β) → S̃(M,M) as λM = γ(M,M)πM .

It follow straightforward that λ is dinatural and since γ satisfies (3.6), then λ satisfies
(3.2). By the universality of the module end, there exists a morphism γ̂ :

∮
M∈M(S, β)→∮

M∈M(S̃, β̃) such that π̃M γ̂ = λM = γ(M,M)πM .
(ii). Let us assume that

∮
M∈M(S, β) exists, and has associated to it dinatural transfor-

mations πN :
∮
M∈M(S, β) → S(N,N). For any U ∈ A, the pre-balancing for the functor

HomA(U, S(−,−)) is defined as

βUX,M,N : HomA(U, S(M,X . N))→ HomA(U, S(X∗ . M,N)),

βUX,M,N(f) = βXM,N ◦ f.
Also define

πUN : HomA(U,

∮
M∈M

(S, β))→ HomA(U, S(N,N)),

πUN(f) = πN ◦ f.
It follows by a straightforward computation that, πU is a dinatural transformation, and
they satisfy (3.2) using βU . It also follows easily that HomA(U,

∮
M∈M(S, β)) together with

πU satisfy the universal property of the module end, thus∮
M∈M

HomA(U, S(−,−)) ' HomA(U,

∮
M∈M

(S, β)).

Now, let us assume that
∮
M∈MHomA(U, S(−,−)) exists for any U ∈ A. Using item (i),

we can define a functor
F : Aop → vect k,

F (U) =

∮
M∈M

HomA(U, S(−,−)).

We shall prove that F es left exact, and thus it is representable. The object representing
the functor F will be a candidate for the module end

∮
M∈M(S, β).

For any M ∈M, and any f : U → V in A, denote

(αf )M : HomA(V, S(M,M))→ HomA(U, S(M,M))

(αf )M(g) = g ◦ f.
To prove that F is left exact, we need to show that, for any morphism f : U → V in
A, F (coKer (f)) = Ker (F (f)). Let be q = coKer (f) : V → C, and l : K → F (V ) be a
k-linear map such that F (f) ◦ l = 0. Then

(αf )M ◦ πVM ◦ l = πUM ◦ F (f) ◦ l = 0.

The second equality follows from item (i). Since ker(αf ) = αq, there exists a map

hM : K → HomA(C, S(M,M)))
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such that (αq)M ◦ hM = πVM ◦ l. It is not difficult to prove that h is a dinatural transfor-
mation, and they satisfy (3.2) (using the isomorphisms βC). By the universal property
of the module end, there exists a morphism φ : K → F (C) such that hM = πCM ◦ φ. It
follows from item (i) that

(αq)M ◦ πCM ◦ φ = πVM ◦ F (q) ◦ φ.

But also
(αq)M ◦ πCM ◦ φ = (αq)M ◦ hM = πVM ◦ l,

whence l = F (q) ◦ φ and therefore F (q) = ker(F (f)). Hence F is represented by an
object E ∈ A; F (U) = HomA(U,E). The maps δM : E → S(M,M), δM = πEM(id E)
are dinatural transformations, and they satisfy (3.2). It follows by a straightforward
computation that E together with δ satisfy the universal property of the module end,
thus E '

∮
M∈M(S, β).

The proof of (iii) and (iv) is straightforward.

3.4. Remark. Off course that, similar results to those presented in Proposition 3.3 can
be stated for module coends, and also for module (co)ends for right module categories.

3.5. Relation between module (co)ends for right and left module cat-
egories. Let A be a category. Let M be a left C-module category, and a functor
S :Mop×M→ A equipped with a pre-balancing βXM,N : S(M,X .N)→ S(X∗ .M,N).
Then N =Mop is a right C-module category. We can consider the functor

Sop : N op ×N → Aop.

It posses a pre-balancing

γXM,N : Sop(M /X,N)→ Sop(M,N / ∗X),

γXM,N = βXM,N .

Note that, the pre-balancing γ is considered as a morphism in Aop. The next result is
straightforward.

3.6. Lemma. There are isomorphisms∮
M∈M

(S, β) '
∮ M∈N

(Sop, γ),

∮ M∈M
(S, β) '

∮
M∈N

(Sop, γ).

�
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A similar result also holds starting from a right C-module category N , and a functor
T : N op ×N → A equipped with a pre-balancing

γXM,N : T (M /X,N)→ T (M,N / ∗X).

If M = N op, then M is a left C-module category, and we can consider the functor

T op :Mop ×M→ Aop

together with a pre-balancing

βXM,N : T op(M,X . N)→ T op(X∗ . M,N)

βXM,N = γX
∗∗

M,N .

The next result is a straightforward consequence of the definitions of module (co)end.

3.7. Lemma. There are isomorphisms∮
N∈N

(T, γ) '
∮ M∈M

(T op, β),

∮ M∈N
(T, γ) '

∮
M∈M

(T op, β).

�

3.8. Parameter theorem for module ends. Let C be a tensor category andM a left
C-module category. Also, let A,B be categories. We start with a functor S :Mop×M→
Fun(A,B) equipped with pre-balancing βXM,N : S(M,X . N) → S(X∗ . M,N), for any
X ∈ C,M,N ∈M. If the end

∮
M∈M(S, β) exists, it is an object in the category Fun(A,B);

we denote this functor as ( ∮
M∈M

(S, β)
)
(−) : A → B.

Alternatively, we can do the following construction. For any A ∈ A we get a functor
SA :Mop×M→ B, SA(M,N) = S(M,N)(A). This functor comes with a pre-balancing

βAX,M,N : SA(M,X . N)→ SA(X∗ . M,N),

βAX,M,N = (βXM,N)A,

for any X ∈ C,M,N ∈ M. If the module end
∮
M∈M(SA, β

A) exists, it is an object in B,
and it defines a functor S : A → B. The proof of the next result follow straightforward.
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3.9. Theorem. Provided all ends
∮
M∈M(SA, β

A) exist, the functor S has a canonical
structure of module end for the functor S. We write

S =
( ∮

M∈M
(S, β)

)
(−).

�

3.10. Remark. Similar results can be obtained for module coends, and also for right
C-module categories.

3.11. Restriction of module (co)ends to tensor subcategories. In this Sec-
tion, we shall show that the module (co)end coincides with the usual (co)end in the case
the tensor category is vect k. We also study what happens with the module (co)end when
we restrict to a tensor subcategory.

Let C be a tensor category and D ⊆ C be a tensor subcategory of C. Assume also
that M is a left C-module category. We can consider the restricted D-module category
ResDCM. The next result is a straightforward consequence of the definition of module
(co)ends.

3.12. Proposition. Let S : Mop ×M → A be a functor equipped with pre-balancing
βXM,N : S(M,X . N)→ S(X∗ . M,N).

(i) There exists a monomorphism in A∮
M∈M

(S, β) ↪→
∮
M∈Res CDM

(S, β).

