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Abstract 

Let 5 be the sphere spectrum. We construct an associative, commutative, and unital smash 
product in a complete and cocomplete category ^ s of "5-modules" whose derived category @$ 
is equivalent to the classical stable homotopy category. This allows a simple and algebraically 
manageable definition of "5-algebras" and "commutative 5-algebras" in terms of associative, or 
associative and commutative, products R As R — • R. These notions are essentially equivalent 
to the earlier notions of Aoo and Eoo ring spectra, and the older notions feed naturally into 
the new framework to provide plentiful examples. There is an equally simple definition of 
H-modules in terms of maps R As M —• M. When R is commutative, the category ^R of 
R-modules also has an associative, commutative, and unital smash product, and its derived 
category Q)R has properties just like the stable homotopy category. 

Working in the derived category OR, we construct spectral sequences that specialize to give 
generalized universal coefficient and Kunneth spectral sequences. Classical torsion products 
and Ext groups are obtained by specializing our constructions to Eilenberg-Mac Lane spectra 
and passing to homotopy groups, and the derived category of a discrete ring R is equivalent 
to the derived category of its associated Eilenberg-Mac Lane 5-algebra. 

We also develop a homotopical theory of K-ring spectra in @R, analogous to the classical 
theory of ring spectra in the stable homotopy category, and we use it to give new constructions 
as MU-ring spectra of a host of fundamentally important spectra whose earlier constructions 
were both more difficult and less precise. 

Working in the module category ^CR, we show that the category of finite cell modules over 
an 5-algebra R gives rise to an associated algebraic if-theory spectrum KR. Specialized to 
the Eilenberg-Mac Lane spectra of discrete rings, this recovers Quillen's algebraic if-theory of 
rings. Specialized to suspension spectra E°°(QX)+ of loop spaces, it recovers Waldhausen's 
algebraic if-theory of spaces. 

Replacing our ground ring 5 by a commutative 5-algebra R, we define H-algebras and 
commutative R-algebras in terms of maps A AR A — • A, and we show that the categories 
of i?-modules, i?-algebras, and commutative /^-algebras are all topological model categories. 
We use the model structures to study Bousfield localizations of H-modules and K-algebras. 
In particular, we prove that KO and KU are commutative ko and ku-algebras and therefore 
commutative 5-algebras. 

We define the topological Hochschild homology R-module THHR(A; M) of A with coef­
ficients in an (A, i4)-bimodule M and give spectral sequences for the calculation of its ho­
motopy and homology groups. Again, classical Hochschild homology and cohomology groups 
are obtained by specializing the constructions to Eilenberg-Mac Lane spectra and passing to 
homotopy groups. 

V l l 
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Introduction 

The last thirty years have seen the importation of more and more algebraic 
techniques into stable homotopy theory. Throughout this period, most work in 
stable homotopy theory has taken place in Boardman's stable homotopy category 
[6], or in Adams' variant of it [2], or, more recently, in Lewis and May's variant 
[38]. That category is analogous to the derived category obtained from the 
category of chain complexes over a commutative ring k by inverting the quasi-
isomorphisms. The sphere spectrum 5 plays the role of fc, the smash product 
A plays the role of the tensor product, and weak equivalences play the role of 
quasi-isomorphisms. A fundamental difference between the two situations is that 
the smash product on the underlying category of spectra is not associative and 
commutative, whereas the tensor product between chain complexes of fc-modules 
is associative and commutative. For this reason, topologists generally work with 
rings and modules in the stable homotopy category, with their products and 
actions defined only up to homotopy. In contrast, of course, algebraists generally 
work with differential graded /c-algebras that have associative point-set level 
multiplications. 

We here introduce a new approach to stable homotopy theory that allows one 
to do point-set level algebra. We construct a new category Ms of 5-modules 
that has an associative, commutative, and unital smash product A5. Its derived 
category @s is obtained by inverting the weak equivalences; @s is equivalent 
to the classical stable homotopy category, and the equivalence preserves smash 
products. This allows us to rethink all of stable homotopy theory: all previous 
work in the subject might as well have been done in ^ 5 . Working on the point-
set level, in Ms, we define an 5-algebra to be an 5-module R with an associative 
and unital product RAsR —> R; if the product is also commutative, we call R 
a commutative 5-algebra. Although the definitions are now very simple, these 
are not new notions: they are refinements of the ÎQO and £"00 ring spectra that 
were introduced over twenty years ago by May, Quinn, and Ray [48]. In general, 
the latter need not satisfy the precise unital property that is enjoyed by our new 
5-algebras, but it is a simple matter to construct a weakly equivalent 5-algebra 
from an AQQ ring spectrum and a weakly equivalent commutative 5-algebra from 
an EQO ring spectrum. 

l 
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2 INTRODUCTION 

It is tempting to refer to (commutative) 5-algebras as (commutative) ring 
spectra. However, this would introduce confusion since the term "ring spectrum" 
has had a definite meaning for thirty years as a stable homotopy category level 
notion. Ring spectra in the classical homotopical sense are not rendered obsolete 
by our theory since there are many examples that admit no 5-algebra structure. 
In any case, the term 5-algebra more accurately describes our new concept. 
With our theory, and the new possibilities that it opens up, it becomes vitally 
important to keep track of when one is working on the point-set level and when 
one is working up to homotopy. In the absence (or ignorance) of a good point-set 
level category of spectra, topologists have tended to be sloppy about this. The 
dichotomy will run through our work. The terms "ring spectrum" and "module 
spectrum" will always refer to the classical homotopical notions. The terms "5-
algebra" and "5-module" will always refer to the strict point-set level notions. 

We define a (left) module M over an 5-algebra R to be an 5-module M with 
an action R/\s M —> M such that the standard diagrams commute. We obtain 
a category J£R of (left) R-modules and a derived category @R. There is a smash 
product M AR N of a right ii-module M and a left -R-module N, which is an 5-
module. For left R-modules M and N, there is a function 5-module FR(M,N) 
that enjoys properties just like modules of homomorphisms in algebra. Each 
FR(M}M) is an 5-algebra. If R is commutative, then M AR N and FR(M,N) 
are R-modules, and in this case MR and @R enjoy all of the properties of Ms 
and @s- Thus each commutative 5-algebra R determines a derived category of 
/^-modules that has all of the structure that the stable homotopy category has. 
These new categories are of substantial intrinsic interest, and they give powerful 
new tools for the investigation of the classical stable homotopy category. 

When we restrict to Eilenberg-Mac Lane spectra, our topological theory sub­
sumes a good deal of classical homological algebra. For a discrete ring R and 
^-modules M and JV, we have 

Tor£(M, N) * 7rn(HM AHR HN) and Ext£(M, N) S ir_nFHR(HM, HN). 

Here AR and FR must be interpreted in the derived category; that is, HM must 
be a CW HR-module. Moreover, the algebraic derived category Q)R is equivalent 
to the topological derived category @HR-

In general, for an 5-algebra R, approximation of iJ-modules M by weakly 
equivalent cell .R-modules is roughly analogous to forming projective resolutions 
in algebra. There is a much more precise analogy that involves developing the 
derived categories of modules over rings or, more generally, DGA's in terms of 
cell modules. It is presented in [35], which gives an algebraic theory of AQO and 
Ĵ oo A:-algebras that closely parallels the present topological theory. 

When we restrict to the sphere spectrum 5, the derived smash products 
M As N and function spectra Fs(M,N) have as their homotopy groups the 
homology and cohomology groups N*(M) and N*(M). This suggests the alter­
native notations 

Tor£(M, N) = TT„(M AR N) = N*(M) 

and 
Ext£(M,A0 = 7r.nFR(M,N) = N%(M) 
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INTRODUCTION 3 

for ^-modules M and JV. When R is connective, there are ordinary homology and 
cohomology theories on .R-modules, represented by Eilenberg-Mac Lane spectra 
that are i2-modules, and there are Atiyah-Hirzebruch spectral sequences for the 
computation of generalized homology and cohomology theories on .R-modules. 

The realization of algebraic Tor and Ext groups via Eilenberg-Mac Lane spec­
tra generalizes to spectral sequences 

Elq = Tor£;(M„M.) = » Tor*+q(M,N) 

and 
E™ = Ext£2(M*,iV*) = » E x t ^ ( M , i V ) . 

These specialize to give Kiinneth and universal coefficient spectral sequences in 
classical generalized homology and cohomology theories. There are also Eilenberg-
Moore type spectral sequences for the calculation of E*(M AR N) under appro­
priate hypotheses on R and E. 

Thinking of @R as a new stable homotopy category, where R is a commutative 
5-algebra, we can realize the action of an element x e Rn on an .R-module M as 
a map of .R-modules x : £ n M —• M. We define M/xM to be the cofiber of x, 
and we define the localization Mix"1} to be the telescope of a countable iterate of 
desuspensions of x, starting with M —• £~ n M. By iteration, we can construct 
quotients by sequences of elements and localizations at sequences of elements. 
We define -R-ring spectra, associative .R-ring spectra, and commutative jR-ring 
spectra in the homotopical sense, with products AARA —• A defined via maps 
in the derived category ^ , and it turns out to be quite simple to study when 
quotients and localizations of .R-ring spectra are again .R-ring spectra. 

When we take R — MU, we find easy direct constructions as MU-modules 
of all of the various spectra {MU/X)\Y~l) that are usually obtained by means 
of the Baas-Sullivan theory of manifolds with singularities or the Landweber 
exact functor theorem. When their homotopy groups are integral domains con­
centrated in degrees congruent to zero mod 4, these MU"-modules all admit 
canonical structures of associative and commutative MU-i'mg spectra. Remark­
ably, it is far simpler to prove the sharper statements that apply in the derived 
category of MCZ-modules than the much weaker stable homotopy category level 
analogs that were obtainable before our theory. 

Thinking of MR as a new category of point-set level modules, where R is 
again a commutative 5-algebra, we can define .R-algebras A via point-set level 
products A AR A —> A such that the appropriate diagrams commute. For 
example, FR(M, M) is an .R-algebra for any .R-module M. These have all of the 
good formal properties of 5-algebras. We repeat the dichotomy for emphasis: 
The terms "-R-ring spectrum" and "i2-module spectrum" will always refer to the 
homotopical notions defined in the derived category Q>R. The terms ".R-algebra" 
and "i2-module" will always refer to the strict, point-set, level notions. 

We shall construct Bousfield localizations of .R-modules at a given i^-module 
E. In principle, this is a derived category notion, but we shall obtain precise 
point-set level constructions. Using different point-set level constructions, we 
shall prove that the Bousfield localizations of /^-algebras can be constructed to 
be i^-algebras and the Bousfield localizations of commutative .R-algebras can be 
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4 INTRODUCTION 

constructed to be commutative ^-algebras. In particular, the localization RE of 
R at E is a commutative .R-algebra, and we shall see that the category of RE-
modules plays an intrinsically central role in the study of Bousfield localizations. 

As a very special case, this theory will imply that the spectra if O and KU 
that represent real and complex periodic if-theory can be constructed as com­
mutative algebras over the 5-algebras ko and ku that represent real and complex 
connective if-theory. Therefore KO and KU are commutative 5-algebras, as 
had long been conjectured in the earlier context of EOQ ring spectra. Again, it is 
far simpler to prove the sharper ko and fctz-algebra statements than to construct 
5-algebra structures directly. 

For an i?-algebra A, we define the enveloping i?-algebra Ae = A AR Aop, 
and we define the topological Hochschild homology of A with coefficients in an 
(A, ^4)-bimodule M to be the derived smash product 

THHR(A;M)=MAAeA. 

This is the correct generalization from algebra to topology since, if R is a discrete 
commutative ring and A is an .R-algebra that is flat as an i^-module, then the 
algebraic and topological Hochschild homology are isomorphic: 

HH*(A\ M) = To r f (M, A) £ Tor**"(HM, HA) = 7rn(THHR{A; Af)). 

In general, for a commutative 5-algebra i?, an -R-algebra A, and an (A, A)-
bimodule M, there is a spectral sequence 

Elq = HH%-q(M.,A.) = > np+q(THHR(A;M)) 

under suitable flatness hypotheses. More generally, there are similar spectral 
sequences converging to E*{THHR{A\ M)) for a commutative ring spectrum E. 

There is also a point-set level version thhR{A\M) of topological Hochschild 
homology. It is obtained by mimicking topologically the standard complex for the 
calculation of algebraic Hochschild homology. When M = A, this construction 
has particularly nice formal properties, as was observed in [54] and as we shall 
explain: it is isomorphic to the tensor A ® 5 1 . A key technical point is that the 
derived category and point-set level definitions become equivalent after replacing 
R and A by suitable weakly equivalent approximations. 

Our 5-algebras and their modules are enough like ordinary rings and modules 
that we can construct the algebraic if-theory spectrum KR associated to an 
5-algebra R by applying Waldhausen's 5 -construction to the category of finite 
cell i2-modules. Applied to the Eilenberg-Mac Lane spectrum HR of a discrete 
ring R, this gives a new construction of Quillen's algebraic if-theory. Applied 
to the suspension spectrum E°°(nX)+ , this gives a new construction of Wald­
hausen's algebraic if-theory of the space X. The resulting common framework 
for topological Hochschild homology and Quillen and Waldhausen algebraic if-
theory opens up several new directions and appears to bring a number of standing 
conjectures within reach. We merely lay the foundations here. 

The technical heart of our theory is the problem of keeping our formal point-
set level constructions under homotopical control. While we shall show by es­
sentially formal categorical arguments that our various categories of i?-modules, 
-R-algebras, and commutative R-algebras are cocomplete and complete, tensored 
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INTRODUCTION 5 

and cotensored, topological model categories, this formal structure does not in 
itself address the problem: forgetful functors from more to less structured spectra 
rarely preserve cofibrant objects, and may well not do so even up to homotopy 
type. The problem requires deeper analysis, and a crucial aspect of our work is 
that our discussion of model categories gives sufficient control on the underlying 
homotopy types of cofibrant R-algebras and cofibrant commutative R-algebras 
to allow the calculational use of bar constructions and topological Hochschild ho­
mology complexes. This is also crucial to our proof that Bousfield localizations 
of ^-algebras can be constructed as ^-algebras. 

Another tool in keeping homotopical control is the category of "tame" spec­
tra. It is an intermediate category between the ground category of spectra, 
which is well-designed for formal point-set level work but not for homotopical 
analysis, and the category of CW spectra, which is well-designed for homotopi­
cal analysis but not for formal work. The homotopy category of tame spectra 
is symmetric monoidal under the smash product, and we can approximate any 
structured spectrum by a weakly equivalent tame structured spectrum by means 
of a "cylinder construction" defined using homotopy colimits. Actually, this tool 
will only be needed in Chapter I, since the smash product of 5-modules turns out 
to better behaved under weak equivalences than the smash product of spectra. 

The basic construction underlying all of our work is the "twisted half-smash 
product" A K E of a suitable space A and a spectrum E. This construction is 
defined with respect to a given map a from A to an appropriate space of linear 
isometries. After the penultimate draft of this book was completed, Michael 
Cole came up with a new construction of twisted half-smash products, one that 
is much easier to understand than the original construction of Lewis and May 
and that allows much simpler proofs of some of our main technical results. In 
particular, we proved and Cole reproved that a homotopy equivalence Af —• A, 
with homotopy inverse unrelated to a, induces a homotopy equivalence A' K 
E —> AKE when E is tame. This invariance statement is the technical lynchpin 
of our theory. We have discarded our original proof in favor of Cole's, and he 
will present his new treatment of twisted half-smash products in the Appendix 
of this book. 

The construction of thh, of bar constructions needed in our work, and of 
functorial homotopy colimits of spectra all require geometric realizations of sim-
plicial spectra. This raises another technical problem. To understand geometric 
realization homotopically, the given simplicial spectra must satisfy certain cofi-
bration conditions, and it is hard to verify that a map of spectra is a cofibration 
(satisfies the homotopy extension property). The solution to this problem is ba­
sic to the homotopical understanding of cofibrant .R-algebras and commutative 
R- algebras. 

The reader interested in using our theory need not be concerned with these 
matters, and most of the technical proofs are deferred until the last few chapters 
and the appendix. The first three chapters explain the foundations needed for 
the applications of the next three, which are independent of one another. Chap­
ter VII explains the foundations needed for Chapters VIII and IX, which are 
independent of each other. Each chapter has its own brief introduction. Ref­
erences within a chapter are of the form "Lemma 3.4"; references to results in 
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6 INTRODUCTION 

other chapters are of the form "1.3.4" or, in the case of the Appendix, A.3.4. 
Our work is not independent of earlier work: the groundwork was laid in [38], 

and all of our ring, module, and algebra spectra are spectra in the sense of Lewis 
and May with additional structure. In view of Cole's new treatment of twisted 
half-smash products, only the first 75 pages or so of [38] are relevant, and we 
have given much more readable expositions of this background material in [23] 
and [52]. In [38], the focus was on equivariant stable homotopy theory, the study 
of spectra with actions by compact Lie groups G. We have chosen to write this 
book nonequivariantly in the interests of readability. However, we have kept 
a close eye on the equivariant generalization, and we have been careful to use 
only arguments that directly generalize to the equivariant setting. We state a 
metatheorem. 

THEOREM 0.1. All of the definitions and all of the general theory in this paper 
apply to G-spectra for any compact Lie group G. 

This has been used by Greenlees and May [28] to prove a completion theorem 
for the calculation of M*(BG) and M*(BG) for any MU-modu\e spectrum M. 
Some of that work, together with some of ours, was described in the announce­
ment [22]. The recent series of expository papers [23, 26, 27] gives a descriptive 
account of some of the present theory and its equivariant applications, including 
both equivariant and non-equivariant applications of the theory to localizations 
and completions of R-modules at ideals in TT*(R). The survey volume [52], which 
is a companion volume to this one, gives a more leisurely and thorough expos­
itory account, together with full details of the definitional framework in the 
equivariant setting. 

We warn the knowledgeable reader that this material has undergone several 
major revisions, and the final definitions and terminology are not those of earlier 
announcements and drafts. In particular, our 5-modules enjoy a unital property 
that was not imposed on the 5-modules, here called L-spectra, of the earlier 
versions written by Elmendorf, Kriz, and May alone. The fact that one can 
impose this unital property and still retain homotopical control is one of many 
new insights contributed by Mandell. This substantially sharpens and simplifies 
the theory. Paradoxically, however, one cannot impose such a unital property in 
the parallel algebraic theory of [35]. Therefore, to facilitate a comparison of the 
algebraic and topological theories, we run through a little of the previous variant 
of our theory in the last chapter. 

The chapter on algebraic if-theory has not been previously announced and 
is entirely work of Mandell; it is part of his Chicago PhD thesis in preparation. 
Similarly, the Appendix is entirely work of Cole and is part of his Chicago PhD 
thesis in preparation. 

Two other Chicago students deserve thanks. Maria Basterra has carefully 
read several drafts and caught numerous soft spots of exposition; her Chicago 
PhD thesis in preparation will give a thorough treatment of the Andre-Quillen 
cohomology of commutative 5-algebras. Jerome Wolbert has made many help­
ful comments, and his Chicago PhD thesis in preparation will analyze the new 
derived categories associated to the various if-theory spectra. 
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CHAPTER I 

Prologue: the category of L-spectra 

In this prologue, we construct a category whose existence was previously thought 
to be impossible by at least two of the authors: a complete and cocomplete 
category of spectra, namely the L-spectra, with an associative and commutative 
smash product. This contrasts with the category constructed by Lewis and 
the fourth author in [48, 38], whose smash product is neither associative nor 
commutative (before passage to homotopy categories), and with the category 
constructed by the first author in [20], which is neither complete nor cocomplete. 
We will also give a function L-spectrum construction that is right adjoint to the 
new smash product. The category of L-spectra has all of the properties that we 
desire except that its smash product, denoted by Aj^, is not unital. It has a 
natural unit map A : S l\% M —• M, which is often an isomorphism and always 
a weak equivalence. 

The curtain will rise on our real focus of interest in the next chapter, where 
we will define an 5-module to be an L-spectrum M such that A : S A& M —• M 
is an isomorphism. Restricting A& to S-modules and renaming it As, this will 
give us a symmetric monoidal category in which to develop stable topological 
algebra. 

1. Background on spectra and the stable homotopy category 

We begin by recalling the basic definitions in Lewis and May's approach to 
the stable category. We first recall the definition of a coordinate-free spectrum; 
see [38, I§2], [20, §2], or [52, Ch.XII] for further details. A coordinate-free 
spectrum is a spectrum that takes as its indexing set, instead of the integers, the 
set of finite dimensional subspaces of a "universe", namely a real inner product 
space U = M°°. Thus, a spectrum E assigns a based space EV to each finite 
dimensional subspace V of E/, with (adjoint) structure maps 

aViW : EV-^nw-vEW 

when V C W. Here W — V is the orthogonal complement of V in W and Vtw X is 
the space of based maps F(SW, X), where Sw is the one-point compactification 
of W. These maps are required to be homeomorphisms and to satisfy an evident 

9 
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10 I. PROLOGUE: THE CATEGORY OF L-SPECTRA 

associativity relation. A map of spectra / : E —> E' is a collection of maps 
of based spaces fy : EV —> E'V for which each of the following diagrams 
commutes: 

EV • E'V 

\av,w 

^W-V i?U/ — ^ U - nW-V Z7/T 
V 

nw~ VEW -^ nw~vE'w. 
We obtain the category 5?U of spectra indexed on U. If we drop the requirement 
that the maps &v,w be homeomorphisms, we obtain the notion of a prespectrum 
and the category SPU of prespectra. The forgetful functor 5?U —> 2P\J has a 
left adjoint L, details of which are given in [38, App]. Functors on prespectra 
that do not preserve spectra are extended to spectra by applying the functor L. 
For example, for a based space X and a prespectrum E, we have the prespectrum 
E AX specified by (E AX)(V) = EV AX. When E is a spectrum, the structure 
maps for this prespectrum level smash product are not homeomorphisms, and we 
understand the smash product EAX to be the spectrum L(EAX). For example, 
£ £ = E A S1. Function spectra are easier. We set F(X,E)(V) = F(X,EV) 
and find that this functor on prespectra preserves spectra. For example, QE = 
F(Sl,E). The following result is discussed in [38, p.13]. 

PROPOSITION 1.1. The category J?U is complete and cocomplete. 

PROOF. Limits and colimits are computed on prespectra spacewise. Limits 
preserve spectra, and colimits of spectra are obtained by use of the functor L. • 

A homotopy in the category of spectra is a map E A 7+ —• £", and we let 
hyU denote the homotopy category of spectra; its objects are spectra and its 
morphisms are homotopy classes of maps between them. We have cofiber and 
fiber sequences that behave exactly as in the category of spaces. The cofiber Cf 
of a map / : E —• E' of spectra is the pushout E' U/ CE, where CE = E A I. 
A cofibration of spectra is a map i : E —> E' that satisfies the homotopy 
extension property (HEP: a homotopy h : E A J+ —• F of a restriction of a map 
/ : E' —• F extends to a homotopy h : Ef Al+ —> F of / ) . The canonical maps 
E —• CE and E' —• Cf are examples. The fiber Ff of a map / : E' —• E is 
the pullback E' Xf PE, where PE = F(I,E). A fibration of spectra is a map 
p : E —• E' that satisfies the covering homotopy property (CHP: a homotopy 
h : F A 7+ —• E' of a projection p o / , / : F —• E, is covered by a homotopy 
h : F A i+ —• E of / ) . The canonical maps PE —> E and Ff —> E' are 
examples. 

A map / of spectra is a weak equivalence if each of its component maps fy is a 
weak equivalence of spaces. The stable homotopy category hS^U is constructed 
from the homotopy category hS?U by adjoining formal inverses to the weak 
equivalences, a process that is made rigorous by CW approximation. 

The F th space functor from spectra to spaces has a left adjoint that we shall 
denote by £??, or ££° when V = W1 [38, I§4]. Its definition will be recalled 
in X.4.5. When V = {0}, this is the suspension spectrum functor £°°. For 
n > 0, the sphere spectrum Sn is the suspension spectrum T,°°Sn of the sphere 
space Sn. For n > 0, the sphere spectrum S~n is £^°5°. There are canonical 
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2. EXTERNAL SMASH PRODUCTS AND TWISTED HALF-SMASH PRODUCTS 11 

isomorphisms T^S71 = srn+n for m > 0 and integers n and there are canonical 
isomorphisms E ^ 5 n = Sn~m for m > 0 and n > 0. Sphere spectra are used 
to define the homotopy groups of spectra, 7rn(J5) = hyU(Sn,E), and a map 
of spectra is a weak equivalence if and only if it induces an isomorphism of 
spectrum-level homotopy groups. 

Although we shall not introduce different notations for space level and spec­
trum level spheres, we shall generally write S for the zero sphere spectrum, 
reserving the notation 5° for the two-point space. 

The theory of cell and CW spectra is developed by taking sphere spectra as 
the domains of attaching maps [38, I§5]. The stable homotopy category hSflJ is 
equivalent to the homotopy category of CW spectra. It is important to remember 
that homotopy-preserving functors on spectra that do not preserve weak equiv­
alences are transported to the stable category by first replacing their variables 
by weakly equivalent CW spectra. 

2. External smash products and twisted half-smash products 

The construction of our new smash product will start from the external smash 
product of spectra. This is an associative and commutative pairing 

S?U x S?U' —• S*(U 0 U') 

for any pair of universes U and U'. It is constructed by starting with the pre-
spectrum level definition 

(E A E')(V © V) = EV A E'V. 

The structure maps fail to be homeomorphisms when E and E' are spectra, and 
we apply the spectrification functor L to obtain the desired spectrum level smash 
product. This external smash product is the one used in [20]. 

There is an associated function spectrum functor 

F : (yUf)op x y(U 0 U') —-> S?U 

and an adjunction 

y(U 0 U')(E A E\ E") ^ yU{E, F{E\ E")) 

for E e S>U, E' e S>U', and E" e ^{U 0 U')\ see [38, p. 69]. 
Now let J denote the category whose objects are universes U and whose 

morphisms are linear isometries. Universes are topologized as the unions of their 
finite dimensional subspaces, and the set *?(U, U1) of linear isometries U —> U' 
is given the function space topology; it is a contractible space [38, II. 1.5]. The 
category S? constructed in [20] augments to the category J. Since J fails to 
have limits and colimits (it even fails to have coproducts), 5? suffers from the 
same defects. 

In order to obtain smash products internal to a single universe U, we shall 
exploit the "twisted half-smash product". The input data for this functor consist 
of two universes U and Uf (which may be the same), an unbased space A with a 
given structure map a : A —> ^(U, [/'), and a spectrum E indexed on U. The 
output is the spectrum A K E, which is indexed on V. It must be remembered 
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12 I. PROLOGUE: THE CATEGORY OF L-SPECTRA 

that the construction depends on a and not just on A. When A has CW homo-
topy type, different choices of a lead to equivalent functors on the level of stable 
categories, by A.7.6. The intuition is that the twisted half-smash product is a 
generalization to spectra of the "untwisted" functor A+ AX on based spaces X. 
This intuition is made precise by the following "untwisting formula" that relates 
twisted half-smash products and suspension spectra. A proof will be given in 
A.5.5, where the result will be generalized to shift desuspension functors E^?. 

PROPOSITION 2.1. For any map A — • S(U, U') and any n > 0, there is an 
isomorphism of spectra 

that is natural in spaces A over J(U, Uf) and based spaces X. 

Observe that the functor E°° implicitly refers to the universe U on the left 
and to the universe U' on the right. The twisted half-smash product enjoys 
the following formal properties, among others; their analogs for the space level 
functor A + A X are trivial. Proofs will be given in A.5.3 and A§6. 

PROPOSITION 2.2. The following statements hold. 
(i) There is a canonical isomorphism {id[/} x E = E. 

(ii) Let A —> f{JJ, Uf) and B —> S(U', U") be given; let B x A have the 
structure map given by the composite 

BxA >J(y',U") x s(U,U')-2-*»S(U,U"). 

Then there is a canonical isomorphism 

{B x A) x E^B x ( A K E). 

(iii) Let A —> f{Uu U{) and B —> J{U2, C/̂ ) be given; let Ax B have the 
structure map given by the composite 

AxB ^ S{UU Ui) x J(JJ2, U£ - ^ S{U! © U2, U{ e U£. 

Let E\ and E2 be spectra indexed on U\ and U2 respectively. Then there 
is a canonical isomorphism 

(Ax B)x (Ex A E2) ^ (A x Ex) A (B x E2). 

(iv) For A —> J?(U, U'), E e 5?U', and a based space X, there is a canonical 
isomorphism 

AK(E/\X)^(AKE)AX. 

The functor A x (—) is a left adjoint. Its right adjoint will be used in our 
construction of function S-modules. 

PROPOSITION 2.3. For any space A over J{U, Uf), the functor A x (—) has a 
right adjoint, which is denoted by F[A, —) and called a twisted function spectrum. 
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3. THE LINEAR ISOMETRIES OPERAD AND INTERNAL SMASH PRODUCTS 13 

The functor A K E is homotopy-preserving in E, and it therefore preserves 
homotopy equivalences in the variable E. However, it only preserves homotopies 
over J?(U, U') in A. Nevertheless, it very often preserves homotopy equivalences 
in the variable A. This fact will be essential in keeping control over the ho-
motopical behavior of our point-set level constructions. To state it in proper 
generality, we need the following notion of a well-behaved spectrum. 

DEFINITION 2.4. A prespectrum D is E-cofibrant if each of its structure maps 
a : YiWDV —> D(V 0 W) is a cofibration of based spaces. A spectrum E is 
E-cofibrant if it is isomorphic to one of the form LD1 where D is a E-cofibrant 
prespectrum. A spectrum E is tame if it is homotopy equivalent to a E-cofibrant 
spectrum. 

We shall discuss such spectra in X§4, where we shall see that all shift desus-
pensions of based spaces are E-cofibrant and that all CW spectra are tame. It 
follows that any spectrum is weakly equivalent to a tame one. We shall show in 
X§5 that structured ring or module spectra can be approximated functorially by 
weakly equivalent E-cofibrant spectra with the same structure. The following 
result will be restated and proven as A.7.4. It is central to our theory. 

THEOREM 2.5. Let E e S^U be tame and let A be a space over J(TJ, U'). If 
(/) : A' —> A is a homotopy equivalence, then <fr x id : A tx E —• A tx E is a 
homotopy equivalence. 

Here, for a general spectrum E, we do not know whether or not <j> tx id is even 
a weak equivalence. By A.7.3, the result has the following consequence. 

COROLLARY 2.6. Let E e S?U be a spectrum that has the homotopy type of 
a CW spectrum and let A be a space over J(U,U') that has the homotopy type 
of a CW complex. Then AKE has the homotopy type of a CW spectrum. 

3. The linear isometries operad and internal smash products 

For the rest of the paper, we restrict attention to a particular universe U; the 
reader is welcome to consider it as notation for M°°. We agree to write 5? instead 
of SPU for the category of spectra indexed on U. Except where explicitly stated 
otherwise, all given spectra, whatever extra structure they may have, will be in 
y . We are especially interested in twisted half smash products defined in terms 
of the following spaces of linear isometries. 

NOTATIONS 3.1. Let Uj be the direct sum of j copies of U and let Sf(j) = 
S(Ui,U). The space JSf(O) is the point i, where i : {0} —• U, and Jif(l) 
contains the identity map 1 = idu • U —> U. The left action of E7- on Uj by 
permutations induces a free right action of Ej on the contractible space -^( j ) . 
Define maps 

7 : J?(fc) x Sf(h) x . . . x J?(jk) —> Sf(jx + • • • + jk) 

by 
7 ( P ; / I , . . - ,/*) = 0 ° ( / i © - - - © A ) -
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14 I. PROLOGUE: THE CATEGORY OF L-SPECTRA 

The spaces -£?(j) form an operad [45, p.l] with structural maps 7, called 
the linear isometries operad. Points / e JSf(j) give inclusions {/} —• -SfO')-
The corresponding twisted half-smash product is denoted /*; it sends spectra 
indexed on W to spectra indexed on U. Applied to a j-fold external smash 
product Ei A-• -AEj, it gives an internal smash product f*(Ei A- - - AEj). All of 
these smash products become equivalent in the stable homotopy category hS?, 
but none of them are associative or commutative on the point set level. In fact, 
the following sharper version of this assertion holds. 

THEOREM 3.2. Let yt C 5? be the full subcategory of tame spectra and let 
hS?t be the category of tame spectra and homotopy classes of maps. The internal 
smash products ME A E') determined by varying f £ JSf (2) are canonically 
isomorphic in hS?t, and hS^t is symmetric monoidal under the internal smash 
product. For based spaces X and tame spectra E, there is a natural isomorphism 
£ A X ~ / * ( £ A E ° ° X ) inhS?t. 

