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In this article we introduce a new language to describe many problems of differential
geometry: for example, problems connected with the theory of pseudogroups, Lie equations,
foliations, characteristic classes, etc. This is the language of infinite-dimensional Lie algebras
and their homogeneous spaces. It is closely connected with the general idea of formal
differential geometry set forth by I. M. Gel'fand in his lecture at the International Congress
of Mathematicians in Nice. In addition to a detailed account of the theory of homogeneous
spaces of infinite-dimensional lie algebras, this article contains applications of this theory to
the characteristic classes of foliations. It also includes results on these questions from earlier
papers by I. M. Gel'fand, D. A. Kazhdan, D. B. Fuks, and the authors.
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Introduction

This article gives an account of a new language convenient for many
questions of differential geometry. This language expresses differential-
geometric problems in terms of infinite-dimensional Lie algebras and their
homogeneous spaces.

Let 9 be an infinite-dimensional Lie algebra,1 S an infinite-dimensional
manifold, and φ an action of 9 on S, so that φ:§ ->-ξΙ(5) is a homo-
morphism of 9 into the Lie algebra SI (S) of vector fields on S. We say that φ
defines on S the structure of a principal homogeneous space (or a principal
9-space) if the induced mapping of 9 into the tangent space of S is an
isomorphism at every point.

At first glance it may seem that the theory of principal homogeneous
spaces of infinite-dimensional Lie algebras does not give anything funda-
mentally new, but is a simple generalization to the infinite-dimensional
case of the usual concept of principal homogeneous space. But this
impression is incorrect. The theory of principal homogeneous spaces of
infinite-dimensional algebras is richer than the corresponding theory of
finite-dimensional algebras. By Lie's third theorem, for a finite-
dimensional algebra 9 there always exists a Lie group G whose Lie algebra
is 9. This means that the action of 9 on S extends (perhaps only locally)
to an action of the group G, so that the study of the homogeneous spaces
of Lie algebras reduces essentially to that of the homogeneous spaces of
the corresponding Lie groups. This is not true for infinite-dimensional Lie
algebras. For them there are many interesting examples of a completely
different nature. For example, let Wn be the Lie algebra of formal vector
fields in η variables. It turns out that a principal Wn-space can be con-
structed on any «-dimensional manifold M. Namely, consider the space
S(M) of formal coordinate systems on M, that is, the space of infinite jets
of diffeomorphisms of a neighborhood of the origin in R" into M. The
structure of a principal Wn -space can be introduced on S(M) in a canonical
way (see §4).

We shall show that many problems of differential geometry can be
naturally formulated in terms of the principal homogeneous space S(M). For
example, the pseudogroup structure on a manifold Μ can be interpreted as the
reduction of a principal fiber bundle π: S(M) -> Μ to a subgroup (see §7).

The language we shall describe first appeared in a paper of Gel'fand and
Kazhdan [ 1 ] . In essence, the same language was developed in an article of
Guillemin and Sternberg [7], where it is used to study deformations of
pseudogroup structures. However, infinite-dimensional Lie algebras and
homogeneous spaces are not mentioned in this article, although their
shadow is clearly visible. We draw the attention of the reader to the

^' The definitions of an infinite-dimensional Lie algebra and an infinite-dimensional manifold and a
study of their properties are in § 1.
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connection between our theory and the general idea of formal differential
geometry, which is explained at the end of Gel'fand's lecture [15].

This article was also written to show that it is possible to construct and
study characteristic classes of foliations within the framework of the theory
of homogeneous spaces of infinite-dimensional Lie algebras. In this theory,
for example, Bott's theorem that the characteristic classes of a vector
bundle Q{F) normal to a leaf of a foliation are equal to zero (beginning
with a certain dimension) becomes a trivial consequence of the theorem on
the cohomology of Wn. Apart from known results we also obtain new
results and examples concerning characteristic classes of foliations (see §10).
In applications to the theory of characteristic classes, this article is a
continuation of the paper [3] and a detailed account of its results. It
should be noted that in the description of characteristic classes, unlike
Haefliger [2] and Fuks [10], we do not use general categorical arguments,
in particular, we avoid the concept of a classifying space. We refer the
reader interested in these questions to the articles mentioned above.

To make our article independent of the papers of Gel'fand, Kazhdan, and
Fuks, we include some of their results from [4] and [5].

We do not assume the reader to have any prior knowledge of the subject
of this article, and we give detailed proofs of all theorems.

In conclusion we say a few words on the structure of this paper. It has
three chapters.

In Chapter 1 we develop the general theory of homogeneous spaces of
infinite-dimensional Lie algebras. In § 1 we define and study infinite-
dimensional manifolds, Lie groups, and Lie algebras. In §2 we introduce
the concept of a principal homogeneous space and of a homogeneous
space of an infinite-dimensional Lie algebra. In §3 we construct the
characteristic homomorphism from the cohomology ring of the Lie algebra
into the cohomology ring of any homogeneous space of this algebra. We
need this homomorphism later to construct characteristic classes of
foliations.

Chapter 2 is concerned with the study of homogeneous spaces of Lie
algebras of a special type, namely the so-called transitive subalgebras Wn.
In this chapter we show that the notions of foliation and pseudogroup
structure can be introduced in terms of these homogeneous spaces. The
construction and study of the principal Wn-space S(M) occurs in §4, which
occupies a critical place in the whole paper. The space S(M) plays a
central role in all further constructions. The definition of a transitive sub-
algebra L of Wn and several important examples are given in §5. In §6
we introduce the idea of an Z-structure and £-foliation, which are useful
for our purposes when we replace the usual concepts of pseudogroup and
foliation. The connection between our concept of an Ζ-structure and the
classical concept of a transitive pseudogroup is described in §7.
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Chapter 3 is devoted to the study of characteristic classes of L-
foliations. These characteristic classes are constructed in §8. More precisely,
by means of the characteristic homomorphism constructed in §3 we
construct a homomorphism from the cohomology ring of L into the ring
of characteristic classes in the category of Ζ,-foliations. In §9 an analogous
construction is carried out for Γ-foliations. The aim of §9 is to show that
characteristic classes can also be constructed without using Ζ,-foliations,
using only Haefliger's definition of a Γ-foliation. In § 10 we give examples
of L-foliations, examine their characteristic classes, and make clear what
our theory tells us about them. Finally, in § 11 we show how to con-
struct the classical characteristic classes in the category of principal
G-bundles within the framework of our theory.

In the list of references we have attempted to include all papers on the
subject of this article known to us.

The authors wish to thank I. M. Gel'fand and V. I. Arnol'd for the
attention they have given to this work; they are also deeply grateful to
D. B. Fuks, who read the manuscript carefully and made many valuable
comments.

Chapter 1

GENERAL THEORY OF HOMOGENEOUS SPACES OF LIE ALGEBRAS

§1. Infinite-dimensional manifolds and Lie groups

A smooth infinite-dimensional manifold is usually understood to be a
space obtained by pasting together open subsets of a "model" topological
vector space (most frequently a Banach space) by means of isomorphisms
satisfying a certain smoothness condition. In what follows we have to
consider manifolds whose model space is R°°, the projective limit of the
finite-dimensional vector spaces Rk.

In this section we construct on such a manifold the usual apparatus of
differential geometry: vector fields, differential forms, etc. It will become
clear that manifolds with the model space R°° have many of the properties
of finite-dimensional manifolds. But we observe the following difference:
For infinite-dimensional manifolds with the model space R°°, both the
theorem on the local integrability of vector fields and the implicit function
theorem are false.

DEFINITION 1.1. The space R°° is the projective limit1 of the system

0 •<- R •*-...*- Rh <-^— Rh + 1 · + - . . . , where π £ + ' is the projection
defined by the formula π * + 1 ( χ 1 } x2, . . ., Xk, Xk+i) = (*i, · · ·, **) ·

*' We assume that if a space is the projective or inductive limit of topological spaces, then it is
topologized by the corresponding projective or injective limit.
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The natural projections R ; -*• Rk and R°° -> R* are denoted by irl

k and
nk, respectively. f̂e+i

REMARK 1.1. Consider the projective system Eo *- . . . -e- Ek •*-k £*+i>
. . ., where Ek is a finite-dimensional linear space over R with the usual
topology, and the maps π £ + 1 are linear epimorphisms. Then the space
Ε = proj lim £* is isomorphic as a topological vector space to one of the
spaces R" (n = 0, 1, . . ., °°). In particular, a closed linear subspace of R°°
is isomorphic to one of the spaces R".

To develop a theory of smooth infinite-dimensional manifolds we must
first introduce the notions of a smooth function on an open set U of R°°,
of a smooth mapping f: U -*• R°°, and we must define what a vector field
and a differential form on U are.

DEFINITION 1.2. A smooth mapping on an open set U C R°° into a
finite-dimensional space Ε is a. mapping f.U^-E such that for every
point χ e U there exists a neighborhood V of χ for which the mapping
f\y can be represented in the form1 fk'itk, where /* is a C°°-mapping
ifkiY) ~* E. We denote the space of smooth mappings /: U -*• Ε by
CT(U, E).

Now let Ε = proj lim Ek or Ε = ind lim Ek, where the spaces Ek are
finite-dimensional. Then for any neighborhood U C R°° the spaces
C°°(U, Ek) form a projective (respectively, inductive) system.

DEFINITION 1.3. A mapping/: U -*• Ε is called smooth if for every
point χ £ U there is a neighborhood V of χ such that the mapping f\y
belongs to proj lim C°°(U, Ek) (respectively, ind lim C°°(U, Ek)). We denote
the space of these mappings by C°°(U, E).

REMARK 1.2. Let U and V be open subsets of R~, and let /:£/-»• F
be a mapping. If φ is a real-valued function on V, the formula /*(</>) = φ°ί
defines a mapping / * from the space of real-valued functions on V into
the space of real-valued functions on U. It is easy to check that the
mapping /: U -»· V is smooth if and only if f*(C°°{V, R)) C C°°(U, R).

DEFINITION 1.4. A smooth infinite-dimensional manifold is a Hausdorff
space S and a family of pairs (C/,·, 0,·), where {/,· is an open subset of S
and 0,· is a homomorphism of t/,· onto an open subset of R°°, such that
the following conditions are satisfied:

l ) U i / / = S;

2) if Ui ΓΊ Uj Φ 0, then the mapping φ; 'ΦΓ1: 0,·(ί/Ι· η t/,·) -*• 0/(£// Π ί/;)

belongs to the space C~(0i(i7I· Π C/y), 0/·([//- Π £/,·)).
In order to extend to infinite-dimensional manifolds the concepts of a

smooth vector field, a differential form, etc, we first define them locally;

Here and in what follows we reserve the notation nk for the projection restricted to an open subset
ofR~



112 IN. Bernshtein and B. I. Rozenfel 'd

that is, we assume that S — U, where U is an open subset of R°°.
DEFINITION 1.5. Let Ε be a finite-dimensional vector space. The

differential of a smooth mapping /: U -*• Ε at a point χ G U is the linear
mapping df(x): R" -*• Ε constructed in the following way. Let V be a
neighborhood of χ such that f\v — fk° ^k ( s e e Definition 1.2). We set
df(x) — dfkinicix)) ° 7Γ£, where dfk denotes the usual differential of the
C°°-mapping fk.

DEFINITION 1.6. The differential of a smooth mapping f: U -*• V at a
point χ G U is the linear mapping df(x): R°° -> R°°, that is, the projective
limit of the differentials at χ of the smooth mappings nk °/: t/ -»· R*.