(ii) There exists an epimorphism in A∮ M∈Res DCM
(S, β)�

∮ M∈M
(S, β).

�

3.13. Remark. Similar result obtained in Proposition 3.12, is valid for right module
categories.

The next result says that, the module (co)end coincides with the usual one in the case
C = vect k.

3.14. Proposition. Let M,A be categories, and S : Mop ×M → A be a functor. In
particularM is a left vect k-module category. The functor S has a canonical pre-balancing
β such that there are isomorphisms∫

M∈M
S '

∮
M∈M

(S, β),∫ M∈M
S '

∮ M∈M
(S, β).
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Proof. We shall prove the first isomorphism concerning the usual end and the module
end. The other isomorphism for the coend follows similarly. For this, we will show that,
for such a functor S there exists a canonical pre-balancing β such that any dinatural
transformation πM : E

..−→ S(M,M) satisfies (3.2).
SinceM is a finite abelian k-linear category, there exists a finite dimensional k-algebra

A such that, M is equivalent to the category of finite dimensional right A-modules mA.
The action of vect k on mA is

. : vect k ×mA → mA,

X . M = X⊗kM,

for any X ∈ vect k, M ∈ mA. The right action of A on X⊗kM is on the second tensorand.
For any X, Y ∈ vect k, M ∈ mA the associativity of this module category is

mX,Y,M : (X⊗kY )⊗kM → X⊗k(Y⊗kM),

mX,Y,M((x⊗y)⊗m) = x⊗(y⊗m).

For any X ∈ vect k, x ∈ X, we denote by δx : X → k the unique linear transformation
that sends x to 1, and any element of a direct complement of < x > to 0. If M ∈ mA,
X ∈ vect k, x ∈ X we shall denote by

ιMx : M → X .M, pMx : X .M →M,

ιMx (m) = x⊗m, pMx (y⊗m) = δx(y)m,

for any y ∈ X,m ∈ M . Let (xi), (fi) be a pair of dual basis of X and X∗ respectively.
For any x ∈ X, f ∈ X∗ it is easy to verify that∑

i

δxi(x)δfi(f) = f(x).

This equality implies that

evX⊗idM =
∑
i

pMxi p
X⊗kM
fi

mX∗,X,M . (3.7)

Also, one can verify that∑
i

ιMxi p
M
xi

= idX⊗kM , pMx ι
M
y = δx(y)idM . (3.8)

For any M,N ∈ mA let us denote

βXM,N : S(M,X . N)→ S(X∗ . M,N),

βXM,N = ⊕iS(pMfi , p
N
xi

),
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where (xi), (fi) is a pair of dual basis of X and X∗, respectively. Using (3.8), one can
check that, βXM,N is an isomorphism with inverse

⊕iS(ιMfi , ι
N
xi

) : S(X∗ . M,N)→ S(M,X . N).

Let E ∈ A be an object and πM : E
..−→ S(M,M) a dinatural transformation. Let us show

that, π satisfies equation (3.2). Let X ∈ vect k, M ∈ mA and let (xi), (fi) be a pair of
dual basis of X and X∗. The right hand side of equation (3.2) is

S(mX∗,X,M , idM)βXX.M,MπX.M = ⊕iS(mX∗,X,M , idM)S(pX.Mfi
, pMxi )πX.M

= ⊕iS(mX∗,X,M , idM)S(pMxi p
X.M
fi

, idM)πM

= ⊕iS(pMxi p
X.M
fi

mX∗,X,M , idM)πM

= S(evX⊗idM , idM)πM .

The second equality follows from the dinaturality of π, and the last equality follows from
(3.7).

Combining Proposition 3.12 and Proposition 3.14 we have the next result.

3.15. Corollary. Assume M is a left C-module category, A is a category, and S :
Mop ×M → A is a functor. Let λM :

∫
M∈M S

..−→ S(M,M) be the associated dinatural
transformation of the usual end. There exists a monomorphism

ϕ :

∮
M∈M

(S, β)→
∫
M∈M

S

such that
S(evX . idM , idM)λMϕ = S(mX∗,X,M , idM)βXX.M,MλX.Mϕ, (3.9)

for any X ∈ C,M ∈M.

�

Using the above Corollary, we can give another characterization of the module end.
Essentially, this new description says that the module end is a subobject of the usual end,
and it is universal among those subobjects with morphisms that satisfy (3.9).

3.16. Proposition. Let (E,ψ) be a pair, where

� E is an object in A;

� ψ : E →
∫
M∈M S is a morphism such that

S(evX . idM , idM)λMψ = S(mX∗,X,M , idM)βXX.M,MλX.Mψ. (3.10)

Then, there exists a unique map h : E →
∮
M∈M(S, β) such that ψ = ϕ ◦ h.

�
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4. Applications to the theory of representations of tensor categories

Throughout this section C will denote a tensor category.

4.1. Natural module transformations as an end. For a pair of functors F,G :
A → B between two abelian categoriesA,B, it is well known that, there is an isomorphism

Nat (F,G) '
∫
A∈A

HomB(F (A), G(A)).

In this Section, we generalize this result when F and G are C-module functors.
Let M,N be C-module categories, and (F, c), (G, d) : M → N be module functors.

The functor
HomN (F (−), G(−)) :Mop ×M→ vect k

evaluated on functions f : M →M ′, g : N → N ′ in M, is

HomN (F (f), G(g))(α) = G(g) ◦ α ◦ F (f),

for any α ∈ HomN (F (M), G(N)).

4.2. Proposition. For any pair of C-module functors (F, c), (G, d) the functor

HomN (F (−), G(−)) :Mop ×M→ vect k

has a pre-balancing given by

βXM,N : HomN (F (M), G(X . N))→ HomN (F (X∗ . M), G(N)) (4.1)

βXM,N(α) = (evX . idG(N))m
−1
X∗,X,G(N)(idX∗ . dX,Nα)cX∗,M ,

for any X ∈ C,M,N ∈M. There is an isomorphism

Natm(F,G) '
∮
M∈M

(HomN (F (−), G(−)), β).

Proof. It follows straightforward that, βXM,N are natural isomorphisms with inverses given
by (

βXM,N

)–1
(α) = d−1

X,N(idX . αc
−1
X∗,M)mX,X∗,F (M)(coevX . id F (M)). (4.2)

For any M ∈ M, define πM : Natm(F,G) → HomN (F (M), G(M)) by πM(α) = αM .
It follows easily that, π is a dinatural transformation. Let us show that π satisfies (3.2).
Let α ∈ Natm(F,G), M ∈M, then the left hand side of (3.2) evaluated in α is equal to

αMF (evX . idM).



