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ABSTRACT 

In this paper, we present a framework for a probabilistic risk assessment of catastrophic network 

damage from earthquakes using a practical activity-based travel model. The travel model 

captures variable demand, non-car travel modes, and interdependencies between the road and 

transit network, features often missing in probabilistic network risk studies to date. We have 

adapted this model for estimating network performance and regional impacts after catastrophic 

network damage. We demonstrate our framework with a case study of earthquakes in the San 

Francisco Bay Area, including damage to the extensive road and transit networks. For the case 

study, we partnered with the local Master Planning Organization (MPO) to demonstrate the 

method with an activity-based model used in practice. In addition, while most work to date in the 

transportation field focuses on a single deterministic earthquake event, we apply state-of-the-art 

seismic risk assessment including a stochastic set of earthquake events, spatially-correlated 

ground-motion intensity maps, damage maps for bridges and other structures, practical network 

performance measures, and the probabilistic risk to different communities and households. One 

result of this framework is quantifying the annual rate of exceeding various levels of loss in 

accessibility for each community and main socio-economic group in the entire region. The 

presented method offers a rare level of detail for understanding the potential impacts of 

earthquakes to travel-related outcomes, and thus informing mitigation efforts and emergency 

planning. 

INTRODUCTION 

An event-based probabilistic loss estimation model considers realizations of relevant random 

variables, such as earthquake magnitude and component damage state, sampled from 

corresponding distributions. For each event realization, the impact to the infrastructure network 

is evaluated (e.g., Figure 1). This general risk analysis framework is common in academic 

literature and in practice in the seismic risk assessment field (1)(2).  However, infrastructure 

networks can be complex and computationally expensive to evaluate, so it is common in the 

seismic risk assessment field to consider a simplified network (3). For example, the complex web 

of highways, local roads, bus lines, and trains is often represented as a simplified graph of a few 

dozen nodes and edges. Furthermore, in transport planning the problem is often simplified by 

considering a single scenario event instead of the full probabilistic risk assessment (4). 

In this paper, we present an event-based framework for estimating the probabilistic 

impacts of catastrophic network damage from earthquakes using a practical activity-based travel 

model. For illustration, we consider the seismic risk to the San Francisco Bay Area transportation 
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network. After collecting and processing case study data, we generate spatially-correlated 

ground-motion intensity maps that capture the level of ground shaking intensity at each location 

of interest. We then use these maps to sample realizations of damage to the bridges and other 

components in the transportation network, which are considered particularly vulnerable in the 

event of an earthquake. The component damage states enable generating the damage map for the 

full transportation network, including public transportation. The damage map has a realization of 

the damage state (functional or closed) for each component of interest. These damage states are 

then translated to the road and transit networks, impacting the functionality of different road 

segments and transit line segments. Then, we represent the damaged transportation network in an 

activity-based travel model that combines a variable demand model and various travel modes, 

such as walking, driving, biking, ride sharing, and taking public transportation. We show how 

this model facilitates calculating a wealth of performance measures more complex than in prior 

work. Furthermore, we evaluate the annual likelihood of exceeding a certain loss of network 

performance, a common metric in seismic risk assessment and the insurance industry (1). 

This activity-based model of a reasonably-comprehensive network adds more realistic models to 

seismic risk assessment. Additionally, the event-based probabilistic framework enables transport 

planning to transition from largely scenario-by-scenario assessment to a risk-consistent 

approach. Thus, it represents a collaboration between seismic risk assessment and transport 

planning. In addition, this work provides a method that is only a harbinger of the potential range 

of applications activity-based models enable.  

BACKGROUND 

Performance Measures 

For seismic risk assessment, many performance measures have been proposed to model the 

complex array of impacts an earthquake may have on transportation infrastructure and the 

surrounding communities. Two common performance measures for road networks are 

connectivity (5) and flow capacity (6).  Connectivity captures whether one can travel from a start 

node to a destination node. Flow capacity refers to the physical amount of cars or people who 

can travel between a start node and a destination node, often modeling only the road network and 

considering some key roads as network elements with a known capacity. 