DEFINITION 1.7. The tangent bundle T(U) of an open set U C R~ is
the triple (£/ X R°°, i7, p), where ρ is projection onto the first factor.

DEFINITION 1.8. A vector field on an open set U is a smooth section
of the bundle T(U), that is, a mapping f: C/ -> C/ X R°° of the form
χ H-(JC, ft*)), where χ e i/ and f(x) G C W , R°°).

(For convenience we identify the smooth mapping ξ(χ) with the vector
field itself.)

Let ξ be a vector field on U, and / a smooth function on U. We now
define the derivative f/ of / along ζ.

Let χ (Ξ U. Then there is a neighborhood F of χ in which / | v — fk ° ^
for some index /:. Let x l 9 . . ., x^ be coordinates in R*. Then
tffc ° ?lv — (?i> · · ·) ?*:)> where fl5 . . ., & are smooth functions on F.
For any point y G F w e set

Clearly, the value of f/ at >» does not depend on the choice of V, and
belongs to C°° ([/, R).

The commutator of two vector fields ξ and η is defined in the usual
way as the smooth mapping [ξ, η]: U -*• R°° satisfying the condition:

, η] = 2 [ζ, η ] ι ^ , where [ζ, η],· = ζ ( η ; ) - η (ζ,), and ±, . . . , ^ is

a basis in R*. It is easy to verify that [ξ, η] f = fr?/ - i?f/ for every
function / on U.

Now we consider the space of continuous linear functionals on R°°,
which we denote by (R°°)*. Since any continuous linear functional / on R°
can be represented in the form π%° lk, where lk is a linear functional on
R*, the space (R°°)* can also be defined as the inductive limit of the
system 0 ->• (R)* -+...-*• (Rk)* -+..., where (R*)* is the space dual
to R*.

DEFINITION 1.9. The cotangent bundle T*{U) of U is the triple
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(U X (R°°)*, U, p), where ρ is the projection onto the first factor. The
/-th exterior power A'T*(U) of the cotangent bundle is the triple
(U X A'(R°°)*, U, p), where A' denotes the i-th exterior power.

DEFINITION 1.10. A differential form of degree i on U is a smooth
section of the bundle A'T*(U), that is, a map ω: U -* U X A'(R~)* of
the form χι-+ (χ, ω(χ)), where ω (χ) is a smooth map t/ -*· A'(R°°)*.

We denote the space of differential forms of degree ι on U by Ω'(ί/).
A differential form with values in the space Ε = proj lim Ek, where the
Ε^ are finite-dimensional, is an element of the space Ω'(ί/, Ε) —
— proj lim Ω'(£/) ® Ε%. It follows immediately from our definitions of
smooth mappings that in some neighborhood V of any point χ Ε U the
differential form ω G Ω'(ίΤ) can be represented as π^ω^, where ω# is a
differential form defined on the neighborhood 7rjt(F) C Rfc. Therefore, the
exterior differential in the space of the usual differential forms on π^(Κ)
induces an exterior differential d: Ω'(ί/) -*• Ω / + 1(ί/)· The complex

0 -v Q°(U) ->.. .-»» Q\U) - » - . . . is called the Λ? Λ/jam complex.
LEtfi, . . ., ξ/ς be vector fields on U. We define the value ω(ξί} . . ., f,·)

of a differential form ω on fb . . ., f,· by the formula
ω(?ΐ, · · ·, &)(*) = ωί^Χίχίχ), . . ., ξ,(χ)), where χ e C/, and ω(χ) is
regarded as an /-linear skew-symmetric functional on R°*. The smoothness of
ω(£ι, · · ., ?/) follows immediately from that of ω.

PROPOSITION 1.1. (invariant formula for the differential d):

(1.1) Αο(ζ1( . . . , ζ ί + 1 ) =

PROOF. We check (1.1) in a neighborhood V of x. Now ω coincides in
V with the form it%oik· Therefore it can be represented as a linear com-
bination of exterior products of 1-forms fadxa, where fa is a smooth
function on V. Hence, it suffices to check the equality

d(fa dxa)(l. η) = - (fa άχα)([ζ, η]) + ζ((/α ώβ)(η)) - η((/α dxa) (ζ)),

where ξ and η are vector fields on V. Let

ft ft ft

i = l ' i=i ' i=l
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Then, for large k,
h h

1 1 ' 1 11=1 ' 1=1

") + (Σ
i l

( ^ )
1=1 i=l

η «/.**.) (ζ)) = /β ( S η.-^-) + ( 2 5-
1=1 i=l

On the other hand, h

1=1

d) (Σ § ) ε-.
1=1 1=1

as required.
So far we have developed the local theory of infinite-dimensional

manifolds and have extended the fundamental concepts of differential
geometry to open subsets of R°°.

Having the local theory, we can now extend this in the standard way
(see [6], for example) to an arbitrary infinite-dimensional manifold. In
particular, we can introduce the concepts of a tangent bundle T(S),
cotangent bundle T*(S), smooth vector field, de Rham complex Ω(5), etc.
The cohomology ring H*(S) of the de Rham complex Ω(5) coincides, as
in the finite-dimensional case, with the usual cohomology ring of the topo-
logical space S with coefficients in R. To prove this it is enough to
observe that the sequence

of sheaves of germs of differential forms on S forms a resolution of the
constant sheaf R on S.

Now we define an infinite-dimensional Lie group.
DEFINITION 1.11. An infinite-dimensional Lie group G is an infinite-

dimensional manifold on which a group structure is defined in such a way
that the operations of multiplication G X G -*• G and inversion G -*• G are
smooth mappings.

The Lie algebra of an infinite-dimensional Lie group can be defined in
two ways:

1) the Lie algebra is the tangent space of the identity of G; or
2) the Lie algebra is the set of one-parameter subgroups of G.
In general, there is no exponential mapping in the infinite-dimensional

case, and so the equivalence of these two definitions is not clear. How-
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ever, in this paper we only deal with groups for which the exponential
mapping exists, and then the two definitions of a Lie algebra are
equivalent.

Infinite-dimensional manifolds appear in the following situation.
EXAMPLE 1.1. Suppose that the finite-dimensional C°°-manifolds Sk and

the smooth maps ir!

k: S1 -*• Sk (for I > k) form a projective system

SO+-S1*- . . . -+-Sh*-—Sh+1 • < - . . .

Assume that for some Ν and for all k > Ν the mappings i^N: Sk -*• SN

are equipped with the structure of an affine bundle (that is, a bundle
whose fiber is a vector space and whose structure group is the group of
affine transformations of the vector space). We assume also that for
I > k > Ν the mappings π^ preserve the affine structure. Then the space
S — proj lim 5* is a smooth finite- or infinite-dimensional manifold. More-
over, in this case the tangent bundle T(S) can be identified in a natural
way with proj lim T(Sk), and the mappings π&: S -*• Sk are smooth,
locally trivial bundles.

We note that if the Sk form an arbitrary projective system, then
proj lim 5* need not be a manifold in our senŝ e of the word. For example,
if all of the manifolds Sk are compact, then proj lim Sk is a compact
space. But, clearly, a manifold with model space R°° cannot be compact.

§2. Homogeneous g-spaces

Gel'fand and Kazhdan [1] (see also [4]) have introduced for any
nuclear Lie algebra g the concept of a principal g-space S. We shall constantly
use this idea, but in a slightly more special situation. Namely, we shall
assume that the topological Lie algebra g over R is, as a topological vector
space, either Rk or R". We assume that S is a smooth finite or infinite-
dimensional manifold. Under these assumptions we can state the definition
of Gel'fand and Kazhdan in the following way.

DEFINITION 2.1. A principal homogeneous space or simply a principal
8-space is a manifold S together with a homomorphism φ from the Lie
algebra g into the Lie algebra 31(5) of vector fields on S, where φ satisfies
the following conditions:

1) Let T(S) denote the tangent bundle to S. Then for any point s €. S
the composite mapping φ8: g -*- TS(S) obtained by the restriction of the
vector field φ(ξ) for ξ G g to the point s is an isomorphism of linear
spaces.

2) The differential 1-form ω on S with values in g defined by the
formula ω(£) = φ?(ξ) for ξ € TS(S) is a smooth form on S. (We call the
form ω canonical.)

A principal g-space is, in particular, a manifold with absolute parallelism:
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the tangent space of S at any point is canonically isomorphic to 9.
PROPOSITION 2.1. (The Maurer-Cartan formula).

(2.1) da = - 1/2[ω, ω].

(We recall that, by definition, the differential form [ω, ω] is defined by the
formula [ω, W](TJJ, η2) = [ ω ^ ) , ω(τ?2)] - [ω(η2), ω ^ ) ] = 2[ω(η!), ω(τ?2)],
where τ?,, η2 <Ξ TS(S).)

PROOF. Since the mapping φ5 is an isomorphism, it is sufficient to
verify (2.1) for vector fields of the form φ(ξ), where ζ 6 9. By the invariant
formula (1.1) for the differential d we have

, φ(ζ,)]) + φ(ζι)ω(φ(ζ,)) - φ(ζ2)ω(φ(ζχ)).

Moreover, since ψ is a homomorphism of Lie algebras, [ψ(?ι), Φ(?2)] = 0(t?i>
Also, ω(φ(ξί)) is a constant function equal to £,· for 1 = 1,2. Since
ω = φ'1, we obtain

άω(ψ(ζ1), φ(ζ2)) = ~1ζν ζ,] = - 1/2[ω, ωΚφ^), φ(ζ2)).

DEFINITION 2.2. Let ί) be a closed subalgebra of 9. A homogeneous
9-space with stationary subalgebra ή is a triple (Ρ, π, 5), where

π: Ρ -5- 5 is a bundle1, Ρ a principal 9-space, and the fiber F a principal
I)-space. We assume here that the homomorphism φ: ί) -> $(F) is contained
in a commutative diagram

where φ ·̂ is the restriction of φ: 9-^ ?I(P) to the fiber F over a point of
S, and the vertical arrows denote the natural inclusions. We also call S a
homogeneous g-space.

§3. The characteristic homomorphism

In this section we construct a homomorphism from the standard
complex of 9 into the de Rham complex Ω(5) of a principal 9-space S.
We use only the fact that on S there is defined a 9-valued differential
form ω satisfying the Maurer-Cartan formula. First we recall several facts
about the cohomology of topological Lie algebras.

DEFINITION 3.1. The standard complex of cochains of a topological
Lie algebra 9 over R is the complex C(g) = {Cq($), dq}, where C5(g) is the
space of continuous skew-symmetric ^-linear real functionals on 0, and the

^ By bundle we mean a smooth, locally trivial bundle whose total space, base space, and fiber are

smooth manifolds.
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di f ferent ia l dq: Cq{$) -»- C 9 + 1 ( s ) is d e f i n e d b y t h e f o r m u l a

(dc) (tu ..., ζ ? + 1 ) = 2 ( - ! ) S + i e ( [ζ. , It] ,ζι L· . . . , & , . . . ,

(ζΐι · · •, ζ?+ι e β)·

The homology of this standard complex is denoted Hq($).
The standard complex C(g) is multiplicative: the product of cochains

and c2 is defined by the formula (where all the indices i 1 ( . . ., iq,
j x , . . ., ir are distinct)

Σ ( - i ) 1 •" 9 2

This product induces on the space Zf*(g) = (BqHq(o) the structure of a
graded ring. Apart from d, the following operations are defined on the
standard complex C(g):

1. An operation of "inner product" i(f), where ζ 6 9, which is an anti-
derivation of degree (— 1) on the graded ring C(g) and is defined on
1-cochains c by the formula i(f)c = c(f)·

2. An operation ad(f), which is an antiderivation of degree 0 and is
defined on 1-cochains c by the formula (ad(f)c)(r?) = - c([f, η]).