(CO)ENDS FOR REPRESENTATIONS OF TENSOR CATEGORIES 169

The right hand side of (3.2) evaluated in α is equal to

= (evX . idG(M))m
−1
X∗,X,G(M)(idX∗ . dX,MαX.M)cX∗,X.MF (mX∗,X,M)

= (evX . idG(M))m
−1
X∗,X,G(M)(idX∗ . (idX . αM)cX,M)cX∗,X.MF (mX∗,X,M)

= (evX . idG(M))(idX∗⊗X . αM)cX∗⊗X,M

= αM(evX . id F (M))cX∗⊗X,M = αMF (evX . idM).

The second equality follows since α is a module natural transformation and satisfies (2.6),
the third equality follows by the naturality of m and since c satisfies (2.3) and the last
one follows from the naturality of c.

Let E be a vector space equipped with a dinatural transformation ξM : E →
HomN (F (M), G(M)) such that (3.2) is satisfied. Define h : E → Natm(F,G) as follows.
For any v ∈ E, M ∈ M, h(v)M = ξM(v). It is clear, by definition, that π ◦ h = ξ. We
must prove that, for any v ∈ E, h(v) is a natural module transformation, that is, we must
show that equation (2.6) is fulfilled, which in this case is

dX,MξX.M(v) = (idX . ξM(v))cX,M , (4.3)

for any X ∈ C, M ∈M. Since ξ satisfies (3.2), then(
βXX.M,M

)−1(
ξM(v)F (evX . idM)F (m−1

X∗,X,M)
)

= ξX.M(v),

for any v ∈ E. Using the definition of
(
βXX.M,M

)−1
given in (4.2), this equation is equiva-

lent to

dX,MξX.M(v) =
(
idX . ξM(v)F ((evX . idM)m−1

X∗,X,M)c−1
X∗,X.M

)
mX,X∗,F (X.M)(coevX . id F (X.M))

=
(
idX . ξM(v)F (evX . idM)

)
(idX . c

−1
X∗⊗X,Mm

−1
X∗,X,F (M)

(idX∗ . cX,M))mX,X∗,F (X.M)(coevX . id )

=
(
idX . ξM(v)

)
(idX⊗evX . idM)(idX⊗X∗ . cX,M)(coevX . id )

=
(
idX . ξM(v)

)
cX,M .

The second equality follows from (2.3), the third equality follows from the naturality of c,
and the last one follows from the rigidity of C. Hence, Natm(F,G) satisfies the required
universal property.

4.3. On the category of module functors. Assume that C, E ,D, are tensor cate-
gories. Assume also thatM is a (C, E)-bimodule category, and thatN is a (C,D)-bimodule
category. Then, we can consider the functors

L = LM,N :Mop �C N → FunC(Mbop,N ), (4.4)

L(M�CN) = HomMop(−,M) . N,
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L̃ = L̃M,N :Mop �C N → FunC(M,N ) (4.5)

L̃(M�CN) = HomMop(M,−)∗ . N,

Both functors are equivalences of (E ,D)-bimodule categories. This fact was proven in [7,
Thm. 3.20], see also [1]. The bimodule structure on the functor category FunC(M,N )

is described in (2.11). We will give another proof of the fact that L and L̃ are category
equivalences, and we shall show an explicit description of a quasi-inverse using the module
end of some functor in an analogous way as [13, Lemma 3.5].

4.4. Remark. Our choice of the definition of the action on the right module category
Mop, given in Section 2.2, using the right dual, is justified by the definition of the functors
L and L̃. If one changes the action on Mop using left duals, then one has to modify the
definition of the functors L and L̃, so that they are well-defined.

For later use, let us explain explicitly what it means that L̃ is a bimodule functor. For
any Z ∈ D, W ∈ E , M ∈M, N ∈ N we have natural isomorphisms

L̃(W .M �C N) ' L̃(M �C N) ◦ (− / W ), (4.6)

L̃(M �C N / Z) ' (− / Z) ◦ L̃(M �C N). (4.7)

Assume that,M,N are exact indecomposable as left C-module categories, then there
exist algebras A,B ∈ C such that M ' CA, N ' CB as module categories. Recall that,
if M ∈ CA then, by Lemma 1.2 (i), ∗M has structure of left A-module. Exactness of the
module category M is needed to use Proposition 2.14 (iii).

4.5. Lemma. Assume as above that M = CA, N = CB. Denote by (SM, φ) a relative
Serre functor associated to M. Then, the following statements hold.

(i) The functor L̃M,N :Mop �C N → FunC(M,N ) is equivalent to the composition of
functors

(CA)op �C CB
∗(−)�Id−−−−−→ AC �C CB

⊗−→ ACB
R−→ FunC(CA, CB).

Recall the definition of the functor R given in Proposition 2.14, R : ACB →
FunC(CA, CB), R(V )(X) = X⊗AV . In particular, it follows that L̃ is a category
equivalence.

(ii) For any M ∈M, N ∈ N , there exists a natural isomorphism of module functors

L̃M,N (M�CN) ' LM,N (M�CN) ◦ SM. (4.8)

In particular L is also an equivalence of categories.
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Proof. Existence of the relative Serre functor SM is ensured by the fact thatM is exact.
Part (i) follows from the computation of the internal hom given in Proposition 2.7 (ii).
Let us prove (ii). It follows from Lemma 2.6 that, functors

HomMop(M,−)∗, ∗HomM(−,M) :M→ C,

are equivalent as C-module functors. Also, it follows from Lemma 2.6 that, functors

∗∗HomM(M, SM(−)), HomMop(SM(−),M) :M→ C

are equivalent as C-module functors. This implies that, L̃M,N (M�CN) is equivalent to
the C-module functor

∗HomM(−,M) . N :M→N ,

and LM,N (M�CN) ◦ SM is equivalent to the C-module functor

∗∗HomM(M,SM(−)) . N :M→N .

The natural isomorphisms φU,V : Hom(U, V )∗ → Hom(V, SM(U)) induce an isomorphism
of C-module functors

∗∗φ−,M . idN : ∗HomM(−,M) . N → ∗∗HomM(M,SM(−)) . N.

And this finishes the proof of the Lemma.

In what follows, we shall give an explicit description of a quasi-inverse of the functor L̃
using the module end. For any module functor (F, c) ∈ FunC(CA, CB) we introduce some
auxiliary functors SF , DF ,LF ,RF that, later, we will compute its module end.

Define

SF : (CA)op × CA → (CA)op �C CB,
SF (M,N) = M �C F (N),

(4.9)

endowed with a pre-balancing

βXM,N : SF (M,X . N)→ SF (X∗ . M,N)

βXM,N = b−1
M,X,N(idM �C cX,N).

