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Attributions

The categorical presentation of quantum mechanics is due to Samson
Abramsky and Bob Coecke (see Proc. LiCS 2004 )

The associated quantum logic is joint work with Samson Abramsky
(see Proc QPL 2004 )
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Motivation

We are interested in types for quantum mechanics

• to design nice quantum programming languages

• to prove correctness of quantum protocols and algorithms

• discover new models for quantum computation?

• perhaps learn something new about physics?

Most current work on quantum programming languages treats the
quantum realm as a black box... but we know this is wrong!

• Teleportation protocol (+ many others) show information flow
along quantum parts of the system.

• Josza proved that quantum speedup is due to increasing
entanglement between subsystems.

Want to reveal and describe this informatic structure.
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Quantum Behaviour

• Quantum states are complex (unit) vectors (upto phase)

• Often think of qubits: vectors in C
2 with standard basis |0〉 , |1〉 .

• Compounds systems formed by tensor product : can’t always
separate components.

• Measurement involves projection onto a basis:

|1〉 · � p=|β|2 · α |0〉 + β |1〉

0

�

·

p=|α|2

� |0〉
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Entanglement

• Entangled states cannot be separated into components, e.g.
∀ψ, φ:

|00〉 + |11〉 �= |ψ〉 ⊗ |φ〉
• Measurement at one component causes collapse at the other:

|00〉 + |11〉

or

|00〉

�

|11〉
�
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More on Entanglement

For finite dimensional Hilbert spaces A, B we have an isomorphism

A ⊗ B ∼= A → B∑
ij zij · (ai ⊗ bj) ∼= (ai �→

∑
j zijbj)

We can see that under this isomorphism

|00〉 + |11〉 ∼= |0〉 �→ |0〉
|1〉 �→ |1〉

= idQ

In general, maximally entangled states correspond to unitary maps
and separable states correspond to “constants”.
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Example: Bell States

Let βi : Q → Q be the the following linear maps

β1 :
|0〉 �→ |0〉
|1〉 �→ |1〉

β2 :
|0〉 �→ |0〉
|1〉 �→ − |1〉

β3 :
|0〉 �→ |1〉
|1〉 �→ |0〉

β4 :
|0〉 �→ |1〉
|1〉 �→ − |0〉

They correspond to the Bell States:

|β1〉 = |00〉 + |11〉 |β2〉 = |00〉 − |11〉
|β3〉 = |01〉 + |10〉 |β4〉 = |01〉 − |10〉
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Teleportation

THM Impossible to duplicate an unknown quantum state.

But can teleport it:

Measurement
result

Measurement

Bob

Bell Basis

Alexandru

|ψ〉

U

�
�

�
�

�
�

�
�

�
�

� ����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�

�
�

�
�

�
�

�

��
��

Source
EPR

here
teleported
|ψ〉
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More Teleportation

Let |ψ〉 = α |0〉 + β |1〉 then

(α |0〉 + β |1〉 )(|00〉 + |11〉 )

= α |000〉 + α |011〉 + β |100〉 + β |111〉

= 1
2 ((|00〉 + |11〉)(α |0〉 + β |1〉 ) + (|00〉 − |11〉 )(α |0〉 − β |1〉 )

+ (|01〉 + |10〉 )(α |1〉 + β |0〉) + (|01〉 − |10〉)(α |1〉 − β |0〉))

= 1
2 (|β1〉 |β1ψ〉 + |β2〉 |β2ψ〉 + |β3〉 |β3ψ〉 + |β4〉 |β4ψ〉 )

9



The Postulates of Quantum Mechanics

1. • State space = finite dimensional Hilbert space;

• States are 1-dim subspaces, represented by unit vectors.

2. Compound systems are formed by taking the tensor product of
their component spaces.

3. Basic state transformations are unitary maps.

4. Applying a measurement yields:

• a probabilistic choice of projection onto a basis vector;

• knowledge about which projection was performed.
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General Scheme

Categorical Structure � � Logic

Rewriting System
�

�
�

�
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Plan of Attack

Strong Compact
Closed Category
with Biproducts

� �
Strong Compact

Closed Logic
with Biproducts

Proof-Nets
�

�
�

�
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Compact Closed Categories

A compact closed category is a symmetric monoidal category where
every object A has a chosen adjoint A∗ and unit and counit maps