The operations ί(ζ), ad(f), and the differential d are connected by
Weyl's formula:

(3.1) ad(£) = Λ(ζ) -f- ι(ζ) d.

Moreover, for any ζ, η € 9

(3.2) βίΙ(ζ)ι(η) - ι(η) ad (ζ) = ι([ζ, η]).

DEFINITION 3.2. Let ΐ) be a closed subalgebra of g. A complex of
relative cocycles C(g, I)) is a subcomplex of C(g) consisting of the cocyles
c for which

(3.3) ι{ζ)ο = ad(g)c = 0 for any ζ 6 ί).

The homology of the complex C(g, I)) is denoted by £f*(g, i)) and is called
the relative cohomology of the pair of algebras g and i).

We note that (3.3) is equivalent to the equality

(3.4) y{l)c = i{l)dc = 0.

It follows that C(g, Ij) is indeed a subcomplex.
REMARK 3.1. Suppose that the adjoint representation of a subalgebra I)

in an algebra g is extended to a representation of the group Η (not
necessarily connected) whose Lie algebra acts on ij. Then there is a
representation of Η in the complex C(g). In the C(g, ή) there is a
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distinguished subcomplex C(Q, H) of //-invariant cocycles, which is some-
times more convenient to use than C(Q, i)). We denote by H*($, H) the
homology of C($, H).

If S is a manifold, then for every vector field ζ 6 2I(S) the operations
t(f) and ad(f) are defined in the de Rham complex Ω(£). Namely, i(f) is
the inner product of a vector field on a differential form, and the operation
ad(f) is the Lie derivative of a differential form along a vector field ξ,
which is often denoted by Χζ. The operations i(f) and Χζ are antiderivations
of Ω(5) and satisfy Weyl's formulae (3.1) and (3.2). For any closed sub-
algebra S5(«S) c= SI (S) the subcomplex of Ω(5) that consists of the differential
forms satisfying (3.3) for every ζ £ 95(5) is denoted by Ω(5, 95).

THEOREM 3.1. Let S be a manifold, and ω a differential \-form on S
with values in g satisfying the Maurer-Cartan formula άω = — 1/2 [ω, ω ] .
Then the mapping $ : C{$) -+ Ω(£) defined by the formula

(3.5) $(0)^ ζ,) = cMSJ, . . ., ω(ζβ)),

where c 6 Cq($) and $(c)(£i, . . ., f ? ) is the value of $(c) on the vector
fields ξι, . . ., £q, is a homomorphism of complexes.

COROLLARY 3.1. For any principal Q-space S with canonical form ω
(3.5) defines a homomorphism of complexes $·" C(o) -> Q(S).

PROOF OF THEOREM 3.1. Since $ is clearly a homomorphism of
graded rings, it is sufficient to verify that $(rfc) = rf($(c)) for c 6 C1(g).
Let ζ and η be arbitrary vector fields on S. Then
d($(c))(f, 77) = c(du(£, η)). By the Maurer-Cartan formula,
<M£, 17) = - [ω(?), ω(τ?)]. Therefore

d(*(c))(f, τ?) = - c([cott), ω(τ?)]) = cfcMf), ω(η)) = $(dc)(f, τ?).
We denote by Φ the homomorphism H*($) -*• H*(S) induced by $.
Now let S be a homogeneous 9-space with stationary subalgebra I). By

definition there is a bundle π: Ρ -*• S. Let & (P) denote the subalgebra of
the Lie algebra 21 (P) consisting of the vector fields tangent to the fibers
of π.

PROPOSITION 3.1. The image of C($, ty under $ is contained in

PROOF. Since for any vector field %£JF(P) and any point ρ € Ρ we
can find an element h 6 t) such that φ(Κ)\ρ = ξ\ρ, it is sufficient to check
(3.4) for vector fields of the form φ(Λ). But for such vector fields this
follows immediately from the definitions of C($, ή) and Φ.

The projection π: Ρ -»• S induces an embedding π*: Ω(5) -* Ω(Ρ). We
call a differential form on Ρ basic if it lies in the image of π*.

PROPOSITION 3.2. Suppose that the fiber F of the bundle π: Ρ -*• S is
connected. Then the embedding π*: Ω(5) -»• Ω(Ρ) is an isomorphism of
the complex &(S) onto the complex Q(P,&(P))\ in other words, the form
α G Ω(Ρ) is basic if and only if α ζ Ω(Ρ,
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PROOF. It is enough to prove that every point ρ G Ρ has a neighborhood
in which the form α is basic. We can therefore assume that Ρ - F X If,
where F and U are open subsets of a linear space. Since a depends locally
only on finitely many variables, we may assume that U C R" and F C R m .
Let JCJ, . . ., xn be coordinates in U and ylf . . ., yn coordinates in F.
Any form a G F{P) on F X U can be described as a sum of forms of the
kind f(ylf . . ., ym, xx, • · ·, xn)dyti Λ ··· · Myih f\dxh f\ . . . f\ dxh. A
vector field ξ G F(P), restricted to F X U, can be written in the form

Σ g,(ylt . . ., ym, xl3 . . ., Xn)^t·
 N o w l e t α s a t i s f y ( 3 · 4 ) f o r s o m e f e ^ ( ρ ) ·

The condition i(f)(cx) = 0 means that a \FXU is a sum of forms of the

kind βχ) f\ ... l\dxjv and the condition ί(ξ)(άοί) — 0 means that / depends

only on x,, . . ., xn, as required.
The following theorem is a consequence of Propositions 3.1 and 3.2.
THEOREM 3.2. The composition of the mapping $, restricted to C(g, ΐ)),

and the isomorphism (π*)" 1 is a homomorphism of C($, if) into Ω(5).

We denote this homomorphism by $jj, and its induced homomorphism

H*(6, ^ - * H*(S) by Φ,.
REMARK 3.2. When F is a group (not necessarily connected), the

analogous construction allows us to construct a mapping $^:C(ij, /")->-Ω(£).
More precisely, let π: Ρ -*• S be a principal bundle with structure group F,
and suppose that an action of F on 9 is given. We assume that
0(fl?) ~ (Ra)* Φ(ζ) f° r a n y a e F a n d f e 9. where Ra is the diffeomor-
phism of Ρ corresponding to a. Propositions 3.1 and 3.2 automatically
carry over to this case: the image of C(g, F) under $ consists of the basic
forms, and the composition of Φ with the isomorphism (π*)" 1 is a
homomorphism of C(g, F) Ω(5). The latter homomorphism is denoted by
<&F, and its induced homomorphism H*{Q, F) ->- H*(S) by Φρ.

Chapter 2

HOMOGENEOUS SPACES OF SUBALGEBRAS OF Wn

AND THE THEORY OF FOLIATIONS

§4. The Lie algebra Wn. The basic example of a principal Wn-space.

In this section we define the Lie algebra Wn of formal vector fields in
η variables and, following [ 1 ] , we construct for each «-dimensional
manifold Μ a principal Wn -space S(M). The construction of the manifold
S(M) is of central importance in our paper.

We denote by H(n) the space of formal power series in η variables
x 1 ; . . ., xn. We introduce the filtration H(n) = H0(n) D . . . D Hk(n) D . .
where Hk(n) consists of the formal power series whose formal derivatives
of order less than k all vanish.
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DEFINITION 4.1. A formal vector field at the point 0 of R", or simply

a formal vector field in η variables, is a linear combination ft -^- -f . . . -f fn -^-,
oxj u^Cn

where fu . . . , / „ G #(«) .
The set Wn of all formal vector fields in η variables provided with the

obvious structure of a topological vector space and with the commutation
operation given by the formula

is a topological Lie algebra.
In Wn there is a canonical filtration by subalgebras Li(Wn). Here /-/(W,,),

by definition, consists of the elements of the form fl~Jr . , . 4. fn —
0Xi dxn

where fu . . . , / „ G Hi+l(n).
We denote by Gj(. the group of /-jets at the point 0 G R" of diffeomor-

phisms of R" whose A:-jets coincide with the /c-jet of the identity
diffeomorphism. We set Gk — proj lim Gk. Then we have the following
chain of inclusions: Go D Gt D . . . D Gk D . . . .

There is a natural way of introducing on the groups Gk the structure
of a Lie group. We construct an embedding a of Go in the linear space
{Han)? of all sets (flt . . ., /„), where /,, . . . , / „ £ H^n). The
embedding α is constructed in the following way.

For each diffeomorphism D of R" that takes 0 to 0, and for each
function / G C°°(R"), the formal Taylor series of D*f at 0 depends only
on the image of D in Go. Hence for any g G Go there is a well-defined
mapping g*: C°°(R") -> H{n). We set a(g) = (g*(xi), . . ., g*(xH)), where
Xi, . . ., xn are the coordinate functions on R".

It is clear that a) g*(Xi) G Ηλ{η)\ b) a is an open embedding of Go in
( # ! («))"; c) the space (H^n))" is linearly isomorphic to R°°; d) the
embedding α defines on GQ (and hence on all the groups G^) the structure
of an infinite-dimensional Lie algebra.

For k > 0, α determines a diffeomorphism of Gk onto the affine sub-
space ffjc of (Ηχίη))" that consists of the sets (/i, . . ., /„) for which the
formal power series f{ - x,· G Ηχ + ί(η) {i = 1, . . ., ή). Hence it follows
that Gk for k > 0 is diffeomorphic to R°°.

The Lie algebra of Gk can be identified in a natural way with Lk(Wn).
It follows from the formula [Li(Wn), Lf(Wn)] C Li+j(Wn) that Lk(Wn)
for k > 0 is generalized nilpotent, that is, its descending central series
contracts to zero. Hence for k > 0 the exponential mapping converges
everywhere and defines a bijection exp: Lk(Wn) -*• Gk.

Now we construct for every «-dimensional C°°-manifold Μ a principal
Wn -space S(M). We denote by Sk(M) the manifold of fc-jets at zero of
regular mappings of some neighborhood of the origin of R" into M. For
/ > k there exists a natural projection ir'k : Sl(M) -»• Sk(M), which assigns
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to each /-jet of mappings its fc-jet. We consider the projective system

Μ = S°(M) « - . . . « - Sk(M) • « - . . . and set S(M) = proj lim Sk(M). The

space S(M) is called the space of formal coordinate systems on Μ (or the
space of formal jets of local diffeomorphisms R" -*• M). It is easy to see
that the triple (Sl(M), Sk(M), irl

k) is a principal fiber bundle with the
structure group Gl

k. Consequently, S(M) can be regarded as the total space
of a principal fibering irk: S(M) -*• Sk(M) whose structure group is Gk.

It is not difficult to see that the projective system Μ •*-...·*- Sk(M) •*-...
satisfies the conditions of Example 1.1 with TV = 1. Consequently, S(M) is
a smooth infinite-dimensional manifold, and the triple (S(M), nk, Sk(M)) is
a smooth locally-trivial fibration. We can immediately define an atlas on
S(M) in the following way.

Let U be some coordinate neighborhood of M, and yx, . . ., yn the
coordinates on U. Now S(U) is an open subset of S(M). Every point
s Ε S(U) defines a formal mapping R" -*• U, in other words, in (/j, . . ., fn)
the fi = s*(yj) (i = 1, . . ., n) are formal power series in η variables
xx, . . ., xn. Thus, we obtain an open embedding βσ of S(U) in (H(n))n,
which is isomorphic to R°°. It is easy to check that if {£/;} is a covering
of Μ by coordinate neighborhoods, then {S(Ui), β^.} defines an atlas on
S{M). The action of Go on the space of the fibration π 0 : S(M) -> S°(M) = Μ
induces a homomorphism φ0: L0(Wn) —*• SI(£(Af)). (This action is defined by
the formula Rg(s) = sag'1, where g e Go and s G S(M).)