Also

DF : (CA)op × CA → (CB)op �C CA,
DF (M,N) = F (M)�C N,

(4.10)

endowed with a pre-balancing

δXM,N : DF (M,X . N)→ DF (X∗ . M,N)



172 BORTOLUSSI AND MOMBELLI

δXM,N = (c−1
X∗,M�CidN)b−1

M,X,N .

Here bM,X,N : X∗ . M �C N → M �C X . N is the balancing associated to the Deligne
tensor product �C, see Section 2.12.

We also have functors

LF ,RF : (CA)op × CA → ACB,
RF (M,N) = ∗M⊗F (N),

LF (M,N) = ∗F (M)⊗N,
(4.11)

equipped with pre-balancing

γXM,N : RF (M,X . N)→ RF (X∗ . M,N),

γXM,N = ((φlX∗,M)−1⊗id F (N))(id ∗M⊗cX,N),
(4.12)

ηXM,N : LF (M,X . N)→ LF (X∗ . M,N),

ηXM,N = ∗(cX∗,M)(φlX∗,F (M))
−1⊗idN .

(4.13)

Here we are omitting the isomorphisms X ' ∗(X∗), for any X ∈ C, and isomorphisms φl

are those presented in (1.1).

4.6. Lemma. Let A,B ∈ C be algebras such that module categories CA, CB are exact. Let
(F, c) ∈ FunC(CA, CB) be a C-module functor. The following statements hold.

(i) There exists an equivalence of categories ∗(−)�C Id : Cop
A �CCB → AC�CCB such that

(∗(−)�C Id ) ◦�C ' �C ◦ (∗(−)× Id )

as C-balanced functors.

(ii) If the module end
∮
M∈CA

(SF , β) exists, then

⊗̂ ◦ (∗(−)�C Id )
( ∮

M∈CA
(SF , β)

)
'
∮
M∈CA

(RF , γ).

(iii) If the module end
∮
M∈CA

(DF , δ) exists, then

⊗̂ ◦ (∗(−)�C Id )
( ∮

M∈CA
(DF , δ)

)
'
∮
M∈CA

(LF , η).

Here ⊗̂ : AC �C CB → ACB is the induced functor from the tensor product, that we have
presented in Proposition 2.14 (ii).
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Proof. Exactness of module categories CA, CB is needed to ensure existence of functors
SF , DF , see [1, Thm. 3.3 (4)]. Part (i) follows since �C ◦ (∗(−) × Id ) is a C-balanced
functor. There are isomorphisms of C-balanced functors

⊗̂ ◦ (∗(−)�C Id ) ◦ SF ' ⊗̂ ◦ (∗(−)�C Id ) ◦�C ◦ (Id × F )

' ⊗̂ ◦�C ◦ (∗(−)× F )

' ⊗ ◦ (∗(−)× F ) = RF .

The first isomorphism follows by the definition of SF , the second isomorphism follows from
part (i), and the third isomorphism is the one presented in Proposition 2.14 (ii). Now,
part (ii) follows by applying Proposition 3.3 (i). The proof of (iii) follows similarly.

4.7. Theorem. Let A,B ∈ C be algebras such that CA, CB are exact module categories.
The functor

Υ : FunC(CA, CB)→ Cop
A �C CB,

given by

Υ(F ) =

∮
M∈CA

(SF , β) =

∮
M∈CA

M �C F (M)

is well-defined and is a quasi-inverse of the functor L̃.

Proof. Recall the definition of the functor R given in Proposition 2.14, R : ACB →
FunC(CA, CB), R(V )(X) = X⊗AV . It follows from Lemma 4.5 that, the composition of
functors

(CA)op �C CB
∗(−)�Id−−−−−→ AC �C CB

⊗−→ ACB
R−→ FunC(CA, CB)

is isomorphic to L̃. Thus, it is enough to show that, the functor

Ψ : FunC(CA, CB)→ ACB,

given by

Ψ(F ) =

∮
M∈CA

(RF , γ) =

∮
M∈CA

∗M ⊗ F (M) (4.14)

is well-defined and it is a quasi-inverse of R. Since we know that R is an equivalence, we
denote by Ψ an adjoint equivalence to R. Take F ∈ FunC(CA, CB), and V ∈ ACB, then

Hom(A,B)(V,Ψ(F )) ' Natm(R(V ), F )

'
∮
M∈CA

(HomB(M⊗AV, F (M)), β)

'
∮
M∈CA

(Hom(A,B)(V,
∗M ⊗ F (M)), δ)

' Hom(A,B)(V,

∮
M∈CA

∗M ⊗ F (M))
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The second isomorphism follows from Proposition 4.2. Here, the isomorphism β is the
one described in (4.1). The third isomorphism follows from Lemma 1.2 (ii); one can easily
verify that if

δXM,N : Hom(A,B)(V,
∗M ⊗ F (X⊗N))→ Hom(A,B)(V,

∗M ⊗X⊗F (N))

is defined as δXM,N(h) = (id ∗M⊗cX,N) ◦ h, then the naturality of Φ implies that

δXM,N(Φ(α)) = Φ(βXM,N(α)),

for any α ∈ HomB(M⊗AV, F (X⊗N)). Here

Φ : HomB(M⊗AV, F (X⊗N))→ Hom(A,B)(V,
∗M ⊗ F (X⊗N))

is the natural isomorphism described in (1.9). Thus, the third isomorphism follows by
applying Proposition 3.3 (i). The last isomorphism follows from Proposition 3.3 (ii).

As an immediate consequence of the above Theorem, we have the following results.

4.8. Corollary. Let A ∈ C be an algebra such that CA is an exact module category.
There is an isomorphism of A-bimodules

A '
∮
M∈CA

∗M ⊗M.

�

4.9. Corollary. Let M, N be exact indecomposable C-module categories. If U ∈ M,
V ∈ N and F ∈ FunC(M,N ), there are isomorphisms∮

M∈M
L̃M,N (M �C F (M)) ' F, (4.15)

∮
M∈M

M �C L̃M,N (U �C V )(M) ' U �C V. (4.16)

�

4.10. Remark. If C = vect k, Corollary 4.8 reduces to [4, Corollary 2.9].

In [4, Lemma 3.8] it was proven that, for a right exact functor F : M → N , where
M,N are abelian categories, there is an isomorphism∫

N∈N
F r.a.(N)�N '

∫
M∈M

M � F (M).

The next result is a generalization of that result; essentially it says that, for a C-module
functor F :M→N , there is an isomorphism∮

N∈N
F r.a.(N)�CN '

∮
M∈M

M�CF (M).