In order of increasing general computational cost, other measures to capture road network 

performance include the percentage of bridges damaged, weighted-shortest path between 

locations of interest (7), fixed-demand travel-time (8), and the economic impacts from increased 

travel time and bridge repairs (9). Fixed-demand travel time delay and its variants have become 

particularly popular in current literature. Fixed-demand travel time is found by assigning pre-

determined trip demand to a potentially damaged graph assuming user equilibrium. In other 

words, the model assumes each driver (user) has perfect information about trip times and 

chooses the fastest or shortest route. The problem is solved iteratively until a steady-state is 

found. While this performance measure offers insight into aggregate travel behavior, most 

studies have three shortcomings: 1) travel demand (thought of as a volume or amount) is a 

constant, 2) the varied desirability and importance of various destinations is ignored, and 3) 

travel mode choices remain fixed, usually assuming all trips are by car. In contrast, in this study, 

we will consider a more sophisticated performance measure that overcomes these limitations, 

accessibility, as measured by logsums from representative destination choice models, also 

modeling variable demand and travel mode choice. 
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Network Representation 

For various reasons including computational expense, many seismic risk assessment studies to 

date have considered a portfolio of transportation network structures or highly aggregated 

networks. For example, Wang et al. (10) evaluated the seismic performance of the Bay Area 

Rapid Transit (BART) aerial structures, but did not extend the study to the network impacts. 

Moreover, while Wakabayashi et al. (11) did consider a network representation, they simplified 

the San Francisco Bay Area transportation network to a set of 31 road segments; their aim was to 

compare historical performance in the 1989 Loma Prieta Earthquake with their proposed 

transportation model. A slight increase in complexity is found in Chang et al. (12), who modeled 

the Los Angeles road network by a set of 202 road segments. More recently, work has 

considered networks aggregated to dozens of links, such as (6). Two notable exceptions are the 

assessments in (8) and (13) that modeled the San Francisco Bay Area transportation network as 

586 and 26,522 road segments respectively. Neither considered public transportation.  

Furthermore, while many scenario-based studies have been performed to improve our 

understanding of the impacts of earthquakes on transportation, very few have considered a 

probabilistic assessment to capture the distribution of possible losses of a wide range of damaged 

networks, particularly in transport planning. For example, B. Baker and R. Miller considered the 

ground shaking intensity with a 10% in 50 years exceedance probability, the “design level 

earthquake,” at 42 Seattle-area bridges, in order to do a cost-benefit analysis of seismic retrofit 

(14). However, that study considered neither a stochastic set of earthquake events nor uncertainty 

in the performance of the bridges given a certain level of shaking. Furthermore, by assuming that 

each bridge experienced the 10% in 50 years ground shaking simultaneously, the potential 

network impact, and thus the benefits, may be overestimated. 

This work represents a departure from the prior work through three contributions: to 

transport planning, it demonstrates the use of a practical activity-based travel model for 

probabilistic risk analysis; and to seismic risk assessment, this study proposes both a reasonably-

comprehensive transportation network, and a more realistic transportation model with variable 

travel demand and shifts in transport mode. 

MODELING NETWORK PERFORMANCE 

Network Description and Model Representation 

This study applies seismic risk assessment to the transportation network of the San Francisco 

Bay Area. We consider the accessibility losses to measure how easy it is to get to desirable 

destinations following a probabilistic set of earthquake events. We use a practical, agent-based 

transportation model, Travel Model One (Version 0.3), used by the Metropolitan Transportation 

Commission (MTC), the regional metropolitan planning organization (MPO) for the nine county 

San Francisco Bay Area. This will be described in more detail below. 

 This study considers a road network of 11,921 nodes representing road intersections and 

32,858 edges representing road segments and centroid connectors, and a detailed transit network 

representing service provided by 43 agencies. The road network contains highways and key local 

roads. We have linked it with 1743 bridges and other components (including footbridges and 

overpasses, e.g.) for which we model possible seismic damage. Furthermore, we model damage 

to some key transit lines, including the local light rail and heavy rail lines. 60 road-network 



4 

 

components and 1409 additional components are modeled as potentially impacting these transit 

lines. Readers are referred to (15) for more details about the network and components. 