The remaining part of this section is devoted mainly to a proof of the
following result of great importance for our theory, which was first
formulated by Gel'fand and Kazhdan (see [1], [4]).

THEOREM 4.1. There exists a unique homomorphism φ: Wn -*• Sl(5(M)),
which: 1) extends the homomorphism φ0: L0(Wn) -*• %(S(M)); 2) defines
on S(M) the structure of a principal Wn-space; and 3) is invariant under
any diffeomorphism of S(M) that induces a diffeomorphism of M.

To construct this homomorphism φ we make use of the idea of lifting
a vector field from Μ to S(M).

DEFINITION - CONSTRUCTION 4.2. The £-jets of any local diffeo-
morphism r of Μ induces a local diffeomorphism rk of Sk(M). Any vector
field f on Μ generates a one-parameter family of local diffeomorphisms
τ(ξ){ of M. The family r f c(f) f defines vector fields %k on the Sk(M), which
are called liftings of the vector field ξ to Sk(M).

It is clear from the construction of the lifting f* of a vector field ζ that
the value of %k at any point s G Sk(M) depends only on the A>jet of f at
ito(s). Therefore, the "lifting homomorphism" ak: ST(Af) -*- SI(5ft(M)), which
takes ζ to f*, induces a homomorphism ak: Jk(M, x) -*• Ts(Sk(M)), where
Jk(M, x) denotes the space of &-jets of vector fields on Μ at Λ; TT*(J) = x.
Clearly, this ak is a monomorphism. Moreover, the dimensions of the linear
spaces Jk(M, x) and Ts(Sk(M)) are equal. So we obtain:

PROPOSITION 4.1. The homomorphism ak is an isomorphism.
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The tangent bundle T(S(M)) of S(M) can naturally be identified with
proj lim Γ(5*(Λ/)). We define a homomorphism σ: 2Ι(Μ) -*• Sl(S(M)) by the
formula σ(ξ) = proj lim f*. We denote by /°°(M, x) the space
proj lim Jk(M, x). From Proposition 4.1 we deduce the next result.

PROPOSITION 4.2. For any point s G S(M) the homomorphism
ax: J°°{M, x) -*• TS(S(M)), where iro(s) = χ and ax = proj lim ak, is a
linear isomorphism.

CONSTRUCTION OF THE HOMOMORPHISM φ: Wn -*• 8t(5(M)).
Every diffeomorphism Z> from a neighborhood of zero in R" to a

neighborhood of JC in Μ that takes 0 to χ induces an isomorphism
J°°(M, x) -> /°°(R", 0). Clearly, this isomorphism depends only on the
formal jet at zero of D. Hence it follows that every point s G S(M)
defines an isomorphism c^: J°°(M, x) -*• J°°(Rn, 0), where iro(s) = x. Since
/°°(R", 0) is canonically isomorphic to Wn, we obtain an isomorphism
a,: J°°(M, x) -+ Wn. Let η G Wn and s Ε S(M). We have to construct a
vector φ(η) \s Ε TS(S(M)). We set φ(η) \s = - σχ 0 aj1^). Clearly, φ is
continuous and extends 0O; below we show that φ is a homomorphism of
Lie algebras.

To prove that the mapping φ: Wn -> 21 {S(M)) defines on S(M) the
structure of a principal Wn-space, we must construct on S(M) a smooth
differential 1-form ω with values in Wn, inverse to φ5 at every point s and
satisfying the Maurer-Cartan formula άω = - 1/2[ω, ω ] . (Hence, in
particular, 0 is a homomorphism of Lie algebras.) We construct the required
form ω in the following way. Let ξ5 G TS(S(M)); we set
ω(?ϊ) = - 0is ο ff^Hts)· Obviously, φ5 = ω " 1 .

To prove the smoothness of ω we represent it as the limit of smooth
differential forms on finite-dimensional manifolds Sl(M).

Every point s G Sl(M) determines for k < / a well-defined isomorphism
S*: Jk{M, x) -* /*(R", 0). Since / ^ R " , 0) is canonically isomorphic to
Wn/Lk(Wn), we obtain an isomorphism a£: Jk(M, x) -*• Wn/Lk(Wn).

We define on Sl(M) a form cJk (for / > k) with values in the finite-
dimensional linear space Wn/Z,fc(fVn) by the formula ω&(ζ8) = —α£ ° (σ]ί.)"1(ζί),
where ξ5 G TS(S(M)) and π^(5) = χ. The isomorphisms al

x and ak depend
smoothly on s, and so ω( is a smooth differential form. The smoothness
of ω follows from ω = proj lim ω^, where ω^ = π*ω£ does not
depend on /.

To prove the Maurer-Cartan formula we require the following Lemma.
LEMMA 4.1. Let τ be a diffeomorphism of Μ and r°° the diffeo-

morphism of S(M) induced by τ. Then (τ°°)*ω = ω.
PROOF. Let ξ be a local vector field on N, defined in a neighborhood

of y, and let s: Ν -*• Μ be a formal diffeomorphism of Ν into Μ that takes y
to x. The formal diffeomorphism s defines a formal vector field s*$ at x.
We consider the formal diffeomorphism s: R" -> Μ that belongs to S(M) and
takes 0 to x. By definition, the value of ω on fs = σ{ξ)\5, where ζ is a local
vector field on M, coincides with the formal vector field si1 (f) at the point
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0 G R". On the other hand, the value of (τ~)*ω at the vector fs is equal

to ( T o 5 ) ; i ( r j ) = s?U).
COROLLARY 4.1. For every vector field ξ on Μ we have <55σ<ζ>ω = 0.
We now prove the Maurer-Cartan formula. We must check that

dtJits, Vs) = ~ ίω(Γ«, ω(τ?,)] for any ff, η, G 7i(£(AQ). We choose
vector fields ζ and η on Μ such that σ(?) | s = ξι and σ(τ?) | s = η5.
By the invariant formula for the differential,

ζ), σ(η)) =
= - ω([σ(ξ), σ

Substituting the vector fields σ(ξ) and σ(η) in (3.2) and applying it to
ω, we obtain

From Corollary 4.1 and the equality [σ(ξ), σ(τ?)] = σ([ζ, η]) we
obtain άω(σ(ξ), σ(τ?)) = ω(σ[£, ι?]). Finally,

άω(ζ8, η8) = ω(σ[ζ, η]) |, = - 8?(1ζ, η]) = - [ί^ζ, ^ η ] = - [ω(ζ,), ω(η8)].

In order to complete the proof of Theorem 4.1 it remains to prove
that the homomorphism φ is uniquely determined. Let φ': Wn -> 2Ι(£(Λί))
be another homomorphism extending <p0: L0(Wn) ->• SI(5(Af)), defining at
every point s G S(M) an isomorphism <j>'s: Wn -*• TS(S(M)) and satisfying the
condition τζ(φ'(ζ)) = φ'(ξ)(ξ £((/„) for any diffeomorphism r of M. We
consider the mapping As — (0s)"1 ° φ5: Wn -*• Wn and claim that As is an
automorphism of Wn.

Let ξ, η G Ĥ , and let f, ή be vector fields on Μ such that
σ(?) ls - *,($·), σ(η) \s = 0,(77). Then Λ,([{·, η]) = ω'([σ(ή, σ(η)]), where
ω' is the canonical form of the principal Wn-space (S(M), φ'). But by
hypothesis ω' satisfies Lemma 4.1. It follows (see the proof of the Maurer-
Cartan formula for ω) that ω'([σ(£), σ(η)]) = άω(σ(ξ), σ(ή)) =

), ω'(σ(τ}))]. So we see that As([£, τ?]) = [ω'(φ5(ζ)), ω'(φ,(η))]

The automorphism As: Wn -*• Wn is the identity on the subalgebra
LoiWn)· It is easy to check that any such automorphism must be the
identity on the whole of Wn. This means that φ5 = φ'5 at every point s.
This completes the proof of Theorem 4.1.

We now clarify the connection between the algebras a(Sl(M)) and φ(.\Ψη).
THEOREM 4.2. a) A local vector field ξ on S{M) belongs to the

image of the homomorphism a. SI(M) -»- Sl(5(M)) // and only if
[f, 0W)J = 0.

b) A local vector field ξ on S(M) belongs to the image of the homo-
morphism φ: Wn -»• Sf(5(M)) if and only if [ζ, σ(21(Μ))] = 0.

Theorem 4.2 is the infinitesimal analogue (and corollary) of the so-called
first fundamental theorem.
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THEOREM 4.3 (FIRST FUNDAMENTAL THEOREM), a) Let φ be any

local diffeomorphism of S{M). Then the equality φ = τ°, where τ is some
local diffeomorphism of M, is equivalent to the equality φ*ω = ω.

b) A local vector field ζ on S(M) belongs to the image of the homo-
morphism φ: Wn -»- 2t(S(M)) if and only if r*(f) = ζ for any local diffeo-
morphism τ of M.

PROOF, a) follows easily from the first fundamental theorem as stated
in [7] (see Theorem 4.1 there).

b) follows from the fact that a local diffeomorphism τ°° induced by a
diffeomorphism τ acts transitively on S(M).

In concluding this section we ask what the construction in §3 of the
characteristic homomorphism gives for a principal Wn space S(M).

EXAMPLE 4.1. On S(M) there is a characteristic homomorphism
Φ: H*(Wn) -*· H*(S(M)). It turns out that this homomorphism is always zero.

EXAMPLE 4.2. Let Μ be a complex analytic manifold. We denote by
SC(M) the space of formal analytic coordinate systems on Μ (that is, the
space of formal jets at 0 Ε C" of local analytic isomorphisms C" -> M).
Let W% denote the Lie algebra of formal holomorphic vector fields in η

variables whose elements are linear combinations fx-z—|- . . . + fn -z— >

where fu . . . , / „ are formal power series with complex coefficients in
zx, . . ., zn.

As in the proof of Theorem 4.1, we can introduce on SC(M) the
structure of a principal W%-space. The characteristic homomorphism
Φ: H*(W%) -*• Η*(8°(Μ)) is not always zero. This homomorphism will be
described explicitly below (see §10, Theorem 10.9 and Remark 10.1).

§5. Transitive Lie algebras

The theory of homogeneous ^-spaces that we have developed above will
now be applied to the case when 9 is a closed transitive subalgebra of Wn.

In this section we give the necessary definitions and some examples of
transitive algebras. We need Examples 2 and 3 in §6 to define the notion
of a foliation, Example 4 in § 11 to construct the characteristic classes of
principal G-bundles, Examples 5 — 9 to study characteristic classes of
foliations of a special kind.

DEFINITION 5.1. A closed subalgebra L of Wn is called transitive if
dim (L/L η L0{Wn)) = n.

We denote the subalgebra L Π Lk{Wn) by L^.
For k > 0 we set G^(L) = exp (Z,^) C G^. Since Lk(Wn) is generalized

nilpotent, the Campbell—Hausdorff formula converges everywhere. It follows
that Gfc(Z) is a closed subgroup of the Lie group Gk- The mapping
exp: Lk -*• Gk(L) gives rise to a diffeomorphism from Gk(L) to Lk-

We also wish to define the group G0(L). Since there are no natural
reasons to assume that this group is connected, G0(L) is not uniquely
determined. Henceforth, when speaking of transitive algebras, we always
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assume that together with an algebra L there is also given a closed sub-
group G0(L) of Go whose Lie algebra is Lo.