The proof, however, is more complicated than the proof of [4, Lemma 3.8], since in module
ends there is a new ingredient (the pre-balancing β) that has to be taken into account.
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4.11. Proposition. Let M,N be exact indecomposable left C-module categories. As-
sume that, (F, c) ∈ FunC(M,N ) is a module functor with right adjoint (F r.a., d) ∈
FunC(N ,M). Recall the functors DF , SF defined in (4.10), (4.9) with their pre-balancings
δ, β. There is an isomorphism∮

N∈N
(F r.a.(N)�CN, δ) '

∮
M∈M

(M�CF (M), β). (4.17)

Proof. Since M,N are exact indecomposable, we can assume that, there are algebras
A,B ∈ C such that M = CA,N = CB. Using Lemma 4.6 (ii), (iii), it will be enough to
prove that there are isomorphisms∮

N∈CB
(LF r.a. , η) '

∮
M∈CA

(RF , γ),

as objects in ACB. Here η, γ are defined in (4.13), (4.12). Since the functor R : ACB →
FunC(CA, CB), R(V )(X) = X⊗AV is an equivalence of categories, using Proposition 3.3
(iii), it will be enough to prove that, there is an isomorphism∮

N∈CB

(
R(∗F r.a.(N)⊗N), R(η)

)
'
∮
M∈CA

(
R(∗M⊗F (M)), R(γ)

)
. (4.18)

Since the functor R is a quasi-inverse of the functor Ψ : FunC(CA, CB) → ACB, presented
in (4.14), it follows that ∮

M∈CA

(
R(∗M⊗F (M)), R(γ)

)
' F,

and ∮
N∈CB

(
R(∗N⊗N), R(γ)

)
' Id CB .

Hence, to prove isomorphism (4.18) of functors, it is sufficient to prove that, there is an
isomorphism∮

N∈CB

(
R(∗F r.a.(N)⊗N), R(η)

)
(U) '

∮
M∈CB

(
R(∗M⊗M), R(γ)

)
(F (U))

For any U ∈ CA. Applying Theorem 3.9, it will be enough to prove that, there is an
isomorphism ∮

N∈CB

(
U⊗A∗F r.a.(N)⊗N, η̂

)
'
∮
M∈CB

(
F (U)⊗B∗M⊗M), γ̂

)
,

where
η̂XM,N = R(η)U = id U⊗A∗(dX∗,M)(φlX∗,F r.a.(M))

−1⊗idN ,

γ̂XM,N = R(γ)F (U) = id F (U)⊗B(φlX∗,M)−1⊗idN ,
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for any X ∈ C, M,N ∈ CB. For this purpose, we shall construct natural isomorphisms

aU,M : F (U)⊗B∗M → U⊗A∗F r.a.(M)

such that
η̂XM,N(aU,M⊗idX⊗N) = (aU,X∗⊗M⊗idN)γ̂XM,N . (4.19)

It will follow then from Proposition 3.3 (i) the desired isomorphism between module ends,
and this will finish the proof of the Proposition.

Recall the isomorphisms ΦA
M,X,N ,Ψ

A
M,X,N defined in (1.15), (1.16)

ΦA
M,X,N : HomA(M,X⊗N)→ HomC(M⊗A∗N,X),

ΦA
M,X,N(α)πAM,∗N = (idX⊗evN)(α⊗id ∗N),

ΨA
M,X,N : HomC(M⊗A∗N,X)→ HomA(M,X⊗N),

ΨA
M,X,N(α) = (απAM,∗N⊗idN)(idM⊗coevN).

We shall also denote natural isomorphisms

ωM,N : HomB(F (M), N)→ HomA(M,F r.a.(N)),

comming from the adjunction (F, F r.a.). Naturality of ω implies that for any morphism

f : N → Ñ in CB, and any α ∈ HomB(F (M), N) we have that

ωM,Ñ(f α) = F r.a.(f)ωM,N(α). (4.20)

This equation implies in particular that

ωU,Y⊗N(ΨB
F (U),Y,M(id )) = F r.a.(ΨB

F (U),Y,M(id ))ωU,F (U)(id ). (4.21)

Define isomorphisms
aU,M : F (U)⊗B∗M → U⊗A∗F r.a.(M)

induced by the natural isomorphisms

HomC(F (U)⊗B∗M,Z)
ΨB

−−→ HomB(F (U), Z⊗M)
ω−→ HomA(U, F r.a.(Z⊗M))

−→ HomA(U,Z⊗F r.a.(M))
ΦA

−−→ HomC(U⊗A∗F r.a.(M), Z),

for any Z ∈ C. This means that

a−1
U,M = ΦA

U,Y,F r.a.(M)

(
dY,M ωU,Y⊗N(ΨB

F (U),Y,M(id ))
)
,

where Y = F (U)⊗B∗M. Using the definition of ΦA one gets that

a−1
U,Mπ

A
U,∗F r.a.(M) = (id Y⊗evF r.a.(M))(

dY,M ωU,Y⊗M(ΨB
F (U),Y,M(id ))⊗id ∗F r.a.(M)

)
.

(4.22)
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Here we are again denoting Y = F (U)⊗B∗M . Equation (4.19) is equivalent to

(a−1
U,X∗⊗M⊗idN)η̂XM,N(πAU,∗F r.a.(M)⊗idX⊗N) =

= γ̂XM,N(a−1
U,M⊗idX⊗N)(πAU,∗F r.a.(M)⊗idX⊗N),

which in turn (forgetting the last idN) is equivalent to

(a−1
U,X∗⊗Mπ

A
U,∗F r.a.(X∗⊗M))(id U⊗∗(dX∗,M)(φlX∗,F r.a.(M))

−1) =

= (id F (U)⊗B(φlX∗,M)−1)(a−1
U,Mπ

A
U,∗F r.a.(M)⊗idX).

(4.23)

Using (4.22), the right hand side of (4.23) is equal to

= (id F (U)⊗B(φlX∗,M)−1)(a−1
U,Mπ

A
U,∗F r.a.(M)⊗idX)

= (id F (U)⊗B(φlX∗,M)−1)
(
id F (U)⊗B

∗M⊗evF r.a.(M)⊗idX

)(
dF (U)⊗B

∗M,M

ωU,F (U)⊗B
∗M⊗M(ΨB

F (U),F (U)⊗B
∗M,M(id ))⊗id ∗F r.a.(M)⊗X

)
= (id F (U)⊗B(φlX∗,M)−1)

(
id F (U)⊗B

∗M⊗evF r.a.(M)⊗idX

)(
dF (U)⊗B

∗M,M

F r.a.(ΨB
F (U),F (U)⊗B

∗(M),M(id ))ωU,F (U)(id )⊗id ∗F r.a.(M)⊗X
)

The last equality follows from (4.21). It follows from (4.22), that the left hand side of
(4.23) is equal to

=
(
id F (U)⊗B

∗(X∗⊗M)⊗evF r.a.(X∗⊗M)