ηA : I → A∗ ⊗ A

εA : A ⊗ A∗ → I

such that

A
∼=� A ⊗ I

idA ⊗ ηA� A ⊗ (A∗ ⊗ A)

A

idA

�
� ∼= I ⊗ A �

εA ⊗ idA
(A ⊗ A∗) ⊗ A

α

�

Examples: vector spaces; sets and relations.
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A Concrete Example: Qubits

Let Q be a 2-dim Hilbert space, with basis, |0〉 , |1〉 .
Then

ηQ : 1 �→ |00〉 + |11〉
and

εQ : |ψ〉 �→ 〈00 | ψ〉 + 〈11 | ψ〉.
We have:

• Creation of entangled states

• Projection onto an entangled state

• Use of such a pair as a quantum channel (i.e. teleportation)
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Names and Conames

In any compact closed category we have

[A, B] ∼= [I, A∗ ⊗ B] ∼= [A ⊗ B∗, I]

via the name �f� and coname �f� of f : A → B.

I
ηA� A∗ ⊗ A

A∗ ⊗ B

idA∗ ⊗ f

�

�f�
�

A ⊗ B∗

B ⊗ B∗

f ⊗ idB∗

�

εB

� I

�f�

�
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Example: Bell States

Let βi : Q → Q be the the following linear maps

β1 :
|0〉 �→ |0〉
|1〉 �→ |1〉

β2 :
|0〉 �→ |0〉
|1〉 �→ − |1〉

β3 :
|0〉 �→ |1〉
|1〉 �→ |0〉

β4 :
|0〉 �→ |1〉
|1〉 �→ − |0〉

The names of these maps are the Bell states:

�β1� : 1 �→ |00〉 + |11〉 �β2� : 1 �→ |00〉 − |11〉
�β3� : 1 �→ |01〉 + |10〉 �β4� : 1 �→ |01〉 − |10〉
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Scalars

In any call the endomorphisms I → I scalars; define scalar
multiplication s • f by

A
∼=� I ⊗ A

s⊗f� I ⊗ B
∼=� B

In a compact closed category we have I ∼= [I, I].

PROP: in any symmetric monoidal category the scalars form a
commutative monoid.
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Strong Compact Closure

Suppose that C is equipped with a contravariant, involutive functor
(·)† which is the identity on objects. Call f† the adjoint of f .

Say that that C is strongly compact closed if

εA = σA∗,A ◦ η†
A.

Now suppose ψ, φ : I → A, we can define abstract inner product

〈ψ | φ〉 := ψ† ◦ φ
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Unitarity

Call an isomorphism U unitary if U † = U−1. We have

〈U ◦ ψ | U ◦ φ〉 = 〈U † ◦ U ◦ ψ | φ〉 = 〈ψ | φ〉
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Zero Objects

A zero object is an object which is both initial and terminal

The unique maps to and from 0 give maps 0A
B between every pair of

objects in the category

A � 0 � B
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Biproducts

A biproduct −⊕− : C × C → C is both a product and a coproduct.

In the n-ary case we have injections and projections

Ai
qi�

n⊕
k=1

Ak
pj� Aj

such that

pj ◦ qi =




idAi if i = j

0Ai

Aj
otherwise
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We can define addition of arrows by:

A
f + g � B

A ⊕ A

∆

�

f ⊕ g
� B ⊕ B

∇
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Categorical Quantum Mechanics (Simplified

Version)

Let C be a strongly compact closed category with biproducts.

1. • State spaces are objects A of C;

• Sates are arrows ψ : I → A.

2. Compound systems are formed by taking tensor products A ⊗ B.

3. Basic state transforms are unitary maps.

4. The action of a measurement is given by a choice of projections

〈Mi〉i : A →
⊕

i

I
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The Free Strongly Compact Closed Category with

Biproducts on a Category

Cat
F �
⊥�
U

SCCCB

• The basic types and data transforms are given by the underlying
category A

• These provide the atoms and axioms of the logic

• Freely add the structure to get FA.

Example: let Q be the category with one object Q and arrows the
Bell maps βi : Q → Q ; then FA can represent many teleportation
like protocols. Call this the qubit category.
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Factorisation of the Free Functor

Given the free involution, the free compact closure and the free
biproduct,

Cat
F† �
⊥� InvCat Cat

FKL�
⊥� Com

Cat
F⊕ �
⊥� BipCat

we can factor the functor F as

F = F⊕ ◦ FKL ◦ F†
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Loops

The loops L of a category A are equivalence classes of
endomorphisms, where each composite

A
f1� A1

f2� · · · fi� Ai
fi+1� A

is equivalent to all its cyclic permutations. We’ll assume that every
loops has a canonical representative.