PROOF. The external and internal smash products of E-coflbrant spectra are 
E-cofibrant by results in X§4. By Theorem 2.5, for any / € JSf(j) and any 
spectra Ei € S*t, the map 

/,(£?! A • • • A Ej) — JSf (j) x (Ei A • • • A Ej) 

induced by the inclusion {/} —> Sf(j) is a homotopy equivalence. Taking 
3 = 2, this shows that the internal smash products obtained from varying / are 
homotopy equivalent. Replacing / by / o a, where a e E2 is the transposition, 
we obtain a natural homotopy equivalence 

U{E2AEi)—+&{2)KEIAE2, 

and this shows that the internal smash product is commutative up to homotopy. 
Similarly, for associativity, the inclusions of the points {/(l 0 / ) } and {/(/ © 1)} 
in JSf (3) induce natural homotopy equivalences 

ME! A ME2 A E3)) —> JSf (3) x {Ei AE2A E3) <— MM^i A E2) A E3). 

It is natural to think of based spaces as spectra indexed on the universe {0}. 
Then i# and the suspension spectrum functor are both left adjoint to the zeroth 
space functor, hence i j = E°°X. The map JSf(2) —> JSf(1) that sends / to 
/ o (10z) and the inclusion {1} —• JSf (1) induce natural homotopy equivalences 

ME A E°°X) —+ JSf (1) K (E A X) <— E A X. 

Thus, up to natural isomorphisms, the internal smash product determined by / 
becomes commutative, associative, and unital with unit S = E°°5° on passage 
to hyt- The commutativity of coherence diagrams that is required for the as­
sertion that hS?t is symmetric monoidal (see [43, p. 180]) can be checked by an 
elaboration of these arguments. • 

The following consequence strengthens the assertion [38,1.6.1] that the stable 
homotopy category really is a stable category, in the sense that the suspension 
and loop functors E and Q pass to inverse self-equivalences of h5?'. 
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3. THE LINEAR ISOMETRIES OPERAD AND INTERNAL SMASH PRODUCTS 15 

COROLLARY 3.3. For tame spectra E and f £ -^(2), there is a natural ho­
motopy equivalence between UE and f*(E A 5 _ 1 ) , and the unit rj : E —> QUE 
and counit e : T.QE —> E of the (E,Q)-adjunction are homotopy equivalences. 

PROOF. For based spaces X, E°°X is naturally isomorphic to E(EJ°X) since 
the structural homeomorphism EQ —> QEi gives a natural isomorphism be­
tween their right adjoints. Therefore, for E e <5̂ t, there is a natural homotopy 
equivalence 

E = E A 5° ~ /* (£ A E°°50) ^ /* (£ A E(E?°S0)) S £ ( / * (£ A S"1)), 

where the last isomorphism is given by Proposition 2.2(iv). It follows that, on 
hS*t, the functor E is an adjoint equivalence with inverse given by the functor 
f*(E A 5 _ 1 ) . The rest is a formal consequence of the uniqueness of adjoints. • 

Note that only actual homotopy equivalences, not weak ones, are relevant to 
these results. For this and other reasons, hSft will be a technically convenient 
halfway house between hS? and the stable homotopy category hS?, which is 
obtained from either of these homotopy categories by inverting the weak equiv­
alences. 

We can deduce that cofiber sequences give rise to long exact sequences of 
homotopy groups. 

COROLLARY 3.4. Any cofiber sequence E—>Ef —> Cf of tame spectra gives 
rise to a long exact sequence of homotopy groups 

> Trq(E) — *, (£ ' ) —> nq(Cf) — *,_! (£) — > • • • . 

Therefore the natural map Ff —> QCf is a weak equivalence. 

PROOF. Consider the diagram 

Sq —^ Sq *• CSq • E 5 9 —^->- E 5 9 

l 

Y / 

I I 

1/3 17 

Y Y 23/ 

Ea 

E—^E'—^Cf ^xE-^+ZE'. 
Here a is given such that z o a ~ 0. A homotopy induces a map (3 such that 
the second square commutes. The usual cofiber sequence argument gives 7 such 
that the right two squares homotopy commute. Since T)E : E —> QT.E is a weak 
equivalence, there is a map E _ 1 7 : Sq —• E, unique up to homotopy, such that 

r)E o E " ^ ~ ^707759. 

Therefore 

TJE' o / o E _ 1 7 = ft£/ 077^0 E _ 1 7 ~ f)E/ 0 ^ 7 0 t]Sg ~ fi£a o 7759 = 77^ oa . 

Since 77^ is a weak equivalence, this implies that / o E _ 1 7 ~ a. The long exact 
sequence follows by extending the given cofiber sequence to the right, as usual. 
The last statement follows by the five lemma and a comparison of our cofiber 
sequence with the fiber sequence associated to / . Details of this may be found 
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in [38, pp 128-130]. For later use, observe that we only used that the maps rj are 
weak equivalences, not that they are homotopy equivalences, in this proof. • 

It follows that cofiber sequences are essentially equivalent to fiber sequences. 
More precisely, the cofibrations and fibrations give "triangulations" of the stable 
homotopy category such that the negative of a cofibration triangle is a fibration 
triangle, and conversely [38, pp 128-130]. 

COROLLARY 3.5. Pushouts of tame spectra along cofibrations preserve weak 
equivalences. That is, for a commutative diagram of tame spectra 

E^—D—^F 

E'*-r-D'—77+F' 
i f 

in which i and i' are cofibrations and a, (3, and 7 are weak equivalences, the 
induced map 6 : E Up F —• E' Uof Ff of pushouts is a weak equivalence. 

P R O O F . AS for spaces, Ci is homotopy equivalent to E/D, the induced map 
F —> E U£> F is a cofibration, and the induced map E/D —> E Up F/F is an 
isomorphism. The conclusion follows from the previous corollary by a diagram 
chase and the five lemma. Q 

PROPOSITION 3.6. If E is a CW spectrum and <f>: F —> Ff is a weak equiv­
alence between tame spectra, then /*(id A0) : /*(£" AF) —• f*(EAFf) is a weak 
equivalence. 

PROOF. The functor /* ( ( - ) A F) preserves cofiber sequences. Therefore, by 
Corollary 3.5 and induction up the sequential filtration of E (see III.2.1), the 
result will hold for general E if it holds for E = Sn. When E = 5, the conclusion 
holds by the unit equivalence f*(S A F) ~ F of Theorem 3.2. For n > 0, we 
easily deduce isomorphisms 

f*(Sn AF)* E n /*(S A F) and E n / , ( 5 " n A F ) ^ / , ( 5 A F) 

from Proposition 2.2(iv). In view of Corollary 3.3, the result for E = S~n and 
E = Sn therefore follows from the result for S. • 

It follows that for general spectra E and tame spectra F, the smash product 
E A F in the stable homotopy category h& is represented by f*(TE AF) , where 
YE is a CW spectrum weakly equivalent to E. That is, we do not also have to 
apply CW approximation to F. The mild restriction to tame spectra serves to 
avoid pathological point-set behavior. 
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4. The category of L-spectra 

We think of J?(j) K (E\ A • • • A Ej) as a canonical j-fold internal smash 
product. It is still not associative, but we shall construct a commutative and 
associative smash product by restricting to L-spectra and shrinking the fat out 
of the construction. To define L-spectra, we focus attention on a small part of 
the operad 5£. Recall the notion of a monad in a category from [43, ch.VI] or 
[45, 2.1]. 

NOTATIONS 4.1. Let L denote the monad in the category 5? that is specified 
by L £ = i f (1) x E\ the product 

fjL: L L £ s ( if (1) x i f (1)) x E —-> i f (1) x E = L £ 

is induced by the product 7 : i f (1) x i f (1) —> i ? ( l ) and the unit 

77 : E ^ {1} x E —> i f (1) x E = L £ 

is induced by the inclusion {1} —> -^f(l) of the identity element. 

DEFINITION 4.2. An L-spectrum is an L-algebra M, that is, a spectrum M 
together with an action £ : LM —> M by the monad L. Explicitly, the following 
diagrams are required to commute: 

LLM-

L M -

and 

A map / : M —• N of E^-spectra is a map of spectra such that the following 
diagram commutes: 

CM €N 

M- + N. 

We let i^[L] denote the category of L-spectra. 

There is a dual form of the definition that will occasionally be needed. It is 
based on the following standard categorical observation. 

LEMMA 4.3. Let T be a monad in a category *&, and suppose that the functor 
T has a right adjoint T#. Then T# is a comonad such that the categories of 
T-algebras and ofT#-coalgebras are isomorphic. 

We shall consistently use the notation T# for the comonad associated to a 
monad T that has a right adjoint. In particular, by Proposition 2.3, we now have 
a comonad L# such that an L^-coalgebra is the same thing as an L-spectrum. 
This implies the following result. 
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PROPOSITION 4.4. The category ofh-spectra is complete and cocomplete, with 
both limits and colimits created in the underlying category S?. If X is a based 
space and M is an L-spectrum, then MAX and F(X, M) are h-spectra, and the 
spectrum level fiber and cofiber of a map oflL-spectra are IL-spectra. 

P R O O F . Since S^\L] is the category of algebras over the monad L, the for­
getful functor y\L] —• 5? creates limits [43, VI.2, ex. 2]. Since S? is complete, 
this implies the statement about limits. The statement about colimits follows 
similarly by use of the comonad L#. The last statement is immediate from the 
canonical isomorphism 

JSf(l) x (Af A X) £ (JSf(l) ix M) A X 

of Proposition 2.2(iv) and its analog (A.6.1) 

F[X{l),F{X,M)) = F{X,F[2>{l),M)). D 

LEMMA 4.5. The sphere spectrum S is an IL-spectrum. More generally, for 
based spaces X, E°°X = S A X is naturally an h-spectrum. 

P R O O F . Recall from the proof of Theorem 3.2 that a based space X may be 
viewed as a spectrum indexed on {0} and that H°°X = i*X, i : {0} —> U. We 
may rewrite this as E°°X — S£(0) x X. Then the structure map is given by 

7 K id : JSf(l) x (JSf(O) K l ) ^ (JSf (1) x JSf(O)) x X —> Jif (0) x X. 

In the middle, -^(1) x J?(0) is regarded as a space over -£?(0) via 7, and the 
isomorphism is given by an instance of Proposition 2.2(h). Of course, 7 here is 
just the unique map from J^(l) to the one-point space J^(0), and our structure 
map is just the composite 

i f (1) x E°°X * E°°(J?(1)+ A X) —* E°°(5° AX)^ E°°X, 

where the first isomorphism is given by Proposition 2.1. • 

A homotopy in the category of IL-spectra is a map MAJ + —> N. A map of IL-
spectra is a weak equivalence if it is a weak equivalence as a map of spectra. The 
stable homotopy category hS*\L] of L-spectra is constructed from the homotopy 
category hS^\L] by adjoining formal inverses to the weak equivalences; again, 
the process is made rigorous by CW approximation. Since the theory of cell and 
CW L-spectra is exactly like the theory of cell and CW spectra developed in [38, 
I§5], we shall not give details. The reader who would like to see an exposition 
is invited to look ahead to III§2. The theory of cell R-modules to be presented 
there applies (with minor simplifications) to give what is needed. It is formal 
that the monad L may be viewed as specifying the free functor from spectra 
to L-spectra. The sphere L-spectra that we take as the domains of attaching 
maps when defining cell L-spectra are the free L-spectra hSn = % (1) x Sn. A 
weak equivalence of cell L-spectra is a homotopy equivalence, any IL-spectrum is 
weakly equivalent to a CW L-spectrum, and hy[h] is equivalent to the homotopy 
category of CW L-spectra. We warn the reader that, although S itself is an IL-
spectrum, it does not have the homotopy type of a CW L-spectrum (see Warning 
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6.8 below). The following comparison between CW spectra and CW L-spectra 
establishes an equivalence between hS? and Li^[L]. 

THEOREM 4.6. The following conclusions hold. 

(i) The free functor L : S? —> S?\L] carries CW spectra to CW L-spectra. 
(ii) The forgetful functor y[L] —• S? carries "L-spectra of the homotopy 

types of CW L-spectra to spectra of the homotopy types of CW spectra. 
(iii) Every CW L-spectrum M is homotopy equivalent as an L-spectrum to 

LE for some CW spectrum E. 
(iv) The unit n: E —» LE of the adjunction 

J^[L](L£,M)^^(£,M) 

is a homotopy equivalence if E € 5?t, for example if E is a CW spectrum. 
(v) The counit £ : LM —> M of the adjunction is a homotopy equivalence 

of spectra if M is tame and is a homotopy equivalence of L-spectra if M 
has the homotopy type of a CW L-spectrum. 

The free and forgetful functors establish an adjoint equivalence between the stable 
homotopy categories hS? and hS^[L]. 

PROOF. Part (i) is immediate by induction up the sequential filtration (see 
III.2.1). Part (iv) is immediate from Theorem 2.5 and, applied to sphere spectra, 
it implies (ii). Since £ o rj = id : M —• M for any M, (iv) and the Whitehead 
theorem in the category of L-spectra imply (v). Part (iii) follows from (i) and 
(v) since there is a CW spectrum E and a homotopy equivalence of spectra 
E —> M. It is a formal consequence of (i) that we have an induced adjunction 

L^[L](L£, M) * hy{E, M) 

(see [38, 1.5.13]), and its unit and counit are natural isomorphisms. • 

Observe that, dually, we can interpret L# as specifying the "cofree" functor 
from spectra to L-spectra. That is, we have an adjunction 

(4.7) y[L){M,L#E) ^ S*(M,E). 

By part (ii) of the theorem and [38, 1.5.13], there results an induced adjunction 

L^ [L] (M,L # £) £ hS*(M,E). 

It is an easy categorical observation that, in any adjoint equivalence of categories, 
the given left and right adjoints are also right and left adjoint to each other. 

COROLLARY 4.8. The functors L\hS? —• Ls^pL] and L* : hS? —> hS?\L] 
are naturally isomorphic. 
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5. The smash product of L-spectra 

Via instances of the structural maps 7 of the operad JSf', we have a left action of 
the monoid JSf (1) and a right action of the monoid JSf (1) x JSf (1) on JSf (2). These 
actions commute with each other. If M and N are L-spectra, then JSf (1) x JSf (1) 
acts from the left on the external smash product MAN via the map 

£ : (JSf (1) x JSf (1)) K (M A N) 9* (JSf (1) K M) A (JSf (1) x AT) - ^ - ^ M A iV. 

To form the twisted half smash product on the left, we think of JSf (1) x JSf (1) as 
mapping to J(U2,U2) via direct sum of linear isometries. The smash product 
over JSf of M and N is simply the balanced product of the two JSf (1) x JSf (In­
actions. 

DEFINITION 5.1. Let M and N be L-spectra. Define the operadic smash 
product M l\<£ N to be the coequalizer displayed in the diagram 

(JSf (2) x JSf(l) x JSf(l)) x (MAiV)==5:jSf(2)K (MAN) >M A*N. 

id K£ 

Here we have implicitly used the isomorphism 

(JSf (2) x JSf (1) x JSf (1)) x (M A N) 9* JSf (2) x [(JSf (1) x JSf (1)) x (M A N)\ 
given by Proposition 2.2(ii). The left action of J5f (1) on -Sf (2) induces a left 
action of JSf (1) on M A% N that gives it a structure of L-spectrum. 

We may mimic tensor product notation and write 

M A<? N = JSf (2) *se{i)xse{i) (M A N). 

We will freely use such notations for coequalizers below. The commutativity of 
this smash product is immediate. 

PROPOSITION 5.2. There is a natural commutativity isomorphism oflL-spec-
tra 

T : M A& N —> N A% M. 

PROOF. The permutation a e E2 acts on JSf(2) by fa = f o t, where t : 
U2 —• U2 is the transposition isomorphism. We may regard a as a map of 
spaces over JSf (2) from id : JSf (2) —> JSf (2) to a : JSf (2) —> JSf (2). We have an 
evident isomorphism 1 : t*(M A N) = N A M on external smash products and, 
by Proposition 2.2(h), there results a canonical isomorphism 

a x 1: JSf (2) x M A N -* JSf (2) x U{M A N) ^ JSf (2) x N A M. 

There is an analogous isomorphism 

(axt)t>u: (jSf(2)xJSf(l)xjS*(l))x(MA7V) —+ (jS*(2)xjSf(l)xJSf(l))x(iVAM). 
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These maps induce an isomorphism of coequalizer diagrams 

(JSf (2) x JSf(l) x JSf (1)) K ( M A N) = £ JSf(2) K ( M A J V ) . 
id tx£ 

+ M A& N 

(<7X t )K t 

7t<id 
(JSf (2) x JSf (1) x JSf (1)) x (iV A M ) r JSf(2) K (TV A M ) ^ AT A ^ M . 

id K£ 

D 

To show that this smash product is associative, we need some preliminary 
material on coequalizers. We first recall a standard categorical definition [43, 
VI.6]. 

DEFINITION 5.3. Working in an arbitrary category, suppose given a diagram 

^B + C 

in which ge = gf. The diagram is called a split coequalizer if there are maps 

h:C —> B and k:B —> A 

such that gh = idc, fk = ids, and ek — hg. It follows that g is the coequalizer 
of e and / . 

Observe that, while covariant functors need not preserve coequalizers in gen­
eral, they clearly do preserve split coequalizers. The next observation is crucial; 
we learned it from Hopkins [32]. Note that, via structural maps 7, Jfcf(l) acts 
from the left on any JSf (i), hence JSf (1) x JSf (1) acts from the left on JSf (i) x Sf(j). 

LEMMA 5.4 (HOPKINS). For i > 1 and j > 1, the diagram 

JSf (2) x JSf (1) x JSf (1) x %(%) x JSf ( j ) 

id X72 7Xid 

JSf (2) x JSf (i) x JSf ( j ) 

7 

is a split coequalizer of spaces. Therefore, 

JSf (t + j) £ JSf (2) x * {l)xSe (1) JSf (i) x JSf ( j ) . 

PROOF. Choose isomorphisms s : Ul —• U and t : Uj • 

h(f) = (fo(S®t)-\s,t) 

and 

k{f\g,g') = ( / ; 5 ° s " 1 , 5 , ° r 1 ; 5 , t ) . 
It is trivial to check the identities of Definition 5.3. • 

£/ and define 
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THEOREM 5.5. There is a natural associativity isomorphism ofh-spectra 

(M A<? N) A<? P ^ M A<£ (N A<£ P). 

PROOF. Note that, for any L-spectrum N, N £ i f (1) Kj?(i) N since i f (1) x 
AT = LAT and, as with any monad [43, p. 148], we have a split coequalizer 

Lmv—rLiv—*N. 
We have the isomorphisms 

(M A* N) A* P * i f (2) x^ ( 1 ) 2 (if (2) K^(1)2 (M A JV)) A (if (1) x^( i ) P) 
= (if(2) x* ( 1 ) a if(2) x if(1)) x ^ ( 1 ) 3 (MANAP) 
^ i f ( 3 ) ^ ( 1 ) 3 l A i V A P . 

The symmetric argument shows that this is also isomorphic to M A& (N A& 
P). D 

In view of the generality of Lemma 5.4, the argument iterates to prove the 
following statement. 

THEOREM 5.6. For any j-tuple M i , . . . , Mj ofh-spectra, there is a canonical 
isomorphism of h-spectra 

Mx A* • • • A^ Mj * 2>(j) * ^ ( 1 ) i (Mi A • • • A Mj), 

where the iterated smash product on the left is associated in any fashion. 

6. The equivalence of the old and new smash products 

We here show that the smash product A% does in fact realize the classical 
smash product of spectra up to homotopy, in the sense that the equivalence 
between hy and hy[h] preserves smash products. 

Fix a linear isometric isomorphism / : U2 —• U (not just an isometry) and 
use it to define the internal smash product of spectra in this section. We begin 
the comparison of smash products of IL-spectra with smash products of spectra 
with the following observation. 

PROPOSITION 6.1. For spectra X andY, there are isomorphisms ofh-spectra 

TLX A^ LY £ i f (2) x X A Y 2* L/*(X A Y). 

For CWh-spectra M and A/", M A& N is a CWh-spectrum with one {p-\-q)-cell 
for each p-cell of M and q-cell of N. 

PROOF. The first isomorphism is immediate from the definition of A&. Re­
garding / as a point in if(2), we see that 7 : i f ( l ) x {/} —> ^f(2) is a 
homeomorphism since / is an isomorphism. It follows from Proposition 2.2(h) 
that 

l*f*(X AY)= i f (1) K f*(X AY)^ i f (2) x (X A Y). 

When X and Y are sphere spectra, so is /*(A" A Y) [38, II. 1.4]. The second 
statement now follows exactly as for the smash product of CW complexes or 
CW spectra. • 
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The crux of our comparison of smash products is the following proposition, 
which implies that LS is the unit for the smash product in the stable homotopy 
category Ly[L]. We defer the proof to XI§3. 

PROPOSITION 6.2. For L-spectra N, there is a natural weak equivalence of 
L-spectra u : LSl\se N —> N, and E : 7rn(N) —• 7rn+i(EiV) is an isomorphism 
for all integers n. 

If we knew a priori that E preserved weak equivalences, we could derive the 
second clause from the first and the natural isomorphism of IL-spectra 

L 5 A ^ AT ^ E0L5- 1 A<̂  iV) 

by a formal uniqueness of adjoints argument (compare Corollary 3.3). It is 
a pleasant and surprising technical feature of our theory, immediate from the 
proposition, that E preserves weak equivalences of L-spectra. That is, the L 
structure somehow has the effect of eliminating point-set pathology. Since E on 
homotopy groups is induced by rj : N —> QY,N, the proposition also has the 
following immediate consequence. 

COROLLARY 6.3. For L-spectra N, the unit rj : N —> QT.N and counit e : 
E£l/V —> N of the (E,f£)-adjunction are weak equivalences. 

f 
COROLLARY 6.4. Any cofiber sequence N—•W —• Cf of IL-spectra gives 

rise to a long exact sequence of homotopy groups 

> nq(N) —> nq(N') —» nq(Cf) —» nq^(N) — > • • • . 

Therefore the natural map Ff —> ftCf is a weak equivalence of h-spectra. 

PROOF. This follows from Corollary 6.3 via the proof of Corollary 3.4. • 

COROLLARY 6.5. Pushouts along cofibrations of IL-spectra preserve weak equi­
valences. 

PROOF. Since a cofibration of L-spectra is a cofibration of spectra, by the 
retraction of mapping cylinders criterion, this follows from Corollary 6.4 via the 
proof of Corollary 3.5. • 

PROPOSITION 6.6. If M is a CW L-spectrum and <f> : TV —• N' is a weak 
equivalence of "L-spectra, then id t\<£ <f>: M A& N —> M A& Nf is a weak equiv­
alence of L-spectra. 

PROOF. The functor (—) A& N preserves cofiber sequences, hence the result 
for general M follows from Corollary 6.4 and the result for M = LSn. Here the 
result for n = 0 follows from Proposition 6.2 and the result for n and — n, n > 0, 
follows from the result for n — 0 as in the proof of Proposition 3.6. • 
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Thus, for L^spectra M and N, the smash product M A& N in the stable 
homotopy category hy\L] is represented by YM A& N, where TM is a CW 
L-spectrum weakly equivalent to M; here we do not need to assume that N is 
tame. This is analogous to the situation in algebra. When transporting tensor 
products to algebraic derived categories, we need only apply cell approximation 
to one of the tensor factors, without any condition on the other [35]. 

THEOREM 6.7. For IL-spectra M and N, there is a natural map of spectra 
a : /*(M A N) —• M A<£ N, and a is a weak equivalence when M is a CW 
h-spectrum and N is a tame spectrum. For any h-spectrum N, the composite 
of the derived functor (—) A% N : /i^[L] —> hS?\L] and the forgetful functor 
hS^\L] —• hS? computes the derived internal smash product with N. 

P R O O F . Define a to be the composite 

/*(M A N) —• JSf (2) KMAiV —>MA<?N 

given by the the inclusion of {/} in JSf (2) and the definition of A&. Let M be 
a CW L-spectrum throughout the proof. We first show that a is an equivalence 
when N is also a CW L-spectrum. In this case, M and N have the homotopy 
types of CW spectra by Theorem 4.6 and are therefore tame by X.4.3. Thus the 
first map is a homotopy equivalence by Theorem 2.5. By Theorem 4.6(iii), we 
may assume without loss of generality that M = Sf(l) x X and N — Sf(l) K Y 
for CW spectra X and Y. The second arrow then reduces to the homotopy 
equivalence 

i f (2) K (jSf(l) x X) A (JSf (1) K Y) —+ J£?(2) x X AY 

induced by the homotopy equivalence 7 : JSf(2) x JS?(1) x JSf(1) —> -Sf(2) via 
Theorem 2.5. For a general L-spectrum N, choose a weak equivalence 7 : FN —> 
iV, where FN is a CW L-spectrum. If N is tame, then Propositions 3.6 and 6.6 
imply that the vertical arrows are weak equivalences in the commutative diagram 

/* (Af A TN) -SL-„ M A* TN 

id A7 id A7 

MMAN)—^MAxN. 

Thus the bottom arrow a is a weak equivalence since the top one is. For the last 
statement, simply note that the right-hand composite 

( idA7)oa : /* (MAl\ /V) —• M A<£ N 

in the diagram is a weak equivalence even when N is not tame. • 

WARNING 6.8. As said before, the sphere spectrum S does not have the ho­
motopy type of a CW L-spectrum. To see this, assume that it did. Then the 
action £ : L 5 —• 5 would be a homotopy equivalence of L-spectra, by the 
Whitehead theorem, and the E2-equivariant map 

£ Ax £ : hS A^JLS —• S Aj? S 
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would be a IVequivariant homotopy equivalence of L-spectra and thus of spec­
tra. By Propositions 6.1 and 2.1, L 5 A& hS is isomorphic to E°°(J£?(2)+), with 
E2-action induced by that on J£f (2). By Proposition 8.2 below, S /\& S is iso­
morphic to S = E 0 0 ^ 0 and has trivial action by E2. Under these isomorphisms, 
f Nse i coincides with E°°7r, where TT : JSf (2)+ —• S° sends all of JSf (2) to the 
non-basepoint. Since J?(2)/E2 ^ # (E 2 ) , our assumption implies that we obtain 
a homotopy equivalence E°°B(E2)+ —• E°°50 on passage to orbits from £A.$? £, 
which is absurd. A different perspective on this warning will be given in II.1.10. 

7. Function L-spectra 

We here construct a functor F% on L-spectra that is related to the smash 
product A f̂ by an adjunction of the usual form and consider its homotopical 
behavior. 

THEOREM 7.1. LetM, N, andP beh-spectra. There is a function L- spectrum 
functor F&(M,N), contravariant in M and covariant in N, such that 

S?\L](M A* N, P) 9* y[h](M, F<?(N, P)). 

Given the adjunction, we can deduce the homotopical behavior of F& from 
that of Kg. We run through this before turning to the construction. The 
following result is a formal consequence of Proposition 6.1; see [38, 1.5.13]. 

PROPOSITION 7.2. If M is a CW h-spectrum and (j> : N —> Nf is a weak 
equivalence of L-spectra, then 

F<e(id,4>) : F*(M,N) —• F<?(M,Nf) 

is a weak equivalence of'L-spectra. There is an induced adjunction 

L^[L](M A* N,P) ^ hS*\L](M,Fx(N,P)). 

As in Section 6, we fix a linear isometric isomorphism / : U2 —> U and use the 
isomorphism /* : S*U2 —> S^U to define internal smash products /*(M A N). 
Recall the external function spectrum F(M, - ) and the adjunction displayed for 
it at the start of Section 2. We use the inverse isomorphism /* = f~l : S^U —> 
yU2 to define internal function spectra F(M,/*iV), as in [38, II.3.11]. 

THEOREM 7.3. For L-spectra M and N, there is a natural map of spectra 

a:Fse(M,N)^F(M,rN), 

and a is a weak equivalence if M is a CW JL-spectrum. Therefore the equivalence 
of categories hS*\L] —> hS? induced by the forgetful functor from "L-spectra 
to spectra carries the function L-spectrum functor F& to the internal function 
spectrum functor F. 
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PROOF. In the category hS"\L], F<e{M,N) means F<?(TM,N) where TM 
is a CW L-spectrum weakly equivalent to M, hence the second statement will 
follow from the first. The desired map a is the adjoint of the composite 

/* (Fse (M, N) A Af) -^F<? (Af, N) A* M-^N, 

where a is given by Theorem 6.7. By that result, if M is a CW L-spectrum and 
X is a CW spectrum, then a : /*(LX A M) —> LX A^ M is a weak equivalence 
of spectra, and it induces a weak equivalence of L-spectra 

L(/*(LX A M)) —• hX A<? M. 

Diagram chases show that the map 

a* : hy{X,Fse{M,N)) —+ h^(X,F(M, f*N)) 

coincides with the composite of the following chain of natural isomorphisms: 

h^{X,F<?{M,N)) * hsr\L](UC,Fsr{M,N)) 

^ ft^pL](LX A^ Af, iV) ^ L^pL](L(/*(LX A Af)), AT) 
* fty(/,(LI A M), iV) £* 7i^(LX A M, /*iV) 
* ft^(LX, F(M, /*iV)) ^ hS*(X, F{M, f*N)). D 

LEMMA 7.4. The adjoint N —• F&(1LS,N) of the unit weak equivalence UJ : 
LS A f̂ N —> N is a weak equivalence. 

PROOF. This is immediate from the natural isomorphisms 

hS*\L](M,N) ^ hS*\L](JLS Ase M,N) = / i^ [L](M,F^(L5,N)) . O 

We must still prove Theorem 7.1. The desired adjunction dictates the defi­
nition of F&, and the reader is invited to skip to the next section. It will be 
simplest to construct F& in two steps. Remember that 

M Ac£ N = JSf (2) x.s?(i)xji?(i) MAN. 

In the first step we consider general spectra indexed on U2 and acted upon by 
JSf (1) x j£f(1), thought of as a space over J(U2,U2) via direct sum of isometries. 
We call these JSf (1) x J$f (l)-spectra and denote the category of such spectra by 
y[J£ (1) x J2f (1)]. Of course, the examples we have in mind are of the form MAN. 
We use the twisted function spectrum construction F[A, —) of Proposition 2.3. 

LEMMA 7.5. Let N be an IL-spectrum. There is an JSf (1) x J?(I)-spectrum 
FseW[Sf(2),N) € y(U2) such that 

^(L](J8f(2) *if(i)x*(i) P, W) = ^[Sf(l) x jSf(l)](P,i^(1)[j5f(2),7V)) 

/or JSf (1) x JSf (l)-specfra P . 
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PROOF. We construct F&(i)[3f(2),N) as the equalizer of two maps 

F[&(2), N) =4 F[if(1) x J5f(2), N). 

The first is induced by 7 : i f (1) x i f (2) —• JSf(2). The second is the composite 

F[if(2),iV) —> F[ i f ( l ) x if(2) , i f(1) x TV) - ^ ^ F[ i f ( l ) x i f (2), TV); 

here the unlabelled arrow is adjoint to 

(if (1) x i f (2)) x F\S£(2), AT) ^ i f (1) x i f (2) x F[ i f (2), TV) ^ ^ i f (1) x iV, 

where e is the counit of the adjunction. The left action of i ? ( l ) x i f (1) on 
J^(i)[-^(2), N) is induced by its right action on if(2). • 

The second step lands us back in the category of L-spectra. 

LEMMA 7.6. Let N be an L-spectrum and P be an S£(\) x J?(1)-spectrum. 
There is an "L-spectrum F(N, P) such that 

S*[Sf(l) x i f (1)](M A N, P) ^ ^[L](M, F(N, P)) 

for L-spectra M. 

PROOF. Again, we construct F(N,P) as an equalizer, this time of two maps 

F(N,P)z4F(LN,P). 

The first is induced by the structure map LN —> JV. The second is the com­
posite 

F(iV, P) —> F(LJV, ({1} x i f (1)) K P ) - 4 F{LN, P) , 

where the second arrow is induced by the structure map of P as an i f (1) x i f (1)-
module and the first arrow is adjoint to 

F(N,P)ALN ^ ({1} x i f ( l ) ) tx F{N,P) A N - ^ > ({1} x i f ( l ) ) x P. 

The structure of F(N, P) as an L-spectrum is induced by the action on P of the 
first factor of i f ( l ) in i f ( l ) x i f ( l ) ; more precisely, the action LF(N, P) —• 
F(N,P) is adjoint to the composite 

(JLF(iV,P))AiV ^ (if(l)x{l})x(F(iV,P)AiV) ^ ^ ( i f ( l ) x { l } ) x P -^ P. • 

We combine these two functorial constructions to define F<£. 