Ground-Motion Intensity Map Models 

Ground-motion intensity maps express shaking intensities following a possible, future 

earthquake. In this study, we measure the intensity with the 5%-damped pseudo absolute spectral 

acceleration (Sa) at a period T=1s, which is the required input below. This spectral acceleration 

value represents the maximum acceleration over time that a linear oscillator with 5% damping 

and a period of 1 second will experience from a given ground motion. We calculate these values 

at each component location (each bridge and structure location). We use the UCERF2 seismic 

source model (16), OpenSHA Event Set Calculator (17), Wald and Allen topographic slope 

model for the shear wave velocity Vs30 (18), and the Boore and Atkinson ground-motion 

prediction equation (19).  

We simulate the sets of maps by combining the mean ground-motion intensity terms from 

the Event Set Calculator and spatially-correlated residual terms of the ground-motion intensity, 

using (20), according to the basic ground-motion model, Equation 1.  

 

 ln 𝑆𝑎𝑖𝑗 =  ln 𝑆𝑎(𝑀𝑗, 𝑅𝑖𝑗, 𝑉𝑠30,𝑖, … )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ +  𝜎𝑖𝑗𝜀𝑖𝑗 + 𝜏𝑗𝜂𝑗  (1) 

 

where j is the ground-motion intensity map index (j = 1, …, m where m equals the total number 

of spatially-correlated ground-motion intensity maps); εij is the normalized within-event residual 

in ln Sa representing location-to-location variability; ηj is the normalized between-event residual 

in ln Sa; Mj is the magnitude; Rij is the source-to-site distance; σij and τj are the standard deviation 

terms of the residuals; and the other variables are defined above. Both εij and ηj are normal 

random variables with zero mean and unit standard deviation. The vector of εij can be modeled 

by a spatially-correlated multivariate normal distribution and the ηj by a standard univariate 

normal distribution. 

Damage Map Models 

Damage maps capture the level of functionality for the components of interest, bridges and other 

structures in this case. Fragility functions translate ground shaking intensity into possible 

structural damage. The damage state is a discrete random variable that in this case represents if 

the component is functional or not functional one week after an earthquake event. We chose the 

performance one week after an earthquake after discussions with the California Department of 

Transportation (Caltrans) because, at this point in time, minor road surface repairs will be 

finished, but major reconstruction, which depends on various social, economic, and political 

factors, has not yet been completed. The damage state is conditioned on a realization, sa, of the 

random variable Saij, the ground-motion intensity at the ith site and jth ground-motion intensity 

map. By sampling damage states at each component for a given ground-motion intensity map, 

we build a damage map. 

 Functional percentage relationships link the component damage state to the functionality 

of network elements.  For example, when a bridge collapses, the traffic flow capacity of the road 

it carries and it crosses can be modeled as reduced to zero. These relationships are often derived 

from a combination of observation and expert opinion, often due to data scarcity (21). 

Furthermore, the relationships are typically deterministic for a certain component damage state 
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and restoration time (21). Thus, in this paper, each damage map corresponds to a functionality 

state for every element of the network, such as a road segment or part of a transit lines. 

Accessibility Performance Measure 

We demonstrate one example of a sophisticated performance measure, accessibility. This 

accessibility measure is computed by taking the log value of the sum of a function of the utilities 

of each destination over all possible destinations and travel modes from representative 

destination choice models, where the utility decreases if getting to that destination is more costly 

or time-intensive (22). Readers are referred to Miller (15) for more details. 

In contrast to prior work that has used more simplified metrics for measuring post-

catastrophe impact, this performance measure captures the fact that some destinations and trips 

have higher value than others. Furthermore, this measure allows analyzing individual 

communities and demographic groups without aggregating region-wide.  

IMPLEMENTATION WITH AN ACTIVITY-BASED TRAVEL MODEL 

The activity-based travel model used by the Metropolitan Transportation Commission (MTC) 

includes an explicit representation of every freeway and major local road in the Bay Area.  

Further, it includes an explicit representation of every transit route by time of day, including rail, 

ferry, and bus service.  Simple representations of bicycle and pedestrian infrastructure are also 

included.  Taking as input household demographic and location information, and employment 

type and location information, the model makes detailed and validated predictions of travel-

related outcomes, including automobile ownership, activity schedules and locations, travel mode 

choice, and travel route choice.  The model allows each of these aspects of travel demand to 

change in response to an earthquake.  As such, travel demand is variable, responding to the 

particular details of the damaged networks. This model uses a combination of Java code called 

CT-RAMP (23), and the Citilabs Cube Voyager and Cube Cluster software programs, which are 

part of a leading commercial software suite for transportation planning (24).  