Here are some important examples of transitive algebras:
1. The algebra Wn.
2. Consider the vector bundle p: R" X Rm -*• R", where ρ is the projec-

tion onto the first factor. Let Wn, m denote the Lie algebra of vector
fields on R" X Rm that preserve the fibers of p. The formal Taylor series
at 0 G R" X Rm of vector fields belonging to Wn, m, form a transitive sub-
algebra Wn, m of Wn + m . It is easy to show that Wnym consists of linear
combinations of the form

where xlt . . ., xn and y1, . . ., ym are coordinates in R" and R m ,
respectively; /,, . . ., fn are arbitrary power series in xu . . ., xn; and
g\, • • ·, gm are arbitrary power series in x1} . . ., xn and ylf . . ., ym.

3. The construction in Example 2 can be generalized. Let L be any
transitive subalgebra of Wn. We define a transitive subalgebra Wn(L) of
Wn+m. We represent R " + m in the form R" X R m . By definition, the
elements of Wm(L) are formal vector fields of the form

X + g l ~dn + ' ' ' + 8 m 5^T' w h e r e X G L a n d 8l> ' " "' 8m a r e a r b i t r a r y
power series in xlt . . ., xn and yx, . . ., ym. The elements of Wm(L) for
which X = 0 form an ideal Vn+m which does not depend on L.

The construction above has a group analogue. Let G0(L) be a subgroup
of G0(Wn) whose Lie algebra is Lo. We define a subgroup Wm{G0{L)) of
G0(Wn + m). The elements of Wm(G0(L)) are formal coordinate changes of
R" X R m , defined by pairs (g, f), where g G G0(L) and / = (flf . . ., /„) is
a set of power series in Xj, . . ., xn and yt, . . ., ym taking 0 to 0 for

which the matrix l-2lL(0)\ is non-degenerate. The Lie algebra of Wm(G0(L))

is, clearly, L0(Wm(L)), and that of the normal subgroup G0{Vn+m) is the
ideal Vnt m consisting of the pairs (id, f).

4. Let G be a connected finite-dimensional Lie group. We consider the
principal G-bundle p: R" X G -*• R" (p is the projection onto the first
factor). We denote by G(Wn) the Lie algebra of vector fields on R" X G
that preserve the fibers of the G-bundle ρ and are invariant under the
action of G. To G(Wn) there corresponds the formal algebra G(Wn) formed
from the Taylor series at zero of vector fields belonging to G{Wn). The
elements of G(Wn) can be identified with expressions of the form X + g,
where X G Wn and g is a formal power series in ̂  xn with coef-
ficients in the Lie algebra g of G. The commutator [Xt + gls X2 + g2] is
equal to [Xu X2] + [gu g2] + Xtg2 - X2glt where [Xt, X2] is the com-
mutator in Wn, Xjg is the formal derivative series of g along Xt(i = 1,2),
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5. The Lie algebra W% of formal holomorphic vector fields in η variables
(see Example 4.2). As a real algebra, W% is a transitive subalgebra of W2n·

6. Let α = dz1 Λ · · · Λ dxn be the volume form in R". The vector
fields ξ in R" for which Xza = 0 form a Lie algebra An, which is called
the algebra of non-divergent vector fields in R". To this algebra there
corresponds the algebra An of formal non-divergent vector fields in η
variables, consisting of the formal Taylor expansions at zero of the vector
fields ζ ζ An.

7. We consider in R 2" the 2-form a = dxx /\ dyx + . . . + dxn /\ dyn,
where x 1 ; . . ., xn, yt, . . ., yn are coordinates in R 2". The Hamiltonian
Lie algebra 3)2n, by definition, consists of the vector fields ξ on R" for
which Xza — 0. We denote by D2n the formal Hamiltonian Lie algebra
corresponding to 3)in.

8. We consider in R2 / l + 1 the 1-form
η

α = dt + Σ (xt dyt — yt dxt).

where t, xt, . . ., xn, > Ί , . . ., yn are coordinates in R 2 " + 1 .
We define the algebra a^w+! of contact vector fields on R 2 n + 1 as the
algebra of vector fields ξ for which X^a — fa, where / is an arbitrary
smooth function. To &C2n+1 there corresponds the formal contact
algebra K2n+i.

η

9. Consider in R 2" the 1-form α = 2 e** dyt,

where x 1 ; . . ., xn, > Ί , . . ., yn are coordinates in R 2 n . The even-
dimensional contact algebra 5S?2n consists, by definition, of the vector fields
ξ for which X^a = /a, where / is an arbitrary smooth function. To 3T2n

there corresponds the formal algebra Κ2η.
REMARK 5.1. There is a considerable difference between the algebras

K2n+i and K2n. The odd-dimensional algebra K2n+i is primitive and simple
(for the definition of primitive algebra, see, for example, [30]), but the
even-dimensional algebra K2n is not (for example, K2 = W^ j).

§6. L-structures and Ζ,-foliations

DEFINITION 6.1. Let L be a closed transitive subalgebra of Wn. A regular
L-structure, or simply an L-structure, is a pair (M, P(M)), where Μ is an
η-dimensional manifold and P(M) is a smooth subbundle of the bundle
π: S(M) ->• M, that satisfies the conditions:

a) The bundle ir: P(M) -*• Μ is the reduction of the principal G0-bundle
π: S(M) •+ Μ to G0(L).

b) P(M) is a principal L-space with respect to the homomorphism
φ: L -»- 21(ί»(Λί)), obtained by restriction of φ: Wn -*• W(S(M)) to L.

REMARK 6.1. If, for example, L = Wn and G0(L) is the connected
component of the identity of Go, then the specification of an Ζ,-structure
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on Μ is equivalent to that of an orientation on M.
As we shall see later, the concept of an L-structure is closely connected

with that of a pseudogroup structure on the manifold.
Now we shall give in these terms a definition of foliation with additional

structure.
DEFINITION 6.2. Let L satisfy the conditions of Definition 6.1. An

L-foliation of codimension η on an (n + m)-dimensional manifold Μ is an
Wm(Z,)-structure F — (M, P(M)). (For convenience we assume, in addition,
that G0(Wm(L)) = Wm(G0(L)).)

It is convenient to characterise an Z-foliation F — (M, P(M)) not by the
manifold P(M), but by the factor manifold PF = P(M)/G0(Vn>m). The mani-
fold PF can be regarded as the total space of the principal bundle itF:
Pp-* Μ with structure group G0(L) = Wm(G0(L))/G0(Vntm), which is the
projective limit of the finite-dimensional principal (?o(Z,)-bundles itF: PF -*• M.
At the same time PF serves as the base space of the bundle pF: P(M) -*• PF

with fiber G0(Vnm). We identify PF with a submanifold of the manifold of
formal submersions Μ -*• R".

Let s Ε PF and let nF(s) = x. We choose an arbitrary point s' G p^is).
The formal submersion 1 — ρ ° Cs')."1 depends only on the choice of s.
(We recall that we represent Rn+m in the form R" X R m , and that ρ is
the projection onto the first factor.) Conversely, suppose that the formal
submersion I has the form po(s')~1, where s' €Ξ Ρ(Μ). Then the point
s = pF(s') depends only on I.

Thus, by means of the mapping s t—»- s the mapping PF can be identified
with a submanifold of the manifold of formal submersions Μ -*• R" (that
is, the manifold of formal germs at χ G Μ of submersions I: U -*• R",
where U C Μ, χ G U, and s(x) = 0).

We now turn the class of Ζ,-foliations into a category.
DEFINITION 6.3. Let Ft = (M, P(M)) and F2 = (N, P(N)) be Ζ,-foliations.

A morphism /: Fj -> F2 is a mapping of manifolds /: Μ -*• Ν such that
for every formal submersion I G PF the formal mapping J° / is a submersion
and belongs to PF .

REMARK 6.2. Let F = (N, P(N)) be an Z,-foliation. We call a mapping
f. Μ -+ Ν transversal to the foliation F if for every formal submersion
s" G PF the formal mapping s °/ is also a submersion. In this case there is
a uniquely determined structure of an L-foliation f*(F) on Μ such that /
is a morphism f*(F) -* F.

§7. The connection between Ζ,-structures and pseudogroup structures^

We first recall several definitions (see [7]).
DEFINITION 7.1. A transitive pseudogroup Γ on a manifold Μ is a set

The results of this section are not used in what follows.
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of local diffeomorphisms \jj: ί/ψ -* V^ of Μ, (ί/ψ and V^ being open
subsets of M) that satisfies the following axioms:

1) // to, t//2 G Γ and ί/ψι = Κψ3, then to ο ψ2 G Γ.
2) // ψ € Γ, ifce/z ψ" 1 G Γ.
3) If ψ (= Γ and U C ί/ψ, iften ψ | ν ε Γ.
4) Let ψ: ί/ψ -*• νψ be a local diffeomorphism such that for every

χ G ί/ψ we can find an open set Ux for which ψ \υχ 6 Γ . Then ψ G Γ.
5) The identity diffeomorphism id: Μ -*• Μ belongs to Γ.
6) (Transitivity axiom). For any x, y G Μ there exists α ψ G Γ such

that ψ(χ) = y.
We always assume that a pseudogroup Γ also satisfies the following

axioms:
AXIOM A. We denote by G0(T) the group of formal jets at some point

Θ eM of diffeomorphisms ψ G Γ for which ψ(0) = Θ. Then G0(T) is a
finite-dimensional or infinite-dimensional Lie group.

AXIOM B. We denote by SQ{M) the manifold of formal jets at Θ 6 Μ
of local diffeomorphisms ψ: ί/ψ -»• V^, where t/ψ, V-p C Μ and Θ 6 ί/ψ.
The subset PQ{M) CZ SQ{M), that consists of formal jets of diffeo-
morphisms belonging to Γ is a smooth closed submanifold of the infinite-
dimensional manifold SQ{M).

AXIOM C. A local diffeomorphism ψ: ί/ψ -»· Κψ belongs to Γ if and
only if for every χ G ί/ψ we can find a diffeomorphism ψχ G Γ such
that the formal jets at χ of the diffeomorphisms ψ and φχ coincide.

DEFINITION 7.2. A local vector field on Μ is called a Γ-field if the
one-parameter group of local diffeomorphisms generated by the field
belongs to Γ.

The formal jets of Γ-fields at a fixed point Ο G Μ form an abstract1*
transitive Lie algebra L^iF), which is isomorphic to a transitive subalgebra
of Wn (where η = dim M).

REMARK 7.1. When Γ acts on R", we can choose the point 0 for 0.
Then the algebra Labs(T) can be identified canonically with the subalgebra
Ζ,(Γ) of Wn that consists of the formal Taylor expansions of Γ-fields at
zero.

Now we show how the concepts of a pseudogroup and an Ζ,-structure
are connected.