DEFINITION 7.7. For L-spectra M and N, define 

F*(M,N)=F(M,Fs,w[Sf(2),N)). 

The adjunction of Theorem 7.1 is just the composite of the two adjunctions 
already obtained. 
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8. Unital properties of the smash product of L-spectra 

As we have already seen, L 5 is a unit for the smash product Ax on hS^[JL]. 
However, for precision in the consideration of algebraic structures, we wish to 
work in a category of spectra that is actually symmetric monoidal under its smash 
product, with a point-set level unit isomorphism. The appropriate candidate for 
a unit object is not L.S but S itself, and at this point another special, and 
surprising, property of the linear isometries operad comes into play. 

Consider the diagram 

Sf (2) x Sf(l) x jSf(l) x if(0) x 5£(0) z z z t if(2) x if(0) x i f (0) - ^ - ^ i f (0). 
id X7 2 

This is not a split coequalizer, but it turns out to be a coequalizer. The coequal-
izer of the parallel pair of arrows is the orbit space i f (2)/ if (1) x i f (1). 

LEMMA 8.1. The orbit space i f (2)/if (1) x i f (1) consists of a single point 

This is far from obvious, and it is only possible because i f (1) is a monoid but 
not a group. We defer its proof to XI§2. It has the following implication. Recall 
Lemma 4.5. 

PROPOSITION 8.2. There is an isomorphism of IL-spectra X : S Ax S —> S 
such that Xr = X. For based spaces X and Y, there is a natural isomorphism of 
L- spectra 

X : E°°X Ajar E°°y & E°°(X A Y). 

PROOF. The second statement follows from the first, or directly: 7 induces 
the isomorphism 

^ ( 2 ) K*(i)Xj8r(i) (^f(0) x X) A (if (0) x Y) —> if(0) x X AY. 

The relation Xr = X : S A<e S —• S is clear since 7T = 7. 

This formalizes our intuition that the smash product should be a stabilized 
generalization of the smash product of based spaces. It is natural to try to 
generalize the resulting isomorphism A : S A%> E°°X = E°°X to arbitrary L-
spectra, and the map does generalize. 

PROPOSITION 8.3. Let M and N be IL-spectra. There is a natural map of 
IL-spectra X : S A& N —> N. The symmetrically defined map M A% S —> M 
coincides with the composite Xr. Moreover, under the associativity isomorphism, 

Xr A<e id = id A%X : M A% S A% N —> M A%> N, 

and, under the commutativity isomorphism, these maps also agree with 

X : S A& (M A& N) —• M Ax N. 
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PROOF. When TV is the free L-spectrum hX = i f ( l ) K X generated by a 
spectrum X, A is given by the map 

S A<? 1LX = i f (2) K* ( 1 ) x i f (1) (-^(0) * S°) A (if (1) x X) 
- (if (2) x* ( 1 ) x J S f ( 1 ) i f (0) x i f (1)) K (5° A X) 

- ^ Sf{l) x X = L X 

For general TV, the map just constructed induces a map of coequalizer diagrams 

S A& LLiV T 5 A^ LiV ^ S A<? N 

Y Y Y 

LLJV = = = = = = $ LiV ^iV. 

The symmetry is clear when M is free and follows in general by an easy compar­
ison of coequalizer diagrams. Similarly, suppose that M = hX and N = LY for 
spectra X and Y. Then, under the associativity isomorphisms of their domains 
given in the proof of Theorem 5.5, the two unit maps defined on 1LX A% SA& LY 
agree with the map 

^ ( 3 ) K * ( 1 ) 3 ((Sf{l) K X) A (if (0) K 5°) A (if (1) K Y)) 
* (if (3) xjsr(1)a JSf (1) x i f (0) x i f (1)) x (X A 5° A Y) 

- ^ > if(2) K{XAY)^LX A<? LF. 

The conclusion for general M and N follows by another comparison of coequalizer 
diagrams. The last statement can be proven similarly. • 

Any attempt to show that 5 is a strict unit for general L-spectra founders on 
the fact that Lemma 5.4 fails if i = 0 or j = 0 and i + j > 0. However, we shall 
prove the following up to homotopy version of that lemma in XL2.2. 

LEMMA 8.4. The space 

Se{\) = i f (2) x^ ( 1 ) x J S f ( 1 ) J8f (0) x i f (1) 

is contractible. Therefore 7 : i f (1) —• i f (1) is a homotopy equivalence. 

Again, this assertion is far from obvious. It leads us to the following crucial 
result. 

THEOREM 8.5. Let M be an h-spectrum and consider X : S A& M —• M. 

(i) If M = LX for a tame spectrum X, then X is a homotopy equivalence 
of spectra and thus a weak equivalence ofh-spectra. 

(ii) If M is a CWL-spectrum, then X is a homotopy equivalence ojFL-spectra. 
(iii) For any M, X is a weak equivalence ofh-spectra. 
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PROOF. Since A = 7 x id on free L-spectra LX, Theorem 2.5 and the lemma 
give (i). By Theorem 4.6(iii), (i) applies to show that A : S Ax M —• M is a 
weak equivalence of L-spectra when M is a CW L-spectrum. By the Whitehead 
theorem for CW L-spectra, there is a map of L-spectra £ : M —> S Ax M such 
that A o £ ~ id. To complete the proof of (ii), we must show that £ o A ~ id, and 
the following commutative diagram identifies this composite with idAx(A o £): 

SAXM^^SAXSAX M-^^S AxM 

The rectangle commutes by the naturality of A and the triangle commutes by 
Proposition 8.3. For (iii), let M be arbitrary and consider the diagram 

7rn(5 Ax Af) ^ h^[L}{LSn, S Ase M) -^-^hS*\L](S A* LS n , S Ax M) 

x. X. 

7rn(M) ^ /iJ^[L](LSn, M) - * hS*\L](S A* LS n , M). 

By (ii), A : S Ax LSn —• LSn is a homotopy equivalence of L-spectra, hence the 
horizontal arrows are isomorphisms. The right vertical arrow is an isomorphism 
since, for L-spectra K, 

A, : S*\L](S Ax K, S Ax M) —-> J^[L](S Â > if, M) 

is a natural isomorphism; its inverse sends / : S Ax K —• M to the composite 

SA<eK^£SAxSAxK-i^i5 Â> M. 

(Compare II. 1.3 below). Therefore the left vertical arrow is an isomorphism. • 

REMARK 8.6. The weak equivalence u : LS Ax M —> M of Proposition 6.2 
is just the composite 

LS Ax M - ^ i S A^ M — ^ M. 

Therefore £ A id is also a weak equivalence for all L-spectra M. 

COROLLARY 8.7. For any "L-spectrum M, A : M —• Fx(S,M) is a weak 
equivalence of "L-spectra. 

P R O O F . For a spectrum X, A* : S?(X, M) —> S*(X, Fx(S, M)) can be iden­
tified with A* : ^ [L](LX,M) —> J^[L](LX,i^?(S,M)). In turn, by naturality 
and adjunction, this can be identified with 

A* : S*\L]QLX, M) —• J/*[L](S Ax LA", M) *£ 3*\L](JLX,F<?(S,M)). 

If X is a CW spectrum, then A : S Ax LX —• LX is a homotopy equivalence 
of L-spectra, hence the displayed maps all induce isomorphisms on passage to 
homotopy classes of maps. The conclusion follows by letting X run through the 
sphere spectra. • 
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CHAPTER II 

Structured ring and module spectra 

We can now define and study our basic algebraic objects. We begin with the 
5-modules, which we think of as analogs of modules over a fixed commutative 
ring k. Since the category of S-modules is symmetric monoidal under its smash 
product, we can define 5-algebras and commutative 5-algebras exactly as we 
define (associative and unital) /c-algebras and commutative /c-algebras. Intu­
itively, 5-algebras are as close as one can get to /c-algebras in stable homotopy 
theory, and commutative 5-algebras are as close as one can get to commutative 
/c-algebras. These basic definitions are established in the first three sections, 
and the material of the rest of the chapter will not be used again until Chapter 
VII. The reader is invited to skip directly from Section 3 to the applications in 
Chapters III-VI. 

By analyzing free objects, we demonstrate that our new definitions are uni­
tal sharpenings of the definitions of A^ and .Eoo ring spectra that were first 
given in [48]. This allows us to use [48, 50] to supply examples and is there­
fore fundamentally important to the theory. We give a parallel analysis of the 
definitions of modules over 5-algebras and over A^ and Eoo ring spectra. Our 
new definitions drastically simplify the study of these algebraic structures. For 
example, in a final categorical section, we prove that the new definitions lead to 
elementary categorical proofs that the categories of 5-algebras and of commu­
tative 5-algebras are cocomplete, as was first proven by Hopkins and McClure 
[32] for the categories of Aoo and EQQ ring spectra. 

1. T h e category of 5-modules 

Here, finally, is the promised definition of 5-modules. 

DEFINITION 1.1. Define an 5-module to be an L-spectrum M which is unital 
in the sense that A : 5 A& M —> M is an isomorphism. Let j&s denote the full 
subcategory of S*\L] whose objects are the 5-modules. For 5-modules M and 
N, define 

M/\SN = M/\#N and FS(M,N) = 5 A& F&(M,N). 

31 
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The justification for the name "5-module" is given by the commutative dia­
grams 

SAsSAsM+^SAsM M-^S/\sM 
idAA 

SASM ^M ^M. 

For the definition to be useful, we need examples, and 1.8.2 and 1.8.3 provide 
many. We consistently retain the notation M A& N when the given L-spectra 
M and N are not restricted to be 5-modules. 

PROPOSITION 1.2. For any based space X, E°°X is an S-module, and 

E°°X AS £°°Y ** E°°(X A Y). 

For any S-module M and any JL-spectrum N, M A% N is an S-module. In 
particular, S A<£ N is an S-module for any L-spectrum N. 

P R O O F . For the second statement, 1.8.3 gives that A for M A ^ N is determined 
by A for M and is therefore an isomorphism. • 

We have the following categorical relationship between S*\L] and Ms-

LEMMA 1.3. The functor S A& ( - ) : *^[L] —• Ms is left adjoint to the 
functor F&(S, —) : Ms —• «^pL] and Tight adjoint to the inclusion £ : Ms —> 

PROOF. The first adjunction is immediate from 1.7.1. For the second, let M 
be an 5-module and N be an L-spectrum. A map / : M —» 5 A<£ N of 5-
modules determines a map Xof : M —> N of L-spectra, and a map g : M —> N 
of L-spectra determines a map (id A^)oA_1 : M —> SA<? N of 5-modules. Using 
1.8.3, we see that these are inverse bijections. • 

This implies that to lift right adjoint functors from S*\L] to Ms, we must first 
forget down to ^ [ L ] , next apply the given functor, and then apply the functor 
5 A<e ( - ) . For example, limits in Ms are created in this fashion. 

PROPOSITION 1.4. The category of S-modules is complete and cocomplete. 
Its colimits are created in S^\L}. Its limits are created by applying the functor 
5 A<e (—) to limits in jy\L}. If X is a based space and M is an 5-module, then 
M A X is an S-module, and the spectrum level cofiber of a map of 5-modules is 
an S-module. For a based space X and S-modules M and N, 

MS(M A X, AT) = MS(M, S A<? F(X, AT)). 

Moreover, 

M A X ^ M AS E°°X and 5 A# F(X, M) * F5(E°°X, M). 

and 
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REMARK 1.5. By the path S-module of an S-module N we must understand 
S A% PN. By the fiber of a map / : M —> N of S-modules, we must understand 
SA&Ff. Lemma 1.3 implies that the following square of S-modules is a pullback 
and that its vertical arrows satisfy the CHP in the category of S-modules. 

S \<e Ff ^ S hx PN 

T Y 

M j >N. 

The resulting fiber sequences of S-modules behave in exactly the same fashion 
as fiber sequences of spaces or spectra. 

Lemma 1.3 also explains our definition of function S-modules. Its second 
adjunction and the adjunction of Theorem 7.1 compose to give the adjunction 
displayed in the following theorem. 

THEOREM 1.6. The category Ms is symmetric monoidal under As, and 

Jts(M AS AT, P) * Jts{M, FS(N, P)) 

for S-modules M, N, and P. 

A homotopy in the category of S-modules is a map MAl+ —• N. A map of S-
modules is a weak equivalence if it is a weak equivalence as a map of spectra. The 
derived category @s oi S-modules is constructed from the homotopy category 
h^s by adjoining formal inverses to the weak equivalences; again, the process is 
made rigorous by CW approximation. The free L-spectra LX are not S-modules, 
and we define sphere S-modules by 

(1.7) Sg = S A ^ L S n 

and use them as the domains of attaching maps when defining cell and CW 
S-modules. Observe that, by 1.8.7 and Lemma 1.3, we have 

(1.8) 7rn(M) = hy{Sn,M) * / i ^ [L](LS n ,F^(S ,M)) ^ hJts(Sn
s,M) 

for S-modules M. Prom here, the theory of cell and CW S-modules is exactly 
like the theory of cell and CW spectra and is obtained by specialization of the 
theory of cell .R-modules to be presented in Chapter III. A weak equivalence of 
cell S-modules is a homotopy equivalence, any S-module is weakly equivalent 
to a CW S-module, and Q>s is equivalent to the homotopy category of CW S-
modules. Again, as we shall explain in Remark 1.10, the S-module S does not 
have the homotopy type of a CW S-module. When working homotopically, we 
replace it with S# = S\. 

The following comparison between CW S-modules and CW L-spectra estab­
lishes an equivalence between @s a n d hy[h] and thus between @s a n d hS?. 

THEOREM 1.9. The following conclusions hold. 
(i) The functor S A& ( - ) : ^ [L] —> J£s carries CW L-spectra to CW 

S-modules. 
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(ii) The forgetful functor Jt$ —> ^ M carries S-modules of the homotopy 
types of CW S-modules to h-spectra of the homotopy types of CW L-
spectra. 

(iii) Every CW S-module M is homotopy equivalent as an S-module to S A y 
N for some CWrL-spectrum N. 

(iv) The unit A : 5 A% M —> M is a weak equivalence for all L-spectra M 
and is a homotopy equivalence ofh-spectra if M has the homotopy type 
of a CW h-spectrum. 

The functors S A& (—) and the forgetful functor establish an adjoint equivalence 
between the stable homotopy category L^[L] and the derived category @s- This 
equivalence of categories preserves smash products and function spectra. 

PROOF. Part (i) is immediate by induction up the sequential nitration since 
the functor 5 A% ( - ) preserves spheres, cones, and colimits. Part (iv) is a 
recapitulation of 1.8.5 and, applied to sphere 5-modules, it implies part (ii). 
Part (iii) follows from (i) and (iv) since there is a CW L-spectrum M' and a 
homotopy equivalence of L-spectra M' —> M. The claimed adjoint equivalence 
of categories is immediate from part (iv). For smash products, the last statement 
is clear from (ii) and the fact that the smash product M As N of 5-modules is 
their smash product as L-spectra. The statement for function spectra follows 
formally. • 

When doing classical homotopy theory, we can work interchangeably in hy, 
hy\L], or @s> These three categories are equivalent, and the equivalences pre­
serve all structure in sight. When working on the point set level, we have reached 
a nearly ideal situation with our construction of Ms. We pause to comment on 
Lewis' observation [37] that there is no fully ideal situation. 

REMARK 1.10. Suppose given a symmetric monoidal category of spectra with 
a suspension spectrum functor E°° such that 5 = £°°5 0 is the unit for the smash 
product, denoted As, and there is a natural isomorphism 

X°°X AS X°°Y = X°°(X A Y) 

that is suitably compatible with the coherence isomorphisms for the unity, as­
sociativity, and commutativity of the respective smash products. Our category 
of 5-modules satisfies all of these properties, and many other desiderata not 
included among Lewis's axioms. Suppose further that E°° has a right adjoint 
"fi°°" and let QX = colimQnEnX. Then Lewis observes that there cannot be 
a natural weak equivalence 

6: " f t 0 0 ^ 0 0 * —>QX 

such that 0 or] : X —• QX is the natural inclusion, where rj is the unit of the 
adjunction. In our context, we have the two adjunction homeomorphisms 

JCS{S A? LE°°X,M) £ ^(X,n°°F^{S,M)) 

and 
^s(£°°X,M) £ ^ ( X , ^ 5 ( 5 , M ) ) , 
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where Z? is the category of based spaces; see VII§2 for discussion of these topolo-
gized Horn sets and of the second of these adjunctions. It is a standard property 
of any symmetric monoidal category that the self-maps of the unit object form 
a commutative monoid under composition. In our situation Ms{S,S) is there­
fore a commutative topological monoid. It cannot be weakly equivalent to Q5°, 
but Ql

ocF^(S,S) is weakly equivalent to QS° Therefore the weak equivalence 
5 /Kg L 5 —• 5 cannot be a homotopy equivalence of 5-modules and 5 cannot 
be of the homotopy type of a CW 5-module. 

2. The mirror image to the category of 5-modules 

The categorical picture becomes clearer when we realize that the category of 
5-modules has a "mirror image" category to which it is naturally equivalent. We 
find this material quite illuminating, but it will not be used until our discussion 
of Quillen model categories. The reader may prefer to skip it on a first reading. 

DEFINITION 2.1. Define Ms to be the full subcategory of S^\L] whose objects 
are those L-spectra N that are counital, in the sense that A : N —• F&(S, N) 
is an isomorphism. 

Looking through the mirror at Lemma 1.3 and noting that mirrors interchange 
left and right, we see the following reflection. 

LEMMA 2.2. The functor F&(S, - ) : S*\L] —> J£s is right adjoint to the 
functor 5 /\& (—) : Ms —> S?\L] and left adjoint to the inclusion r : Ms —> 

We agree to write 

(2.3) / = F&(S, - ) : S*\L] —> Jts and s = S A<? ( - ) : J^[L] —• Jts 

in the rest of this section. With this notation, Lemmas 1.3 and 2.2 give the 
following mirrored pairs of adjunctions, the upper arrow being left adjoint to the 
lower arrow in each case. 

<? £ f Par 
(2.4) . y [ L ] = ^ s 5 = ± ^ [ L ] and ^[L] ^ ± ^ s ^ ^ [ L ] . 

rft * r f 

The display makes new information visible. The composite of the first two left 
adjoints is just the functor 5 A& ( - ) and the composite of the second two right 
adjoints is just the functor F^>(S, —). Since these two endo-functors of S*\L] 
are left and right adjoint, they must be equivalent to their displayed composite 
adjoints. 

LEMMA 2.5. For "L-spectra M, the maps 

idAj^A : 5A^f M —> 5 A^ F<?(S,M) 

and 
F<£ (id, A) : F# ( 5 ,5 A^ M) —• F# (5, M) 

are natural isomorphisms. 

We now see that the reflection of a reflection is equivalent to the original. 
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PROPOSITION 2.6. The functors 

ft\Ms —> Ms and sr : Ms —• Ms 

are inverse equivalences of categories. More precisely, 

e : srfiM = S A y Fse{S,M) —• M 

is an isomorphism for M € Ms, and 

rj:N -^Fj?(S,SA<?N) = fisrN 

is an isomorphism for N e Ms', where e and rj are the unit and counit of the 
(S f\<£ (—), F& (5, - ) ) adjunction. 

P R O O F . The functor s£ : Ms —> Ms is an equivalence, and it is left adjoint 
to the composite srfi : Ms —• Ms- The functor fr : Ms —• Ms is an 
equivalence, and it is right adjoint to the composite f£sr. Therefore these two 
composites are natural equivalences. A little diagram chase from the previous 
lemma gives the more precise statement. • 

PROPOSITION 2.7. The category Ms, hence also the category Ms, is equiv­
alent to the category of algebras over the monad rf in y\L] determined by the 
adjunction (/, r). The category Ms, hence also the category Ms, is equivalent 
to the category of coalgebras over the comonad £s in S^\L] determined by the 
adjunction (£,s). 

PROOF. The unit of the monad rf is A : M —> F#(S,M) = rfM and its 
product is the natural isomorphism 

M : rfrfM = F<?(S,F<?(S,M)) * Fj?(S,M) = rfM 

implied by the isomorphism S t\<£ S = S. Clearly, if A is an isomorphism, then 
M is an r/-algebra with action A - 1 . Conversely if £ : rfM —• M is an action, 
then £ o A = id and the following is a split coequalizer diagram in S*\L]. 

rfrfM =£ rfM - ^ M. 

Applying / , we obtain a split coequalizer diagram in Ms. Since the counit 
fr —• id of the adjunction is an isomorphism, it induces an isomorphism of 
diagrams 

(frfrfM =$: frfM) * (frfM =£ fM). 

Applying r, rfM is the (split) coequalizer of the first and M is the (split) 
coequalizer of the second. The resulting isomorphism rfM —• M is just the 
map £, hence is an isomorphism of r/-algebras. • 
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3. 5-algebras and their modules 

Let ^ be any symmetric monoidal category, with product • and unit object 
/ . Then a monoid in ^ is an object R together with maps 77 : / —> R and 
<f> : RDR —> R such that the evident associativity and unity diagrams commute; 
R is a commutative monoid if the evident commutativity diagram also commutes. 
A left .R-object over a monoid R is an object M of ^ with a map /x : RDM —• M 
such that the evident unity and associativity diagrams commute, and right R-
objects are defined by symmetry. These definitions apply to our symmetric 
monoidal category Ms-

DEFINITION 3.1. An 5-algebra is a monoid in Ms- A commutative 5-algebra 
is a commutative monoid in Ms- For an 5-algebra or commutative 5-algebra 
.R, a left or right i?-module is a left or right i^-object in Ms- Modules will mean 
left modules unless otherwise specified, and we let MR denote the category of 
left R-modules. 

Observe that if R is a commutative 5-algebra, then an i^-module is just a 
module over R regarded as an 5-algebra, as in module theory in algebra. For 
this reason, even though our main interest is in the much richer commutative 
context, we work with general 5-algebras wherever possible. 

We insert the following lemma for later reference. It records specializations 
of observations that apply to monoids in any symmetric monoidal category. 

LEMMA 3.2. Let R be an S-algebra and M be an R-module. Then the follow­
ing diagrams of S-modules are split coequalizers: 

<Mid d> 

RASRASR ?RASR-^R. 
id A0 

and 
id A/x ., 

R AS R A5 M ; R AS M -^—^ M. 
0Aid 

While we have given the most conceptual form of the definitions, it is worth­
while to write out the relevant diagrams explicitly. We find that they make 
perfect sense for L-spectra that might not be 5-modules, and this leads us back 
to the earlier notions of ^4^ and -E^ ring spectra and their modules. 

DEFINITION 3.3. An ^4^ ring spectrum is an L-spectrum R with a unit map 
77 : 5 —> R and a product 0 : R A& R —> R such that the following diagrams 
commute: 

s hse R . ^ 1 R A* R 41^L R A^ S 
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and 
RA^RA^ R^^RA^R 

0Aid 
Y 

R A& R ^ R] 

R is an EQQ ring spectrum if the following diagram also commutes: 

R/\se R I ^RAj? R 

A module over an l̂oo or EQQ ring spectrum R is an L-spectrum M with a map 
H : R A%> M —• M such that the following diagrams commute: 

SA<?M-¥^RAj?M RA<?RA<?M ^ * - RA&M 

and 0Aid 
Y 

RA& M- + M. 

LEMMA 3.4. An S-algebra or commutative S-algebra is an AQQ or EQQ ring 
spectrum which is also an S-module. A module over an S-algebra or commutative 
S-algebra R is a module over R, regarded as an AQQ or EQQ ring spectrum, which 
is also an S-module. 

In view of Proposition 1.2, this leads to the following observations. 

PROPOSITION 3.5. The following statements hold. 
(i) S is a commutative S-algebra with unit id and product A. 

(ii) / / R and Rf are AQQ or EQQ ring spectra, then so is R A& R'; if either 
R or R' is an S-algebra, then so is R A%> R'. 

(iv) If R and R' are AQQ ring spectra, M is an R-module and M' is an Rf-
module, then M A% M' is an R A& R!-module. 

In particular, we have a functorial way to replace AQQ and EQQ ring spectra 
and their modules by 5-algebras and commutative 5-algebras and their modules. 

COROLLARY 3.6. For an AQQ ring spectrum R, S A& R is an S-algebra and 
A : S Ajsf R —• R is a weak equivalence of AQQ ring spectra, and similarly in 
the E^ case. If M is an R-module, then S A% M is an S A& R-module and 
A : S A& M —• M is a weak equivalence of R-modules and of modules over 
S A& R regarded as an AQQ ring spectrum. 

Recall that the tensor product of commutative rings is their coproduct in the 
category of commutative rings. The proof consists of categorical diagram chases 
that apply to commutative monoids in any symmetric monoidal category. 

PROPOSITION 3.7. If R and Rf are commutative S-algebras, then RAs Rf is 
the coproduct of R and R' in the category of commutative S-algebras. 
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We shall construct coproducts in the category of 5-algebras in Section 7, where 
we show more generally that the categories of 5-algebras and of commutative 
5-algebras are cocomplete. 

There is a version of the proposition that is true for E^ ring spectra, but this 
is not obvious. We shall return to this point in Chapter XIII, where we show 
that the category of L-spectra under 5 is symmetric monoidal under a modified 
smash product *$ and that A^ and E^ ring spectra are exactly the monoids 
and commutative monoids in that symmetric monoidal category. This was the 
starting point for the earlier version of the present theory announced in [23]. 

4. Free A^ and E^ ring spectra; comparisons of definitions 

We focus on A^ and EQQ ring spectra here. It was proven in [48, 50] that 
various Thorn spectra, Eilenberg-Mac Lane spectra, and connective algebraic and 
topological if-theory spectra are EQQ ring spectra. Using the results stated in 
the previous section, we can convert these E^ ring spectra to weakly equivalent 
commutative 5-algebras. However, on the face of it, the original definitions of 
AQO and E^ ring spectra appear to be different from those that we have given 
here. As in algebra, it is important to understand free A^ and EQQ ring spectra, 
and we shall use this understanding to verify that our present definitions agree 
with the original ones. 

There is no difficulty in constructing the relevant monads. In fact, we shall 
construct two pairs of monads and then relate them. The first is defined on the 
ground category of spectra and is transparently related to the earlier definitions. 
The second is defined on the ground category of 5-modules and is transparently 
related to the present definitions. The connection between them will establish 
the required equivalence of definitions. In effect, our new definition of EQQ ring 
spectra is obtained from the old one simply by factoring the original defining 
monad C in 5? through a new defining monad P in the more highly structured 
category S^[TL], 

CONSTRUCTION 4.1. Construct monads B and C in the category of spectra 
as follows. Let X be a spectrum and let X^ be its j-fold external smash power, 
with X° = 5°. Define 

BX*\/ Sf(j) K Xj 

j>0 

and 

where Sf(j) x^j Xj is the orbit spectrum {Sf(j) K Xj)/Ej. The units of these 
monads are induced by the unit maps X = {1} K X —• -Sf(l) * X. Their 
products are induced by wedge sums of maps induced by the structure maps 7 
of the linear isometries operad Sf. 

The notion of an Jz?-spectrum was defined in [38, VII.2.1]. The definition used 
permutations, and there is a corresponding notion of a non-E j£?-spectrum. An 
immediate comparison of definitions gives the following result. 
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PROPOSITION 4.2. The category ofM-algebras is isomorphic to the category 
of non-Y, J?-spectra. The category of C-algebras is isomorphic to the category of 
S£-spectra. 

Actually, ^-spectra were defined in [38, VII.2.1] for any operad @ that is 
augmented over j£?. An E^ operad is one such that each &(j) is Ej-free and 
contractible. In earlier work, E^ ring spectra were understood to mean &-
spectra for any Eoo operad @ augmented over S£. The present theory is based 
on properties that are special to ££\ The following result, which will be proven 
in XII§1, shows that restriction to Jz? results in no loss of generality. There is an 
analogue for AQQ ring spectra that is obtained by forgetting about permutations. 

PROPOSITION 4.3. Let & be an Eoo operad over S£. There is a functor V 
that assigns a weakly equivalent ££-spectrum VR to an ^-spectrum R. 

CONSTRUCTION 4.4. Construct monads T and IP in the category of L-spectra 
as follows. Let M be an L-spectrum and let M J be its j-fold power with respect 
to A&, with M° = S. Define 

j>0 

and 
FM^ \ / Mj/Zj. 

j>0 

Here passage to orbits preserves L-spectra since it is a finite colimit. The unit 
is the inclusion of M = M 1 . The product is induced by the maps 

Mjl Ny • • • Aj? Mjk —> Mjl+'"+jk 

that are given by the evident identifications if each j r > 1 and by use of the unit 
map A if any j r = 0. Observe that T and IP restrict to monads in the category 
of 5-modules. 

The letters T and P are mnemonic for "tensor algebra" and "polynomial" 
(or symmetric) algebra. As is clear for 5-modules and will be made explicit 
in Definition 7.1, the definitions fit into a general categorical framework that 
includes those constructions. The following result is an easy direct consequence 
of our definitions. 

PROPOSITION 4.5. The categories of Aoo ring spectra and of S-algebras are 
isomorphic to the categories of T-algebras in <5?[1L] and of T-algebras in ^s- The 
categories of EQQ ring spectra and of commutative S-algebras are isomorphic to 
the categories ofF-algebras in S^]L] and ofF-algebras in ^s-

To relate the monads IB and C to the monads T and F, recall from 1.4.2 that 
the category of L-spectra is the category of L-algebras in £f. Together with 
Propositions 4.2 and 4.5, the following result gives the promised comparison 
between the old and new definitions of l̂oo and E^ ring spectra. 
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PROPOSITION 4.6. The monads B and TL are isomorphic, hence the cate­
gories of non-Ti J£-spectra and of A^ ring spectra are isomorphic. The monads 
C and PL are isomorphic, hence the categories of 5£'-spectra and of E^ ring 
spectra are isomorphic. 

PROOF. The isomorphisms on objects are immediate from 1.5.6 applied to 
L-spectra Mi = LJQ. Since these isomorphisms are induced from the structure 
maps 7 of J5f, the comparison of monad structures is immediate. In both state­
ments, the second clause is a categorical consequence of the first, as we shall 
show in Lemma 6.1 below. • 

REMARK 4.7. Observe that we have quotient maps of monads B —• C and 
T —> P. In Section 6, we shall give categorical definitions that show how 
to exploit these maps to construct an E^ ring spectrum C 0 i f l (or P <g>j R) 
from an A^ ring spectrum R by "passage to quotients", just as we construct 
commutative algebras as quotients of associative algebras; see Lemma 6.7 and 
Corollary 7.3. Formally, C ®i R is a coequalizer of a right action of B on C and 
the given action of IB on R. 

REMARK 4.8. Passage to orbits and passage to coequalizers are often hard to 
analyze homotopically. We show how to deal with the first difficulty in III§5, 
where we show that symmetric powers and extended powers of 5-modules (and, 
more generally, J?-modules) are essentially equivalent. One often circumvents 
the second difficulty by replacing a construction like C <8>B R with its associated 
bar construction I?(C,B,it!), which we shall introduce in XII§1. 

REMARK 4.9. There are reduced monads B and C in the category 5?\S of 
spectra under S and T and P in the category «y[L]\S of L-spectra under S. 
They are constructed from the unreduced monads by unit map identifications 
similar to the basepoint identifications in the James construction or the infinite 
symmetric product. Observe that S?\S is the category of algebras over the 
monad U that is specified by UX = X V5, with product given by the folding map 
S V S —• 5, and similarly for S?\L]\S. In all four cases, the unreduced monad 
is the composite of the reduced monad with HJ, hence, by Lemma 6.1 below, 
the reduced and unreduced monads have the same algebras. The difference is 
that, when considering the reduced monad, one is considering the unit map 
S —> R as preassigned and then ensuring that the unit map created by the 
monad action coincides with it. It follows that the monad HJ acts from the right 
on the unreduced monads, and it is easy to write down this action directly. The 
reduced monad C can then be constructed from C by setting CX = C (g>u X for 
a spectrum X under 5, with structure maps induced by passage to coequalizers, 
and similarly for our other monads. A more explicit description is given in [38, 
VII§3], where C is denoted by C. While the monad C is more convenient for 
formal work, the monad C is of far greater homotopical interest. 
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5. Free modules over Aoo and EQQ ring spect ra 

There is an analogue for modules of the original explicit definition of A^ and 
JE7OO ring spectra in terms of twisted half-smash products, and there is an analo­
gous comparison of definitions. 