For typical regional planning applications, this model is run in three main iterations, each 

with two stages. Stage I is the agent-based model called CT-RAMP. An agent represents a 

person (who is a member of a household) who decides when, where and how he or she wants to 

travel, if at all, for a typical weekday. Given travel times for different route options and 

distributions representing travel preferences, travel choices of each agent are simulated. As the 

travel time increases, for example, it is more likely that an agent may telecommute or forgo a 

non-mandatory trip. Typically, a sample of the fully simulated population is modeled. At the end 

of this stage, based on the choices of each agent, a travel demand origin-destination matrix 

between each of the 1454 travel analysis zone (TAZ) zones is created; the matrix specifies the 

number of trips between each pair of TAZs and is scaled in proportion to the aforementioned 
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sampling percentage to represent the full population.  Thus, the end result per iteration is an 

estimate of the travel demand between zones in a steady state given this network. Then, in Stage 

II, the Citilabs software assigns all of these trips to the roads and transit networks. Trips are 

assigned using a traditional iterative process following the user equilibrium method  (25), 

wherein trip assignment is iteratively adjusted until each agent takes the route with the shortest 

travel time (within a certain tolerance). In other words, the model might run hundreds of 

iterations each time Stage II is performed. A key assumption in this method is that the agent has 

perfect information, so that he or she would indeed take the route with the shortest travel time. 

On one hand, this may be less realistic after an earthquake, where travelers will not know the 

new fastest routes. On the other hand, if there is working power and internet, travelers may be 

more likely to consult navigation tools that would suggest the fastest trip route. The result of 

Stage II are “loaded networks” that specify the amount of travelers and travel times on each 

segment of the network; this is then the input to the demand creation of Stage I of the next model 

iteration. 

Note that when running the travel model in this way we are making a host of implicit 

assumptions about the potential traveler response to earthquakes; these include: 1) large shifts in 

telecommuting participation do not occur (may overestimate the impact of the seismic event); 2) 

households and employers do not relocate within the region or move out of the region (may 

overestimate); and, 3) travelers locate employment opportunities informed by accessibility (may 

underestimate).  Importantly, these assumptions can be easily modified within the MTC travel 

model; this is an avenue for future research.  

While validating the entire model and method would be ideal, this would require 

measurements of ground-motion intensity, damage states of relevant structures, travel patterns, 

and travel outcomes after earthquakes. Such data is currently unavailable. For example, in the 

San Francisco Bay Area, travel pattern data has only been collected since approximately 2006, 

during which time there have been no major earthquakes. Furthermore, to increase confidence in 

the validation, one would need to collect these datasets after not just one major earthquake, but 

rather after a representative set of earthquake events. Thus, until this data is available, only 

individual parts of the model have been validated, such as the fragility functions. However, this 

paper presents a method that can be implemented today with available models, and the results 

will continue to be refined as more sophisticated, validated models come to exist.  

We modify the high-fidelity model in two ways for modeling earthquake events: 

considering a damaged network, and introducing extra iterations to more reliably locate a stable 

result. Figure 2 illustrates the proposed procedure. 
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Figure 2. Iterative process to bring high-fidelity model to convergence while in a disrupted 

state. 
 

Damaging the Network 

We input a damaged road network and new transit route information into the travel model, with 

only the functional roads and transit routes for the earthquake event. This is achieved by 

simulating ground-motion intensity maps and damage maps, which have a realization of the 

damage state for each component. For each component simulated as causing no functionality, we 

use look-up tables to identify the network impact. These look-up tables were created by 

manually inspecting aerial images and free text descriptions of the transportation networks and 

components to match them. A field investigation also aided this matching, as we explained in 

(15). For the road network, the tables enable finding the start and end nodes of various road 

segments that would be impacted (such as roads a bridge carries and crosses).  

The next step is to actually damage the network input files. A Python script generates a 

Citilabs Cube input file that automatically sets the facility type of each affected road segment to 

a new dummy type. This dummy facility type corresponds to no traffic flow capacity in the 

travel model. For the transit networks, a script removes transit lines by commenting out the 

relevant lines or systems in the model input files. The result is that only the functioning transit 

routes are included in the model. 