Let Γ be a transitive pseudogroup on a manifold M, and let © € M. We
construct for Γ an L-structure on M, where L is isomorphic to . / ^ ( Γ ) .
For this purpose we choose a formal diffeomorphism s: R" -*• Μ that
takes 0 to Θ. The formal diffeomorphism s induces an embedding
Αώί(Γ) ""*• Wn (expansion in a formal Taylor series of Γ-fields in the formal
coordinate system s). The image of this embedding is an algebra L C Wn.
The subset P(M) C S(M) consisting of the formal diffeomorphisms ψ ° s,

A definition of an abstract transitive Lie algebra can be found, foi example, in [30].
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where ψ £ Γ , satisfies the conditions of Definition 6.1. Thus, the pair
(M, P{M)) defines an Ζ,-structure on M. This Ζ,-structure is not uniquely
determined, since P(M) depends on the choice of s. Let s'\ R" -*• Μ be
another formal diffeomorphism inducing an isomorphism Ζ,^(Γ) -»· L C Wn.
The manifold P'(M) constructed from s' coincides with P(M) constructed
from s if and only if the formal diffeomorphism s'os'1 belongs to G0(F).

Conversely, let (M, P{M)) be an Ζ,-structure. We construct for this
/^-structure a pseudogroup Γ, namely we take a local diffeomorphism τ of
Μ as belonging to Γ if and only if the diffeomorphism f° of S{M) preserves
P(M). It is not difficult to verify that Γ satisfies axioms 1) — 5) and also
the axioms A, B. C. But it is difficult to verify the transitivity axiom 6).
We do not know whether every Ζ,-structure (M, P(M)) satisfies this axiom.
To satisfy the transitivity axiom it is sufficient, for example, that the
bundle π: P(M) -*• Μ satisfies the so-called Second Fundamental Theorem
(see [7]).

THEOREM 7.1 (SECOND FUNDAMENTAL THEOREM). Let ώ be a
local L-valued form on P{M) that satisfies the Maurer-Cartan formula
άώ - — 1/2 [ώ, ώ ] . Then ώ = φ*ω, where ω is the canonical L-valued
form on P(M), and φ is a local automorphism of the G0(L)-bundle
•n: P(M) -»• M.

Chapter 3

CHARACTERISTIC CLASSES OF FOLIATIONS

§8. Characteristic classes in the category of Ζ,-foliations

In this section we show how to construct characteristic classes in the
category of Ζ,-foliations by means of the characteristic homomorphism
constructed in §3.

DEFINITION 8.1. Let C be an arbitrary category, and let Γ be a
covariant (respectively, contravariant) functor from C to the category of
sets. A characteristic class in C with values in Γ is a function χ that
assigns to every object c G C a n element %(c) e T(c) such that for every
morphism a: c -*• c we have x(c') = T(a)\(c) (respectively, %(c) = T(a)x(c')).

We consider the category of Z-foliations and the functor Ω^, that assigns
to every i-foliation F the space of Z-valued differential forms on the
manifold Pp.

We construct a characteristic class in the category of Ζ,-foliations with values
in Ω/,. For this purpose we define on P{M) an Z-valued differential form ωι
by the formula u>L — cu/Vnm. (We recall that ω is the canonical Wm(L)-
valued form on the principal Wm(L)-space P(M).) From Proposition 3.1 we
conclude that ωι is basic for the bundle pp\ P(M) -+ PF. We denote by

the corresponding form on the base space Pp. Clearly,
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f*cui(F) = C J ^ ( / * F ) . So we obtain the following theorem.
THEOREM 8.1. The function ωι that takes the L-foliation F to the

differential form to/,(.F) is a characteristic class in the category of L-foliations
with values in Ω/,.

Since ω satisfies the Maurer-Cartan formula, so does the form ω/,.
Therefore (see Proposition 3.2) there are defined a homomorphism of
complexes Φ: C(L) -»· Ω(Ρρ) and a homomorphism Φ: H*{L) -*• H*{Pp).
We denote by Ω the functor that assigns to a foliation F the de Rham
complex of Pp. Since Φ commutes with the morphisms of the foliation,
we have the following theorem.

THEOREM 8.2. a) Φ is a homomorphism of the standard complex of
cocycles of the topological algebra L into the ring of characteristic classes
in the category of L-foliations with values in Ω.

b) Φ is a homomorphism of the cohomology ring of L into the ring of
characteristic classes with values in the functor that assigns to an L-foliation
F the cohomology ring of Pp.

We investigate now how to compute the cohomology of Pp. To do this
we consider the bundle π 1 : Ρρ -*• Pp. (We recall that PF is the manifold of
l.-jets of formal submersions s G PF; in particular, PF is finite-dimensional.)
The fiber of this bundle is diffeomorphic to the group Gt(L), that is, to a
linear space. Therefore •πί is a homotopy equivalence, and

π * . #*(ρ^,) -+ H*(Pp) is an isomorphism. So we obtain the following
theorem.

THEOREM 8.3. Let β* be the functor that assigns to an L-foliation F
the ring H*(PF). Then the mapping φ = }j/(F) = ( π * ) " 1 ° Φ: H*(L) -* H*(PF) is
a homomorphism of the cohomology ring of L into the ring of characteristic
classes in the category of L-foliations with values in ff*.

Let Η be a closed subgroup of Ga{L). By Remark 3.2 we obtain a
homomorphism ΦΗ: H*{L, H) -*• H*(PF/H). If Η is homotopy equivalent
to G0(L), then the projection π#: PF/H -*• Μ is a homotopy equivalence,
and ifff·. H*(M) -*• H*(Pp/M) is an isomorphism. So we obtain the following
theorem:

THEOREM 8.4. Let H* be the functor that assigns to an L-foliation F
the ring H*(M), and let Η be a closed subgroup of G0(L) that is homotopy
equivalent to G0{L). Then i//# = (π^)" 1 ° Φ# is a homomorphism of
H*{L, H) into the ring of characteristic classes in the category of L-
foliations with values in H*.

REMARK 8.1. For Η we can take, for example, the maximal compact
subgroup K(L) of G 0 ( i) .

§9. Characteristic classes in the category of Γ-foliations

In this section we construct characteristic classes of the so-called
Γ-foliations

DEFINITION 9.1 (see [2]). Let Γ be a transitive pseudogroup on R".
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A Γ-foliation OF of codimension η on a finite-dimensional manifold Μ is a
covering {Ut} together with submersions f(. U( -*• R" that satisfy the con-
dition: for every point χ Ε Ut Π Uj there exists an element gy Ε Γ such
that fi = gjj°f] in some open neighborhood of x.

The submersions /} are called local projections of the foliation &. The
leaf ^ x of j ^ passing through χ is defined in a neighborhood {/,· by the
equation ft {&xft Ut) = /,(*).

We make the class of Γ-foliations into a category.
DEFINITION 9.2. Let Fx and F 2 be Γ-foliations on the manifolds Μ

and N, respectively. A morphism Ft -> F 2 is a smooth mapping f: Μ -*• Ν
that satisfies the following condition.

Let χ Ε Λί, and let ft: f/ -+ R" and g 2

; F -^ R" (C/ C ili, F C Λ0 be
mappings of neighborhoods of χ and fix) that belong to the atlas of the
foliations jFi and ^ 2 , respectively. Then there exists a diffeomorphism
7 Ε Γ such that 7°f t = g2 ° / in some neighborhood of JC.

REMARK 9.1. Let JF be a Γ-foliation on N. We call a mapping
f: Μ -* Ν transversal to if if the mappings /}<>/ are submersions, where
the /} are the local projections of 3F. Then we can define uniquely on Μ
the structure of a Γ-foliation f*(F) in such a way that / is a morphism
f*(F) -+ F.

DEFINITION 9.3. Foliations Jf0 and £F\ on a manifold JW are integrally-
homotopic if there exists a foliation ff7 on Μ Χ [0, 1] such that
jph = tj(jr), where k = 0, 1, and /Λ: Λί -^ Af X [0, 1] is an embedding
that takes χ to χ Χ £.

We describe now in a general way the connection between our concepts
of an Ζ,-foliation and a Γ-foliation.

Suppose that a covering {Ut} and submersions /}: t/,· ->• R" define on an
0? + m)-dimensional manifold Λ/ a Γ-foliation Ĵ " of codimension n. There
is a transitive pseudogroup Tgp on Af connected with jf. By definition,
r^r consists of the local diffeomorphisms φ: ί/ψ -»• Κψ for which
^•"ψ = 7°/}, in some neighborhood of an arbitrary point χ Ε {7ψ, where
χ e £/,·, i//(x) Ε Uj, and γ G Γ. It can be shown that LabsiTp) is isomorphic
to Wm(L) C Wn + m, where L is isomorphic to Ζ,^(Γ). The arguments in
§7 enable us to construct a Wm (Z)-structure for Tgr, that is, an Z,-foliation.
Thus, for every Γ-foliation ,f we have constructed an Z-foliation F. On the
other hand, if F is an L-foliation in the sense of Definition 6.8, then there
exists an ordinary foliation sp on M, defined in the following way. A
vector field ζ 6 SI(Af) is tangent to a leaf of j r if and only if ω(σ(£)) Ε Vn>m,
It can be shown that if F satisfies Theorem 7.1, then sf is a Γ-foliation,
with / ^ ( Γ ) isomorphic to /,.

The morphisms in the categories of ^-foliations and Γ-foliations also are
compatible.

Constructions later in this section generalize a construction proposed by
the authors in [3].
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Let £F be a Γ-foliation of codimension η on a manifold M. We first
construct an infinite-dimensional manifold Pg:, which plays the same role
for jf as Pp did for F.

To do this we consider the infinite-dimensional manifold Sg: of formal
submersions s: Μ -*• R" that are constant on the leaves of &. An exact
definition of Sg: is as follows.

Let u be a local submersion of a neighborhood of χ £ Μ into R" for
which: a) u is constant on the leaves of tp; b) M(JC) = 0. The space of
Λ-jets at χ of such submersions is denoted by J^.{£p). We set
Sg: = {x, j \x£ M, i 6 / * ( # ) } and 5^- = proj lim = S^r. The 5 ^ can be
regarded as the space of the fibration ng:\ Sgr-^-M where the projection
is induced by the projections {x, j} >-*• x. We define a subfibration
ngr: Pg: ->• Μ of π ^ : Sgr-*-M as proj lim i^r, where Pg: c= 5]^ consists
of the points {x, j), for which / is a A;-jet of a submersion of the form
y°fi, where γ £ Γ. {Pg: does not depend on the choice for χ of the
index i, since in some neighborhood of χ for any i, I, we have ft = guf,
where gu £ Γ.) Now π χ : Pep ->• P ^ is a fibration with an affine fiber, and
so πχ establishes a homotopy equivalence between the infinite-dimensional
manifold Pgr and the finite-dimensional manifold P\p.

REMARK 9.4. We now give alternative descriptions of Sg; and Pg:. Let
T(^) denote the subfibration of T{M) tangent to the leaf of &. The Sgr
is diffeomorphic to the total space of the principal GL(n, R)-bundle Q(jf)
associated with the vector-bundle T(M)/T{$F), and Pg: is diffeomorphic
to the total space of the principal Gj(L(r))-bundle associated with T(M)/T{jf).

Now we construct an Z,(r)-valued differential form cogr on Pg: that
satisfies the Maurer-Cartan formula a^g: = — l/2[co^, cog:]. (We recall that
the Lie algebra L(P) is formed by the formal Taylor series of Γ-fields at
zero.) For this purpose we consider the manifold P(Rn) C S(Rn) of formal
jets at zero of local diffeomorphisms 7 £ Γ. It is easy to see that the pair
(R", P(R")) defines an L(r)-structure on R". With a local submersion
s: U -+ R"(£/ C Uj C M), which is of the form y°ft, we associate the
diffeomorphism 7(7 £ Γ). The correspondence s>-*-y induces a mapping

of formal jets and consequently a mapping Jt: P&\ _! _ ->- ̂ (R"). On the
ngi (fJi)

principal Z(F)-space P(R") we take the canonical Z,(F)-valued form ω that
satisfies the Maurer-Cartan formula. Then there is an Z,(T)-valued form
(fi)*O3 on Pgr\ _i . Clearly, (Λ·)*ω satisfies the Maurer-Cartan formula.