PROPOSITION 5.1. The category of modules over an J?-spectrum R is isomor­
phic to the category of spectra M together with associative, unital, and, in the 
E^o context, equivariant systems of action maps 

Since we shall not need the details, we shall not write out the relevant di­
agrams. They make sense for any operad 0 augmented over S£, and they are 
exact analogs of diagrams that are written out in the context of algebraic operads 
in [35, 1.4.1]. Remarkably, with this alternative form of the definition, it is far 
from obvious that a module over an E^ ring spectrum R is the same thing as 
a module over R regarded as an A^ ring spectrum. In fact, this appears to be 
false in the context of modules over an ^-spectrum R for a general E^ operad 0 
augmented over S£. However, we have the following analogue of Proposition 4.3, 
which will be proven in XII§1. Again, there is an analogue for A^ ring spectra 
and modules that is obtained by forgetting about permutations. 

PROPOSITION 5.2. Let 0 be an Eoo operad over S^ and R be an 0'-spectrum. 
There is a functor V that assigns a weakly equivalent VR-module to an R-module 
M, where VR is the J£-spectrum of Proposition 4-3. 

There is a conceptual monadic proof of Proposition 5.1 that is based on 
analogs of Propositions 4.2, 4.5, and 4.6. To carry out this argument, we need 
to know that there is a free i?-module functor. This is obvious enough when 
we are considering 5-modules: R As M is then the free i^-module generated by 
an S-module M. For a general A^ ring spectrum R and an L-spectrum M, 
R A% M is an il-module but, since M need not be isomorphic to S A& M, it is 
not the free i?-module generated by M. 

DEFINITION 5.3. For an A^ ring spectrum R and an L-spectrum M, define 
an L-spectrum MM and maps of L-spectra -K : R A& M —> RM and r\ : M —> 
RM by the pushout diagram 

SA<? M-^^RA^M 

M 5 — ^ 1 M . 

Dually, define an L-spectrum R#M by the pullback diagram 

R # M ^M 

A 

Fse(R,M)¥I-^)F^(S,M). 
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These are special cases of general constructions to be studied in Chapter XIII. 
Such constructions permeated earlier versions of the present theory. Of course, 
7r is an isomorphism if M is an S-module. As will be generalized in XIII. 1.4, we 
deduce the following homotopical property by applying the functor S f\% (—) to 
the defining pushout diagram. 

PROPOSITION 5.4. The map -K : Rf\% M —• MM is a weak equivalence for 
any L-spectrum M. 

The unit diagram of an JR-module M ensures that its product factors through 
a map MM —• M. More formally, elementary inspections of definitions give the 
following result. 

PROPOSITION 5.5. Let R be an Aoo ring spectrum. Then M is a monad in 
S*\L] with unit n : M —> MM and with product \x : MM —> M induced from 
the product (j> : R l\<£ R —> R. A left R-module is an algebra over the monad 
M and, for an IL-spectrum M, MM is the free R-module generated by M. The 
functor M# is right adjoint to M and is therefore a comonad in *5̂ [L] such that 
an R-module is a coalgebra over M#. 

It is logical to denote the category of .R-modules by 5^[L][M], reserving the 
notation MR for the case when R is an 5-algebra and H-modules are required 
to be 5-modules. We have freeness and cofreeness adjunctions 

y[L][M](M, N) * ^[L](M, N) 

and 
^[L][M](AT,M#M) ^ S*\L](N,M) 

for L-spectra M and /^-modules N. 
Clearly there results a composite adjunction that starts with spectra. 

PROPOSITION 5.6. For a spectrum X, define WX = WLX. Then WX is the 
free R-module generated by X. Thus 

^[L][M](FX,N) £ S*(X,N) 

for an R-module N. Dually, define W*X = M # L#X. Then F#X is the cofree 
R-module generated by X, so that 

y[L}[R](N,W#X) *sr(N,X). 

In Construction 6.2, we shall show how to combine the monads of the previous 
section with these free module constructions to obtain monads B[l] and C[l] in 
the category of pairs of spectra such that a B[l]-algebra or C[l]-algebra (R; M) is 
an AQO or Ĵ oo ring spectrum R together with an -R-module M in the alternative 
operad action sense described in Proposition 5.1. The construction will also give 
monads T[l] and F[l] in the category of pairs of L-spectra such that a T[l]-
algebra or F[l]-algebra (R; M) is an Aoo or E^ ring spectrum R together with 
an R-module M in the sense of Definition 3.3. The monad B[l] has the general 
form 

M[1](X;Y) = (MX;M(X;Y)), 
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and similarly in the other three cases. Propositions 4.6 and 5.5, together with 
inspection of the cited construction, directly imply the following analogue of 
Proposition 4.6. By Lemma 6.1, this in turn implies Proposition 5.1. 

PROPOSITION 5.7. The monads B[l] and T[l] o (L,L) are isomorphic. The 
monads C[l] and P[l] o (L, L) are isomorphic. The second coordinates of the four 
monads are given explicitly as follows. Applied to a pair of spectra (X;Y), 

B ( X ; Y ) = \/Sf(j)K(Xl-lAY) 

and 

c(x;y)=V^)^-i(JfHAy)-
3>l 

Applied to a pair ofhspectra (M; N), 
T(M;iV) = \J Mj~l ASN 

and 
P(M; N) = \ / ( M ^ V S j ' - i ) As N. 

3>l 

If N is an S-module, then so are T(M\N) and H>(M;N). 

REMARK 5.8. Construction 6.2 applies equally well to give reduced versions 
of our four monads, giving monads in the category of pairs (of spectra or L-
spectra), the first coordinate of which lies under S. The monad 1B[1] has the 
form 

M[1](X',Y) = (MX;M(X\Y)) 
and similarly in the other three cases. Inspection of definitions shows that 

MS = CS = S and B(5; Y) = C(5; Y) = JS?(1) K Y. 

This fact dictates our original definition of L-spectra and is thus the conceptual 
starting point of our entire theory. 

6. Composites of monads and monadic tensor products 

In this section and the next, we collect a number of purely categorical obser­
vations and constructions that are needed in our work. We shall return to these 
topics in Chapter VII, but we shall make no further use of this material until 
then. The reader may prefer to skip these sections on a first reading. We here 
give the description of algebras over composite monads that was at the heart 
of our comparisons of definitions and formalize the tensor product construction 
that appeared briefly in Section 4. 

LEMMA 6.1. Let § be a monad in a category tf and let T be a monad in the 
category ^[S] of S-algebras. Then the category ^f[§][T] of T-algebras in ^[§] is 
isomorphic to the category ^[T§] of algebras over the composite monad T§ in tf. 
Moreover, the unit ofT defines a map § —> T§ of monads in *€. An analogous 
assertion holds for comonads. 
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PROOF. Strictly speaking, in constructing T§, we are regarding § as the free 
§-algebra functor ^ —• ^[§], applying the functor T, and then applying the 
forgetful functor back to *€. We continue to neglect notation for forgetful functors 
and to write § and T ambiguously for both the given monads and the resulting 
free functors. The unit of T§ is given by the composite of unit maps 

X —> SX —• T §X 

The product of T§ is given by the composite maps 

TSTSX —> TTSX —> TSX, 

where the second arrow is given by the product of T and the first is obtained 
by application of T to the action §T§X —> T§X given by the fact that T takes 
§-algebras to §-algebras. If R is a T-algebra in ^[§], with action £ by § and 
action \ by T, then it is a T§-algebra with action the composite 

TSR —-^ TR -J^^ R. 

If Q is a T§-algebra with action u>, then Q is a T-algebra in f̂ [§] with actions 
the composites 

SQ—IL^JSQ^L^Q a n d JQ^±T§Q^L+Q. 

These correspondences establish the required isomorphism of categories. Easy 
diagram chases show that § —> T§ is a map of monads. • 

When applying this to modules, we used the following construction. 

CONSTRUCTION 6.2. For a category ^ , let ^ [1] be the category of pairs 
(X] Y) in ^ and pairs of maps. Let § be any of the monads B, C, T, or P, 
and let ^ be its ground category 5?, J?\L], or ^#5. Construct a monad §[1] in 
^[1] as follows. On a pair (X; V), the functor §[1] is given by 

$[1](X;Y) = (SX]$(X;Y)), 

where S(X; Y) is the free §X-module generated by Y. This functor factors 
through the evident category of pairs 

(§-algebra; object of *£) 

as the composite of (§; id) and (id; free module), where the free module functor 
is that associated to the algebra in the first variable. Since the identity functor 
is a monad in a trivial way, each of these functors is a monad. Therefore, by 
Lemma 6.1, their composite §[1] is a monad such that an §[l]-algebra (R\ M) is 
an §-algebra R together with an JR-module M. 

We used the following definition in our construction of EOQ ring spectra from 
Aoo ring spectra. 
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DEFINITION 6.3. Let (S,/i,ry) be a monad in a cocomplete category ^ . A 
(right) §-functor in a category *£' is a functor F : *€ —> # ' together with a 
natural transformation v : F § —• F such that the following diagrams commute: 

FS^—F FSS-^-^FS 
v\ / and F[A \v 

\ j / i d Y Y 
F F § — i L - ^ F . 

Given an S-algebra (R, £), define F <g>g i2 to be the coequalizer displayed in the 
diagram 

F§R=£FR ^F®gR. 

Given a monad §' in <€! and a left action A : S'F —> F , we say that F is an 
(§', §)-bifunctor if the following diagram commutes: 

S ' F S - ^ - ^ F S 

* A * 
§'F > F. 

EXAMPLE 6.4. The functor S is an (§, §)-bifunctor, with both left and right 
action fi. If IT : § —• §' is a map of monads in ^ , then §' is an (§',§)-
bifunctor with right action v = /A' o §V : §'§ —> §'. Observe that, for X G ^ , 
S' (g)8 §X ^ S'X. 

When ^ ' in Definition 6.3 has a forgetful functor to the category of spectra, we 
shall construct a bar construction B(F,S,R) that will give the appropriate ho-
motopical version of F<g)gR in XII§1. Assuming that F is an (§', §)-bifunctor for 
one of the monads constructed earlier in this chapter, we will find that B(F, §, R) 
is an S'-algebra. It is natural to ask whether or not F<S)gR is itself an S'-algebra. 
To answer this, we need another categorical definition. 

DEFINITION 6.5. In any category ^ , a coequalizer diagram 

A=ZB-^C. 

is said to be a reflexive coequalizer if there is a map h : B —> A such that 
e o h = id and / o h = id. 

The following categorical observation is standard and easy. Although their 
stated hypotheses are different, the proofs of similar results in [43, p. 147] and [4, 
pp. 106-108] apply to give the first statement, and the second statement follows. 

LEMMA 6.6. Let § be a monad in *£ such that § preserves reflexive coequaliz-
ers. If 

A - ^ t B - ^ C 

is a reflexive coequalizer in *& such that A and B are S-algebras and e and f are 
maps of §-algebras, then C has a unique structure of §-algebra such that g is a 
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map of §-algebras, and g is the coequalizer of e and f in the category #[§]. If, 
further, T is a monad in f̂ [§] such that T preserves reflexive coequalizers, then 
T o § also preserves reflexive coequalizers. 

Since the coequalizer diagram used to define F (g>§ R is reflexive, via the map 
FT] : FR —> FSR, the first statement implies an answer to the question we 
asked originally. 

LEMMA 6.7. Let $ be a monad in *€, §' be a monad in <€l, R be an S-algebra, 
and F : ^ —> *&" be an (8/

JS)-bifanctor. If§' preserves reflexive coequalizers, 
then F ®& R is an Sf-algebra. 

7. Limits and colimits of 5-algebras 

We here prove that the categories of A^ and Eoo ring spectra and of S-
algebras and commutative 5-algebras are complete and cocomplete. In fact, 
completeness follows immediately from Proposition 4.5. All four of our categories 
are categories of algebras over a monad in a complete category, and it follows that 
they are complete, with their limits created in their respective ground categories 
[43, VI.2, ex. 2]. The first statement of Lemma 6.6 applies to construct colimits, 
but to explain this properly we need some preliminary definitions that put our 
definitions of A^ and E^ ring spectra in perspective. 

DEFINITION 7.1. A weak symmetric monoidal category ^ with product • 
and unit object i" is defined in exactly the same way as a symmetric monoidal 
category [43, p. 180], except that its unit map X : ID X —• X is not required 
to be an isomorphism; ^ is said to be closed if the functor (—) D Y has a right 
adjoint Hom(Y, —) for each Y e ft. Monoids and commutative monoids in # 
are defined in terms of diagrams of the form displayed in Definition 3.3. As in 
Construction 4.4 and Proposition 4.5, if ^ is cocomplete, then there are monads 
T and P in ^ whose algebras are the monoids and commutative monoids in *€. 
For X e V, 

TX £ ]J Xj and IPX ^ JJ X* fa. 
j>0 j>0 

The proof of the following result is abstracted from an argument that Hopkins 
gave for the monad C [32]. He proceeded by reduction to a proof that the j -
fold symmetric powers of based spaces preserve reflexive coequalizers. With our 
new associative smash products, an abstraction of the latter proof makes the 
reduction unnecessary. 

PROPOSITION 7.2. Let *& be any cocomplete closed weak symmetric monoidal 
category. Then the monads T and F intf preserve reflexive coequalizers. 

P R O O F . For T, it suffices to prove that the j-fold product Xx D • • • • Xj 
preserves reflexive coequalizers. Thus let 
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be reflexive coequalizer diagrams in ^ , 1 < i < j , and let hi : Yi —> Xi satisfy 
d o hi = id and f%ohi — id. Let 

£ = e 1 D - . - D e j , 0 = / 1 D - - - D / j , and 7 = ^ D • • • D^-. 

Let (3 :Y\0 • • -DYj —> Z be the coequalizer of e and <j>. Since 7£ = 7^, there 
is a unique map £ : Z —> Z\ D • • • D Zj such that £0/7 = 7. We claim that £ is 
an isomorphism, and we proceed by induction on j . Let 

€i = ( idy-^eiDOd^-^ :y 1 n. - -ny i _ inx i ny i + iD - - .ny J - —^yiD.--nyJ-

and, similarly, define 0* = (idy~lOfiD(id)j~l. We observe first that Z\D- • -DZj 
is the colimit of the diagram given by the j pairs of maps {e^ <l>i}- Indeed, for 
any map a : Y\ • • • • • Yj —> W such that a o ^ = a o <̂  for 1 < i < j , 
we obtain unique maps & and a that make the following diagram commute by 
the induction hypothesis and the fact that the D-product preserves colimits and 
epimorphisms: 

Yl D • • • • Yj-x D X / l D ' " D ^ - l D > d Z i D • • • • Zj_ i D X,-

idDe^ id Ufj idDe 

y i D - - D K _ i D K pin--Dpj_iDid 

a^ — 

Z i D 

idDpj 

tf/^ ZxCL'-'DZi-iDZj. 

a J J 

Now let fc» = hi D • • • D fti_i D idDh i + i D • • • • h3,. Visibly 

Si = e o ki and (j>i = cj)oki. 
Since /?£ = /?</>, /?£$ = /?<fo for 1 < i < j and the universal property gives a 
map £ : ZiO - • -D Zj —> Z. It is easy to check from the universal properties 
that £ and £ are inverse isomorphisms. In the symmetric case, we may take 
our j given coequalizer diagrams to be the same and compose the j-fold power, 
regarded as a functor to the category of E^-objects in ^ , with the orbit functor. 
The latter is constructed as a coequalizer in ^ and is a left adjoint, so preserves 
coequalizers. • 

COROLLARY 7.3. The functors T and P on S?\L], their restrictions to functors 
T and ¥ on Ms, and the functors M and C on J? preserve reflexive coequalizers. 

PROOF. This is immediate since IB = TL, C = PL, the functor L : S* —• 
S^\L] preserves colimits, and colimits in S?\L] and in Ms are created in 5?. • 

Our claim that the categories of AOQ and Eoo ring spectra and of 5-algebras 
and commutative 5-algebras are cocomplete is now an immediate corollary of 
the following known result, which we also learned from Hopkins. 

PROPOSITION 7.4. Let § be a monad in a cocomplete category *€. If § pre­
serves reflexive coequalizers, then #[§] is cocomplete. 
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P R O O F . Consider a diagram {Ri} of §-algebras. Let colim/^ be its colimit 
in ^ and let ii : Ri —> colim Ri be the natural maps. Let 

a : colim SRi —• § colim Ri 

be the unique map in ^ whose composite with the natural map SRi —• colim SRi 
is Sti for each i. Define colimg Ri by the following coequalizer diagram in ^ : 

8(colim&) 
§(colim SRi) zt: §(colim Ri) >• colims Ri-

lio8a. 
This is a reflexive coequalizer, via §(colim77i). Thus, by Lemma 6.6, colims Ri is 
an §-algebra such that the displayed diagram is a coequalizer in #[§]. It follows 
easily that colimg Ri is the colimit of {Hi} in *«?[§]. • 

This result is closely related to the following standard result of Linton [41] 
(see also [4, Thm 2, p. 319]). 

THEOREM 7.5 (LINTON). Let S be a monad in a cocomplete category *€. If 
tf[S] has coequalizers, then *£[S] is cocomplete. 
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CHAPTER III 

The homotopy theory of i?-modules 

We here develop the homotopy theory of modules over an S-algebra R. The 
classical theory of cell spectra generalizes to give a theory of cell modules over 
R. The derived category Q>R of itmodules is constructed from the category of 
il-modules by formally adjoining inverses to the weak equivalences, and it is 
equivalent to the homotopy category of cell it-modules. We define the smash 
product over H, AR, and the function it-module functor, FR) by direct mimicry of 
the definitions of tensor product and Horn functors for modules over an algebra. 
When specialized to commutative S-algebras, our smash product of R-modules 
is again an R-module, and similarly for FR. Here the category of R-modules 
has structure precisely like the category of S-modules, and duality theory works 
exactly as it does for spectra. We assume familiarity with II§§1,3 and work in 
the ground category Ms of S-modules. 

1. The category of it-modules; free and cofree i?-modules 

Fix an 5-algebra R. We understand it-modules to be left iZ-modules unless 
otherwise specified. We first observe that the category MR of i t modules is 
closed under various constructions in the underlying categories of spectra and 
5-modules. As in algebra, an R-module is the same thing as an algebra over the 
monad R As (—) in Ms or, equivalently, a coalgebra over the adjoint comonad 
Fs(R, - ) in Ms- The functors R As ( - ) and Fs(R, - ) from Ms to MR are left 
and right adjoint to the forgetful functor. That is, R As (—) and Fs(R,—) are 
the free and cofree functors from S-modules to R-modules. Together with II. 1.4 
and formal arguments exactly like those in algebra, this leads to the following 
result. 

THEOREM 1.1. The category of R-modules is complete and cocomplete, with 
both limits and colimits created in the underlying category Ms • Let X be a based 
space, K be an S-module, and M and N be R-modules. Then the following 
conclusions hold, where the displayed isomorphisms are obtained by restriction 
of the corresponding isomorphisms for S-modules. 

(i) MAX is an R-module and the spectrum level cofiber of a map of R-
modules is an R-module. 

51 
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(ii) S A% F(X, N) is an R-module and 

J£R{M A X, iV) = JCR{M, S AC£ F(X, N)). 

(iii) M As K and Fs{K,N) are R-modules and 

MR{M AS K, N) 2* JlR[M, FS{K, N)). 

(iv) Fs{M,K) is a right R-module. 
(v) As R-modules, 

MAX^MAs S°°X and S A<? F(X,N) 9* F 5(E°°X,N). 

The cofiber and fiber of a map of R-modules are R-modules, where the fiber is 
understood to be obtained by application of the functor S A& (—) to the fiber 
constructed in the category of spectra. 

P R O O F . The only point that might need comment is the .R-module structure 
on S A& F(X,N). The evaluation map e : F(X,N) A X —> N is a map of 
L-spectra. The adjoint of R A% £ is a map of l^spectra 

e : R A^ F{X, N) —> F(X, RASN), 

and we obtain the desired action upon applying S A% e and using the given 
action of R on N. This leads to the .R-module structure on the specified fiber of 
a map of .R-modules; compare II.1.5. • 

The free .R-module functor on spectra is the starting point of cellular theory. 

DEFINITION 1.2. Define the free R-module generated by a spectrum X to be 

WRX = RAS F 5 X, 

where ¥SX = 5 A ^ L I . Equivalently, since R As S = R, 

¥RX = RA<? L X 

We abbreviate FX = WRX when R is clear from the context. 

The term "free" is technically a misnomer, since F is not left adjoint to the 
forgetful functor. However, it is nearly so. 

PROPOSITION 1.3. The functor F : S? —> J£R is left adjoint to the functor 
that sends an R-module M to the spectrum F&(S,M), and there is a natural 
map of R-modules £ : FM —• M whose adjoint M —> F& (5, M) is a weak 
equivalence of spectra. Therefore 

7rn(M)^h^R(FSn,M). 

PROOF. In view of II. 1.3, we have the chain of isomorphisms 

JHRQlRX,N) ^JZS^SX,N) 9 ^ [ L ] ( L X , F ^ ( S , A 0 ) ^y{X,F*{S,N)). 

By 1.8.7, we have a natural weak equivalence A : M —> F&{S,M) of ^pL]-
spectra. Thought of as a map of spectra, its adjoint is the required .R-map 
£. The statement about the homotopy groups 7rn(M) = hSfi(Sn,M) is clear; 
compare II. 1.8. • 
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The following central theorem shows that we have homotopical control on FX 
without any hypotheses (such as tameness or CW homotopy type) on R. 

THEOREM 1.4. In the stable homotopy category hS?', FX is naturally isomor­
phic to the internal smash product R A X. Moreover, the composite 

C : FS^FR-^R 

is a weak equivalence of R-modules. 

PROOF. The first statement is clear from II. 1.9 and 1.6.7, but we point out 
a variant proof that makes clear that the weak equivalence is one of -R-module 
spectra (in the homotopical sense). In X§5, we shall construct a tame -AQO ring 
spectrum KR and a weak equivalence of Aoo ring spectra r : KR —• R. Since 
we are working in the stable homotopy category, we may take X to be a CW 
spectrum. Then, by 1.4.6 and 1.6.6, 

r A& id : KR A^hX —• R A& hX = FX 

is a weak equivalence. By 1.4.6 and 1.6.7, there are natural weak equivalences 

KRAX—+KRA1,X—>KRA<? UC. 

For the second statement, observe that £ is the common composite in the diagram 

RA<?1LS^^RA<?S 
idALr? id A77 

RAxLR-^RAj? R-j-^R. 

By 1.8.6, the top map id A£ is a weak equivalence. • 

COROLLARY 1.5. If X is a wedge of sphere spectra, then IT*(FX) is the free 
TT*(R)-module with one generator of degree n for each wedge summand Sn. 

We shall need one further fundamental property of free .R-modules. 

DEFINITION 1.6. A compact spectrum is one of the form E'yX for a compact 
space X and an indexing space V C U. A compact i?-module is one of the form 
FK for a compact spectrum K. 

PROPOSITION 1.7. Let L be a finite colimit of compact R-modules and let 
{Mi} be a sequence of R-modules and (spacewise) inclusions Mi —> Mi+\. 
Then 

^R(L,co\imMi) = colim ^?R(L, Mi). 

The generalization from compact i?-modules to their finite colimits is imme­
diate. The compact case would be elementary if the free functor were left adjoint 
to the forgetful functor, and we shall show in XI§2 that this is near enough to 
being true to give the conclusion. 

While they play a less central role, we shall also make use of cofree .R-modules. 
Recall from I§4 that L# : 5? —> S? is the right adjoint of L and gives a comonad 
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whose coalgebras are the L-spectra. In particular, h^X is an L-spectrum for 
any spectrum X. 

DEFINITION 1.8. Define the cofree ^-module generated by a spectrum X to 
be Ff X = S f\& \J&X. Then define the cofree ft-module generated by X to be 

W%X = FS(R,W#X) 

with left action of R induced by the right action of R on itself. We abbreviate 
F#X = FRX when R is clear from the context. 

The term "cofree" is not a misnomer, since here we do have the expected 
adjunction. 

PROPOSITION 1.9. The functor F^ : 5? —> JCR is right adjoint to the for­
getful functor MR —• &\ 

PROOF. Let M be an i^-module and X be a spectrum. Lemma 5.5(h) below 
gives the first of the following isomorphisms, and II.1.3 and 1.4.7 give the others: 

^?R{M,W%X) £* JK3{M^X) * J^[L](M,L#X) ^ S*{M,X). • 

THEOREM 1.10. In the stable homotopy category hS?', ¥#X is naturally iso­
morphic to the internal function spectrum F(R,X). 

PROOF. This is immediate from II.1.9, 1.7.3, and 1.4.8. • 

2. Cell and C W R-modules; t he derived category of .R-modules 

To develop cell and CW theories for R-modules, we think of the free R-
modules 5g = WSn as "sphere i^-modules". This is consistent with the sphere 
5-modules of II. 1.7. For cells, we note that the cone functor CX — X A I 
commutes with F, so that C¥Sn = ¥CSn. Since F has a right adjoint, maps out 
of sphere .R-modules and their cones are induced by maps on the spectrum level; 
the fact that the right adjoint is not the obvious forgetful functor will create no 
difficulties. In fact, we can simply parrot the cell theory of spectra from [38, 
I§5], reducing proofs to those given there via adjunction. 

DEFINITIONS 2.1. We define cell and relative cell ^-modules. 
(i) A cell -R-module M is the union of an expanding sequence of sub R-

modules Mn such that M$ = * and M n + i is the cofiber of a map 4>n : 
Fn —• Mn , where Fn is a (possibly empty) wedge of sphere modules 
5^ (of varying dimensions). The restriction of <j>n to a wedge summand 
SJI is called an attaching map. The induced map 

CSq
R —> M n + 1 C M 

is called a cell. The sequence {Mn} is called the sequential filtration of 
M. 

(ii) For an i?-module L, a relative cell i?-module (M, L) is an -R-module M 
specified as in (i), but with M0 = L. 

(iii) A map / : M —> N between cell i?-modules is sequentially cellular if 
f(Mn) C Nn for all n. 
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(iv) A submodule L of a cell i?-module M i s a cell submodule if L is a cell 
R-module such that Ln C Mn and the composite of each attaching map 
Sq

R —• Ln of L with the inclusion Ln —• Mn is an attaching map of 
M. Thus every cell of L is a cell of M. Observe that (M, L) may be 
viewed as a relative cell .R-module. 

(v) A cell jR-module is finite dimensional if it has cells in finitely many 
dimensions. It is finite if it has finitely many cells. 

The sequential filtration is essential for inductive arguments, but it should 
be regarded as flexible and subject to change whenever convenient. It merely 
records the order in which cells are attached and, as long as the cells to which 
new cells are attached are already present, it doesn't matter in what order cells 
are attached. 

LEMMA 2.2. Let f : M —> N be an R-map between cell R-modules. Then M 
admits a new sequential filtration with respect to which f is sequentially cellular. 

P R O O F . Assume inductively that Mn has been given a filtration as a cell R-
module Mn = L)Mq such that f{M'q) C Nq for all q. Let X'- SR —> Mn be an 
attaching map for the construction of M n + i from Mn and let x '• CSr

R —• Mn+i 
be the corresponding cell. By Proposition 1.7, there is a minimal q such that 
both 

Im(x) C M'q and Im(/ o x) C Nq+l. 

Extend the filtration of Mn to M n + i by taking x to be a typical attaching map 
of a cell of Mq+l. • 

We shall occasionally need the following two reassuring results. Their proofs 
are similar to those of their spectrum level analogs [38, pp 494-495] and depend 
on Proposition 1.7 and its proof. 

LEMMA 2.3. A map from a compact R-module to a cell R-module has image 
contained in a finite subcomplex, and a cell R-module is the colimit of its finite 
subcomplexes. 

If K and L are subcomplexes of a cell i?-module M, then we understand their 
intersection and union in the combinatorial sense. That is, K D L is the cell 
i?-module constructed from the attaching maps and cells that are in both K and 
L and K U L is the cell R-module constructed from the attaching maps and cells 
that are in either K or L. However, we also have their categorical intersection 
and union, namely the pullback of the inclusions of K and L in M and the 
pushout of the resulting maps from the categorical intersection to K and to L. 

LEMMA 2.4. For subcomplexes K and L of a cell R-module M, the canonical 
map from the combinatorial intersection to the categorical intersection and from 
the categorical union to the combinatorial union of K and L are isomorphisms 
of R-modules. 
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DEFINITION 2.5. A cell .R-module M is said to be a CW .R-module if each 
cell is attached only to cells of lower dimension. The n-skeleton Mn of a CW 
^-module is the union of its cells of dimension at most n. A map / : M —• N 
between CW .R-modules is cellular if f(Mn) C Nn for all n. We do not require 
that / also be sequentially cellular but, by Lemma 2.2, that can always be 
arranged by changing the order in which cells are attached. Relative CW R-
modules (M, L) are defined similarly, with each cell attached only to the union 
of L and the cells of lower dimension. 

PROPOSITION 2.6. The collection of cell R-modules enjoys the following clo­
sure properties. 

(i) A wedge of cell R-modules is a cell R-module. 
(ii) The pushout of a map along the inclusion of a cell submodule is a cell 

R-module. 
(m) The union of a sequence of inclusions of cell submodules is a cell R-

module. 
(iv) The smash product of a cell R-module and a based cell space (with based 

attaching maps) is a cell R-module. 
(v) The smash product over S of a cell R-module and a cell S-module is a 

cell R-module. 
The same statements hold with "cell" replaced by "CW", provided that, in (ii), 
the given map is cellular. 

PROOF. In (ii), we apply Lemma 2.2 to ensure that the given map is sequen­
tially cellular. Part (v) follows from 1.6.1, which implies that the smash product 
of a sphere .R-module and a sphere 5-module is a sphere .R-module. Otherwise 
the proofs are the same as for cell and CW spectra [38, I§5]. • 

The following result is the "Homotopy Extension and Lifting Property". 

THEOREM 2.7 (HELP). Let (M,L) be a relative cell R-module and let e : 
N —> P be a weak equivalence of R-modules. Then, given maps f : M —> P, 
g : L —> N, and h : L A / + —> P such that f\i = hio and eg = hi\ in 
the following diagram, there are maps g and h that make the entire diagram 
commute. 

+ LAI+ + 

PROOF. This is proven for (M, L) = (CSq
R, Sq

R) by reduction to the spectrum 
level analog. Technically, we use that the fact that our spheres are obtained from 
sphere spectra by applying a functor that is left adjoint to a functor that preserves 
weak equivalences (even though it is not the obvious forgetful functor). The 
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general case follows by induction up the sequential filtration, and the inductive 
step reduces directly to the case of (CS^, S^) already handled. • 

The Whitehead theorem is a formal consequence. 

THEOREM 2.8 (WHITEHEAD). If M is a cell R-module and e : N —> P 
is a weak equivalence of R-modules, then e* : h^n(M,N) —• h^R(M,P) 
is an isomorphism. Therefore a weak equivalence between cell R-modules is a 
homotopy equivalence. 

Recall that a spectrum is "connective" if it is (-l)-connected. When R is 
connective, irq(N/Nq) = 0 for any CW .R-module and we can prove the following 
cellular approximation theorem exactly as in [38, 1.5.8]. For non-connective 
R, this result fails and we must content ourselves with cell R-modules. For 
connective R, there is no significant loss of information if we restrict attention 
to CW i^-modules. 

THEOREM 2.9 (CELLULAR APPROXIMATION). Assume that R is connective 
and let (M,L) and (M',L') be relative CW R-modules. Then any map f : 
(M, L) —> (M7 , ! /) is homotopic relative to L to a cellular map. Therefore, for 
cell R-modules M and M', any map M —> M' is homotopic to a cellular map, 
and any two homotopic cellular maps are cellularly homotopic. 

THEOREM 2.10 (APPROXIMATION BY CELL MODULES). For any R-module 
M, there is a cell R-module FM and a weak equivalence 7 : FM —> M. If 
R is connective, then FM can be chosen to be a CW R-module. 

P R O O F . Choose a wedge of sphere -R-modules No and a map 70 : iVo —• M 
that induces an epimorphism on homotopy groups. Given 7n : Nn —• M, we 
construct Nn+\ from Nn as a homotopy coequalizer of pairs of representative 
maps for all pairs of unequal elements of any 7Tq(Nn) that map to the same 
element in irq(M). We have homotopies that allow us to extend j n to 7n+i- We 
let TM be the union of the JVn, and the 7n give a map 7 : TM —> M. We 
deduce from Proposition 1.7 that 7 is a weak equivalence, and we deduce from 
Proposition 2.6 that TM is a cell il-module. If R is connective, we may take our 
representative maps to be cellular, and FN is then a CW ^-module. • 

CONSTRUCTION 2.11. For each ^-module M, choose a cell .R-module FM 
and a weak equivalence 7 : FM —> M. By the Whitehead theorem, for a map 
/ : M —> A7", there is a map Ff : FM —> FN, unique up to homotopy, such 
that the following diagram is homotopy commutative: 

T M - ^ r A T 

7 7 

M—^N. 
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Thus T is a functor KJMR —> hjttR, and 7 is a natural transformation from T to 
the identity. The derived category $>R can be described as the category whose 
objects are the i^-modules and whose morphisms are specified by 

®R{M,N) = hJZR{TM,YN), 

with the evident composition. When M is a cell i?-module, 

9R{M,N)*£hJZR(M,N). 