Let 〈L〉 be the free commutative monoid generated by L.
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The Arrows of FKLA
THM (Kelly-Laplaza) : Each arrow A → B of FKLA is determined
by the following data:

• an involution θ on the signed set A∗ ⊗ B;

• a functor v : θ → A;

• an element µ of 〈L〉.
Note that that FA(I, I) = 〈L〉.
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Choosing the Scalars

By constructing a suitable adjunction, we can force the scalars (i.e.
the loops 〈L〉) be isomorphic to any given monoid.
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The Structure of F⊕A
Each arrow f :

⊕
i Ai →

⊕
j Bj is a matrix




f11 · · · f1n

...
...

fm1 · · · fmn




where each fij : Ai → Bj is a summation of arrows of A(Ai, Bj).
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Formulae and Axioms

The formulae are given by the grammar:

F ::= A | A∗ | F ⊗ F | F ⊕ F

where A are the objects of the generating category A.

We make the following identifications:

X∗∗ = X

(X ⊗ Y )∗ = X∗ ⊗ Y ∗

(X ⊕ Y )∗ = X∗ ⊕ Y ∗

If A is discrete then we have usual propositional logic – all axioms
are identities.

If A has non-identity arrows in A then to each arrow f : A → B we
have additional axioms and cut rules.
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Two sided sequents:
Γ 
 ∆ ; [L]
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Identity Group

A 
 A ; [] (axiom)
Γ, A 
 A, ∆ ; [L]

Γ 
 ∆ ; [L] (trace)

Structure Group
Γ 
 ∆ ; [L]

τ(Γ) 
 σ(∆) ; [L] (exchange)

Multiplicative Group

Γ 
 ∆ ; [L] Γ′ 
 ∆′ ; [L′]

Γ, Γ′ 
 ∆, ∆′ ; [L, L′] (mix)

Γ, A, B 
 ∆ ; [L]

Γ, A ⊗ B 
 ∆ ; [L] (times-L)
Γ 
 A, B, ∆ ; [L]

Γ 
 A ⊗ B, ∆ ; [L] (times-R)
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A-Generalised Identity Group

f

A 
 B ; [] (f -axiom) where f : A → B is an arrow of A

Γ, A 
 B, ∆ ; [L]

Γ 
 ∆ ; [L] (g-trace) where g : B → A is an arrow of A.


 ; [h] (h-unit) where h : A → A is a loop of A.

33



Additive Group

Γ, Ai 
 ∆ ; [L]

Γ, A1 ⊕ A2 
 ∆ ; [L] (plus-L)
Γ 
 ∆, Ai ; [L]

Γ 
 ∆, A1 ⊕ A2 ; [L] (plus-R)

for i = 1, 2

0A
B

A 
 B ; [] (zero)
Γ, A 
 B, ∆ ; [L]

Γ 
 ∆ ; [L] (0-cut)

Γ 
 ∆ ; [L] Γ 
 ∆ ; [L′]

Γ 
 ∆ ; [L, L′] (sum)
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Proof-Nets

A slice is an oriented graph, with edges labeled by formulae. The
graph is constructed from the following nodes:

∀f ∈ A[A, B]

A∗ B

f A B∗

f

X X∗

cut

X Y

⊗

X ⊗ Y

Xi

⊕i

X0 ⊕ X1

A proof-net is a multi-set of slices all with the same conclusions.
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Example: Distributivity

A∗ B∗

⊕0

⊗
A∗ ⊗ (B∗ ⊕ C∗)

A B

⊗
⊕0

(A ⊗ B) ⊕ (A ⊗ C)

A∗ C∗

⊕1

⊗
A∗ ⊗ (B∗ ⊕ C∗)

A C

⊗
⊕1

(A ⊗ B) ⊕ (A ⊗ C)
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Normal Forms

Suppose we have axioms A
f��
g

B. Then we can write proof-nets

A∗ A

cut

g ◦ f

A∗ B

g

f

B∗ B

cut

f ◦ g

No natural way to eliminate these cuts. But note that f ◦ g and g ◦ f

belong to the same equivalence class of loops. Call the outer two to
be normal loops and identify them.