LEMMA 9.1. The local forms (fi)*io define a global form ω ^ on Pgr.
PROOF. We must show that the forms (//)*ω and (//)*ω coincide on

the intersection Pg: \ _ t Π P& I -1 r . . = P& L-i(^i Π Uj).
nsr (Ut) " >ng; Φ j) -" 'Kg:

Let x £ υ, Π Uj, and let F be a neighborhood of χ on which // =
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where gtj belongs to Γ. Then (//)*ω'| _ι = (7ι)*ω, where ω =

It follows from Lemma 4.1 that the diffeomorphisms gjj preserve ω, and
so ω = ω'.

It is easy to check that the manifold Pep and the form ωβρ coincide
with the manifold PF and the form coF of the preceding section if the
Z,(F)-foliation F is constructed from the Γ-foliation £F by the method
indicated in §7. Therefore Theorems 8.1 - 8.4 remain valid if F and &
are interchanged.

Thus, for every Γ-foliation J F on Μ there is a characteristic homomorphism

Ψ: H*(L(T)) -ν Η*(Ρ1ρ),

and also a characteristic homomorphism φΗ: H*(L(T), H) -*• H*(M),
where Η is any closed subgroup of G 0 ( r ) that is homotopy equivalent
to <?ο(Γ).

REMARK 9.3. It is clear from the construction of cog: that wgr is a
characteristic class in the category of Γ-foliations with values in the functor
that assigns to the Γ-foliation # the complex of Z(F)-valued differential
forms on Pgp. Consequently, Theorems 8.1 —8.4 can be proved for
Γ-foliations without using the results of §7.

REMARK 9.4. Clearly, the images of the characteristic homomorphisms
and Ψ Η {$F) depend only on the integrable-homotopy type of IF.

§10. Some applications to foliations of a special kind

In this section we study the characteristic classes of Ζ-foliations when
L is one of the algebras listed in §5. At the same time we mention some
known results about the cohomology of L.

1. L = Wn. There are two possible variants of a Wn-foliation.
a) An arbitrary foliation F. In this case G0(Wn) = Go, and the maximal

compact subgroup K(Wn) of G0(Wn) is isomorphic to On, where On is the
orthogonal group of order n. (The group GL(n, R) = GLn is embedded in
Go, since every linear transformation can be regarded as a formal diffeo-
morphism of R", that is, as an element of Go.)

For an arbitrary Wn-foliation F we have the characteristic homomorphism
<//: H*(Wn) -> H*(Q(F)). (We recall that Q(F) is the principal GLn-bundle
associated with the vector bundle normal to the leaves of F.)

We also recall some known results of Gel'fand and Fuks on the
cohomology of Wn (a detailed proof of the theorem of Gel'fand and Fuks
can be found in the article by Godbillon [12]).

Let Tn denote the product of the exterior algebra £"[«!, . . . , « „ ] in the
generators w1; . . ., un (dim w,- = 2/ - 1) and the algebra -P^tcj, . . ., cn],
which is the factor algebra of the algebra P[cl: . . ., cn] of polynomials in
the variables c l 5 . . ., cn (dim c,· = 2ϊ) by the ideal generated by the



134 /. Ν. Bernshtein andB. I. Rozenfel'd

monomials of degree > In. We make Tn into a complex by setting
dut = Ci (/ = 1, . . ., n).

THEOREM 10.1 (GeFfand and Fuks). There exists a mapping t from Tn

into the complex C(Wn) that induces a cohomology isomorphism.
A basis of H*(Tn) consists of the cohomology classes of the elements

uil Λ · · · Λ Uir ® ch · • • ch' w n e r e the indices iu . . ., ir, h, . . ., h
satisfy the conditions ix < . . . < ir, }\ < . . . < j s , j\ + . . . + js < n,
it + ji + . . . + js > n, ix < ji. For convenience we use the same letters to
denote the elements of Tn and the images of these elements under t.

We do not describe the homomorphism t completely, but we only
indicate the images of the c,·. To the formal vector field f we assign its
linear part, θ(ξ), which can be identified with an element of the algebra
gt(n, R). The so obtained cochain θ with values in &i(n, R) = gin determines
a gU-connection on Wn (for a definition, see [8], [12]). We define the
curvature Ω from the structural formula

Ω = 1/2ΙΘ, θ] + άθ.

We consider the algebra /(gtn) of polynomials on gln invariant under the
adjoint representation of GLn. Now /(s)tn) is isomorphic to -Ρ[<?Ί, . . .,cn],

where c/ is the term of degree η — ζ of the variable λ in det \XE + 2JT^j»

where Ε is the identity matrix and Ω 6 8(n. The image of c,· G Tn under t
is defined by the formula:

(10.1) ct(Clf ...,&,,) =
= "(2Ϊ)Γ Σ signx.'ci (Ω(ζτ(1), ζτ ( 2 )), . . . , Ω(ζτ(2ί-ΐ), ζτ(2ί)))

Knowing the cohomology of Wn and applying the Serre-Hochschild
spectral sequence, we can easily compute the cohomology of the complexes
C{Wn, GLn) and C(WH, On).

THEOREM 10.2. The homomorphism t, restricted to the subcomplex
Pn[ci, . . ., cn], induces an isomorphism

t*:Pn[Cl, . . ., cn]-+H*(Wn, GLn).

THEOREM 10.3. Let TOn denote the tensor product
Elu^ u3, u5, . . .] (g) Pjc^ . . ., cn] (the generators u have odd suffixes).
Then t, restricted to the subcomplex TOn, induces an isomorphism

t*: H*(TOn) -^ H*(Wn, On).

THEOREM 10.4. Let Dn denote the Lie algebra of the group On. Then

( H* <TOn) if η is odd,
H*(Wn, Dn) = H*(Wn, SOn) = {H.\ mil^Cnifn is even.
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Here χ is the fermal Euler class, which is defined by the formal Dn-
connection on Wn by the same formulae as the usual Euler class. (We can
define the Dn-connection on Wn by setting θα(ζ) = 1/2(θ(ζ)—θ*(ζ)), where
f e WH.)

Let us compute where the cohomology class c,· is sent under the
homomorphism * C I # I ( F ) : #*(Wn, GI») •* #*(Λ/).

THEOREM 10.5. Let Pi(F) denote the i-th Pontryagin class of the
bundle PF = Q(F). Then *GLn(F)(c2i) = pt(F).

PROOF. The form θρ = Φ(0) defined on PF is a base for the bundle
π 2 : PF -*• Pp. Thus, there exists a canonical form on Pp with values in gln

which we also denote by θρ. Let 8 be an arbitrary connection on the
bundle Q(F) -*· Λ/. There exists a unique section p: PF ->• Pp for which
# = ρ*{θρ). It remains to observe that the cocycles c2/· and the Pontryagin
cocycles pj(S) constructed from θ are expressed in the same way in terms
of the forms θ and #. Consequently, pt0) = p*(4>F)(c2/). Reducing the
forms Ρί(θ) and ρ*Φ(^)^ 2 ί ·) to Μ and passing to cohomology, we obtain
Pi(F) = *GLn(F)(c2i).

COROLLARY 10.1 (Bott's theorem). For an arbitrary foliation F of
codimension η the product of the Pontryagin classes of the bundle Q(F)
of degree > 2n vanishes.

For this follows from the fact that the product of classes c, G iP'iW,,, GLn)
of degree > In vanishes.

Apart from the classes c2i, which become Pontryagin classes of Q(F), we
have characteristic classes of the form uH f\ . . . f\ uir <g> cH . . . c^, where
not all the indices are zero. Examples are known of foliations for which
these characteristic classes are non-zero. The first example is due to
Godbillon and Vey [11]. In their paper they describe a foliation F of
codimension 1 for which the characteristic class i2(F) = Ψ(.Ρ) («j /\ CJ) is
different from zero. Other examples are in [10].

Thurston [29] has proved that there are foliations F of codimension 1
on the 3-dimensional sphere for which the value of the class Ω(.Γ) on a
fundamental cycle takes any positive value. Hence, in particular £l(F) is
not preserved under deformations of F.

On the other hand, Heitsch [33] has noted that a characteristic class of
the form Ψ(νν), where the cohomology class w Ε H*{Wn, On) lies in the
image of the homomorphism h*: H*(Wn+l, On+1) -*• H*{Wn, On), induces
a natural embedding hn: Wn -*• Wn+l that is preserved under deformations
of the foliation. For if Fs for s £ [0, 1] is a smooth family of foliations
of codimension η on M, then there is a foliation F of codimension η + 1
on Μ Χ [0, 1]. It is not difficult to check that the diagram

H* (Wn+l, On+l) —1> H* (Wn, On)

H*(Mx[0, i])—s
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commutes for every s, where is: Μ -*• Μ Χ [0, 1] is an embedding that
takes χ Ε. Μ to χ X s Ε Λί Χ [0, 1]. The required statement follows from
this.

We now give an example of a foliation Fn of codimension η whose
"generalized" Godbillon-Vey class Q(Fn) = Ψ(ί"η) («ι Λ · · · Λ "η <8> <?)
is different from zero. (In the case η — 1, our example is the same as
that in [11].)

EXAMPLE 10.1. Let SLn+l be the group of unimodular matrices of
order (n + 1), \in+l its Lie algebra, and Γ a discrete subgroup of SLn+l

such that the manifold Μ = £ Ζ η + 1 / Γ is compact. The subalgebra of fin+i
consisting of the matrices whose last row is zero defines on SLn+1 a
distribution Fn of codimension n. This integrable distribution is invariant
under the action of Γ (and also of SLn+l), and consequently defines a
foliation Fn on M. It can be verified that Ω(.Ρη) is different from zero.

b) An oriented foliation F. In this case G0(Wn) = G%, where G% is the
group of formal jets of diffeomorphisms that preserve a fixed orientation
of R", and K(Wn) = SOn, the special orthogonal group. The only
difference from case a) is that for even η we obtain a new characteristic
class ^sOnix), the Euler class of the oriented bundle Q(F).

2. L = W%. A fV^-foliation F is called a complex analytic foliation of
complex codimension n. We first find the cohomology of W%. The compu-
tations of Gel'fand and Fuks carry over without change to C(W%) ® C.
Let T% denote the tensor product

EC[U{, . .., Un] ®CPn{Ci, · . · , Cn] <g>c£C [«l, · • ·, Un] <S)cPnlCl, • · · , Cn],

where Ec is the exterior algebra over C, and P% the factor algebra of the
ring of polynomials with complex coefficients in η variables by the ideal
generated by the monomials of degree > In. We make T° into a complex
by setting <2u,· = ct and dui ~ c,-.

THEOREM 10.6. There exists a homomorphism tc from T% into
C(Wn) ® C that induces a homology isomorphism.

The images of the c% under this homomorphism are the cocycles
defined by (10.1), with Ω replaced by the formal curvature constructed
from the natural gl (n, C)-connection in W^ a nd the polynomials ck on the
coefficients of degree (n - k) with respect to λ in det ΙλΕ + γ~ Ω\. The

cocycles ic(c,·) and ic(w;) are conjugate to tc(Ci) and ic(w,·).
It can be shown that the cochains «,· - w,· belong to the complex

C{Wn, Un), where Un is the unitary group of order n.
THEOREM 10.7. Let Tc(Un) denote the tensor product

Pnlcu ...,cn] <^cE
c(ul — ul, ...,un—un)®cPn [c"i, · • · ,~cn] • The homomor-

phism tc, restricted to the subcomplex Tc(Un), induces an isomorphism
(tc)*:H*(Tc(Un))-+H*(Wn, C/n)®C.