Using the identity function on objects and V on morphisms, we obtain a functor 
i : h^R —> $)R that sends weak equivalences to isomorphisms and is universal 
with this property. Let % be the full subcategory of MR whose objects are 
the cell i?-modules. Then the functor T induces an equivalence of categories 
QfR —> M?R with inverse the composite of i and the inclusion of h^R in h^R. 

Therefore the derived category and the homotopy category of cell fi-modules 
can be used interchangeably. Homotopy-preserving functors on i^-modules that 
do not preserve weak equivalences are transported to the derived category by 
first applying T, then the given functor. 

The category @R has all homotopy limits and colimits. They are created 
as the corresponding constructions on the underlying diagrams of 5-modules; 
equivalently, homotopy colimits are created on the spectrum level and homotopy 
limits are created from spectrum level homotopy limits, which are S?\L]-spectra, 
by applying the functor 5 A y (—). Explicit functorial constructions will be given 
in X§3. We have enough information to quote the categorical form of Brown's 
represent ability theorem given in [13]. 

THEOREM 2.12 (BROWN). A contravariant functor k : @R —• Sets is repre-
sentable in the form k(M) = @R{M, N) for some R-module N if and only if k 
converts wedges to products and converts homotopy pushouts to weak pullbacks. 

REMARK 2.13. There is a variant of Brown's theorem, due to Adams [3], 
that applies to functors that are defined only on finite CW spectra. Working 
in an algebraic context, Neeman [56] observed that Adams' variant does not 
generalize so readily. Rather, it requires a count ability hypothesis that is satisfied 
automatically in the classical context of finite CW spectra. In our context, 
Adams' variant applies provided that each homotopy group 7rn(i2) is countable. 

3. The smash produc t of i?-modules 

We mimic the definition of tensor products of modules over algebras. 

DEFINITION 3.1. Let # be an 5-algebra and let M be a right and N be a 
left jR-module. Define M /\R N to be the coequalizer displayed in the following 
diagram of 5-modules: 

MAsid 
M AS RAsN ?: M AS N ^ M AR N, 

id A51/ 

where fi and v are the given actions of R on M and N. 
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When R = 5, we are coequalizing the same isomorphism (see 1.8.3). Therefore 
our new M As N coincides with our old M As N. 

We shall shortly construct function i?-modules satisfying the usual adjunction. 
It will follow that the functor AR preserves colimits in each of its variables. It is 
clear that smash products with spaces commute with A#, in the sense that 

(X A M) AR N £ X A (M AR N) £ (Af AR N) A X £ M AR (N A X). 

Therefore the functor AR commutes with cofiber sequences in each of its vari­
ables. We also have the following adjunction, which complements Theorem 
l.l(iv). 

LEMMA 3.2. For an S-module K, 

^s(MARN,K)mtR{N,Fs{M,K)). 

The commutativity, associativity, and unity properties of the smash product 
over S and comparisons of coequalizer diagrams give commutativity, associativ­
ity, and unity properties of the smash product over R, exactly as in algebra. We 
state these properties in the generality of their algebraic counterparts. 

An 5-algebra R with product (j) : R As R —• R has an opposite 5-algebra 
Rop with product 0 o r , and a left jR-module with action /i is a right i?op-module 
with action / / o r . 

LEMMA 3.3. For a right R-module M and left R-module N, 

M AR N ^ N ARoP M. 

For 5-algebras R and Rf, we define an (R, i£')-bimodule to be a left R and 
right fl'-module M such that the evident diagram commutes: 

R AS M AS Rf >• M AS R' 

\ \ 
R As M ^ Af. 

As in algebra, an (R, #')-bimodule is the same thing as an (RAs (J?/)op)~m°dule. 

PROPOSITION 3.4. Let M be an (ii, R')-bimodule, N be an (Rf, R")-bimodule, 
and P be an {R",R"l)-bimodule. Then M AR> N is an (R, R")-bimodule and 

(Af AR> N) AR» P^MAR, (N ARn P) 

as (R, R'")-bimodules. 

The unity isomorphism has already been displayed, in the guise of a split 
coequalizer diagram, in II.3.2. We restate the conclusion. 

LEMMA 3.5. The action v : R As N —> TV of an R-module N factors through 
an isomorphism of R-modules A : R AR N —• N. 
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For an 5-module K, R As K = K A 5 R is an (i?, i?)-bimodule. In particular, 
this applies to the free left -R-module NRX = R A5F5X generated by a spectrum 
X, which may be identified with the free right R-module generated by X. The 
following instances of the isomorphisms above will be used in conjunction with 
the weak equivalences of 1.6.7 and II.1.9. They allow us to deduce homotopical 
properties of AR from corresponding properties of A5. 

PROPOSITION 3.6. Let K and L be S-modules and let N be an R-module. 
There is a natural isomorphism of R-modules 

(K ASR)ARN^K AS N. 

There is also a natural isomorphism of (R, R)-bimodules 

(K AS R) AR (R ASL)^R AS (K As L). 

Using 1.6.1, we obtain the following consequence, in which we use an iso­
morphism of universes / : U 0 U —> U to define the internal smash product 
MX AY). 

COROLLARY 3.7. Let X and Y be spectra and let N be an R-module. There 
is a natural isomorphism of R-modules 

WRX ARN^ WSX AS N. 

There is also a natural isomorphism of (R,R)-bimodules 

¥RXAR¥RY^¥RMXAY). 

THEOREM 3.8. If M is a cell R-module and $ : N —> N' is a weak equiva­
lence of R-modules, then 

id AR<p : M ARN —> M ARN' 

is a weak equivalence of S-modules. 

PROOF. When M = ^RX for a CW spectrum X, the conclusion is immediate 
from the corollary and 1.6.6. The general case follows from the case of sphere 
i^-modules by induction up the sequential filtration and passage to colimits. • 

We construct AR as a functor 

r$R x i@R —> 9S 

by approximating one of the variables by a cell .R-module; here "r" and 'T' 
indicate right and left i£-modules. That is, the derived smash product of M and 
N is represented by TM AR N. 

The following technical sharpening of Corollary 1.5 will be the starting point 
for our later construction of a spectral sequence for the calculation of 7r*(M A#iV). 

PROPOSITION 3.9. Let X be a wedge of sphere spectra and let N be a cell 
R-module. Then there is an isomorphism 

n*(WRX AR N) * (MR) ® H*(X)) ® M R ) MN) 

that is natural in the R-modules WRX and N. 
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PROOF. The point is that naturality on general maps g : TFRX —• RRX', 
with their induced maps 7r*(.R) <g> H*(X) —> Tr*(R) <g) H*(X'), and not just 
on maps of the form g = ¥RJ, f : X —> Xf, will be essential in the cited 
application. The diagram 

WRX A S R AS N $FRX As N ^WRX AR N 

is a split coequalizer in J£s and thus in S?, and it is visibly natural in both WRX 
and N. It remains a coequalizer on applying 7r*, and the required naturality 
follows. • 

Finally, we record an analogue of the behavior of tensor products of modules 
with respect to tensor products of algebras. 

PROPOSITION 3.10. Let R and R! be S-algebras, M and N be right and left 
R-modules, and Mf and N' be right and left Rf-modules. Then there is a natural 
isomorphism of S-modules 

(M AS M') ARAsR, {N AS N') £ (M AH N) As (Mf AR, N'). 

If M is a cell R-module and Nf is a cell R'-module, then M As N' is a cell 
R As R-module. 

PROOF. The first statement is a comparison of coequalizer diagrams. The 
second statement holds since, on spheres, 1.6.1 implies isomorphisms 

(LSq A^ R) AS (R A^ L5 r ) ^ (R As R) A<e L 5 9 + r . D 

4. Change of 5-algebras; g-cofibrant 5-algebras 

In this section, we assume given a map of 5-algebras 

0 : R —>R', 

and we study the relationship between the categories of .R-modules and of R-
modules. By pullback along 0, we obtain a functor <fi* : MR> —• ^ # R . It 
preserves weak equivalences and thus induces a functor 0* : <&R> —• @R. It is 
vital to the theory that this functor is an equivalence of categories when </> is a 
weak equivalence. As we explain, this allows us to replace general 5-algebras by 
better behaved "g-cofibrant" ones whenever convenient, without changing the 
derived category. 

Regard R as a right .R-module via the composite 

R'AsR^^R'AsR'-^^R'. 
Observe that R is an (R, #)-bimodule with the evident left action by R and 
that, for an .R-module M, R AR M is an .R'-module, 

PROPOSITION 4.1. Define <f>+ : J£R —• JtR> by 4>*M = R AR M. Then </>+ 
is left adjoint to <j>*, and the adjunction induces a derived adjunction 

9R,{<t>+M,M') * ®R{M,PM'). 

Moreover, the functor </>* preserves cell modules. 
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P R O O F . The required isomorphism 

is proven exactly as in algebra. It sends an i?-map M —> M' to the induced 
composite 

B! ARM —> R' AR M' —* B! AR> M' * M', 

and it sends an .R'-map B! AR M —> Mf to its restriction along the canonical 
map M —• R' AR M. Since the functor <j>* preserves weak equivalences, it 
is formal that the functor 0* carries .R-modules of the homotopy types of cell 
modules to ii'-modules of the homotopy types of cell modules and induces an 
adjunction on derived categories [38, 1.5.13]. Clearly 

R' AR{RASL)^R' ASL 

for an 5-module L. Therefore the functor </>* carries sphere ^-modules to sphere 
.R'-modules. Since, as a left adjoint, 0* preserves colimits, this implies that (j>* 
preserves cell modules and not just homotopy types of cell modules. • 

THEOREM 4.2. Let <fi : R —> R' be a weak equivalence of S-algebras. Then 
0* • @R —> @R' and </>* : *$R* —> ®R are inverse adjoint equivalences of 
categories. 

P R O O F . If M is a cell i?-module, then the unit 

(j) AR id : M 9* R AR M > B! AR M 

of the adjunction is a weak equivalence by Theorem 3.8. Now let M' be an 
iJ'-module. In the derived category, the composite 4>^(j)*M' means Rf AR TMf, 
where YMf is a cell E-module for which there is a weak equivalence of i?-modules 
7 : TM' —> <j>*M'. The counit of the adjunction is given by 

id A07 : R! AR TM' —• B! AR> Af' £* M'. 

An easy diagram chase shows that the composite map of .R-modules 

TM' ^RAR TM' ^ i B! AR TM' ^ £ R' AR< AT * M' 

coincides with 7. Since 0 AR id is a weak equivalence, so is id A^7. • 

We shall give the category of S-algebras a Quillen (closed) model category 
structure in Chapter VII. We will then have the notion of a "g-cofibrant S-
algebra", which is a retract of a "cell 5-algebra". For any 5-algebra R, there 
is a weak equivalence A : AR —• <R, where AR is a cell 5-algebra. By the 
previous result, A induces an adjoint equivalence between the categories @R and 
@AR. Actually, we will have two quite different model categories, one for 5-
algebras and another for commutative 5-algebras. The comments that we have 
just made apply in either context. As we shall explain in VII§6, the forgetful 
functor from it-algebras to /^-modules is better behaved homotopically in the 
non-commutative case than in the commutative case. In fact, VII.6.2 will give 
the following result. 
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THEOREM 4.3. If R is a q-cofibrant S-algebra, then (R,S) is a retract of a 
relative cell S-module, the inclusion 5 —• R being the unit of R. Therefore 
(i?, 5) has the homotopy type of a relative CW S-module. 

Since we can approximate a commutative 5-algebra by a non-commutative cell 
5-algebra without changing the derived category of modules (up to equivalence), 
we can use the previous result to obtain homotopical information about the 
derived categories of commutative 5-algebras. 

We illustrate the force of these ideas by using them to obtain a complementary 
adjunction to the case of Proposition 4.1 that is obtained by specializing to the 
unit r) : 5 —> R of an 5-algebra R: 

@R{R/\sM,N)^®s(M,rfN) 

for 5-modules M and i^-modules N. 

PROPOSITION 4.4. The forgetful functor rf : SfR —> @s has a right adjoint 
rq# : cfis — > @R} so font 

®R(N,r)#M) ^ @s(r}*N,M) 

for S-modules M and R-modules N. 

PROOF. On the point set level, we have the adjunction 

Jts{rfN, M) * JtR{N, FS(R, M)). 

Here we regard R as an (5, i?)-bimodule, and the right action of R on itself 
induces a left action of R on Fs(R, M) (as with Horn functors in algebra). How­
ever, there is no reason to believe that the functor Fs(R,M) of M preserves 
weak equivalences, so that it is not clear how to pass to derived categories. Let 
A : A-R —> R be a weak equivalence of 5-algebras, where AR is a cell 5-algebra. 
It follows easily from the previous theorem that the functor 

FS(AR,M):^S—+^AR 

of M does preserve weak equivalences. We therefore have an adjunction 

9s{(v'yN',M) ^ ®AR(Nf,Fs(AR,M)) 

for Ai?-modules Nf and 5-modules M, where rf is the unit of A-R. Theorem 4.2 
implies that we also have an adjunction 

0A*(A*A^O = 0*WA*iV') . 

Since rj = A o rf : 5 —• R and these forgetful functors all preserve weak equiv­
alences, rf = (rf)* o A* : 9R —> 9S. We define r)#(M) = A*F5(A#,M) and 
obtain the desired adjunction as the composite of the adjunctions just given. • 
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5. Symmetric and extended powers of .R-modules 

Let R be a commutative 5-algebra and M be an i^-module. The j th sym­
metric power of M is defined to be M J / £ j and the j th extended power of M is 
defined to be 

DjM = {Ei:j)+AvjMj. 
In both notions, M J denotes the j - th power of M with respect to AR. One of 
the most striking features of our smash product of R-modules is that, in the 
derived category @R, these are essentially equivalent notions. This fact will 
give us homotopical control on free commutative .R-algebras and will play an 
important role in our study of Bousfield localizations of commutative i?-algebras 
in Chapter VIII; it will not be needed before then. 

To explain this fact, observe that 1.5.6 implies that, for a spectrum K, we 
have an equivariant isomorphism 

where the j - th power is taken with respect to A% on the left and with respect 
to the external smash product on the right. Therefore 

This is the core of the claimed equivalence between symmetric and extended 
powers of .R-modules. However, to retain suffficient homotopical control on our 
constructions to prove the equivalence, we must assume that R is a g-cofibrant 
commutative 5-algebra and apply results to be proven in VII§6. Note that, as the 
initial object in the category of commutative 5-algebras, S itself is g-cofibrant. 

THEOREM 5.1. Let R be a q-cofibrant commutative S-algebra. If M is a cell 
R-module, then the projection 

IT : (EE,)+ AE. Mj — Mj/Xj 

is a homotopy equivalence of spectra. 

P R O O F . The conclusion is trivial for j = 1 and we may assume inductively 
that it holds for i < j . 

We first prove the result for any j when M is the free .R-module generated by 
a CW-spectrum X. Expanding definitions and commuting the smash product 
with (2£Ej)+ through our constructions, we find that 

Mj ^RAsSA* (5?(j) K Xj), 

{EEj)^ A Mj ^ R AS S Ase ((EEj x 5?(j)) K Xj), 
and 7r is induced from the E;-equivalence ET,j x S£{j) —> -&U) by passage 
to orbits. When R = 5, IT is a homotopy equivalence of spectra by 1.8.5 and 
the equivariant version of 1.2.5. For general R, VII.6.5 and VII.6.7 imply that 
the functor R As ( - ) carries this homotopy equivalence to a weak equivalence. 
However, the domain and target have the homotopy types of CW spectra, by 
VII.6.6. 

Next, let M be a subcomplex of a cell .R-module N and assume that the 
conclusion holds for M and N/M. As explained for the (external) smash power 
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of spectra in [14, pp 37-38] and works equally well for the (internal) smash power 
of ^-modules, we have a filtration of iVJ by Ej-cofibrations of i?-modules 

Mj = FjNj C F j - i W C • • • C FiNj C F0Nj = Nj. 

Here F̂ iV-7 is the union of the subcomplexes M\ AR • • • AR MJ, where each Mk 
is either M or N and i of the M& are M. The subquotients can be identified 
equivariantly as 

FiNi/Fi+rf* * E,- X ^ X E . . , (M* AH {N/My-% 

space, .EEj is homotopy equivalent to .BE* x EHj-i, and there 
result homotopy equivalences 

(£?Ej)+ AEj FiW/Fi+xN* ~ ((£E;) + AEi M') A* ( ( 1 5 ^ ) + AE._, (iV/Af)'"*). 

Applying the original induction hypothesis on j and inducting up the filtration, 
we deduce the conclusion for N. 

Finally, turning to the general case, let {Mn} be the sequential filtration of M, 
with M0 = *. By the first step, the conclusion holds for each M n + i / M n . By the 
second step, the conclusion for Mn implies the conclusion for Mn+i. Since Mj is 
the colimit of the sequence of Ej-cofibrations of i?-modules (MnY —• (M n +i)^ 
the conclusion for M follows. • 

6. Function ^-modules 

Let R be an 5-algebra. We have a function -R-module functor FR to go with 
our smash product. Its definition is dictated by the expected adjunction. 

DEFINITION 6.1. Let M and N be (left) ^-modules. Define FR(M,N) to be 
the equalizer displayed in the following diagram of 5-modules: 

FR(M, N) ^ FS(M, N) = = £ FS(R As M, AT). 

Here n* = Fs(/J>, id) and LJ is the adjoint of the composite 

R AS (M AS FS{M, N)) -^A£ R As N -*-+ N. 

When R = 5, our new and old function 5-modules Fs{M,N) are identical. 
We state the expected adjunction in a general form, but we are most interested 
in the case R' = 5. 

LEMMA 6.2. Let M be an (R, R')-himodule, N be an R'-module, and P be an 
R-module. Then 

JtR(MARIN,P)^^Rt(N,FR{M,P)). 

PROOF. The general case follows from the case R — 5 of Lemma 3.2 by use 
of the coequalizer definition of AR* and the equalizer definition of FR. • 

As in algebra, this leads to a function module analogue of Proposition 3.4. 
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PROPOSITION 6.3. Let M be an (R, Rl)-bimodule, N be an (Rf, R")-bimodule, 
and P be an (R,R,n)-bimodule. Then FR(M,P) is an (R', Rf")-bimodule, and 

FR(M AR> TV, P) * FR> (TV, FR{M, P)) 

as (Rn,Rf")-bimodules. 

Similarly, the unit isomorphism of Lemma 3.5 implies a counit isomorphism. 

LEMMA 6.4. The adjoint A : M — • FR(R, M) is an isomorphism. 

We also have analogs of Proposition 3.6 and Corollary 3.7. While we are 
interested primarily in the versions relating FR to the functor As, there are 
also versions relating FR to the functor F5. The following lemma is needed for 
the latter versions. Its algebraic analogue is proven by a formal argument that 
applies equally well in topology. 

LEMMA 6.5. Let R and Rf be S-algebras. 

(i) Let M be an R-module, M' be an R'-module and P be an RAsR1-module. 
Then there is a natural bisection 

^R(M,FW(M',P))9* JCRt,sR>{M ASM1\P). 

(ii) Let M be a left R-module, N be a right R-module, and K be an S-module. 
Then there is a natural bijection 

JtR(M, FS{N, K)) * JKS(N AR M, K). 

P R O O F . It suffices to check (i) when M = RAs L and M' = Rf As L' are the 
free modules generated by S-modules L and V. Similarly, it suffices to check (ii) 
when M — R As L. These cases are easy consequences of our adjunctions. • 

PROPOSITION 6.6. Let K be an S-module and M be a left R-module. There 
is a natural isomorphism of left R-modules 

FR(KASR,M)^FS(K,M) 

and a natural isomorphism of right R-modules 

FR(M,Fs(R,K))^Fs(M,K). 

PROOF. The first isomorphism is immediate from the following chain of iso­
morphisms of represented functors on left .R-modules iV, which result from 
Proposition 6.3, Proposition 3.6, and Theorem 1.1 (iii), respectively. 

JKR(N, FR(K AS R, M)) * JtR({K As R) AR N, M) 
^JtR{KAsN,M) 
^^R(N,FS(K,M)). 
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The second isomorphism results from the following chain of isomorphisms of 
represented functors on right i?-modules N: 

^RoP(N,FR(M,Fs(R,K)))^^RAsRoP(MAsN,Fs(R,K)) 
* MS{R ARASR°I> (Af As N), K) 

* Jts(M ARop N, K) £ J£Rov{N, FS{M, K)). 

The first two isomorphisms are instances of isomorphisms of the lemma. The 
third follows from the fact that there is a natural isomorphism 

R ^RAsR°? (M ASN)^M ARop N, 

as is easily checked when M and TV are free .R-modules and follows in general. • 

COROLLARY 6.7. Let X be a spectrum and M be an R-module. There is a 
natural isomorphism of left R-modules 

FR(WRX,M)^FS(WSX,M) 

and a natural isomorphism of right R-modules 

F * ( M , F # X ) ^ F 5 ( M , F f * ) ) . 

The functor FR(M, N) converts colimits and cofiber sequences in M to limits 
and fiber sequences and it preserves limits and fiber sequences in A/", as we see 
formally on the spectrum level (compare [38, III.2.5]) and deduce in order on 
the levels of L-spectra, 5-modules, and .R-modules (compare II.1.5 and Theorem 
1.1). Using the previous corollary to deal with sphere .ft-modules and proceeding 
by induction up the sequential filtration of M, we obtain the analogue of Theorem 
3.8. 

THEOREM 6.8. If M is a cell R-module and <\> : N —• Nf is a weak equiva­
lence of R-modules, then 

FR(id,<j>) : FR(M,N) — FR(M,N') 

is a weak equivalence. 

In the derived category @R, FR(M, N) means FR(TM, N), where TM is a cell 
approximation of M. We are entitled to conclude that 

@R{M AS iV, P) * 9S{N, FR{M, P)). 

As in Proposition 3.9, we have the following calculational sharpening of Corol­
lary 6.7. It will be the starting point for our later construction of a spectral 
sequence for the calculation of TT*(FR(M, N)). 

COROLLARY 6.9. Let X be a wedge of sphere spectra and N be an R-module. 
Then there is an isomorphism 

n4FR(¥X,N)) ^Bom^{R)(ir,(R) ®H,(X),7r,(N)) 

that is natural in the R-modules FX and N. 
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We end this section by recording a composition pairing that is a formal im­
plication of Lemma 6.2 and Proposition 6.3. This works exactly as with tensor 
products and Horn in algebra and, as there, it is convenient for this purpose to 
use the commutativity of the smash product over S to rewrite our adjunctions 
and isomorphisms with their variables occurring in the same order on both sides, 
returning to our original conventions of I§7. Thus, for an S-module L and for 
^-modules M and iV, we have the natural isomorphism of 5-modules 

(6.10) FR(L AS M,N) * F5(L,FH(M,7V)). 

Let P be another H-module. Using the evaluation il-map 

£:FR(M,N)ASM—> N, 

we obtain a composite -R-map 

FR(N,P) AS FR(M,N) AS M'1^^FR(N,P) AS N - ^ P . 

Its adjoint is a composition pairing of 5-modules 

(6.11) 7T : FR(N,P)ASFR(M,N) —» FR(M,P). 

This pairing is unital and associative in the sense that the following diagrams 
commute; let 77: 5 —> FR(M, M) be the adjoint of A : S As M —• M: 

FR(N,P)ASS 

i d A s 77 
. A T 

FR(N,P)ASFR(N,N)- •FR(N,P), 

SASFR(M,N) 

77 A s i d 

Y 

FR(N,N)ASFR(M,N)-

and, for another .R-module L, 

FR(N, P) AS FR(M, N) AS FR(L, M) 

7r A s i d 

FR(M,P)ASFR(L,M) 

i d A s 7r 

•FR(M,N), 

FR(N,P)ASFR(L,N) 

FR(L,P). 

This leads to a host of examples of S-algebras and their modules. 

PROPOSITION 6.12. Let R be an S-algebra and let M and N be (left) R-
modules. Then FR(N,N) is an S-algebra with product TX and unit rj. More­
over, FR(M,N) is an (FR(N,N),FR(M,M))-bimodule with left and right ac­
tions given by n. 
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7. Commutative 5-algebras and duality theory 

We assume that R is a commutative 5-algebra in this section, and we show 
that the study of modules over R works in exactly the same way as the study 
of modules over commutative algebras. If /x : R A5 M —> M gives M a left 
il-module structure, then \io r : M As R —• M gives M a right .R-module 
structure such that M is an (.ft, .ft)-bimodule. As in the study of modules over 
commutative algebras, this leads to the following important conclusion. 

THEOREM 7.1. / / M and N are R-modules, then M AR N and FR(M,N) 
have canonical R-module structures induced from the R-module structure of M 
or, equivalently, N. The smash product over R is commutative, associative and 
unitai There is an adjunction 

(7.2) JtR(L AR M, N) * JtR{L, FR(M, N)). 

Moreover, the adjunction passes to derived categories. 

We have the following consequence of Corollary 3.7. 

PROPOSITION 7.3. If M and M' are cell R-modules, then M AR M' is a cell 
R-module with one (p + q)-cell for each p-cell of M and q-cell of M'. 

For .R-modules L, M and N, we have a natural isomorphism of .R-modules 

(7.4) FR(L AR M, N) * FR(L, FR(M, N)) 

because both sides represent the same functor. Exactly as in the previous section, 
but working entirely with .R-modules, we obtain a natural associative and R-
unital composition pairing 

(7.5) IT : FR(M, N) AR FR(L, M) —> FR{L, N). 

The formal duality theory explained in [38, Ch. Ill] applies to the stable 
category of ^-modules. Define the dual of M to be DRM = FR(M,R). We 
have an evaluation map e : DRM AR M —• JR and a map rj : R —• FR(M, M), 
namely the adjoint of A : R AR M —• M. There is also a natural map 

(7.6) 1/ : FR(L, M) AR N —+ FR{L, M AR N). 

By composition with the isomorphism ^ ( i d , A), v specializes to a map 

(7.7) v : DRM AR M —-> FR{M, M). 

We say that M is "strongly dualizable", if it has a coevaluation map fj : JR —• 
M AR DRM such that the following diagram commutes in &R\ 

R 2 ^M ARDRM 

(7.8) v\ 

FR(M, M) **-;;- DRM AR M. 

The definition has many purely formal implications. The map v of (7.6) is 
an isomorphism in @R if either L or N is strongly dualizable. The map v of 
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(7.7) is an isomorphism in @R if and only if M is strongly dualizable, and the 
coevaluation map fj is then the composite rv~lr) in (7.8). The natural map 

p : M —> DRDRM 

is an isomorphism in Q>R if M is strongly dualizable. The natural map 

A : FR(M, N) AR F H ( M ' , N') — FR(M AR M', N AR Nf) 

is an isomorphism in ®R if M and Mf are strongly dualizable or if M is strongly 
dualizable and N = R. 

Say that a cell ii-module A7" is a wedge summand up to homotopy of a cell 
i?-module M if there is a homotopy equivalence of i?-modules between M and 
N V Nf for some cell R-module N'. In contrast with the usual stable homotopy 
category, if M is finite it does not follow that N must have the homotopy type 
of a finite cell i?-module. Via Eilenberg-Mac Lane spectra, finitely generated 
projective modules that are not free give rise to explicit counterexamples. Define 
a semi-finite ^-module to be an -R-module that is a wedge summand up to 
homotopy of a finite cell .R-module, and note for use in Chapter VI that this 
notion makes sense even when R is not commutative. 

THEOREM 7.9. A cell R-module is strongly dualizable if and only if it is semi-
finite. 

PROOF. Observe first that 5^ is strongly dualizable with dual S^q, hence any 
finite wedge of sphere i£-modules is strongly dualizable. Observe next that the 
cofiber of a map between strongly dualizable i^-modules is strongly dualizable. 
In fact, the evaluation map e induces a natural map 

£# : &R(L, N AR DRM) —> 9R(L AR M, N), 

and M is strongly dualizable if and only if e# is an isomorphism for all L and 
N [38, III. 1.6]. Since both sides convert cofiber sequences in the variable M 
into long exact sequences, the five lemma gives the observation. We conclude by 
induction on the number of cells that a finite cell fl-module is strongly dualizable. 
It is formal that a wedge summand in @R of a strongly dualizable cell .R-module 
is strongly dualizable. For the converse, let N be a cell i?-module that is strongly 
dualizable with coevaluation map fj : R —> N AR DRN. Since fj is determined 
by its restriction to S and S is compact, fj factors through M AR DRN for some 
finite cell subcomplex M of N. By [38, III. 1.2], the bottom composite in the 
following commutative diagram is the identity (in @R): 

M AR DRN AR N ^ ^ M AR R -^-^ M 

Y 

N R^RN^-^NARDRNARN-^^NARR-^-^N. 

Therefore AT" is a retract up to homotopy and thus, by a comparison of exact tri­
angles, a wedge summand up to homotopy of M: retractions split in triangulated 
categories. • 
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CHAPTER IV 

The algebraic theory of i?-modules 

We define generalized Tor and Ext groups as the homotopy groups of derived 
smash product and function modules, and we interpret these groups in terms of 
generalized homology and cohomology theories on jR-modules. Specializing to 
Eilenberg-Mac Lane spectra, these groups give the classical Tor and Ext groups, 
and we show how to topologically realize classical algebraic derived categories of 
complexes of modules over a ring. Starting with a connective 5-algebra R, rather 
than an Eilenberg-Mac Lane spectrum, the discussion generalizes to give ordi­
nary homology and cohomology theories on ^-modules, together with Atiyah-
Hirzebruch spectral sequences for the computation of generalized homology and 
cohomology theories on R-modules. 

In Sections 4 and 5, we construct "hyperhomology" spectral sequences for the 
calculation of our generalized Tor and Ext groups in terms of ordinary Tor and 
Ext groups, and we show that these specialize to give universal coefficient and 
Kiinneth spectral sequences for homology and cohomology theories defined on 
spectra. In Sections 6 and 7, we generalize to Eilenberg-Moore spectral sequences 
for the computation of E*(M AR N) under varying hypotheses on R and E. In 
particular, we give a bar construction approximation to M AR N that allows us 
to view the classical space level Eilenberg-Moore-Rothenberg-Steenrod spectral 
sequence as a special case. 

Except that his theory was intrinsically restricted to the A^ context, Robin­
son's series of papers [59, 60, 61, 62, 63] gave earlier versions of many of the 
results of this chapter. Of course, with the earlier technology, the proofs were 
substantially more difficult. 

As usual, for a spectrum £ , we shall often abbreviate notations by setting 

En = 7rn(E)=E-n. 

1. Tor and Ext; homology and cohomology; duali ty 

DEFINITION 1.1. Let R be an 5-algebra. For a right ^-module M and a left 
.R-module JV, define 

Tor%(M,N) = 7rn(MARN). 

71 
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For left R- modules M and N, define 

Extn
R(M,N) = 7r-n(FR(M,N)). 

Here the smash product and function modules are understood to be taken in 
the derived category @R. For Tor, this means that M or N must be replaced by 
a weakly equivalent cell R-module before applying the module level functor AR. 
For Ext, this means that M must be approximated by a cell i^-module before 
applying FR. At this point in our work, however, we act as traditional topolo-
gists, taking it for granted that all spectra and modules are to be approximated 
as cell modules, without change of notation, whenever necessary. We will point 
out explicitly any places where this gives rise to mathematical issues. 

Clearly Torf (M, AT) and Ext*R{M,N) are #*-modules when R is commuta­
tive. Various properties reminiscent of those of the classical Tor and Ext functors 
follow directly from the definition and the results of the previous chapters. The 
intuition is that the definition gives an analogue of the differential Tor and Ext 
functors (alias hyperhomology and cohomology functors) in the context of dif­
ferential graded modules over differential graded algebras. In particular, the 
grading should not be thought of as the resolution grading of the classical tor­
sion product, but rather as a total grading that sums a resolution degree and 
an internal degree; this idea will be made precise by the grading of the spectral 
sequences that we shall construct for the calculation of these functors. 

PROPOSITION 1.2. Torf(M, N) satisfies the following properties. 
(i) If R, M, and N are connective, then Tor^(M, N) — 0 for n < 0. 

(ii) A cofiber sequence Nf —• N —> N" gives rise to a long exact sequence 

• Tor£(M, N') —> Torf (M, N) — 

Torf (M, N") —> Tbr£_!(M, N') —+ • • • . 