Designing for Stability 

We introduce three initial iterations -- each with both stages -- to provide an appropriate warm 

start for the aforementioned three main iterations, again each with both stages. Since travel times 

may be significantly different after a catastrophic earthquake, we gradually reduce the capacity 

on damaged edges from full capacity to none over the first three initial iterations. Otherwise, the 

agent-based travel demand assignment in Stage I, the trip assignment in Stage II, or both, is not 

likely to converge.  
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For Stage I of all six iterations, we randomly sample 1% of the population to be agents. A 

sample share of 1% balances granularity in demand choices and computation time.  For example, 

for a sample earthquake event, when we increased the sample share to 5% on the last two 

iterations, the runtime increased from 7 hours to 8.5 hours (21% increase), but the root mean-

squared error (RMSE) of the vehicle-miles traveled values between the second to last and last 

iteration reduced only from 2.7% to 2.5% (7% reduction). Less than 5% is a general rule of 

thumb used by MTC for the upper bound for these RMSE values for region-wide analysis. In 

other words, with six iterations, larger population sample sizes were not required to get below 

this error upper bound. Note that Stage II does not directly consider agents nor a sampled 

population. On one 2.27 GHz server with 128 GB of RAM, each event simulation with six 

iterations takes 6 -11 hours, where scenarios with low damage take closer to six hours and 

scenarios with high damage take longer to converge. 

Computing Changes in Accessibility 

We use a script in the MTC Travel Model One to compute the accessibility per representative 

agent at the end of each damage map simulation. The accessibility per agent is aggregated into 

12 market segments used by MTC, with all combinations of income class of his/her household 

(26). 

We consider the change in the accessibility values from the base case of no damage to the  

j’ th network damage map. In other words, the accessibility change is defined as: 

 

 
∑ 𝐴𝑐𝑐

𝑎,𝑗′
𝐴
𝑎=1

𝐴𝑗′
−

∑ 𝐴𝑐𝑐𝑎,𝑏𝑎𝑠𝑒
𝐴
𝑎=1

𝐴𝑏𝑎𝑠𝑒
 (2) 

 

where Acca,,j’ refers to the accessibility of the ath agent for a=1,...,A in the of the j’ th network 

damage map; Acca,,base refers to the accessibility of an agent in the base case; Aj’  is the total 

number of agents in the j’ th network damage map; and Abase  is the total number of agents in the 

base case. The number of agents may vary slightly between damage maps, since the model 

considers a random sampling of agents and households. 

DISCUSSION 

Example Results 

The modeling framework enables comparing the predicted losses in accessibility for each market 

segment and damage map event. For example, for the M7.45 San Andreas event shown in Figure 

1 panel d) shows the losses in accessibility (Equation 2) by TAZ. This figure suggests that 

people living in South San Jose, in some communities on the San Francisco Peninsula, and along 

the Bay in the East Bay would be particularly impacted by losses in accessibility, as compared to 

their fellow Bay Area residents. 

 With this modeling framework, we can also examine changes in expected travel patterns. 

In this earthquake event, there is approximately the same number of total trips with interesting 

changes in travel modes. While the results predict an 18% decrease in trips by transit, there is a 

1% increase in trips by foot and a 1% increase in trips by car. For this particular event, the 

commuter train Caltrain, the light-rail network VTA Light Rail, and 4 of the 14 heavy-rail 

network BART routes are predicted to be closed one week after this event, due to extensive   
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structural damage that blocks the tracks. Nonetheless, for this particular event, the Muni light rail 

is expected to be fully operational, and we have modeled ferries and local buses as functioning 

too. Thus, the slight shift away from transit is not surprising. This result, however, offers a 

realistic possible event for emergency planners considering possible seismic impacts across 

agencies and municipalities.  