Now we return to the characteristic classes of complex analytic foliations.
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For the ^-foliation F on the manifold Μ we have the characteristic
homomorphism V(F): H*(W%) •* H*(Q(F)). (Here Q{F) is the principal
GL(n, C)-bundle associated with the complex vector bundle normal to the
leaves of the complex foliation F.) Moreover, we have a homomorphism
*t/ n (F): H*(Wfi, U») -*• H*{M). (The unitary group Un is the maximal
compact subgroup of the group G0(W%) of formal analytic isomorphisms of
C.)

THEOREM 10.8. Let c^F) denote the i-th Chern class of the complex
bundle Q(F). Then

= ct (F).

The proof is analogous to that of Theorem 10.5.
COROLLARY 10.2 (Complex variant of Bott's theorem). For a complex

analytic foliation F of complex codimension η the Chern classes of Q{F)
of degree > 2n vanish.

EXAMPLE 10.2. Let Μ be an η-dimensional complex analytic manifold.
There exists a natural ^-structure on Μ (see Example 4.2). Therefore we
have a homomorphism Ψ: H*(W%) -»· H*(Q). (Here Q is the principal
GL(n, C)-bundle associated with the complex tangent bundle T(M).) Let
us describe the homomorphism Φ explicitly.

With this aim we consider the classifying map /: Μ -*• BUn of Μ into
the classifying space BUn. By the theorem on cellular approximation we
may assume that f(M) C [BUn]2n, where lBUn)2n denotes the 2«-skeleton
of the cell complex BUn. Let p: E2n -* [BUn]2n be the restriction of the
universal principal GL(n, C)-bundle ρ: Ε -*• BUn to [BUn]2n- The / induces
a mapping f: Q •+ E2n. Let H*{W^) be the subring of H*(W%) <g> C, that
is the image under tc of the cohomology ring of the subcomplex
Ec[u, ..., wJOc P% [clt - . ., cn] of T%.

THEOREM 10.9. The image of Hg(W%) under Ψ coincides with the
image of the cohomology ring of E2n under f, that is,
*(H*(W°)) = ?*(H*{E2n, O).

The proof of this theorem is left as an exercise.
REMARK 10.1. The natural projection S°{M) -*• Q that sends a formal

analytic coordinate system on Μ to its 1-jet is a homotopy equivalence.
Thus, in terms of the isomorphism H*(SC(M)) « H*{Q), Theorem 10.9
describes in explicit form the homomorphism Φ: H*(W%) -*• H*(SC(M)).

3. L — D2n. The Z)2«"f°liation F is called Hamiltonian.
For a Hamiltonian foliation F we have the characteristic homomorphisms

* ( F ) : H*(D2n) -* #*(/>>) and *SPm(F): Η*φ2η, SP2n) -» H*(M), where
SP2n is the symplectic group, regarded as a subgroup of G0(D2n). The
study of the characteristic classes of Hamiltonian foliations connected with
the homomorphism Ψ is beset by difficulties, because the cohomology of
D2n has not been computed completely. (A partial computation of this
cohomology can be found in [9], for example.) However, even what little
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is known allows us to obtain new results on Hamiltonian foliations.
Here is the information we have on the cohomology of D2n.
a) The cohomology of D2n up to dimension 2n inclusive is generated

by powers of a two-dimensional class 7 ε H2{D2n). The class γ is defined
by a cocycle 7(f, 17) = α(?, τ?)(0), where α = dxi /\ dyi + . . . + dxn /\ dyn,
and ξ, η Ε D2n.

b) D2n has the connections fp2n and un, which are constructed like the
Qhn- and £>2n-connections of Wn. From these connections we can determine
the formal Pontryagin classes p,· and Chern classes c,· in H*(D2n, £/„). (Here
\\>2n a nd un are the Lie algebras of the Lie groups SP2n and Un,
respectively.)

All of the relations in H*(D2n, Un) between the formal Chern and
Pontryagin classes are consequences of the relations in the rings of invariant
polynomials /(iin) and J{\^2n), and also of the Bott relations:
ΡΪ'. . . p? = 0 if and only if 2(i\ + . . . + rir) > n.

c) The embedding D2n -*• W2n induces a homomorphism C(W2n» £21») -*"
->- C(Z?3n, u n). This homomorphism takes the cochains u£ ζ C{W2n, £s2n)
(i odd) to zero.

d) Besides the classes of the form uu /\ . . . Λ uiT <8> ch · · · chi which
depend only on the 2-jets of vector fields, there are classes in the cohom-
ology of D2n that depend on jets of order greater than 2. For example,
the class ρ €Ξ Η1 φ2) in [9] depends on a jet of order 4.

We can conclude from a) and b) that for a regular D2n-structure
{M, P(M)), in particular, for a Hamiltonian manifold M, the homomorphism
Ψ υ : H*(D2n, Un) -*• H*(M) gives only the classical characteristic classes:
the Pontryagin and Chern classes of the tangent bundle T(M), and also the
canonical form a = Ψ(γ). Apart from Bott's theorem for Hamiltonian
foliations, the following results are consequences of c).

THEOREM 10.10. A foliation F is Hamiltonian (or even integrably
homotopic to a Hamiltonian foliation) only if the characteristic classes of
the form W(F) {uu Λ · · · Λ uir <g> ch . . . ch) vanish if at least one index
it is odd.

COROLLARY 10.3. The foliation F2n in example 10.1 is not integrably
homotopic to any Hamiltonian foliation. In particular, the distribution F2n

cannot be defined by a closed 2-form.
We do not know of any examples of Hamiltonian foliations with non-

trivial characteristic classes Φ(ρ).
Hamiltonian foliations admit of a simple description by changing from

the language of L-foliations to that of Γ-foliations.
Let Γ φ 2 η ) be a pseudogroup generated by local vector fields that belong

to the algebra D2n (that is, T(P2n) is a pseudogroup of local diffeo-
morphisms of R 2" that preserve the 2-form a = dxx /\ dyi + · · · + dxn /\ dyn).

In the language of Γ-foliations, a Hamiltonian foliation is a Γ(Ζ)2η)"
foliation.
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THEOREM 10.11. The category of Hamiltonian foliations of codimension
2n is equivalent to the category whose objects are pairs (Μ, ω), where Μ
is a finite-dimensional manifold and ω is a closed 2-form of constant rank
2n on M, and whose morphisms (Μ, ω) -»· (Μ', ω') are smooth maps
f: Μ -*• Μ' such that ω = /*(ω') .

PROOF. 1) Let F = {ui, ft} be a Hamiltonian foliation on M. The
local projections f(. U\ -»• R 2" induce on t/,· a 2-form ω,· = ffa. The forms
ω,- agree on the intersections £/,· η Uj and define a global form ω on M.

2) Given a pair (Μ, ω), we define a distribution F on Μ by the
formula: ζ e F<=> ιζω = 0 (ζ 6 T(M)). It is easy to check that F is
integrable and defines a Hamiltonian foliation.

Clearly, the mappings described above agree with the morphisms in both
categories, and establish their equivalence.

4. L = An. An Λ,,-foliation F is said to be without divergence. In this
case there are characteristic homomorphisms Ψ(.Ρ): Η*(Αη) -*• H*(Pp) and
*SLn(F): H*{An, SLn) -* H*(M), where SLn is the group of unimodular
matrices, regarded as a subgroup of G0(An). Although the ring H*(An) (like
H*(Din) has not been computed, we can obtain results for foliations
without divergence analogous to those for Hamiltonian foliations in the
previous example. We give a simple description of the category of foliations
without divergence.

THEOREM 10.12. The category of foliations of codimension η without
divergence is equivalent to the category of pairs (Μ, ω), where Μ is a
manifold and ω is a closed η-form on Μ that is constant of rank n. (The
morphisms (Μ, ω) -*• (Μ1, ω') are defined as in Theorem 10.11.).

5. L = Kn. A Kn-foliation F is called contact. In this case there is a
homomorphism ¥ ( F ) : H*(Kn) -*• H*(PJr). The ring H*(Kn) has also not
been computed completely. However, in contrast to the algebras An and
D2n we can prove that H*(Kn) is finite-dimensional. Moreover, a direct
computation of the cohomology of the algebras Κλ, Κ2, K3

(Χχ = Wit K2 = Wltl) shows that, at least for small n, all the cohomology
classes of the contact algebras Kn can be represented by cocycles that
depend only on the 2-jets of formal vector fields.

Contact foliations admit of a pretty description. We recall that every
1-form ω on Μ defines a distribution F by the formula ζ ζ /*"<=>
<=>ιζω = 0 (ζ 6 Τ (Μ)). We say that ω is a form of class 2k if (duf
vanishes nowhere, but ω Λ (<*ω)" ss 0. Similarly, we say that ω is a form
of class 2k + 1 if ω Λ {da>)k vanishes nowhere, but (dco)k+1 = 0.

THEOREM 10.13. The category of contact foliations of codimension η
is equivalent to the category of pairs (M, F), where F is a distribution of
codimension 1 on the manifold Μ that is given locally by a l-form of
class n. (A morphism (M, F) -*• (M', F') is a smooth mapping /: Μ -* M'
such that F = f*F'.)

The proof is analogous to that of Theorem 10.11.
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§11. Characteristic classes in the category of principal G-bundles

In this section we show how to construct within the framework of our
theory characteristic classes in the category of vector bundles and the
category of principal G-bundles.

Let ρ: Ε -• Μ be an η-dimensional real vector bundle over an
m-dimensional manifold M. We denote by P(E) the submanifold of Ε
consisting of the formal jets at 0 G R™ X R" of local isomorphisms of
the bundle p: R"1 X R" -> Rm to the bundle ρ: Ε -*• Μ. It is not difficult
to check that the pair {E, P(E)) is a GLn{Wm )-structure. (The definition of
the algebra G(Wn), where G is a finite-dimensional Lie group, can be found
in Example 5 of §5.) The algebra GLn(Wm) has a ^-connection Θ, which
assigns to an element of the form X + g the free term of the formal
power series g.

By means of the formal curvature Ω constructed from 0 (10.1) defines
cocycles c,· € ( ^ ' (GZ, , , ^ ) , GLn X GLm). We also denote by c,· the
cohomology classes corresponding to the cocycles c,·.

THEOREM 11.1. Let pt denote the i-th Pontryagin class of the vector
bundle E. Then

(E)(c2i) = Pi.

The proof is analogous to that of Theorem 10.5.
The construction above carries over without change to the case of a

principal G-bundle ρ: Ε -*• Μ. In this case we obtain a G(Wm)-structure
(E, P(E)). To avoid obtaining only characteristic classes identically equal
to zero, we assume that G is compact. Then the ring /($) of G-invariant
polynomials on β is isomorphic to P[c1} . . ., cN]. (The degree of the
generator c,· is 2/c:,·.) With the help of the ^-connection on G(Wm) and of
the polynomials c,-(i = 1, . . ., N), we construct by (10.1) cocycles
ct Ε Ci^GiWm), G X GLm). The ct define classes ct e #**»(G(W/m), G X GLm).

THEOREM 11.2. Let Cj(E) denote the values of the generators of the
ring of real characteristic classes of the category of bundles ρ: Ε -*• Μ.
Then

The proof is analogous to that of Theorem 10.5.
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