(iii) Torf (M, R) = TT*{M) and, for a spectrum X, 

Tor? (M,FX)^7r*(MAX) . 

(iv) The functor Tor* (Af, —) carries wedges to direct sums. 

PROOF. In (i), M and N can be approximated by CW ^-modules with cells 
of non-negative dimension, hence it suffices to check the conclusion for N = 5£, 
r > 0, in which case it is immediate from (iii). Part (iii) follows from III. 1.4 and 
III.3.7. • 

The commutativity and associativity relations for the smash product imply 
various further properties. We content ourselves with the following specializa­
tion. 

PROPOSITION 1.3. If R is commutative, then 

Tor?(M, AO ^ Torf W M) 

and 
Torf (M AR AT, P) ^ Torf (M, AT AR P). 
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Say that a spectrum N is coconnective if irqN = 0 for q > 0. 

PROPOSITION 1.4. Ext^(M, N) satisfies the following properties. 
(i) If R and M are connective and N is coconnective, then Ext^(M, N) = 0 

for n < 0. 
(ii) Fiber sequences Nf —• N —> N" give rise to long exact sequences 

> Ext£(M, N') —+ ExtJ(M, AT) —> 

Ext£(M, AT'7) —> E x t ^ + 1 ( ^ 5 W) —> • • • ; 

cofiber sequences M' —• M —> M " give rise to long exact sequences 

> Ext£(M", N) —> Ext£(M, N) —> 

Ext£(M', iV) —> Ext£+ 1(M", AT) — 

(iii) Ext*R(R, N) = 7r_*(Af) and, for a spectrum X, 

Ext^(FX, AT) S TT_*(F(X, N)) 

and 
Ext^ (M,F # X) ^ T T _ * ( F ( M , X ) ) . 

(iv) The functor Ext^(—,AT) carries wedges to products and the functor 
Ext^(M, - ) carries products to products. 

PROOF. It suffices to check (i) for M = S^, r > 0, in which case the conclusion 
is immediate from (iii). Part (iii) follows from III. 1.4, III. 1.10, and III.6.7. • 

Passing to homotopy groups from the pairings of III.6.11 and III.7.5, we obtain 
the following further property. 

PROPOSITION 1.5. There is a natural, associative, and unital system of pair­
ings 

7T : Ext^(M, N) <8>w.(5) ExtJe(L,M) —> Ext*R(L,N). 
If R is commutative, then these are pairings of R*-modules, and the tensor prod­
uct may be taken over R*. 

PROOF. The first statement is clear. The second uses the the fact that 
7rq(M) = @R{Sq

R,M), together with the equivalences of ^-modules 

given by III.3.7; the system becomes associative and unital on passage to &R. • 

The formal duality theory of III§7 implies the following result, together with 
various other such isomorphisms. 

PROPOSITION 1.6. Let R be commutative. For a finite cell R-module M and 
any R-module N, 

Tor*(£>*M, N) 9* Ext^n(M, N). 

We think of the derived category @R as a stable homotopy category. Changing 
notations, we may reinterpret the functors Tor and Ext as prescribing homology 
and cohomology theories in this category. 
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DEFINITION 1.7. Let E' be a right and E a left i£-module. For left R-modules 
M and iV, define 

E'*(M) = *n(E' AH M) and En
R{M) = 7r_n(FH(M, £) ) . 

The properties of Tor and Ext translate directly to statements about homology 
and cohomology. All of the standard homotopical machinery is available to us, 
and the previous result now takes the form of Spanier-Whitehead duality. 

COROLLARY 1.8. Let R be commutative. For a finite cell R-module M and 
any R-module E, 

E*(DRM) * ER
n(M). 

Since the equivalence between the classical stable homotopy category and the 
derived category of 5-modules preserves smash products and function spectra, 
we obtain versions of all of the usual homology and cohomology theories on 
spectra by taking R= S. Moreover the following reinterpretation of Propositions 
1.2(iii) and 1.4(iii) shows that the specializations to .R-modules of all of the usual 
homology and cohomology theories on spectra are given by instances of our new 
homology and cohomology theories on iZ-modules. 

COROLLARY 1.9. For a spectrum E and a (left) R-module M, 

E*(M) £ (FJE)f(Af) and E*(M) £ (W#E)*R(M). 

2. Eilenberg-Mac Lane spectra and derived categories 

In this section, we change notation and let R denote a discrete ring. Apply­
ing multiplicative infinite loop space theory [50] to obtain an Aoo ring spectrum 
and then applying the functor 5 l\se ( - ) , we obtain an Eilenberg-Mac Lane spec­
trum HR = K(R,0) that is an 5-algebra and is a commutative 5-algebra if 
R is commutative. An elaboration of multiplicative infinite loop space theory, 
followed by application of the functor 5 A& (—), can be used to realize passage 
to Eilenberg-Mac Lane spectra as a point-set level functor H from .R-modules 
in the sense of algebra to iJ.R-modules. We shall shortly use the present the­
ory to give two different homotopical constructions of such Eilenberg-Mac Lane 
HR-modules. Granting this for the moment, we have the following result. 

THEOREM 2.1. For a ring R and R-modules M and N, 

Torf (M, N) £ Torf R(HM, HN) 

and 
Ext£(Af, N) £ Ext*HR(HM, HN). 

If R is commutative, then these are isomorphisms of R-modules. Under the 
second isomorphism, the topologically defined pairing 

Exb*HR(HM, HN) ® Ext*HR(HL, HM) —> Ext*HR(HL, HN) 

coincides with the algebraic Yoneda product. 
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PROOF. If 0 —• N' —• N —• N" —• 0 is a short exact sequence of 
R-modules, then HN' —> HN —> HN" is equivalent to a cofiber sequence. 
The conclusion is now immediate from Propositions 1.2 and 1.4, together with 
the axioms for algebraic Tor and Ext functors. It should be noted that right 
exactness and proper behavior on free modules together imply algebraically that 

Tor*(M, N)^M®RN and Ext£(Af, N) ^ Hom*(Af, N). 

It is important to remember that the axioms for Ext require verifications about 
free or injective modules, but not both. The last statement follows from Yoneda's 
axiomatization [73], which only requires proper behavior in degree zero and 
proper behavior relating connecting homomorphisms to products. The last fol­
lows topologically from commutation with cofiber sequences, which is easily de­
rived from the adjoint construction of our pairings in III§6. • 

We can elaborate this result to an equivalence of derived categories. We shall 
restrict attention to morphisms of degree zero since the extension to graded mor-
phisms is formal. Recall from [69] or [35, Ch.III] that the derived category @R 
is obtained from the homotopy category of chain complexes over R by localizing 
at the quasi-isomorphisms, exactly as we obtained the category @HR fr°m t n e 

homotopy category of ffii-modules by localizing at the weak equivalences. The 
algebraic theory of cell and CW chain complexes over R in [35, Ch.III] makes 
the analogy especially close. The proof of the equivalence is quite simple. The 
category @HR is equivalent to the homotopy category of CW H^-modules and 
cellular maps. We will see that CW ifi?-modules have associated chain com­
plexes. This gives a functor @HR —• @R, and we will obtain an inverse functor 
directly from Brown's representability theorem. 

DEFINITION 2.2. Let M be a CW HR-modu\e. Define the associated chain 
complex C*(M) of .R-modules by letting Cn(M) = irn(Mn,Mn~l) and letting 
the differential dn : Cn{M) —> Cn-i(M) be the connecting homorphism of the 
triple (M n , M n _ 1 , Mn~2). Observe that a cellular map of HE-modules induces a 
map of chain complexes and that a cellular homotopy induces a chain homotopy. 
Observe too that, since Mn/Mn~1 is a wedge of free modules S^R ~ HR A 5 n , 
Cn(M) is a free R-module. 

LEMMA 2.3. For CW HR-modules M, the homology groups H*(C*(M)) are 
naturally isomorphic to the homotopy groups of M. 

PROOF. Since HR is connective, the inclusion Mn —> M induces a bijection 
on TTq for q < n and a surjection on 7rn. By induction up the sequential filtration 
of M n " \ 7rq(Mn-1) = 0 for q > n. Therefore the quotient map M —• M/Mn~l 

induces a monomorphism on 7rn. The conclusion follows by a simple diagram 
chase. • 

THEOREM 2.4. The cellular chain functor C* on HR-modules induces an 
equivalence of categories @HR —• @R- The inverse equivalence $ satisfies 

H*(x)^7T*mx)). 
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PROOF. The functor C* carries wedges to direct sums and carries homotopy 
colimits of cellular diagrams to chain level homotopy colimits. For a fixed chain 
complex X, the functor k on @HR specified by k(M) = @R(C*(M),X) there­
fore satisfies the wedge and Mayer-Vietoris axioms. By Brown's representability 
theorem, III.2.12, k is represented by an HR-modu\e spectrum $(X). By the 
functoriality of the representation, this gives a functor $ : Q)R —> @HR and an 
adjunction 

9R{C*(M),X) * 9HR(MMX))' 

Since Hn(X) = @>R(HnR, X), where EnR is the free i^-module on one generator 
of degree n and C*(S%R) = E n # , this implies that #*(X) = TT*($(X)) . We 
claim that the unit 77 : M —• $(C*(M)) and counit e : C*($(X)) —> X of 
the adjunction are natural isomorphisms. On horn sets, the functor C* coincides 
with 

Tfc : ®HR(L,M) —> 9HR(LMC*(M))) * ®R{C*{L),C*{M)). 

As L runs through the SJJRJ rj* runs through the isomorphisms 

7rn(M)—+Hn(C*(M)) 

of the previous lemma. Therefore rj is an isomorphism in $>HR for all M. Since 
the composite 

$ X ^ $ a ( $ X ) ^ $ X 

is the identity, it follows that $£ is an isomorphism in @HR for all X. The 
following natural diagram commutes: 

&HR(L^C.(^X)) S 9R(C,(L),C.{*X)) 

Y 

As L runs through the sphere modules SjjRi the resulting isomorphisms e* show 
that e induces an isomorphism on all homology groups and is therefore an iso­
morphism in @R. D 

In the commutative case, we have the following important addendum to the 
theorem. See [35, III] for a discussion of tensor product and Horn functors in 
the derived category Q)R. As in topology, they are constructed by first applying 
CW approximation of i2-modules and then taking the point-set level functor. 

PROPOSITION 2.5. Assume that R is commutative. If M and N are CW 
HR-modules, then M AHR N is a CW HR-module such that 

a(M AHR N) * a(M) ®R c*(N). 
Therefore such an isomorphism holds in the derived category Q)R for general 
HR-modules M and N. Moreover, in @R, 

C*(FHR(M,N)) * Hom*(C*(M),a(A0)-
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/ / X and Y are chain complexes, then 

and 
$ Hom*(X, Y) ** FHR($X, QY) 

in 9HR. 

PROOF. The first statement is implied by III.7.3, and the last three derived 
category level isomorphisms are all formal consequences of the first. • 

Regarding H-modules as chain complexes concentrated in degree zero, we see 
that the functor $ restricts to a functor H that assigns an Eilenberg-Mac Lane 
HR-module spectrum HM to an il-module M. We give a more explicit con­
struction. 

CONSTRUCTION 2.6. (i) For an ^-module M, we construct HM = K(M,Q) 
as a CW module L with sequential filtration {Ln} and skeletal filtration {Ln} 
related by L n _ 1 = Ln. Choose a free resolution 

> Fn^Fn-! —* > F o - ^ M —> 0 

of M. Let KQ be a wedge of 0-spheres, with one sphere for each basis element 
of FQ. For n > 1, let Kn be a wedge of (n — l)-spheres, with one sphere for 
each basis element of Fn. Define L\ = ¥KQ. For n > 2, Ln will have two non-
vanishing homotopy groups, namely 7To(Ln) — M and 7rn_i(Ln) = Im dni and 
the inclusion in : Ln —> £ n+i will induce an isomorphism on 7TQ. By freeness, 
we can realize d\ by a map of HR-modules WKi —> FKQ. Let L2 be its cofiber. 
Then the resulting map ¥Ko —• £2 realizes e on 7To and the resulting map 
L2 —• EFifi realizes the inclusion Im ^2 C i*i on 7Ti. Inductively, given Z/n, 
we can realize dn : Fn —> Im dn on the (n - l)st homotopy group by a map of 
HR-modules ¥Kn —• Ln. We let Ln+i be its cofiber. The claimed properties 
follow immediately. The union L = ULn is the desired CW HR-module HM. 
(ii) Given a map / : M —> M' of i2-modules, we construct a cellular map 
Hf : HM —> HM' of CW HR-modu\es that realizes / on 7r0. Construct 
V = HM' as above, writing Fn, etc. As usual, we can construct a sequence of 
i2-maps fn : Fn —• Fn that give a map of resolutions. We can realize fn on 
homotopy groups by an i/i^-map ¥Kn —• ¥Kn. Starting with L\ = ¥Ko and 
proceeding inductively, we can use a standard cofibration sequence argument, 
carried out in the category of iJ-R-modules, to construct iJi^-maps Ln —> Ln 
such that the middle squares commute and the left and right squares commute 
up to homotopy in the following diagrams of HR-modules: 

¥Kn+1 >• Ln >- Ln+i >- EFlfn+i • £ 

1 

• £ 

n 

n~~ 

> • 

> • F ^ + i *L'n *L'n+1 - JTK'n n+1" 

On passage to unions, we obtain the desired cellular map Hf : # M —• HM'. 
A similar argument works to show that if we choose another map g* : F* —> Fl 
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of resolutions over / and repeat the construction, then the resulting HR-m&ips 
are homotopic. 

REMARK 2.7. Since they are HZ-module spectra, the underlying spectra of 
the iJi?-module spectra studied in this section all have the homotopy types of 
Eilenberg-Mac Lane spectra. 

3. The Atiyah-Hirzebruch spectral sequence 

We assume given a connective 5-algebra R in this section, and we let k = 
TTQ(R). Since R is connective, its derived category @R is equivalent to the homo­
topy category hf&Wn of CW -R-modules and cellular maps. We shall see that the 
Eilenberg-Mac Lane spectrum Hk is an ^-module that plays a role in the study 
of -R-modules analogous to the role played by HH in the category of spectra. We 
use this insight to construct Atiyah-Hirzebruch spectral sequences and prove a 
Hurewicz theorem in the category of R-modules. Although we shall not assume 
this, the theory is most useful when R is commutative; of course, k may well be 
commutative even when R is not. Remember that modules mean left modules 
unless otherwise specified. 

PROPOSITION 3.1. There is a map of S~algebras it : R —> Hk that realizes 
the identity homomorphism on 7TQ(R) = k. 

PROOF. We sketch two proofs. The first is an application of multiplicative 
infinite loop space theory. By [48, VII.2.4], the zeroth space Ro of R is an 
AQO ring space. Modulo some point-set care to ensure continuity (e.g, we could 
replace R by a weakly equivalent "g-cofibrant" 5-algebra, which is of the homo­
topy type of a CW spectrum by VII.6.5 and VII.6.6), we obtain a discretization 
map 6 : RQ —> fc, and it is immediate from the definitions that it is an A^ ring 
map. By [48, VII§4], there is a functor E from A^ ring spaces to Aoo ring 
spectra, hence there results a map of A^ ring spectra ERQ —> Ek. By [48, 
VII.3.2 and 4.3] and the connectivity of R, there is a natural weak equivalence 
of AQO ring spectra between ERQ and R, and the homotopical properties of E 
immediately imply that Ek is an Hk. Now apply the functor 5 A& (—) to re­
place AQO ring spectra by 5-algebras, and replace R by the weakly equivalent 
5-algebra 5 A& ER0. 

The second proof makes more serious use of the Quillen model category struc­
ture on the category of 5-algebras that we construct in VII§§4,5. Using it, we 
can mimic the classical space level argument of killing higher homotopy groups, 
successively attaching cell 5-algebras to kill the higher homotopy groups of R. • 

It follows that Hk is an (R, #)-bimodule. If R and therefore also Hk are com­
mutative 5-algebras, then Hk is a commutative i^-algebra in the sense of VII§1 
below. If j is a A;-module, then the Hfc-module Hj is an -R-module by pullback 
along 7r. We consider the homology and cohomology theories represented by the 
Hj as ordinary homology and cohomology theories defined on the derived cat­
egory of it-modules: they clearly satisfy the analogs of the Eilenberg-Steenrod 
axioms for ordinary homology and cohomology theories; here the il-module R 
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plays the role of a point in the dimension axiom. We agree to alter the notations 
of Definition 1.7 by setting 

(3.2) H?(M;j') = (Hj')?(M) and H*R(M;j) = (Hj)R{M) 

for a left i?-module M, a right A;-module f and a left fc-module j . We have 
symmetric definitions with left and right reversed. 

These theories can be calculated as the homology and cohomology of the cel­
lular chain complexes of CW i^-modules. In fact, the definition of the associated 
chain complex of a CW .R-module M is formally identical to Definition 2.2. 

DEFINITION 3.3. Let M be a CW ^-module. Define the associated chain 
complex C?{M) of fc-modules by letting C*(M) = -Kn(Mn,Mn~l) and letting 
the differential dn : C^(M) —• C^_1(M) be the connecting homorphism of the 
triple ( M n , M n _ 1 , M n ~ 2 ) . Observe that a cellular map of ^-modules induces a 
map of chain complexes and that a cellular homotopy induces a chain homotopy. 
Observe too that, since Mn/Mn~1 is a wedge of free modules Sg ~ JR A S n , 
Cn(M) is a free fc-module. For right and left fc-modules / and j , define chain 
and cochain complexes of abelian groups 

Cf (M; f) = f ®k C?(M) and CR(M;j) = Homfc(C* (M), j). 

Clearly these chain and cochain functors induce covariant and contravari-
ant functors from the derived category @R to the derived category Q)% of chain 
complexes over Z, interpreted as homologically or cohomologically graded, re­
spectively. When fc is commutative, these functors take values in 0*. We have 
the following analogue of Proposition 2.5. 

PROPOSITION 3.4. If R is a commutative S-algebra and M and N are CW 
R-modules, then M /\RN is a CW R-module such that 

C?(M A* N) * Cf(Af) ®k C*(N). 

Therefore such an isomorphism holds in the derived category <&k for general R-
modules M and N. Moreover, in QJ^, there is a natural map 

i : C*(FR(M,N)) —• Homfc(Cf (M),Cf(JV)), 

and e is an isomorphism if M is a finite CW R-module. 

PROOF. The first statement is implied by III.7.3. For the second, the evalu­
ation map FR{M, N) AR M —• TV induces a map 

C*(FR(M,N)) ®k C*(M) * C?(FR(M,N) AR M) — C*(N) 

in 0fc, and its adjoint is the required map e. Clearly e is an isomorphism when 
M is a sphere .R-module. It is therefore an isomorphism for all finite CW R-
modules since the functors FR and Hom^ both convert cofibration sequences in 
the first variable to fibration sequences. • 
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We cannot expect the derived chain complex functor to preserve function 
objects in general, as the case R = S makes clear. 

By checking the Eilenberg-Steenrod axioms, as in the classical case R = 5, 
we reach the following conclusion. Alternatively, we could use the Atiyah-
Hirzebruch spectral sequence below. 

THEOREM 3.5. For R-modules M and right and left k-modules jf andj, there 
are natural isomorphisms 

H*(M;j')=H(C*(M;j')) and HR(M;j) = H(CR(M;j)). 

The map TV A id : M = R AR M —• Hk AR M induces the Hurewicz homo-
morphism h : 7r*(M) —> H^(M; k), and the proof of the Hurewicz theorem is 
exactly the same as in the classical case. 

THEOREM 3.6 (HUREWICZ). LetM be an [n-\)-connected R-module. Then 
H^(M; k) = 0 for i < n and h : 7rn(M) —> H^(M; k) is an isomorphism. 

PROOF. We may replace M by a weakly equivalent cell ii-module with no 
#-cells for q < n. Then the n-skeleton of M is a wedge of sphere ii-modules 
Sg and, for q > n, the quotients Mq/Mq~1 are wedges of sphere ii-modules 
5^ . The proof is an easy inductive comparison of the long exact homotopy and 
homology exact sequences of the pairs (Mq, Mq~x). • 

Applying a generalized homology or cohomology theory to the skeletal fil­
tration of a CW R~module M, we obtain an exact couple and thus a spectral 
sequence that generalizes the chain and cochain description of the ordinary rep­
resented homology and cohomology of M. 

THEOREM 3.7 (ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCE). For a homo­
logy theory E^ and a cohomology theory E^ on R-modules, there are natural 
spectral sequences of the form 

Elq = tf*(M; E*) = > £&.,(M) 

and 

E™ = HR(M;ER)=>ER
+*(M). 

Convergence is as in the classical case, and we refer the reader to Boardman 
[7, §14] (see also [25, App B]) for discussion. If M is bounded below, then the 
homology spectral sequence converges strongly to E?(M) and the cohomology 
spectral sequence converges conditionally to ER(M). If, further, for each fixed 
(p,q) there are only finitely many r such that dr is non-zero on £ J g , then the 
cohomology spectral sequence converges strongly. 

The multiplicative properties of the spectral sequences are as one would expect 
from Proposition 3.4. 
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4. Universal coefficient and Kiinneth spectral sequences 

There are spectral sequences for the calculation of our Tor and Ext groups that 
are analogous to the Eilenberg-Moore (or hyperhomology) spectral sequences 
in differential homological algebra. Compare [19, 29, 35]. They specialize to 
give universal coefficient and Kiinneth spectral sequences in the homology and 
cohomology theory of spectra. We state our results in this section and give the 
construction in the next. Fix an 5-algebra R. 

THEOREM 4.1. For right R-modules M and left R-modules N, there is a nat­
ural spectral sequence of the form 

(4.2) El„ = Tor£- (M„ N.) = • Tor*+g(M, N). 

For left R-modules M and N, there is a natural spectral sequence of the form 

(4.3) E%q = Ext™(M*,7V*) = » Ext£+9(M, N). 

If R is commutative, then these are spectral sequences of differential R*-modules. 

The Tor spectral sequence is of standard homological type, with 

jr . rpr rpr 
ap,q ' p,q ^ p - r v j + r - i -

It lies in the right half-plane and converges strongly. The Ext spectral sequence 
is of standard cohomological type, with 

dr : E™ —* ££+ r»*- r + 1 . 

It lies in the right half plane and converges conditionally. We have the following 
addendum. 

PROPOSITION 4.4. The pairing FR(M, N)ASFR(L, M) —> FR(L, N) induces 
a pairing of spectral sequences that coincides with the algebraic Yoneda pairing 

Ext^*(M*, AT*) 0 5 , Ext£!(L*,M*) —> Ext*£(L*,N*) 

on the E2-level and that converges to the induced pairing of Ext groups. 

The rest of the results of this section are corollaries of the results already 
stated. With the specializations of variables that we cite, the conclusions are 
immediate from the properties of our free and cofree functors and properties 
of Tor and Ext recorded in Section 1. Recalling Definition 1.7, we see that 
our spectral sequences can be viewed as universal coefficient spectral sequences 
for the computation of homology and cohomology theories on .R-modules. Via 
Corollary 1.9, they specialize to give universal coefficient spectral sequences for 
the computation of homology and cohomology theories on spectra. Thus, setting 
M = WX in the two spectral sequences of Theorem 4.1, we obtain the following 
result. We have written the stars to indicate the way the grading is usually 
thought of in cohomology. 
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THEOREM 4.5 (UNIVERSAL COEFFICIENT). For an R-module N and any spec­
trum X, there are spectral sequences of the form 

Toi*:(R.(X),N*) => N*(X) 

and 
Ext*j£(R—{X),N*) => N*(X). 

Of course, replacing R and N by Eilenberg-Mac Lane spectra HR and HN for 
a ring R and R-module N, we obtain the classical universal coefficient theorem. 
Here we are thinking of the module N as defining theories acting on general 
spectra. By instead taking N = WE and N = F#E in the two spectral sequences 
of Theorem 4.1, we obtain spectral sequences that are suitable for calculating 
the ^-homology and cohomology of M. 

THEOREM 4.6. For an R-module M and any spectrum E, there are spectral 
sequences of the form 

and 
E x t ^ ( M * , £*(#)) = > E*(M). 

When E is also an i2-module, we can take M — E and so obtain spectral 
sequences that converge to the J3-Steenrod algebra E*(E) and its dual E*(E). 
For example, when R = S and M = E = H7LV, the cohomology spectral sequence 
is a backwards Adams spectral sequence that converges from Ext£*(Zp,Zp) to 
the mod p Steenrod algebra A. Such a spectral sequence was first studied in 
[40]. 

Replacing N by FY and by FR(FY, R) in the two universal coefficient spectral 
sequences, we arrive at Kiinneth spectral sequences. 

THEOREM 4.7 (KUNNETH). For any spectra X and Y, there are spectral se­
quences of the form 

Toi*l(R.(X),R.(Y)) => R*(XAY) 

and 
Ext£:( i*_*(X), i r (F)) = * R*(XAY). 

A reference to Adams [1] is mandatory. He was the first to observe that 
one can derive Kunneth spectral sequences from universal coefficient spectral 
sequences, and he observed that, by duality, the four spectral sequences of The­
orems 4.5 and 4.7 imply two more universal coefficient and two more Kunneth 
spectral sequences. He derived spectral sequences of this sort under the hypoth­
esis that his given ring spectrum E is the colimit of finite subspectra Ea such 
that H*(Ea',E*) is E*-projective and the Atiyah-Hirzebruch spectral sequence 
converging from H*(Ea-, E*) to E*(Ea) satisfies E2 = E^. Of course, this is an 
ad hoc calculational hypothesis that requires case-by-case verification. It covers 
some cases that are not covered by our results, and conversely. 
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5. The construction of the spectral sequences 

The construction is similar to the construction of Eilenberg-Mac Lane spec­
tra at the end of Section 2. For a right i?-module M, we choose a 7r* (i?)-free 
resolution 

(5.1) > Fp^F?-! — • F O - ^ T T , ( M ) —+ 0. 

Let Qo = keve and Qp = kevdp for p > 1, so that dp defines an epimorphism 
Fp —• Qp-i. For p > 0, let Kp be the wedge of one (p 4- s)-sphere for each basis 
element of Fp of degree s and let MQ = M. Proceeding inductively, we can use 
freeness to construct cofiber sequences of right i?-modules 

(5.2) FKp-^Mp^Mp+^ZWKp 

for p > 0 that satisfy the following properties: 
(i) fco realizes e on 7r*. 

(ii) 7r*(Mp) = E * Q p - i f o r p > l . 
(iii) fcp realizes Epdp : EPFP —• EpQp_i on 7r* for p > 1. 
(iv) ip induces the zero homomorphism on 7r* for p > 0. 
(v) j p + 1 realizes the inclusion T,p+1Qp —> E p + 1 F p on 7r* for p > 0. 

Observe that (iii) implies the case p + 1 of (ii) together with (iv) and (v). 
To obtain the spectral sequence for Tor, we define 

(5.3) D^q = T T P + 9 + 1 ( M P + 1 AR N) and E^q = 7rp+q(¥Kp AR N). 

The maps displayed in (5.2) give maps 

i = (ip)+ : Dp_lq+1 > Dpq 

J = Op+i)* : ^p,g —> Ep,q 

k = (fcp)* : £Pj(? > Dp_lq. 
These display an exact couple in standard homological form. We see from III.3.9 
that Ep = (Fp ®Rm N*)q and that d\ agrees under the isomorphism with d® 1. 
This proves that 

£&,=Tor£;(M.,JV„). 

Observe that k : E^q —> D]_lq can and must be interpreted as 

7Tq{¥K0 AR N) —> 7rq(M AR N). 

On passage to E2, it induces the edge homomorphism 

(5.4) Elq = M* 0 * . N* — ^*(M A* TV). 

The convergence is standard, although it appears a bit differently than in most 
spectral sequences in current use. Write zo,p for both the evident composite map 
M —• Mp and its smash product with N. We filter 7r*(M A R N) by letting 
Fp7r*(M AR N) be the kernel of 

(to.p+i)* : TT*(M AR N) — • TT+(MP +I AH N). 
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By (iv) above, we see that the telescope telMp is trivial. Since the functor 
(—) AR N commutes with telescopes, tel(Mp AR N) is also trivial. This implies 
that the filtration is exhaustive. Consider the (p, g)th term of the associated 
bigraded group of the filtration. It is defined as usual by 

E^(M AR N) = Fpirp+q{M AR N)/F^ir^M AR N), 

and the definition of the filtration immediately implies that this group is isomor­
phic to the image of 

(*o,p)* : nP+q{M AR N) —• TTP+Q(MP AR N). 

The target of (ioiP)+ is Dp_lq, and of course E^q = irp+q(FKp AR N) also maps 
into Dp_ijQ, via k. It is a routine exercise in the definition of a spectral sequence 
to check that k induces an isomorphism 

T7»00 Im(io,p)*-

(We know of no published source, but this verification is given in [7, §6].) 
To see the functoriality of the spectral sequence, suppose given a map / : 

M —• M' of R-modules and apply the constructions above to M', writing Fp, 
etc. Construct a sequence of maps of Rm-modules fp : Fp —> F^ that give 
a map of resolutions. We can realize the maps fp on homotopy groups by R-
module maps FKP —> FKf

p. Starting with / = /o and proceeding inductively, 
a standard cofiber sequence argument allows us to construct a map M p + i —> 
M p + 1 such that the following diagram of ^-modules commutes up to homotopy: 

FKV Mr, • M P+i ' •XFKr, 

FK'p- •ML - M ; + 1 . + YRK'p. 

There results a map of spectral sequences that realizes the induced map 

Tor*;(M*,iV*) —+ Tor£;(M:,iV*) 

on E2 and converges to (/ AR id)*. Functoriality in N is obvious. 
To obtain the analogous spectral sequence for Ext, we switch from right to 

left modules in our resolution (5.1) of M* and its realization by i?-modules. We 
define 

(5.5) D™ = ir-p-q{FR{Mp,N)) and E™ = n^q(FR(WKp,N)). 

The maps displayed in (5.1) give maps 

i = (ip)* : DP+1-*-1 —> D™ 

j = (kpy : B$« — £%>" 

k = (jp+1)* : E>« — D?1*. 
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These display an exact couple in standard cohomological form. We see by III.6.9 
that Ep'q = Hom^*(Fp, A/"*), where Fp is regraded cohomologically, and that d\ 
agrees with Hom(d, 1) under the isomorphism. This proves that 

E™ = Ext™ (M*,N*). 

Observe that j : D{q —> E{q can and must be interpreted as 

n-q(FR(M,N)) —•7r-q(FR(WK0,N)). 

On passage to £2, it induces the edge homomorphism 

(5.6) n-q(FR(M,N)) —> HomR.(M*,N*) = E°2'q. 

To see the convergence, let 

L°*:FR{MP,N)-^FR{M,N) 

be the map induced by the evident iterate M —• Mp and filter -K*{FR{M,N)) 
by letting FP^^{FR(M, N)) be the image of 

(*°'p)* '.TT*(FR(MP,N)) -+7r*(FR(M,N)). 

The (p, q)th term of the associated bigraded group of the filtration is 

Eg«n.(FR{M,N)) = Fp7r-p-q(FR(M,N))/Fi>+1n-p-q(FR(M,N)). 

The group E™ is denned as the subquotient Z™/B™ of E{'q. where 

and a routine exercise in the definition of a spectral sequence shows that the 
additive relation (L0,P)* O j ~ l induces an isomorphism 

E™^E™^{FR{M,N)). 

Since telMp is trivial, so is the homotopy limit, or "microscope", 

micFR(MP,N) ^FR{te\Mp,N). 

By the lim1 exact sequence for the computation of -K*(micFR(Mp, iV)), we con­
clude that 

\im7r*(FR(Mp,N))=0 and l i m ^ ( F ^ M , , , N ) ) = 0. 

This means that the spectral sequence {EP>q} is conditionally convergent. The 
functoriality of the spectral sequence is clear from the argument for torsion prod­
ucts already given. 

Finally, turning to the proof of Proposition 4.4, consider the pairing 

FR(M, N) AR FR(L, M) —+ FR(L, N). 

Construct a sequence {Lp} as in (5.2). Then the maps M —> Mp induce a 
compatible system of pairings 

FR(MP,N)ARFR(LP*,M) *FR(M,N)ARFR(LP,,M) ^FR(Lp,,N). 
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These induce the required pairing of spectral sequences. The convergence is 
clear, and the behavior on E2 terms is correct by comparison with the axioms 
or by comparison with the usual construction of Yoneda products. 