)(
dF (U)⊗B

∗(X∗⊗M),X∗⊗M

ωU,F (U)⊗B
∗(X∗⊗M)⊗X∗⊗M(ΨB

F (U),F (U)⊗B
∗(X∗⊗M),X∗⊗M(id ))⊗id ∗F r.a.(X∗⊗M)

)(
id U⊗∗(dX∗,M)(φlX∗,F r.a.(M))

−1
)

=
(
id F (U)⊗B

∗(X∗⊗M)⊗evF r.a.(X∗⊗M)

)(
id F (U)⊗B

∗(X∗⊗M)⊗F r.a(X∗⊗M)⊗
⊗∗(dX∗,M)(φlX∗,F r.a.(M))

−1
)(

dF (U)⊗B
∗(X∗⊗M),X∗⊗M F r.a.(ΨB

F (U),F (U)⊗B
∗(X∗⊗M),X∗⊗M(id ))⊗id

)(
ωU,F (U)(id )⊗id

)
=
(
id F (U)⊗B

∗(X∗⊗M)⊗evX∗⊗F r.a.(M)(dX∗,M⊗(φlX∗,F r.a.(M))
−1)
)(

dF (U)⊗B
∗(X∗⊗M),X∗⊗M F r.a.(ΨB

F (U),F (U)⊗B
∗(X∗⊗M),X∗⊗M(id )⊗id

)(
ωU,F (U)(id )⊗id

)
=
(
id F (U)⊗B

∗(X∗⊗M)⊗evX∗⊗F r.a.(M)(id⊗(φlX∗,F r.a.(M))
−1)
)(

dF (U)⊗B
∗(X∗⊗M)⊗X∗,M⊗id ∗F r.a.(M)⊗X

)(
F r.a.(ΨB

F (U),F (U)⊗B
∗(X∗⊗M),X∗⊗M(id )⊗id

)(
ωU,F (U)(id )⊗id

)
.

The second equation follows from (4.21), the third equality follows from (1.2), the fourth
equality follows from (2.3) for the module functor (F r.a., d), which in this case implies
that

(id⊗dX∗,M)dF (U)⊗B
∗(X∗⊗M),X∗⊗M = dF (U)⊗B

∗(X∗⊗M)⊗X∗,M .
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At last, using the definition of ΨB, (1.3) and the rigidity axioms one can see that(
id F (U)⊗B

∗(X∗⊗M)⊗evX∗⊗F r.a.(M)(id⊗(φlX∗,F r.a.(M))
−1)
)(

dF (U)⊗B
∗(X∗⊗M)⊗X∗,M⊗id

)(
F r.a.(ΨB

F (U),F (U)⊗B
∗(X∗⊗M),X∗⊗M(id ))⊗id

)
(ωU,F (U)(id )⊗id ∗F r.a(M)⊗X)

= (id F (U)⊗B(φlX∗,M)−1)
(
id F (U)⊗B

∗M⊗evF r.a.(M)⊗idX

)(
dF (U)⊗B

∗M,M

F r.a.(ΨB
F (U),F (U)⊗B

∗(M),M(id ))(ωU,F (U)(id )⊗id ∗F r.a(M)⊗X).

This implies (4.23), and finishes the proof of the Proposition.

4.12. A formula for the relative Serre functor. LetM, N be exact indecom-
posable left C-module categories, and recall the functors

L = LM,N :Mop �C N → FunC(Mbop,N ),

L̃ = L̃N ,Mbop : N op �CMbop → FunC(N ,Mbop)

described in (4.4) and (4.5). Note that subindices of L̃ are different to those presented in
(4.5).

4.13. Lemma. Use the above notation. For any M ∈M, N ∈ N there exists an equiva-
lence of module functors

LM,N (M�CN)l.a. ' L̃N ,Mbop(N�CM) (4.24)

Proof. If B is an exact indecomposable right C-module category, define the auxiliary
functors

HBB : Bop → C, RNN : C → N ,

HBB = HomB(−, B), RNN = − . N,

for any B ∈ B, N ∈ N . A straightforward computation shows that

(HBB)l.a.(X) = B / X∗, (RNN )l.a.(N ′) = ∗HomN (N ′, N)

for any X ∈ C, N ′ ∈ N . Since L(M�CN) = RNN ◦HM
op

M
, then

L(M�CN)l.a. ' (HM
op

M
)l.a. ◦ (RNN )l.a.

'M / HomN (−, N) = HomN (−, N)∗ . M

(2.6)
' HomN op(−, N)∗∗∗ . M = L̃(N�CM).

In the second equivalence, we are using the canonical isomorphisms ∗X∗ ' X.
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The next result is a formula for the relative Serre functor similar to the formula for
the Nakayama functor given in [5]. Let M be an exact indecomposable left C-module
category. Let us denote by J: Mop × C → Mop the action of the opposite module
category, that is, the one determined by

M J X = X∗ . M, (4.25)

for any M ∈M, X ∈ C. For any M ∈M the functor

TM : (Mop)op ×Mop →M,

TM(U, V ) = HomM(M,V )∗ . U,

has a pre-balancing

γXU,V : TM(U J X, V )→ TM(U, V J ∗X),

given as the composition

TM(U J X, V )=HomM(M,V )∗ . (X∗ . U)
m−1

−−→ (HomM(M,V )∗⊗X∗) . U

−→ (X⊗HomM(M,V ))∗ . U → HomM(M,X . V )∗ . U = TM(U, V J ∗X).

Thus we can consider the coend ∮ U∈Mop

(TM , γ).

Since T can be thought of as a functor T : (Mop)op×Mop → Fun(M,M), T (U, V )(M) =
TM(U, V ), then using the parameter theorem described in Section 3.8, we have a functor

M 7→
∮ U∈Mop

(TM , γ).

We shall denote this functor as∮ U∈Mop

(T−, γ) =

∮ U∈Mop

(HomM(−, U)∗ . U, γ).

It follows from Lemma 2.5 that,
∮ U∈Mop

(T−, γ) :M→Mbop is a C-module functor.

4.14. Theorem. LetM be an exact indecomposable left C-module category. There exists
an equivalence of C-module functors

SM '
∮ U∈Mop

(HomM(−, U)∗ . U, γ), (4.26)
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Proof. LetM,N be a pair of exact indecomposable left C-module categories. To prove
the expression for the relative Serre functor, we will first compute a quasi-inverse of the
functor L = LM,N and then use equivalence (4.8).

Recall that J:Mop × C →Mop is the action of the opposite module category. That
is,

M J X = X∗ . M,

for any M ∈M, X ∈ C. Let us denote by D : (Mop�CN )op → N op�CMbop, the functor

determined by D(M�CN) = N�CM , M ∈ M, N ∈ N . The functor D is an equivalence
of categories.