In a normal slice every connected component is cut-free or a normal
loop. A normal proof-net has only normal slices.
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Cut-Elimination

Theorem Every proof-net can be transformed to a normal one.

A∗ B

g

f

� A∗ A

cut

g ◦ f

A∗
... B C∗

g

D...

f h

�

A∗
...

D...

h ◦ g ◦ f
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...
A

...
B

⊗

...
A∗

...
B∗

⊗

cut

�

...
A

...
A∗

cut

...
B

...
B∗

cut

39



...
Ai

...
A∗

i

cut �
i = j

...
Ai

⊕i

...
A∗

j

⊕j

cut i �= j
� Delete slice

Theorem: The cut elimination procedure is strongly normalising.
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Semantics

A proof-net π with conclusions Γ denotes an arrow �π� : I → ⊗
Γ in

FA.

A∗ B

f

I
�f�� A∗ ⊗ B

π︷ ︸︸ ︷
Γ · · ·A B∗

f

I
�π�� Γ ⊗ A ⊗ B

idΓ⊗�f�� Γ ⊗ I ∼= Γ
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π︷ ︸︸ ︷
Γ · · ·X Y

⊗

X ⊗ Y

I
�π�� Γ ⊗ X ⊗ Y

π︷ ︸︸ ︷
Γ · · · Xi

⊕i

X0 ⊕ X1

I
�π�� Γ ⊗ Xi

idΓ⊗qi� Γ ⊗ (X0 ⊕ X1)
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π︷ ︸︸ ︷
Γ · · ·X X∗

cut

I
�π�� Γ ⊗ A ⊗ B

idΓ⊗εX� Γ ⊗ I ∼= Γ

π1︷ ︸︸ ︷
Γ1 · · ·Γi

π2︷ ︸︸ ︷
Γi+1 · · ·Γn I ∼= I ⊗ I

�π1�⊗�π2�� Γ1 ⊗ · · · ⊗ Γn

If proof-net π consists of the slices π1, . . . , πn then

�π� =
∑

i

�πi�
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Soundness and Faithfulness

Theorem: Two proof-nets have the same denotation if and only if
the have the same normal form.
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Full Completeness

Theorem: For every arrow f : A → B in FA there is a proof-net π

such that �π� = �f�.
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Loops

The normal loop

A∗ A

cut

has denotation I
ηA� A∗ ⊗ A

εA∗� I

All closed loops denote scalars I → I; hence normal slice denotes a
state preparation and a scalar weight.

Any proof-net denotes formal linear combination of preparations;
injection maps give a weighted choice.

Since we can choose the scalars, abstract “probabilities” can be
calculated.
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Example: Quantum Telephone Exchange

[Bose, Knight, Vedral]

• Alice and Bob wish to share an entangled pair.

• Initially they both share a pair with the telephone exchange (say
that both of these are in the state |00〉 + |11〉 )

• The operator “connects” the two parties by applying a Bell state
measurement.

• Alice and Bob now share an entangled pair.

We will model this in the logic generated by the qubit category Q.
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Quantum Telephone Exchange as a slice

Syntax:

Q∗ Q Q∗ Q

Semantics:
I

ηQ⊗ηQ� Q∗ ⊗ Q ⊗ Q∗ ⊗ Q
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Quantum Telephone Exchange as a slice

Syntax:

Q∗ Q Q∗

cut

Q

Semantics:

I
ηQ⊗ηQ� Q∗ ⊗ Q ⊗ Q∗ ⊗ Q

id⊗εQ⊗id� Q∗ ⊗ Q
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Quantum Telephone Exchange as a CCB

Syntax:

Q∗ Q

Semantics:
I

ηQ� Q∗ ⊗ Q
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Take 2: Quantum Telephone Exchange as a

proof-net

Since we have 4 outcomes, we have distinct slices for i = 1, 2, 3, 4.

Q∗ Q

⊗

⊕i

4 · (Q∗ ⊗ Q)

Q Q∗

βi
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Q∗ Q

⊗

⊕i

4 · (Q∗ ⊗ Q)

βi
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Work in Progress

• Multipartite Entanglement — the free construction on a
symmetric monoidal category.

• Local classical state — additive boxes

• Implementation work

53



Further Work

• A categorical presentation of the 1-Way model

• More precise models; spectra and orthogonality

• How much physics can we get from a free construction?
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