6. Eilenberg-Moore type spectral sequences 

Let R be an 5-algebra and let M be a right and N a left -R-module. Let E 
be an associative ring spectrum in the sense of classical stable homotopy theory. 
By 1.6.7 and II. 1.9, we may assume without loss of generality that E is an 
associative S-ring spectrum (in the sense to be defined formally in V§2). Under 
several different further hypotheses, we shall construct a spectral sequence of the 
form 

(6.1) TOT^R)(E*(M),E*(N)) = * Ep+q(M ARN). 

The simplest version of this spectral sequence is the following one. 

THEOREM 6.2. A spectral sequence of the form (6.1) exists if E*(R) is a flat 
right R*-module. 

PROOF. By a standard comparison of homology theories argument, the flat­
ness hypothesis implies that, for left ^-modules N, the natural map 

E*(R) ®R„ N* —> TT*((JS AS R) A* N) * n*(E As N) = E*{N) 

is an isomorphism. It also ensures that the functor E*(R) ®Rm ( - ) carries the 
exact sequence (5.1) to an exact sequence of E*(R)-modu\es. We now apply 
the functor £*( - ) = TT*(E AS —), rather than the functor 7r*, to the sequence 
of cofibrations obtained from (5.2) by smashing over R with N and find that 
the rest of the proof of Theorem 4.1 carries over verbatim. In fact, if R is 
commutative, then the spectral sequence (6.1) results from the first spectral 
sequence of Theorem 4.1 by applying the exact functor E*(R) ®Rm ( - ) . • 

This flatness hypothesis is generally unrealistic. By assuming that E is also 
an 5-algebra and exploiting the 5-algebra E As Ry we can obtain a theorem like 
this without flatness hypotheses. We need a lemma. 

LEMMA 6.3. Let R be an S-algebra such that (R,S) has the homotopy type 
of a relative CW S-module and let M and N be right and left cell R-modules. 
Then M, N, and M AR N have the homotopy types of cell S-modules. 

PROOF. Up to homotopy, S —• R is a cofibration of S-modules and R/S is 
a CW 5-module. Since WRX = R As F5X, it follows from the cofiber sequence 

¥SX —• R AS WSX —• R/S AS ¥SX 

that WRX has the homotopy type of a CW 5-module if X has the homotopy 
type of a CW spectrum. Therefore sphere it!-modules and, by III.3.7, their 
smash products are of the homotopy types of CW 5-modules. The conclusion 
follows. • 
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THEOREM 6.4. Let E and R be S-algebras and assume that (it, S) is of the 
homotopy type of a relative CW S-module. Let M be a right and N a left R-
module. Then there is a spectral sequence of the form 

T o r ^ ( E * ( M ) , ^ ( i V ) ) => Ep+q(MARN). 

PROOF. Replace the triple (it; M, N) in Theorem 4.1 by the triple 

(E AS R] EASM,E AS N). 

The E2 term of the resulting spectral sequence is 

It converges to TT*((E AS M) AEASR (^ A s N)) and, by III.3.10, we have 

(E AS M) AEAsR (E ASN)^E As (Af AH N). 

Since we are working in derived categories, we may assume that M and N are 
cell it-modules. Then M, A/", and M AR N are of the homotopy types of CW 
S-modules, and 1.6.7 and II.1.9 imply that their smash products over S with E 
are isomorphic in h5? to the corresponding internal smash products. This is also 
true for R/S, and of course EAsS = E~EAS. We conclude that 

(EAsR)*^E*{R)y (EASM)*^E*(M) and (E As N)+ ** E*{N), 

so that the E2 term of the spectral sequence is as stated, and 

7T*((£ A5 M) AEAsR (E AS N)) S E«(M AR N), 

so that the target of the spectral sequence is also as stated. • 

The hypothesis that (it, 5) is of the homotopy type of a relative CW S-module 
results in no loss of generality since, as discussed in III§4, the model category 
theory of Chapter VII implies that, for any 5-algebra it, there is a g-cofibrant 
5-algebra Ait and a weak equivalence A : Ait —• R. The map A induces an 
equivalence of categories @R « ^AH ? and (Ait, 5) is of the homotopy type of a 
relative CW S-module. 

REMARK 6.5. To deal with multiplicative structures, it is important to work 
with commutative S-algebras. As we shall see in Chapter VII, the category of 
commutative S-algebas also admits a model category structure. However, we 
do not believe that its g-cofibrant objects are of the homotopy types of relative 
CW S-modules. This is a significant technical difference between the theories of 
S-algebras and of commutative S-algebras. One way of getting around this diffi­
culty is to approximate commutative S-algebras by g-cofibrant non-commutative 
S-algebras. We shall find a more satisfactory solution in VII§6, where we examine 
the homotopical properties of g-cofibrant commutative S-algebras. The results 
there show that the proofs of Theorem 6.4 and of Theorem 7.7 below work in 
the commutative context provided that we assume that our given commutative 
S-algebras are g-cofibrant. 
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7. The bar constructions B(M,R,N) and B(X,G,Y) 

The spectral sequence (6.1) is reminiscent of the Rothenberg-Steenrod-Eilen-
berg-Moore spectral sequence 

(7.1) Tor?;fG\E*(X),E*(Y)) = » E.B(X,G,Y), 

where G is a topological monoid, X is a right G-space, Y is a left G-space, and 
B(X,G,Y) is the two-sided bar construction [51]. We here describe a spectrum 
level two-sided bar construction B(M, R, N) that explains the analogy. We will 
use the bar construction to derive a version of (6.1) for general commutative ring 
spectra E that applies under different, and more realistic, flatness hypotheses 
than those of Theorem 6.2, and we will show that the classical spectral sequence 
(7.1) is a special case. 

DEFINITION 7.2. For an 5-algebra (R,</>,rj), a right il-module (M,/z), and a 
left .R-module (AT, v), define a simplicial 5-module B*(M, -R, N) by setting 

BP(M, R,N) = M AS Rp As N, 

where Rp is the p-fold A^-power, interpreted as S if p = 0. The face and 
degeneracy operators on BP(M, R, N) are 

di 

^LA(\dR)p-1 AidN if i = 0 
idM A(idfl)*-1 A <j> A ( id H ) p " i _ 1 A idjv if 0 < i < p 

[idjtf A(idjR)p~1 A v if i = p 

and Si = idM A(idfl)iA77A(id#)p~iAidjv if 0 < i < p. If M is an (#',i?)-bimodule, 
then B* (M, i?, N) is a simplicial i?'-module. 

We will discuss the geometric realization of simplicial spectra in X§§l-2, and 
we agree to write 

B(MyR,N) = \B*(M,R,N)\. 
By X.1.5, geometric realization carries simplicial jR-modules to .R-modules. By 
XII. 1.2 and X.1.2, there is a natural map 

(7.3) i/>:B(R,R,N) -^ N 

of jR-modules that is a homotopy equivalence of 5-modules. More generally, by 
use of the product on R and its action on the given modules, we obtain a natural 
map of 5-modules 

(7.4) $ : £ (M, R,N)—+M AR N. 

PROPOSITION 7.5. For a cell R-module M and any R-module N, 

i;:B{M,R,N) —> M AR N 

is a weak equivalence of S-modules. 
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PROOF. If M is the constant simplicial -R-module at M, then, by X.1.3 and 
the isomorphism M AR R = M, we have 

MARB(R,R,N)^\M^RB*(R,R,N)\^B{M,R,N). 

Moreover, under this isomorphism, idA#0 agrees with ip. Since ip of (7.3) is a 
weak equivalence of i?-modules, the conclusion follows from III.3.8. • 

For the bar construction to be useful calculationally, the simplicial spectrum 
B*(M, R, N) must be proper, in the sense of X.2.1 and X.2.2. By the following 
result, which is part of IX.2.8, we lose no generality by assuming this. 

PROPOSITION 7.6. If R is a q-cofibrant S-algebra, then B*(M,R,N) is a 
proper simplicial S-module. 

By X.2.9, when B*(M,R,N) is proper, we can use the simplicial filtration 
of B(M,R,N) to construct a well-behaved spectral sequence that converges to 
E*B(M,R,N) for any spectrum E. When E is a commutative ring spectrum, 
we can use flatness hypotheses to identify the E<i term. Recall that, in algebra, if 
A is an algebra over a commutative ring fc, then there is a notion of a relatively 
flat A-module F , for which the functor ( - ) ®A F is exact when applied to fc-split 
exact sequences. The obvious examples are the relatively free A-modules A®kL 
for fc-modules L. There is a concomitant relative torsion product Tor;A '^(M, JV), 
and similarly for graded algebras over commutative graded rings. When k is a 
field, these reduce to ordinary absolute torsion products. 

THEOREM 7.7. Let E be a commutative ring spectrum. Let R be an S-algebra 
such that (R, S) is of the homotopy type of a relative CW S-module. Let M be a 
right and N a left cell R-module such that B±(M, i?, N) is proper. If E*(R) and 
either E*(M) or E*(N) is E*-flat, then the bar construction spectral sequence 
converging to 

E*B(M,R,N)^E*(MARN) 

satisfies 
Elq = ToriB

q-W'E'HE*(M),E*(N)) 

PROOF. Our hypotheses ensure that we can use smash products over S and 
internal smash products interchangeably when computing homology and homo­
topy groups. Our flatness hypotheses ensure that 

£*(M A5 Rp AS N) * E*(M) ®Em E*(R)®P ®Em E*{N), 

where the p-fold tensor power is taken over E*. This determines the E-homology 
of the spectrum of p-simplices of B^(M,R)N). Since B*(M,R,N) is proper, 
it follows that the complex that computes E2 (see X.2.9) is the standard bar 
complex for the computation of the relative torsion product. • 

Intuitively, interchanging the roles of M and N in the proof of Proposition 
7.5, we see that the filtration quotients 

FPB(M, R, R)/Fp-iB(M, R, R) 
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play a role similar to that played by the terms ¥KP in the construction of the 
spectral sequence of Theorem 6.2. 

As promised, we have the following result, which shows that the spectral 
sequence of (7.1) is a special case. 

THEOREM 7.8. Let G be a topological monoid, X a right G-space, and Y a 
left G-space. Then E ^ G ^ is an S-algebra, E°°X+ is a right E°°G+ -module, 
and E°°y+ is a left E°°G+ -module. Moreover, there is a natural isomorphism 
of S-modules 

E ° ° 5 ( X , G , y ) + ^ J B ( E 0 0 X + , E 0 0 G + , E 0 0 y + ) , 

and £*(E0 0X+ ,E0 0G f
+ ,Eo oy+) is proper if G is nondegenerately based. 

PROOF. The first statement is immediate from 1.8.2 and II.1.2, together with 
the obvious identification 

X+AY+**{XXY)+ 

for spaces X and Y. The product on E°°G+ is induced from the product on G, 

E°°G+ AS E°°G+ * E°°(G x G) + —> E°°G+, 

and similarly for the actions on E°°Xf and E^Y^. The second statement follows 
from the fact that the functors E°° and geometric realization commute, by X.1.3, 
and that E°° preserves properness; see X.2.1. We obtain an identification of 
simplicial spectra 

E°°J3*(X,G,y)+ £ J5*(E00X+,ECX)G+,E00y+) 

by applying E°° to the spaces 

(X x Gp x Y)+ ^X+A (G+)p A y, 

where (G+)p is the p-fold smash power. If G is non-degenerately based, then 
B*(X,G, Y)+ is a proper simplicial based space. • 
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CHAPTER V 

i?-ring spectra and the specialization to MU 

In this chapter, we think of the derived category of il-modules as an analog of 
the stable homotopy category. Prom this point of view, we have the notion of an 
iZ-ring spectrum, which is just like the classical notion of a ring spectrum in the 
stable homotopy category. We shall study such homotopical structures in this 
chapter. 

We first show how to construct quotients M/IM and localizations M[X _ 1 ] of 
modules over a commutative 5-algebra R. We then study when these construc­
tions inherit a structure of i2-ring spectrum from an .R-ring spectrum structure 
on M. 

When specialized to MU, our results give more highly structured versions of 
spectra that in the past have been constructed by means of the Baas-Sullivan 
theory of manifolds with singularities or the Landweber exact functor theorem. 
At least at odd primes, we obtain an entirely satisfactory, and surprisingly simple, 
treatment of MU-ring structures on the resulting MCZ-modules. 

1. Quotients by ideals and localizations 

Let R be a commutative S-algebra. We assume that all given ^-modules M 
are of the homotopy types of cell R-modules, but we must keep in mind that 
R itself will not be of the homotopy type of a cell i?-module. By III. 1.4, we 
have a canonical weak equivalence of fi-modules £ : SR —• R, where the sphere 
i?-module SR = ¥RS is the free i?-module generated by 5, and we implicitly 
replace R by SR when performing constructions on R regarded as an /^-module. 
Concomitantly, we must sometimes replace the unit isomorphism RARM = M 
by its composite with the weak equivalence £ A id. This is consistent with the 
standard practice of replacing spectra by weakly equivalent CW spectra without 
change of notation. 

We shall work throughout in the derived category @R of ^-modules. To de­
duce 5-module or spectrum level conclusions from our .R-module level arguments, 
we must apply the forgetful functors @R —> @s and @s —• hS?. The process 
is routine, but it does entail reapproximating cell il-modules by CW 5-modules 
or CW spectra since, in general, cell ^-modules need not be of the homotopy 
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types of CW 5-modules or of CW spectra. 
We are interested in homotopy groups, and we make use of the isomorphisms 

(1.1) 7rn(M) = hy(Sn, M) * h^?s(S%, M) ^ h^R(S%, M) 

to represent elements as maps of i?-modules, where, as usual, 5^ = FRS71. We 
write M* = 7r*(M), and we do not distinguish notationally between a repre­
sentative map of spectra Sn —> M and a representative map of .R-modules 
S%—*M. 

By III.3.7 and standard properties of spectrum level spheres ([38, pp 386-389]), 
we have a system of equivalences of iZ-modules 

(1.2) S ^ . S ^ S f 

that is associative, commutative, and unital up to a coherent system of homotopy 
equivalences and is compatible with suspension as q and r vary. For a pairing of 
i^-modules L AR M —> N, we therefore obtain a pairing of homotopy groups 

L*®R. M* —> JV*. 

Of course, L AR M is an ii-module since R is commutative. 
For x e Rnj thought of as an i?-map SR —> R, we have the R-map 

(1.3) S£ AR M^R ARM^M. 

This map of i?-modules realizes multiplication by x on M*. We agree to write 
EnM for Sg AR M and to write x : S n M —• M for the map (1.3) throughout 
this chapter. By III.3.7, S7^ AR M is isomorphic as an R-module to 5g As M 
and, by 1.6.7 and II. 1.9, Sg As M is weakly equivalent as a spectrum to Sn A M. 
Therefore, on passage to hS*', the .R-module E n M is a model for the spectrum 
level suspension of M. 

DEFINITION 1.4. Define M/xM to be the cofiber of the map (1.3) and let 
p : M —> M/xM be the canonical map. Inductively, for a finite sequence 
{xi,... , xn} of elements of #*, define 

M / ( x i , . . . ,xn)M = N/xnN, where N = M / ( x i , . . . ,xn-i)M. 

For a (countably) infinite sequence X = {a^}, define M/XM to be the tele­
scope of the M/(xi)... , xn)M, where the telescope is taken with respect to the 
successive canonical maps p. 

We have the following analogue of the universal property of quotients by 
principal ideals in algebra. 

LEMMA 1.5. Let N be an R-module such that x : Y>nN —> N is zero and 
let a : M —> N be a map of R-modules. Then there is a map of R-modules 
a : M/xM —> N such that ao p = a, and a is unique if [ E n + 1 M , N ] R = 0. 
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PROOF. This is obvious from the diagram 

E n M -*-+* M — ^ M/xM ^ £ n + 1 M 

in which the row is the cofiber sequence that defines M/xM. • 

Clearly we have a long exact sequence 

(1.6) • 7rq.n(M)-^nq{M)-^nq(M/xM) — 7rg_n_i(M) —* • • • . 

If x is not a zero divisor for 7r*(M), then p* induces an isomorphism of i2*-
modules 

(1.7) ir+(M)/xir+(M) * ir*(M/xM). 

If {#1 , . . . , x n } is a regular sequence for 7r*(M), in the sense that Xi is not a zero 
divisor for 7r*(M)/(xi,... ,xx_i)7r*(M) for 1 < i < n, then 

(1.8) 7T*(M)/ (Xi , . . . , Xn)7T*(M) ^ 7T*(M/(Xi, . . . , X n ) M ) , 

and similarly for a possibly infinite regular sequence X = {xi}. We shall see 
in a moment that M/XM is independent of the ordering of the elements of 
the set X. If I denotes the ideal generated by a regular sequence X, then, by 
Corollary 2.10 below, M/XM is independent of the choice of regular sequence 
(under reasonable hypotheses) and it is reasonable to define 

(1.9) M/IM = M/XM. 

However, this notation must be used with caution since, if we fail to restrict 
attention to regular sequences X, the homotopy type of M/XM will depend on 
the set X and not just on the ideal it generates. For example, quite different 
modules are obtained if we repeat a generator Xi of i" in our construction. 

As in algebra, we can describe the construction on general i2-modules M as 
the smash product of M with the construction on R regarded as an i2-module. 
We write R/X or R/I instead of R/XR or R/IR. 

LEMMA 1.10. For a sequence X of elements of R*, there is a natural isomor­
phism in Q)R 

{R/X) ARM —> M/XM. 

In particular, for a finite sequence X = {a:i,... , xn}, 

# / ( x i , . . . ,x n) ~ (R/x1)AR'-AR(R/xn), 

and R/X is therefore independent of the ordering of the elements of X. 
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PROOF. Working on the point-set level, we have an isomorphism of cofiber 
sequences : 

SI ARRARM^IRARM^^(R/XR) AR M 

id AA 

S%ARM 2 >-M ^M/xM. 

We only claim an isomorphism in Q)R since, working homotopically, we should 
replace R by SR and use the weak equivalence ( A id : SR AR M —> R AR M 
to obtain a composite weak equivalence {SR/XSR) AR M —• (R/xR) AR M —• 
M/xM. The rest follows by iteration and use of the commutativity of AR. • 

We turn next to localizations of JR-modules at subsets X — {xi} of R*. We 
restrict attention to countable sets for notational convenience, but this restriction 
can easily be removed. Let {yi} be any cofinal sequence of products of the #i, 
such as that specified inductively by y\ — x\ and yi = x\ • • • a^t/i-i- If yi 6 Rni, 
we may represent yi by an .R-map 5^ —> S^ni, which we also denote by y^ Let 
<?o = 0 and, inductively, qi = qi-\ + rii. The map of i?-modules 

represents yi. Smashing over R with S^Qt~l and using equivalences (1.2), we 
obtain a sequence of maps of i?-modules 

(1.11) S^-1 AR M —> SR* AR M. 

DEFINITION 1.12. Define the localization of M at X, denoted M[X _ 1 ] , to 
be the telescope of the sequence of maps (1.11). Since M ~ 5^ AR M in Q>R, 
we may regard the inclusion of the initial stage S\ AR M of the telescope as a 
natural map A : M —> M[X - 1 ] . 

Again, we have an analogue of the standard universal property of localization 
in algebra. 

LEMMA 1.13. Let N be an R-module such that Xi : EfciiV —• N, degXi = ki} 
is an equivalence for each i and let a : M —• N be a map of R-modules. Then 
there is a unique map of R-modules a : M[X_ 1] —> N such that a o A = a. 

PROOF. Passage to telescopes gives a : M[X _ 1] —• 7V[X_1] ~ N. The lim1 

term is zero in the exact sequence 

0 —-> lim1 [El-*M,N]R —* [M[X-l),N]R —> l i m p C ^ M , N ) R —> 0 

since the maps of the inverse system are isomorphisms. Therefore a is unique. • 

Since homotopy groups commute with localization, by III. 1.7, we see imme­
diately that A induces an isomorphism of R*-modules 

(1.14) MMIX-^^TT^M^X-1}. 

Arguing as in Lemma 1.10, we see that the localization of M is the smash 
product of M with the localization of R. 
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LEMMA 1.15. For a set X of elements of R*, there is a natural weak equiva­
lence 

R\X~l) ARM —^MfX"1]. 
Moreover, R[X~X] is independent of the ordering of the elements of X. For sets 
X andY, R[(X\JY)~1] is equivalent to the composite localization R[X~l]\Y~1]. 

PROOF. The independence of ordering is shown by use of the union of any 
two given cofinal sequences. The last statement is shown by use of the usual 
Fubini type theorem for iterated homotopy colimits. • 

2. Localizations and quotients of fi-ring spec t ra 

Again, fix a commutative 5-algebra R. Since QSR is a symmetric monoidal 
category under AR with unit R, we have the notion of a monoid or a commu­
tative monoid in @R. These are the analogs of associative or of associative and 
commutative ring spectra in classical stable homotopy theory. As there, we must 
allow weaker structures. 

DEFINITION 2.1. An R-rmg spectrum A is an ^-module A with unit 77: R —> 
A and product 0 : A AR A —> A in S>R such that the following left and right 
unit diagram commutes in @>R\ 

RARAJI^AARA^ILAARR 

Of course, by neglect of structure, an R-ving spectrum A is a ring spectrum 
in the sense of classical stable homotopy theory; its unit is the composite of the 
unit of R and the unit of A and its product is the composite of the product of 
A and the canonical map 

A A A ~ A AS A —• A AR A. 

Similarly, for an R-ring spectrum A, we have the evident homotopical notion of 
an A-module spectrum M. Here, in conformity with the definition just given, 
we only require that the action /x : A AR M —> M satisfy the unit condition 
fi o (77 A id) = id in <&R. When A is associative, it is conventional to insist that 
M also satisfy the evident associativity condition. These structures play a role 
in the study of our new derived categories of .R-modules that is analogous to the 
role played by ring spectra and their module spectra in classical stable homotopy 
theory. When R= S, 1.6.7 and II.1.9 imply that 5-ring spectra and their module 
spectra are equivalent to classical ring spectra and their module spectra. 

LEMMA 2.2. If A and B are R-ring spectra, then so is A AR B. If A and B 
are associative or commutative, then so is A ARB. 

We ask the behavior of quotients and localizations with respect to i?-ring 
structures. For localizations, the answer is immediate. We shall give a sharper 
point-set level analogue of the following result in VIII§2. 
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PROPOSITION 2.3. Let X be a set of elements of R*. If A is an R-ring spec­
trum, then A[X~X] is an R-ring spectrum such that A : A —> A[X_1] is a map 
of R-ring spectra. If A is associative or commutative, then so is A[X - 1 ] . 

P R O O F . Since A[X~l] ~ RlX'1] AR A, it suffices to prove that R[X ] is an 
associative and commutative jR-ring spectrum with unit A. Lemma 1.15 gives 
an equivalence 

R[X~l) AR R[X~1} ~ RIX^IX-1] ~ R[X~1} 

under R, and this equivalence is the required product. • 

This doesn't work for quotients since (R/X)/X is not equivalent to R/X. 
However, we can analyze the problem by analyzing the deviation, and, by Lemma 
1.10, we may as well work one element at a time. We have a necessary condition 
for R/x to be an R-ring spectrum that will be familiar from classical stable 
homotopy theory. We generally write r] and <j> for the units and products of R-
ring spectra; as stated before, we write E n for the module theoretic suspension 
functor S^AR(-). 

LEMMA 2.4. Let A be an R-ring spectrum. If A/xA admits an R-ring spec­
trum structure such that p : A —> A/xA is a map of R-ring spectra, then 
x : A/xA —> A/xA is null homotopic as a map of R-modules. 

P R O O F . We have the following commutative diagram (where we omit suspen­
sion coordinates from the labels of maps): 

HnR AR (A/xA) TjAid Xn(A/xA) AR (A/xA) ^ ± (A/xA) AR (A/xA) 

Zn(A/xA)- •A/xA. 

In view of the following commutative diagram, its top composite is null homo-
topic: 

EnA-—» ^A 
v. 

EnR Xn(A/xA)-

\p 
T 

•A/xA. 

• 
Thus, for example, the Moore spectrum 5/2 is not an 5-algebra since the map 

2 : 5/2 —> 5/2 is not null homotopic. 
We need a lemma in order to obtain an i2-ring spectrum structure on R/x in 

appropriate generality. 

LEMMA 2.5. Let p : R —> M be any map of R-modules. Then 

(pAid)op = (id Ap) o p : R —> M AR M. 
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PROOF. Since A = A o r : RARR —> JR, the following diagram commutes: 

,R. 

\or 

RARM M ARR 

M ARM. 

THEOREM 2.6. Let x e Rn, where 7rn+x(R/x) = 0 and TT2n+i(R/x) - 0. 
Then R/x admits a structure of R-ring spectrum with unit p : R —• R/x. 
Therefore A/XA admits a structure of R-ring spectrum such that p : A —• 
A/XA is a map of R-ring spectra for every R-ring spectrum A and every sequence 
X of elements ofR* such that 7rn+i(R/x) = 0 and 7r2n+i{R/x) = 0 for all x € X, 
where degx = n. 

PROOF. Consider the following diagram in the derived category <&R\ 

(2.7) 
Y?n+1R 

\X 

T 

E n + 1 # -

pAid T,n(R/x) -2-+ R/x = S = (R/x) AH (R/x) = r ^ * Zn+1(R/x) • 
v 

-E(JR/x) 

Z2n+2R. 

The map x is that specified by (1.3). The bottom row is the cofiber sequence 
that results from the equivalence 

(R/x) AR (R/X) ~ (R/x)/x 

of Lemma 1.10, and the column is also a cofiber sequence. The composite xop is 
null homotopic since pox is null homotopic and the square commutes. Therefore 
there is a map v such that -KOV — p^ and v is unique since irn+i(R/x) ~ 0. Since 
7roi/ox = pox = 01 vox factors through a map E271*1^ —• R/x. Since 
T*2n+i(R/x) = 0, such maps are null homotopic. Thus v o x is null homotopic. 
Therefore there is a map a such that o o p — v. Now 7rocrop = 7roi/ = p, 
hence (TX O a - id)p = 0. Therefore -K O a — id factors through a map E 2 n + 2 # —• 
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E n + 1 (# /#) . Again, such maps are null homotopic. Therefore TT O a = id. Thus 
the bottom cofiber sequence splits (proving in passing that x : En(.R/x) —> R/x 
is null homotopic, as it must be). A choice <\> of a splitting gives a product on 
R/x. The unit condition 0o(pAid) = id is automatic. To see that 0o(id Ap) = id, 
we observe that, by the lemma, 

(<f> o (id Ap) - id) o p = cj> o (id Ap - p A id) o p = 0. 

Therefore 0 o (id Ap) — id factors through a map E n + 1 i l —• # / # . Again, such 
maps are null homotopic, hence <f> o (id Ap) = id. This completes the proof that 
R/x is an R-ving spectrum with unit p. The rest follows from Lemmas 1.10 and 
2.2. • 

The product on R/x can be described a little more concretely. The wedge 
sum 

(2.8) (p A id) V a : (R/x) V E n + 1 ( i J /z) —> (R/x) AR (R/x) 

is an equivalence. The product 4> restricts to the identity on the first wedge sum-
mand and to the trivial map on the second wedge summand. Thus the product 
is determined by the choice of <J, and two choices of a differ by a composite 

(2.9) E n + 1 ( # / x ) — = ^ E 2 n + 2 i i >(R/x) AR (R/x), 

By the splitting (2.8) and the assumption that -Kn+\(R/x) = 0, we can view the 
second map as an element of 7T2n+2(R/x). If x is not a zero divisor, then 7r* = 0 
on homotopy groups and any two products have the same effect on homotopy 
groups. 

Before continuing our discussion of these R-r'mg spectra, we insert the follow­
ing easy consequence of the mere existence of the i^-ring structure. 

COROLLARY 2.10. Assume that Ri = 0 if i is odd. Let X and Y be regular 
sequences in R* that generate the same ideal Then there is an equivalence of 
R-modules £ : R/X —> R/Y under R. 

PROOF. It suffices to construct a map £ under JR since it will automatically 
induce an isomorphism on homotopy groups. Each X{ is an R*-linear combination 
of the yj and each yj : R/Y —> R/Y is zero. By Lemma 1.5, we obtain a unique 
map & : R/xi —> R/Y under R. Since R/Y is an i?-ring spectrum, we may 
first take the smash product of these maps and then use the product (associated 
conveniently) on R/Y and passage to telescopes (if X is infinite) to obtain £. • 

3. The associativity and commutativity of R-ring spectra 

We assume given an .R-ring spectrum A. For x G Rn as in Theorem 2.6, 
we give A/xA ~ (R/x) AR A the product induced by one of our constructed 
products on R/x and the given product on A. We refer to any such product as a 
"canonical" product on A/xA. Of course, we do not claim that every product on 
A/xA is canonical. Observe that, by first using the product on A, the product 
on A/xA can be factored through 

0 Aii id : (R/x). AR (R/X) AR A —• (R/x) AR A. 
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This allows us to smash any diagram giving information about the product on 
R/x with A and so obtain information about the product on A/xA. Obviously 
any diagram so constructed is a diagram of right A-module spectra via the prod­
uct action of A on itself. This smashing with A can kill obstructions. Clearly, a 
map of A-modules T,qA —> M is determined by its restriction Sq —• M along 
the unit of A regarded as a map of spectra (or 5-modules), which is just an 
element of 7rq(M). These considerations lead to the following result. 

THEOREM 3.1. Let x e Rn, where irn+i(R/x) = 0 and K2n+i(R/x) = 0- Let 
A be an R-ring spectrum and assume that /K2n+2{A/xA) = 0. Then there is a 
unique canonical product on A/xA. If A is commutative, then A/xA is commu­
tative. If A is associative and 7r3n+3(A/:rA) = 0, then A/xA is associative. 

PROOF. The second arrow of (2.9) becomes zero after smashing with A since 
it is then given by an element of 7T2n+2(A/xA) = 0. This proves the uniqueness 
statement. The commutativity statement follows since if 0 is a canonical product 
on A/xA, then so is <j>r. However, it may be worth displaying the obstruction that 
lies in it2n+2{A/xA). Looking at the splitting (2.8), we see that (j) is commutative 
on the wedge summand R/x by the unit property. For the summand YF^R, 
consider the diagram 

7r ' - - 'Y 

Y ^ ^ 

E 2n+ 2 j R 

The horizontal composite is null homotopic since irn+i(R/x) = 0. Thus there 
exists 7 such that the triangle commutes. It is the obstruction to the commuta­
tivity of R/x, and smashing with A gives the obstruction to the commutativity 
of A/xA. 

For the associativity, consider the splitting displayed in the following diagram: 

(R/x) V En^(R/x) V En^(R/x) V £ 2 n + 2 ( iVx) 

[(R/x) V E n + 1 (# /x) ] V £ n + 1 [(#/*) V Zn+1(R/x)} 

[(pAid)Va] V E n + 1 [(pAid) VCT] 
Y 

[(R/x) AR (R/x)} V Hn+i[(R/x) AR (R/x)} 

(R/x) AR {(R/x) V Zn+l(R/x)} 

idA[(pAid)Vcr] 

(R/x) AR (R/x) AR (R/x). 

The question of associativity can be considered separately on the restrictions of 
the iterated product to the four wedge summands. Via easy diagram chases, we 
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see that, under the splitting (2.8) and unit isomorphisms, the natural maps 

p A id A id : R AR (R/x) AR (R/x) —• (R/x) AR (R/X) AR (R/X) 

and 

id Ap A id : (R/x) AR R AR (R/x) —> (R/x) AR (R/x) AR (R/x) 

correspond to the inclusions of the first and third and first and second wedge 
summands, respectively. Therefore the unital property of <fi and the unital and 
associativity properties of AR imply that the restriction of (f) to the first three 
wedge summands is associative. Let LJ denote the displayed inclusion of the 
fourth wedge summand and consider the diagram 

E 2 „ + 2 j R _ J ^ tfn+2{R/x) [»>(»Aid)-».(KW)]oo, ? R / x 

T 

E 3n+ 3 j R 

Call the horizontal composite a. If a is nullhomotopic then the deviation from 
associativity [</>o(</>Aid)-0o(id A0)]OCJ factors through a map £ 3 n + 3 # —• R/x. 
Thus if 7T3n+3(R/x) = 0, then the element a € K2n+2(R/x) is the obstruction to 
the associativity of R/x. If both relevant homotopy groups become zero after 
smashing with A, we can conclude that A/xA is associative if A is associative. • 

We can iterate the argument to arrive at the following fundamental conclusion. 

THEOREM 3.2. Assume that Ri = 0 if i is odd and let X be a sequence of 
non zero divisors in i?* such that n*(R/X) is concentrated in degrees congruent 
to zero mod 4. Then R/X has a unique canonical structure of R-ring spectrum, 
and it is commutative and associative. 