Take (F, c) ∈ FunC(Mbop,N ). This means that, we have isomorphisms cX,M : F (X∗∗.
M)→ X . F (M), for any M ∈M, X ∈ C. Define

ΘF : (Mop)op ×Mop →Mop�CN ,

ΘF (U, V ) = V�CF (U).

The functor ΘF has a pre-balancing

νXU,V : ΘF (U J X,V )→ ΘF (U, V J ∗X),

νXU,V = b−1
V,∗X,F (U)(id V�Cc∗X,U).

Here bV,X,U : V J X�CU → V�CX . U is the balancing of the C-balanced functor �C.
Define χ : FunC(Mbop,N )→Mop�CN the functor given by

χ(F ) =

∮ U∈Mop

(ΘF , ν) =

∮ U∈Mop

U�CF (U).

The existence of these coends follows from the existence of the ends presented in Theorem
4.7 and the relation between ends and coends for left and right module categories given
in Lemma 3.6. Let us prove that χ is a quasi-inverse of L. Since we already know that L
is a category equivalence, it is enough to prove that

χ(L(M�CN)) 'M�CN

for any M ∈ M, N ∈ N . Since D is a category equivalence, this is equivalent to prove
that

D(χ(L(M�CN))) ' D(M�CN) = N�CM. (4.27)
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for any M ∈M, N ∈ N . The left hand side of (4.27) is equal to

D(χ(L(M�CN))) = D
(∮ U∈Mop

U�CL(M�CN)(U)
)

' D
( ∮

U∈Mbop

U�CL(M�CN)(U)
)

'
∮
U∈Mbop

L(M�CN)(U)�CU

'
∮
V ∈N

V�CL(M�CN)l.a.(V )

(4.24)
'
∮
V ∈N

V�CL̃(N�CM)(V )
(4.16)
' N�CM.

The first isomorphism follows from Lemma 3.7, the second one follows from Proposition
3.3 (iii), and the third isomorphism follows from Proposition 4.17.

Taking N =Mbop and using (4.8), it follows that

L̃M,Mbop(χ(Id )) ' LM,Mbop(χ(Id )) ◦ SM ' SM,

and we obtain the desired description of the relative Serre functor.

4.15. Remark. If C = vect k and M is a semisimple category, the (right) relatvie Serre
functor coincides with the (right) Nakayama functor. In this case, formula (4.26) coin-
cides with the formula for the (right) Nakayama functor presented in [4, Definition 3.14].

4.16. Correspondence of module categories for Morita equivalent tensor
categories. Assume that C,D are Morita equivalent tensor categories. This means
that, there is an invertible exact (C,D)-bimodule category B. We can assume that D =
EndC(B)rev, and the right action of D on B is given by evaluation

/ : B ×D → B, B / F = F (B).

It was proven in [3, Theorem 3.31] that, the maps

M 7→ FunC(B,M), N 7→ FunD(Bop,N )

are bijections, one the inverse of the other, between equivalence classes of exact C-module
categories and exact D-module categories. We shall give another proof of this fact by
showing an explicit equivalence of D-module categories

N ' FunC(B,FunD(Bop,N )),

for any exact indecomposable D-module category N .
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For any (H, d) ∈ FunC(B,FunD(Bop,N )), define

SH : Bop × B → N , SH(B,C) = H(C)(B).

This functor comes with isomorphisms

βXB,C : SH(B,X . C)→ SH(X∗ . B,C),

βXB,C =
(
dX,C

)
B
,

for any X ∈ C, B,C ∈ B.

4.17. Lemma. The functor SH is a C-balanced functor with balancing given by bB,X,C :

SH(X∗ . B,C) → SH(B,X . C), bB,X,C =
(
dX,C

)−1

B
. In particular, there exists a right

exact functor ŜH : Bop�CB → N such that ŜH ◦�C ' SH as C-balanced functors.

Proof. Since (H, d) is a module functor, the natural isomorphism d satisfy (2.3). This
axiom implies that b satisfy (2.15).

We can consider the functor

Ψ : FunC(B,FunD(Bop,N ))→ N ,

Ψ(H) =

∮
B∈B

(SH , β) =

∮
B∈B

H(B)(B).

4.18. Proposition. The functor Ψ is well-defined.

Proof. The existence of the module end Ψ(H) follows from applying the functor ŜH
to the module end

∮
B∈B B�CB, whose existence follow from Proposition 4.7, and using

Proposition 3.3 (iii).

4.19. Theorem. Let C be a tensor category and B an indecomposable exact left C-module
category. Consider the finite tensor category D = EndC(B)rev, and the functor L̃ = L̃B,B :
Bop�CB → EndC(B) introduced in Section 4.3. Let N be an exact indecomposable left
D-module category. Define

Φ : N → FunC(B,FunD(Bop,N )),

Φ(N)(B)(C) = L̃(C�CB) . N,

for any B,C ∈ B, N ∈ N . The functors Φ and Ψ are well-defined, and they establish an
adjoint equivalence of left D-module categories

N ' FunC(B,FunD(Bop,N )).
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Proof. Take N ∈ N , B ∈ B. It follows immediately that, Φ(N) is a C-module functor.
That Φ and Φ(N)(B) are D-module functors follow from the bimodule structure of the

functor L̃ (4.6), (4.7). Let us show that the pair of functors Φ, Ψ is an adjoint equivalence.
Take H ∈ FunC(B,FunD(Bop,N )), C1, C2 ∈ B, then

Φ(Ψ(H))(C1)(C2) = L̃(C2�CC1) .

∮
B∈B

H(B)(B)

'
∮
B∈B

H(B)(L̃(C2�CC1)∗(B))

'
∮
B∈B

ŜH
(
L̃(C2�CC1)∗(B)�CB

)
' ŜH

( ∮
B∈B

L̃(C2�CC1)∗(B)�CB
)

' ŜH
( ∮

B∈B
B�CL̃(C2�CC1)(B)

)
' ŜH(C2�CC1) ' H(C1)(C2).

The first isomorphism follows since H(B) is a D-module functor, the second isomorphism

follows from the definition of ŜH given in Lemma 4.17, the third one follows from Propo-
sition 3.3 (iii), the fourth isomorphism follows from (4.17), and the fifth isomorphism
follows from (4.16).

Now, let us take N ∈ N , then

Ψ(Φ(N)) =

∮
B∈B

Φ(N)(B)(B) =

∮
B∈B

L̃(B�CB) . N

' Id . N ' N.

The isomorphism follows from (4.15). One can verify, in the above proof of Φ(Ψ(H)) ' H
and in the proof of Ψ(Φ(N)) ' N , that each pre-balancing is used properly.

4.20. The double dual tensor category. Let M be an exact indecomposable left
C-module category. Then the dual tensor category C∗M = EndC(M) is again a finite tensor
category [3]. The category C∗M acts on M by evaluation:

C∗M ×M→M,

(F,M) 7→ F (M).