Extending Scenario-Based Assessment to a Stochastic Event Set 

Restricting our analysis to a particular event would blind us to the range of possible losses from 

earthquake hazard for the case study region. Furthermore, we would be unable to estimate the 

annual rate of exceeding a certain level of losses, which is crucial information for risk-informed 

decisions and financial models. Thus, we extend the assessment for a single event to a hazard-

consistent stochastic event set. We use the stochastic event set described in (15), which 

contains 40 sets of earthquake scenarios, ground-motion intensity maps, damage maps, and 

corresponding annual rates of occurrence. Each damage map is modeled using the activity-based 

model described above. Figures 3 and 4 illustrate two further examples of earthquake events, 

each with an annual rate of occurrence. The figures show that different events can cause 

dramatically different patterns of damage and impacts. To automate this process, we have written 

a batch script in MS-DOS that runs all 40 events in series automatically. Sample code is 

available for free download at: http://purl.stanford.edu/mh896js1648. 

 

 
FIGURE 5. Accessibility annual loss exceedance curve with a comparison by 3 case study 

TAZs as compared to a region-wide average over all TAZ. 
 

By considering all damage map events and the corresponding annual rates of occurrence, 

we also compute the accessibility-change loss-exceedance curve for each market segment, either 

for each TAZ or in averaged over all TAZ  (e.g., Figure 5). For example, this figure shows that 

the rate of exceeding losses of 0.04 utils per person per day is approximately 0.015 (67 year 

return period) for San Franciscans, but at that same annual frequency, people in Pacifica are 
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expected to suffer losses exceeding 0.27 utils per person per day. A util is a dimensionless 

quantity capturing the utility with regards to time and money. In other words, at a 67 year return 

period, a person in Pacifica (as labeled in Figure 1, panel a) is expected to experience more than 

six times higher losses in accessibility as compared to his or her compatriot just to the North in 

San Francisco. 

Estimating the accessibility-change loss-exceedance curve has broad applications. The 

insurance industry has a long history of using these rates to price insurance by assessing how 

likely certain levels of payout might be. It is also useful to the transportation planner for 

weighing costs and benefits over a given time span. 

Applicability to Other Hazards  

In this paper, we have demonstrated our framework with a case study focusing on earthquakes. 

However, this framework has applicability to other hazards, both natural and man-made. For 

example, in the case of the combination of sea level rise and storm flooding, each event 

corresponds to flooding at a certain point in time for a particular event. Then, depending on the 

flooding, certain road segments and transit lines can be modeled as non-operational, as we have 

done here. Readers are referred to Heberger (27) for an example of mapping a certain level of 

flooding, such as 1.4 meters increase in sea level, to the roadways that could be impacted. Then, 

with the impacted network segments identified and translated to model input files, a 

transportation planner can go the next step of understanding the impact on accessibility and other 

sophisticated metrics using the activity-based model, as detailed above. In addition, he or she can 

extend this scenario-based assessment to a hazard-consistent study using a stochastic event set, 

as described in the previous section. 

 Readers are advised of certain limitations of this work and opportunities for future work. 

In addition to offering the opportunity to consider other hazards, this paper lays the foundation 

for expanding the analysis to more sources of damage, such as to tunnels or from liquefaction. 

Another opportunity is adjusting the travel demand properties. In this analysis, destinations are 

assumed to have a similar desirability before and after an earthquake, but we could imagine that 

some business districts may suffer heavy damage that could impact demand. Furthermore, one 

could additionally investigate the social dynamics following catastrophic events and how this 

might further alter demand. 

CONCLUSION 

In this paper we have demonstrated a novel application of a practical activity-based model to 

probabilistic seismic risk assessment of transportation networks. By capturing both travel mode 

choice and varying travel demand, two major limitations of previous work in seismic risk 

assessment are overcome. At the same time, this paper contributes a framework for probabilistic 

risk assessment to transport planning, using a practical model. Moreover, this work is being 

performed in a manner consistent with how myriad policy analyses are performed in the Bay 

Area; this model is already used for allocating funds for infrastructure improvements.  This 

paper’s contribution is modifying this model for a new application--assessing probabilistic 

seismic risk.  Future work will further investigate the use of this framework for better targeting 

seismic risk mitigation efforts. The result will be a continued collaboration between the transport 

planning and seismic risk assessment communities, in order to reduce the risk of losses after 

future earthquakes. In addition, the various agencies supporting transportation in the region have 
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a great opportunity to coordinate risk mitigation, so at least one means of transportation is 

relatively resilient for each community. Finally, a promising area of future work is applying this 

framework to other hazards such as the combination of sea level rise and storm flooding. 
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