The categoryM is exact indecomposable over C∗M, see [3, Lemma 3.25]. Whence, we can
consider the tensor category (C∗M)∗M = EndC∗M(M). There is a canonical tensor functor

can : C → (C∗M)∗M,

can(X)(M) = X BM,

for any X ∈ C, M ∈M. One can see that can(X) is a C∗M-module functor. It was proven
in [3, Theorem 3.27] that the functor can is an equivalence of categories. We shall give
an expression of a quasi-inverse of this functor.
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Take (G, d) ∈ (C∗M)∗M. This means that we have natural isomorphisms

dF,M : G(F (M))→ F (G(M)),

for any F ∈ C∗M, M ∈M. Let us denote

H(G,d) :Mop ×M→ C,

H(G,d)(M,N) = Hom(M,G(N)).

The functor H(G,d) has a pre-balancing γ (seeing M as a left module category over C∗M).
For any F ∈ C∗M define

γFM,N : H(G,d)(M,F (N))→ H(G,d)(F
l.a.(M), N),

(Recall that F ∗ = F l.a.) as the composition

Hom(M,G(F (N)))
Hom(id ,dF,N )
−−−−−−−−→ Hom(M,F (G(N)))→

(2.13)−−−→ Hom(F l.a.(M), G(N)).

Explicitly, using (2.13), this isomorphism is

γFM,N = ψZF l.a.(M),G(N)

(
ΩZ.M,G(N)(φ

Z
M,F (G(N))(id Z))b−1

Z,M

)
◦ Hom(id , dF,N)

where Z = Hom(M,F (G(N))), and isomorphism b is the module structure of the functor
F l.a.. Recall the isomorphisms presented in (2.12)

φXM,N : HomC(X,Hom(M,N))→ HomM(X .M,N),

ψXM,N : HomM(X .M,N)→ HomC(X,Hom(M,N)),

associated to the pair of adjoint functors (− . M,Hom(M,−)).

4.21. Theorem. LetM be an exact indecomposable left C-module category. The functor
Υ : (C∗M)∗M → C given by

Υ(G) =

∮
M∈M

(Hom(M,G(M)), γ)

is well-defined. The pair of functors (Υ, can) is an adjoint equivalence of categories.
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Proof. We shall prove that, there are natural isomorphisms

Natm(can(X), G) ' HomC(X,Υ(G)).

Let us fix X ∈ C and (G, d) ∈ (C∗M)∗M. Using Proposition 4.2 we have that

Natm(can(X), G) '
∮
M∈M

(
HomM(X .M,G(M)), β

)
. (4.28)

Recall that M is thought of as a module category over C∗M. According to (4.1), the
pre-balancing β is, in this case,

βFM,N : HomM(X .M,G(F (N)))→ HomM(X . F l.a.(M), G(N)),

βFM,N(α) = (evF )G(N)F
l.a.(dF,Nα)b−1

X,M .

Here evF : F l.a. ◦ F → Id is the evaluation of the adjoint pair (F l.a., F ). If we denote by
ΩM,N : HomM(M,F (N)) → HomM(F l.a.(M), N) natural isomorphisms, then (evF )M =
ΩF (M),M(id F (M)), for any M ∈M.

Using Proposition 3.3 (ii) we can consider the module end∮
M∈M

(
HomC(X,Hom(M,G(M)), γ̂

)
,

where, the pre-balancing in this case is

γ̂FM,N : HomC(X,Hom(M,G(F (N)))→ HomC(X,Hom(F l.a.(M), G(M))),

γ̂FM,N(α) = γFM,N ◦ α.

4.22. Claim. Isomorphisms

ψXM,G(N) : HomM(X .M,G(N))→ HomC(X,Hom(M,G(N)))

commutes with the pre-balancings, that is

γ̂FM,N ◦ ψXM,G(F (N)) = ψXF l.a.(M),G(N) ◦ β
F
M,N . (4.29)

As a consequence of this claim, using Proposition 3.3 (i), we get an isomorphism of
module ends∮

M∈M

(
HomM(X .M,G(M)), β

)
'
∮
M∈M

(
HomC(X,Hom(M,G(M)), γ̂

)
' HomC(X,

∮
M∈M

(
Hom(M,G(M)), γ

)
= HomC(X,Υ(G)).

The second isomorphism follows from Proposition 3.3 (ii). Combining this isomorphism
with (4.28) we get the result.
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It remains to prove the claim. Naturality of ψ, φ and b implies that

ψXM,N(α(h . idM)) = ψYM,N(α) ◦ h, (4.30)

Hom(id , f)ψXM,N(α) = ψXM,N ′(f ◦ α), (4.31)

φXM,N(α ◦ h) = φYM,N(α)(h . idM), (4.32)

b−1
Y,M(h . id F l.a.(M)) = F l.a.(h . idM)b−1

X,M , (4.33)

for any morphism h : X → Y in C and any f : N → N ′, M,N ′, N ∈M.
Let α ∈ HomM(X . M,G(F (N))), and Z = Hom(M,F (G(N))), then the left hand

side of (4.29) evaluated in α is equal to

γFM,N ◦ ψXM,G(F (N))(α) =

= ψZF l.a.(M),G(N)

(
ΩZ.M,G(N)(φ

Z
M,F (G(N))(id Z))b−1

Z,M

)
Hom(id , dF,N)

ψXM,G(F (N))(α)

= ψZF l.a.(M),G(N)

(
ΩZ.M,G(N)(φ

Z
M,F (G(N))(id Z))b−1

Z,M

)
ψXM,F (G(N))(dF,Nα)

= ψXF l.a.(M),G(N)

(
ΩZ.M,G(N)(φ

Z
M,F (G(N))(id Z))b−1

Z,M

(ψXM,F (G(N))(dF,Nα) . id F l.a.(M))
)

= ψXF l.a.(M),G(N)

(
ΩZ.M,G(N)(φ

Z
M,F (G(N))(id Z))

F l.a.(ψXM,F (G(N))(dF,Nα) . idM)b−1
X,M

)
= ψXF l.a.(M),G(N)

(
ΩF (G(N)),G(N)(id )F l.a.(h)b−1

X,M

)
The second equality follows from (4.31), the third equality follows from (4.30), the fourth
follows from (4.33), the fifth equality follows from the naturality of Ω. In the last equality
the map h is

h = φZM,F (G(N))(id Z)(ψXM,F (G(N))(dF,Nα) . idM).

The right hand side of (4.29) evaluated in α is equal to

ψXF l.a.(M),G(N)

(
ΩF (G(N)),G(N)(id )F l.a.(dF,Nα)b−1

X,M

)
.

It remains to observe that h = dF,Nα, which follows from (4.32).
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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