P R O O F . We first observe that for an element x e nq(R), an JJ-module M, 
and an fi-module N such that x : T,qN —> N is null homotopic, the map 
p : M —• M/xM induces an epimorphism 

p*:[M/xM,N]R—+[M,N]R 

since the action x* : [M,N]R —> [E9M, N]R can be computed from the action 
on iV and is therefore zero. Let Xn be the subsequence consisting of the first 
n elements of the sequence X. Then R/X is defined to be the telescope of 
the R/Xn, and Lemma 2.4 implies that multiplication by xn is null homotopic 
on R/X for each n. Since R/X AR R/X is equivalent to the telescope of the 
R/Xn AR R/Xn, we obtain a product on R/X from a canonical product on the 
R/Xn by passage to telescopes. Moreover, by the Mittag-Leffler criterion, our 
first observation implies that all relevant lim1 terms are zero. Thus it suffices 
to show that any two products on Xn become equal and the commutativity and 
associativity diagrams for R/Xn become commutative upon composition with 
the map R/Xn —> R/X, and we may proceed by induction on n. The conclusion 
follows since the obstructions to uniqueness, commutativity, and associativity of 
each R/xn become trivial when we map to R/X. • 
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4. The specialization to MC/-modules and algebras 

It was observed in [48] that MU can be constructed as an E^ ring spectrum, 
and we apply S A& ( - ) to convert it to a commutative S-algebra. Of course, its 
homotopy groups are concentrated in even degrees, and every non-zero element 
is a non zero divisor. Thus Proposition 2.3, Theorem 2.6, and Theorem 3.2 
combine to give the following result. 

THEOREM 4.1. Let X be a regular sequence in MU*, let I be the ideal gen­
erated by X, and let Y be any sequence in MU*. Then there is an MU-ring 
spectrum {MU/X)\Y~l\ and a natural map of MU-ring spectra (the unit map) 

V:MU—>{MU/X)[Y~l] 

such that 
rj* : MU* —+ K*{{MU/X)[Y-1)) 

realizes the natural homomorphism of MU*-algebras 

MU* —> {MU*/I)[Y-l\. 

If MU*/I is concentrated in degrees congruent to zero mod 4, then there is a 
unique canonical product on (MU/X)[Y~1]f and this product is commutative 
and associative. 

In comparison with constructions of this sort based on the Baas-Sullivan the­
ory of manifolds with singularities or on Landweber's exact functor theorem 
(where it applies), we have obtained a simpler proof of a substantially stronger 
result. We emphasize that an MU-ring spectrum is a much richer structure than 
just a ring spectrum and that commutativity and associativity in the MU-ring 
spectrum sense are much more stringent conditions than mere commutativity 
and associativity of the underlying ring spectrum. Observe that the assumption 
that X is regular is used only to obtain the calculational description of rj*. 

We illustrate by explaining how BP appears in this context. Fix a prime p 
and write (—)p for localization at p. Let BP be the Brown-Peterson spectrum 
at p. We are thinking of Quillen's idempotent construction, and we have the 
splitting maps i : BP —> MUP and e : MUP —• BP. These are maps of 
commutative and associative ring spectra such that e o i = id. Let I be the 
kernel of the composite 

MU* —^MUP* —>BP*. 

Then / is generated by a regular sequence X, and our MU/X is a canonical 
integral version of BP. For the moment, let BP' = (MU/X)p. Let f : BP —• 
BP' be the composite 

BP —U- MUP - ^ BP'. 

It is immediate that £ is an equivalence. In effect, since we have arranged that 
(p has the same effect on homotopy groups as e, £ induces the identity map 
of (MU*/I)P on homotopy groups. By the splitting of MUP and the fact that 
self-maps of MUp are determined by their effect on homotopy groups [2, II.9.3], 
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maps MUP —> BP are determined by their effect on homotopy groups. This 
implies that £ o e = CP : MUP —> P P ' . The product on BP is the composite 

BPABP-^^MUpAMUp^-^MUp-^-^BP. 

Since £p is a map of MC/-ring spectra and thus of ring spectra, a trivial diagram 
chase now shows that the equivalence £ : BP —• BP' is a map of ring spectra. 

We conclude that our BP' is a model for BP that is an MU-xmg spectrum, 
commutative and associative if p > 2. The situation for p = 2 is interesting. 
We conclude from the equivalence that BP' is commutative and associative as 
a ring spectrum, although we do not know that it is commutative or associative 
as an Mt/-algebra. 

Recall that TT+(BP) = Z(p)[vi\deg(vi) = 2(pl — 1)], where the generators Vi 
come from TT+(MU) (provided that we use the Hazewinkel generators). We list 
a few of the spectra derived from BP, with their coefficient rings. Let ¥p denote 
the field with p elements. 

BP(n) Z(p)[vi,...,t;n] E{n) Z(p)[vu... ,vn,v~l] 
P(n) F p [v n , v n + i , . . . ] B{n) F p [v~ 1 , v n , v n + i , . . . ] 
k(n) Fp[vn] K(n) Fp[vn,v~l) 

By the method just illustrated, we can construct canonical integral versions of 
the BP(n) and E(n). All of these spectra fit into the context of Theorem 4.1. 
If p > 2, they all have unique canonical commutative and associative MU-ving 
spectra structures. Further study is needed when p — 2, but we leave that to the 
interested reader. In any case, our theory makes it unnecessary to appeal to Baas-
Sullivan theory or to Landweber's exact functor theorem for the construction and 
analysis of spectra such as these. 

We have started with MU because it appears in nature with a canonical 
structure as a commutative 5-algebra. However, it is also possible to start with 
BP, using the second author's result that BP admits a commutative 5-algebra 
structure; in fact, it admits uncountably many different ones [34]. 
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CHAPTER VI 

Algebraic if-theory of 5-algebras 

In this chapter we apply the basic constructions of algebraic /f-theory to the new 
categories of modules over 5-algebras. We show how to construct a if-theory 
spectrum KR for each 5-algebra R in such a way that K becomes a functor 
from the category of 5-algebras to the stable category. When R is a connective 
commutative 5-algebra, so is KR. We prove that weakly equivalent 5-algebras 
have equivalent if-theories, and we prove a Morita invariance result. When R is 
connective we are able to give an alternate description of this i£-theory in terms 
of Quillen's plus construction, a "plus equals 5 . " theorem. When R = Hk is 
an Eilenberg-Mac Lane 5-algebra, this K-theory is essentially Quillen's algebraic 
Zf-theory of the ring A:. When R — E00|G5X|_|_ is the suspension spectrum of 
the space obtained by adjoining a disjoint basepoint to the geometric realization 
of the loop group of the singular complex of a topological space X, this if-theory 
is Waldhausen's algebraic /^-theory of the space X. 

1. Waldhausen categories and algebraic if-theory 

We first review the basic definitions of Waldhausen [71] that we shall use. 

DEFINITION 1.1. A category with w-cofibrations ^ is a (small) category with 
preferred zero object "*", together with a chosen subcategory co(^) that satisfies 
the following three axioms: 

(i) Any isomorphism in ^ is a morphism in co(^); in particular, co(^) 
contains all the objects of ^ . 

(ii) For every object A in ^ , the unique map * —> A is in co(^). 
(iii) If A —> B is a map in co(^), and A —• C is a map in ^ , then the 

pushout B UA C exists in ^ and the canonical map C —• B11^ C is in 
co(^f); in particular, ^ has finite coproducts. 

We call the morphisms in co(<^?) w-cofibrations, and often use the feathered 
arrow V->" to denote them in diagrams. Although Waldhausen called these 
arrows "cofibrations" we will consistently use the term "w-cofibration" so that 
there will be no confusion with our standard use of the word "cofibration" to 
mean those maps that satisfy the homotopy extension property (HEP). 

103 
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DEFINITION 1.2. A Waldhausen category (in [71], "a category with cofibra-
tions and weak equivalences") is a category with w-cofibrations *& and a chosen 
subcategory w(^) of ^ that satisfies the following axioms: 

(i) Any isomorphism in *£ is a morphism in w(^) ; in particular, w(^) 
contains all the objects of *£. 

(ii) Given any commutative diagram in ^ 

in which the vertical maps are in w(^) and the feathered arrows are in 
co(tf), the induced map BUAC —> B' IIA/ C is in w(V). 

We call the morphisms in w(^f) weak equivalences, and often use the arrows 
"-^->" to denote them. We say that the weak equivalences are saturated or 
that V is a saturated Waldhausen category if whenever / and g are composable 
arrows in tf and any two of / , g, and gf are weak equivalences then so is the 
third. 

DEFINITION 1.3. A functor between Waldhausen categories is exact if it pre­
serves all of the above structure; i.e. it must send w-cofibrations to w-cofibra­
tions, weak equivalences to weak equivalences, the preferred zero object to the 
preferred zero object, and it must preserve the pushouts along a w-cofibration. 

We now have all the necessary ingredients to describe Waldhausen's 5 # con­
struction [71]. Let ^ be a Waldhausen category. For each n > 0, define a 
category S^€ as follows. An object of S^6 consists of n composible arrows in 
co(%?) starting from the preferred zero object *, 

AQ> >• A\> >• 
ocn-i . 

together with objects Aij for 0 < i < j < n and maps aij: Aj —• 
that Aiti = *, Aj = AQJ with CLQJ the identity map, and the diagrams 

Aij such 

Ai> *- Aj 

' Ai,j 

are pushouts for 0 < i < j < n. A morphism of Snff from {Aj,Aij,aj,aij} to 
{Aj, A'i^a'jia'ij} is a sequence of maps fj: Aj —> Aj such that the diagram 

A0> •A!> i A 

/o 

Acy 
T 

^ • • • > — - — > 

1 °4- l 
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commutes. Observe that by the universal property of pushouts, we have induced 
maps Aij —> A'ij making all the appropriate diagrams commute. We give 
Sntf the structure of a Waldhausen category by denning a map {/o, • • • , fn} to 
be a w-cofibration (resp. weak equivalence) if each fj is a w-cofibration (resp. 
weak equivalence) of *&. Observe that when {/o,... , fn} is a w-cofibration (resp. 
weak equivalence) all the induced maps Aij —• A^j are w-cofibrations (resp. 
weak equivalences). Notice that S§& is the trivial category and that S\& is 
isomorphic to *g. 

For 0 < i < n, define dk- S^ —> Sn-\& to be the functor that drops the 
fe-th row and fc-th column from the matrix {Aij}. More precisely, do sends the 
object {Aj,Aitj,ccj,a,ij} of Sn¥> to the object {Bj, Bij,0j,bij} of Sn-\€ where 
Bj — Ai^+i, Bij — >li+1>J-+i, and the maps (3j and bij are the maps induced 
from otj+i and Oi+i^+i by the universal property of the pushout. For k > 0, 
the functor dk is defined similarly. For 0 < k < n, define Sk: S^ —> Sn+\& 
to be the functor that repeats the /c-th row and k-th column in the matrix 
{Aij}. More precisely, Sk sends the object {Aj, Aij,cxj.dij} of Sn^ to the 
object {Bj,Bij,f3j)bij} of Sn+-f& where 

B* \Aj iij<k 
°j " \ i 4 j - i iij>k 

(Aij ifj<k 
Bij = < Aij-i if j > k and i < k 

[Ai-ij-x ifi>k 

{ ctj if j < k 

id i f j = k 
aj-i if j>k 

{ aij if j < k 

ttjj-i if j > k and i < k 
di-ij-i Hi > k. 

Observe that the functors dk and Sk satisfy the simplicial identities and the 
collection {Sn^} assembles into a simplicial category, which we denote Sm^. 
Furthermore, the functors dk and Sk are exact and 5 . has the structure of a 
simplicial Waldhausen category. In particular, we can iterate this construction 
to form the bisimplicial Waldhausen category 5 . ^ = 5 # 5 # ^ , and the polysim-
plicial Waldhausen categories S.'tf = 5 . • • • 5 . ^ . We abbreviate the notation 
for the category of weak equivalences in S . ^ f to wSl &. We are interested 
in the classifying spaces of these categories, the spaces Since Scf& 
is the trivial category, we see that {wS^l is connected, and it is not much 
harder to see that in general \wS.^\ is (n - l)-connected. Observe that the 
identifications of ^ with S\& and more generally s { n V with SiSjn)<*f induce 
maps Y\w<£\ —• \wS.V\ and X\wSin)tf\ —• \wSin+1)tf\ which are inclusions 
of subcomplexes. It is a fundamental observation of [71, §1.3, 1.5.3] that in the 
sequence 

\wV\ —> Sl\wS.¥\ —> n2\wSi2)^\ —> • • • 
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all maps beyond the first are homotopy equivalences. This motivates the follow­
ing definition. 

DEFINITION 1.4. The algebraic /C-theory of the Waldhausen category ^ is the 
spectrification of the E-cofibrant prespectrum {\wffl, \wS9V\, \wS. *€\,... }. We 
denote this spectrum by the symbol K^\ The algebraic if-groups of 1? are the 
homotopy groups of this spectrum, Kn^ = irnK^ = 7rn + i | tu5#^| . In particular, 
Kntf = 0 for n< 0. 

Waldhausen observes that in the special case when ^ is an exact category 
(where the w-cofibrations are the admissible monos, and the weak equivalences 
are the isomorphisms) the algebraic jftf-groups defined above agree with those 
defined by Quillen [58]. In fact, the basic properties of the Q-construction are 
all easily provable in terms of the S9 construction [67] (see also [53]). 

Observe that an exact functor ff —• Of induces an exact functor SJtf —• 
Sm@ and hence exact functors S*<& —> S. *@. This induces a map of pre-
spectra {wSin)V} —• {wSin)@} and hence a map of spectra Ktf —> K9. If 
the map \wSmtf\ —• \wS9@\ is a weak equivalence, then the maps \wS.c&\ —• 
\wS*3t\ are weak equivalences and therefore homotopy equivalences. Since 
these prespectra are E-cofibrant, maps between them that are spacewise ho­
motopy equivalences induce homotopy equivalences of their specifications. In 
other words, an exact functor that induces a weak equivalence on \wSm — | induces 
a homotopy equivalence of if-theory spectra. For this reason, although Wald­
hausen defines the algebraic if-theory of a Waldhausen category *& to be the 
space Q\wSm^\, all the results we use from [71] apply to the if-theory spectra, 
even when they are stated only for the if-theory spaces, and we will use them 
this way without further comment; moreover, whenever we assert a result about 
if-theory, we mean the result about the iC-theory spectra unless otherwise noted. 

2. Cylinders, homotopies, and approximat ion theorems 

Let M O R ^ 7 be the category whose objects are the morphisms of ^ and whose 
morphisms are the commutative diagrams. For A, Af, B, B' objects of ^ and 
a: A —> A' and b: B —• B' maps of ^ , a and b are objects of MOR *€. If 
/ : A —> B and / ' : Af —> B' are maps in ^ that make the diagram 

A—^-^B 

A'-j^B* 

commute, then ( / , / ' ) is a map in M O R ^ . When ^ is a Waldhausen category, 
we can give M O R ^ the structure of a Waldhausen category by saying that a 
m a P (/>/') is a w-cofibration (resp. weak equivalence) of M O R ^ if both / and 
/ ' are w-cofibrations (resp weak equivalences) of *€. We shall also need to define 
a Waldhausen category C MOR ^ , the underlying category of which is the full 
subcategory of M O R ^ of objects a: A —> A! that are morphisms in co(^). The 
weak equivalences in C MOR ^ are the weak equivalences of MOR ^ that lie in 
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C M O R ? . A map ( / , / ' ) from a: A >-* A' to b\ B >~* B* is a w-cofibration of 
C M O R ^ if / is a w-cofibration of ^ and the induced map A! II A B —• B' is a 
w-cofibration in *£. Verification that C M O R ^ is a Waldhausen category can be 
found in [71, 1.1.1]. 

DEFINITION 2.1. (cf. [71, 1.6]) Let ^ be a Waldhausen category. A cylinder 
functor is a functor T: M O R ^ —• ^ together with natural transformations ii, 
%2, and p that make the following diagram commute for a morphism / : A —• B 
in<*f: 

A^^Tf^-^B 

and that satisfies the following properties: 
(i) iiUi2:AUB~Tf is in co(if). 

(ii) The functor {A —> B) ^ ( A H B ^ T / ) is an exact functor M O R ^ —> 
CMORV. 

(iii) T(* —> S) = £ , with p and ^ the identity map. 
We say that the cylinder functor satisfies the cylinder axiom if in addition 

p: Tf —> B is in w(^) for all morphisms / . We will often refer to ii and i2 as 
face maps and to p as the collapse map. 

The importance of cylinder functors is shown by Waldhausen's approximation 
theorem [71, 1.6.7]. 

THEOREM 2.2 (APPROXIMATION THEOREM). Let si andSS be saturated Wald­
hausen categories, where si has a cylinder functor that satisfies the cylinder 
axiom. Let F: si —• 81 be an exact functor such that 

(i) If f is a morphism in si such that F(f) is in w (,£?), then f is in w(si). 
(ii) For any object A G si and any map f: FA —> B, there exists a map 

g: A —> A! in si and a weak equivalence h: FA' —> B in w(39) such 
thatf = hoF(g): 

F{A) f-—-jB. 

F(A') 

Then F induces a homotopy equivalence Ksi —• K@l. 

REMARK 2.3. In [71] it is required that g be a w-cofibration, but [68] points 
out that this requirement is unnecesary since we can use cylinders to replace an 
arbitrary map with a w-cofibration. 

Often, we have the situation where it is easy to make the diagram in 2.2(ii) 
commute up to some kind of homotopy. By integrating the idea of homotopy 
into Waldhausen's language of if-theory, we can prove two easy but extremely 
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useful corollaries of Waldhausen's approximation theorem. To this end, we offer 
the following definitions. 

DEFINITIONS 2.4. Let ^ be a Waldhausen category with cylinder functor T. 
Observe that T gives an exact functor / : ^ —• ^ by restriction along the 
exact functor 1: *€ —> M O R ^ that sends an object to its identity morphism. 
We call (W,ji,J2,q) a cylinder object of the object X if W = IX, q = p (the 
collapse map) and either j \ — i\ and 22 — i>2, or ji=i2 and 32 = h- We say that 
{W,ji,J2, q) is a generalized cylinder object of the object X, if W is the pushout 
over alternate face maps of a sequence of cylinder objects, j\,J2- X >-+ W are 
the two unused face maps, and q: W —> X is the gluing of the collapse maps; in 
particular observe that q o ji = lx for i = 1, 2. We call two maps / 1 , /2 • X —> 
Y homotopic if there exists a generalized cylinder object W of X and a map 
<p: W —> Y such that (p o j i = fi for i — 1,2. It is easy to see that this specifies 
an equivalence relation. 

Let us say that an exact functor F: *€ —> ^ between Waldhausen categories 
with cylinder functors preserves cylinder objects if there is a natural isomorphism 
a: FI<g ~ I&F such that a o F(ik) = ik and p o a = F(p): 

F M F M 

FA FA FA. 

7FA / F A 

Observe that a functor that preserves cylinder objects also preserves generalized 
cylinder objects, in the sense that a gives an isomorphism of FW to a generalized 
cylinder object W with a o F(j^) = fk and g ' o a = F(^). It is easy to see that 
when F preserves cylinder objects, F also preserves the relation of homotopy of 
morphisms. 

THEOREM 2.5 (HOMOTOPY APPROXIMATION THEOREM). Let &t and 3$ be 
small saturated Waldhausen categories with cylinder functors satisfying the cylin­
der axiom. Let F: &/ —> 8$ be an exact functor that preserves cylinder objects 
and such that 

(i) Iff is a morphism in &f such that F(f) is in w(&), then f is in W(JZ/). 
(ii) For any object A e sf and any map f: FA —• B, there exists a map 

a: A —> X in &f and a weak equivalence e: FX —> B in w(&) such 
that f is homotopic to eo F(a). 

Then F induces a homotopy equivalence Ksz? —» K&. 

PROOF. We produce an object A' and maps g, h that satisfy condition (ii) of 
Waldhausen's approximation theorem. 

We have assumed that / is homotopic to eoF(a), so there exists a generalized 
cylinder object (Wiji^j^q') of FA and a map ip: W —> B with ip o j[ = / 
and ip o ji} = eo Fa. We can construct in &/ the generalized cylinder object W 
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with the same gluings of faces; then we have a : FW = W with a o F(ji) = j[, 
since F preserves cylinder objects. 

Let A' = W Ua X, and let # be the evident map 1̂ —> A' induced by 
ji: A —> W. Then a induces an isomorphism FA —> W'Upfa) FX, which we 
will denote by a. Consider the map h = ip Up(a) e: W* IIF(a) FX —> B. The 
inclusion FX —> W HF(O) FX is a weak equivalence by property 1.2.(ii), since 
it is the pushout of the following weak equivalence of diagrams 

FX^-FA^^FA 
id id 

The composite of this inclusion with h is the weak equivalence e, so we conclude 
that h is a weak equivalence since S8 is saturated by assumption. Choosing h to 
be the weak equivalence ho a makes diagram 2.2(ii) commute. D 

The next corollary of Waldhausen's approximation theorem requires some 
preliminary definitions. 

DEFINITIONS 2.6. We say that a map / : X —» Y is a homotopy equivalence 
if there exists a morphism g: Y —> X so that fog and go f are homotopic to 
the respective identity morphisms. In this case, we call g a homotopy inverse to 
/ . We say that ^ is a category with w-cofibrations and homotopy equivalences 
or a Waldhausen homotopy category (WH category for short) if ^ is a saturated 
Waldhausen category with cylinder functor satisfying the cylinder axiom such 
that the weak equivalences are the homotopy equivalences. 

We need to make an observation about the "derived" category of a WH cat­
egory, the category formed by inverting the homotopy equivalences. First note 
that if / is a homotopy equivalence and g a homotopy inverse to / , then g o / 
and fog are both identity morphisms in the derived category. Prom this, it is 
easy to see that every map in the derived category of ^ is represented by a map 
i n * . 

One can ask when two maps give the same map in the derived category. 
First observe that for homotopic maps f\, fa and homotopic maps g\,g2, the 
compositions fi o gx and /2 o g2 are homotopic; so we can form the homotopy 
category, hffi, whose objects are the objects of * and whose maps are homotopy 
classes of maps. It is straightforward to verify that homotopic maps represent 
the same map in the derived category, and that if two maps represent the same 
map in the derived category then they are homotopic. We conclude that the 
natural map from * to its derived category factors through / i* , and that the 
map from hffi to the derived category is actually an isomorphism (not merely 
equivalence) of categories. 

The next result is now an immediate corollary to Theorem 2.5. 
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COROLLARY 2.7. Let srf and 38 be WE categories. Suppose F: srf —• 38 is 
an exact functor that preserves cylinder objects and that passes to an equivalence 
on the derived categories. Then F induces a homotopy equivalence Ksrf —> K38. 

P R O O F . We reduce to Theorem 2.5: Condition (i) is clear. For condition (ii), 
choose X e srf so that FX is isomorphic to B in the derived category of 38. 
Since every map in the derived category of 38 is represented by an actual map 
in 38, we can choose e: FX —• B that represents this isomorphism. Then e is 
a homotopy equivalence; let e' be a homotopy inverse. Now there exists a map 
a: A —> X so that Fa: FA —• FX represents the same map as e' o / in the 
derived category of 38. We conclude that / is homotopic to e o Fa. • 

3. Application to categories of R-modules 

For an 5-algebra R, let % be the full subcategory MR consisting of the cell 
jR-modules, and <£WR the category of CW i?-modules and cellular maps. We 
denote by f^R the full subcategory of ^R of finite cell -R-modules and F&WR 
the full subcategory of ^"WR of finite CW ^-modules; more precisely, we must 
choose small full subcategories containing at least one object of each isomorphism 
class, but the fact that the category of spectra has canonical colimits allows a 
strict interpretation of the definition of cell and CW ^-modules under which the 
categories f^R and /^WR are already small. When # is one of the categories 
f&R or fffy^R, we can give *€ the structure of a WH category as follows. We 
define the category of w-cofibrations, co(^f), to consist of those maps which 
are isomorphic (in M O R ^ ) to the inclusion of a subcomplex, and the category 
of weak equivalences w(^) to consist of those maps in f̂ which are homotopy 
equivalences. We take as our cylinder functor the ordinary mapping cylinder. 

PROPOSITION 3.1. These definitions specify structures of WH-categories on 
f^R and F^WR and the inclusion f^^R —• f^R is an exact functor which 
preserves cylinder objects. Furthermore, when R is connective, this inclusion 
induces a homotopy equivalence of K-theory spectra. 

PROOF. We check the definitions directly. Let ^ be either / % or ftfWR 
with co(^) and w(^) as above. 

First we check that co(^) is a category. Let / : A —• B and g: B —> C be 
arrows in ^ . These are isomorphic to inclusions of subcomplexes, and without 
loss of generality we can assume that / is the inclusion of a subcomplex and 
that g is isomorphic to an inclusion g': B' —> C with the isomorphism on the 
codomain C the identity: 

B—t+B' 
9\ k 

T T 

c — a 
By choosing different sequential filtrations if necessary we can assume that the 
map B —> C is sequentially cellular and therefore so is the map B —> B' (we 
adjust the sequential filtration on A as well if necessary so that it remains a 
subcomplex of B). Since C is built from B' by attaching cells, we can form an 
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isomorphic complex D by attaching the same cells to B via 6 - 1 . In the CW 
case, D is CW and the isomorphisms to and from C are cellular because we have 
assumed that the isomorphisms b and 6 - 1 are cellular. Now A is a subcomplex 
of £ , which is a subcomplex of D and the map A —• D is isomorphic to the 
map A —• C. 

Properties 1.1 (i) and (ii) and 1.2(i) are clear as will be 1.2(ii) once we show 
1.1 (Hi). Given a diagram in *& 

A^-^B 
g\ 

Y 

C 

with / an arrow in co(^), we show that we can find a pushout in ^ so that 
the map from C is the inclusion of a subcomplex. We can assume without loss 
of generality that / is the inclusion of a subcomplex and that the map g is 
sequentially cellular. Since B is built from A by attaching cells, we can form a 
cell complex D by attaching these cells to C via g: A —> C. In the CW case, D 
will be a CW complex since we have assumed that g is cellular. For categorical 
reasons, D must be a pushout of the above diagram, and by construction the 
map from C is the inclusion of a subcomplex. 

If R is connective, we can approximate any finite cell ^-module by a finite 
CW .R-module, and the last statement follows by Theorem 2.5. • 

DEFINITION 3.2. We define the algebraic ^-theory of the 5-algebra R to be 
the spectrum Kf&R, and we denote it by KR. We define the algebraic jFf-groups 
of R to be the homotopy groups of this spectrum, KnR — irnKR = Knf^R. 

Although the categories f^R and F^WR seem the most natural choices for 
if-theory, there are many other possibilities. Indeed, since pushouts along cofi-
brations in J4CR preserve weak equivalences, it is easy to see that any subcategory 
of J&R that is a category with w-cofibrations such that all of the w-cofibrations 
are cofibrations becomes a Waldhausen category by taking the weak equiva­
lences to be the ordinary weak equivalences. In particular, when 3C is a small 
full subcategory of MR that contains the trivial i^-module and is closed under 
pushouts along cofibrations, then 3C is a category with w-cofibrations the set 
of all cofibrations in 3£, and in this way X becomes a Waldhausen category. 
We shall call the resulting Waldhausen category structure on X the standard 
Waldhausen structure. If ^ is a full subcategory of *€R that is small, contains 
the trivial i^-module, and is closed under pushouts along maps isomorphic to 
inclusions of subcomplexes, then ^ is a category with w-cofibrations the set of 
maps in *€ isomorphic to the inclusion of a subcomplex and in this way becomes 
a Waldhausen category. We shall call the resulting Waldhausen category struc­
ture on ^ the standard cellular Waldhausen structure. If St or f̂ is closed under 
smashing with 1+, then the mapping cylinder gives a cylinder functor satisfying 
the cylinder axiom, which we shall call the standard cylinder functor. Since a 
standard cellular Waldhausen category with the the standard cylinder functor is 
a WH category, we shall call such a category a standard WH category. It might 
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at first appear that the standard Waldhausen structures are somewhat rare, but 
the following remark demonstrates that they are actually quite common. 

REMARK 3.3 (SMALLEST STANDARD WALDHAUSEN CATEGORIES). If si is a 
set of objects of MR that is not necessarily closed under pushouts along cofibra-
tions, we can form a small category 38 containing srf that is. We let 38 be the 
union of an expanding sequence of small categories JZ/Q —> s</i —> s&2 —> ' * • > 
where Ob(jafo) = srf and £?n+i is the full subcategory of MR of objects that are 
pushouts of diagrams (with one leg a cofibration) in j2/n (one choice of object for 
each such diagram). Since the set of all maps in &/n is small (by induction), srfn+\ 
is a small category. It is easy to see that 38 has a kind of universal property: 
whenever a standard Waldhausen category contains a full subcategory equivalent 
to srf (regarded as a full subcategory of MR), it must contain a full subcategory 
compatibly equivalent to 38. For this reason, we will refer to 38 as the smallest 
standard Waldhausen category containing &/. Observe that when all the objects 
of srf have the weak homotopy types of finite cell complexes then so do all the 
objects of 38 (by Corollary 1.6.5). 

Often we will want our standard Waldhausen categories to have the standard 
cylinder functor. In forming £/n+i from srfn above we could also include X f\I+ 
for each X e &?n. In this case, #/n+i will still be small, but now 38 will be 
closed under smashing with J+ , and hence have the standard cylinder functor. 
It is easy to see that 38 will now have a similar universal property with respect 
to standard Waldhausen categories with the standard cylinder functor. For this 
reason we will refer to the category constructed in this way as the smallest 
standard Waldhausen category with standard cylinder functor containing srf. 
Again, when all the objects of srf have the weak homotopy types of finite cell 
complexes then so do all the objects of 38. 

If &/ C % , we can do a similar construction but using maps isomorphic to 
inclusions of sub complexes in place of cofibrations. Then the resulting category 
38 C % is a standard cellular Waldhausen category (a WH category if we include 
smashes with J + ) and has a similar universal property with respect to standard 
cellular Waldhausen categories. We shall not actually use this construction, but 
we could call 38 in this case the smallest standard cellular Waldhausen category 
containing srf (or if we include smashes with J+ , smallest standard WH category 
containing $/). Furthermore, observe that if all the objects of #/ have the 
homotopy types of finite cell complexes, then so do all the objects of 38. 

One advantage of the standard Waldhausen structures is that inclusions of 
subcategories are exact functors. 

PROPOSITION 3.4. Suppose 3£ is a subcategory of <&'. If 3£ and <3/ are both 
standard Waldhausen categories or both standard cellular Waldhausen categories, 
then the inclusion 2£ —> <& is an exact functor. If 3C is a standard cellular 
Waldhausen category and & is a standard Waldhausen category, then the inclu­
sion 3C —> W is an exact functor. 

Many standard Waldhausen categories have if-theory equivalent to f^R. The 
following proposition follows directly from Theorem 2.5 (and the Whitehead 
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Theorem) and will often apply to the smallest standard categories constructed 
above. 

PROPOSITION 3.5. Let X be a standard Waldhausen category with standard 
cylinder functor or a standard WH category. If 3£ contains f^R, and if fur-
thermore each object of & is weakly equivalent to a finite cell complex, then the 
induced map of K-theory spectra is a homotopy equivalence. 

The if-theory we consider, the if-theory of / % , is best thought of as analo­
gous to the /^-theory of finitely generated free modules: indeed, since all ob­
jects are constructed from the sphere .R-modules by a finite number of ex­
tensions by spheres, it follows immediately that the obvious homomorphism 
KQ7TQR —> KQR (induced by [n] J-» V™=15H) is surjective, where "KQ-KOR" 
denotes KQ of the finitely generated free modules of the ring TTQR. When R 
is connective this homomorphism is an isomorphism whose inverse is given by 
the Euler characteristic of a CW object X, the alternating sum of the classes 
of Cn(X), where C* is the chain functor of IV§3. For this reason, categories 
that could be reasonable alternatives to the categories / % and fffWn would 
be those small categories of semi-finite cell ii-modules that are standard WH 
categories. When such a category contains / % , it follows from [68, 1.10.1], 
[71, 1.5.9] and the argument of [24, §1] (as observed in [68, 1.10.2]) that the 
inclusion will induce an isomorphism of homotopy groups of /^-theory spectra 
except in dimension zero. Intuitively, whereas the if-theory of f&R or f^J^R 
is like the if-theory of the finitely generated free modules, we might think of 
the if-theory of semi-finite objects as analogous to the if-theory of the finitely 
generated projective modules. 

We conclude this section by remarking that when R is an ^oo ring spectrum 
but not an 5-algebra, we can make analogous observations about the if-theory 
of categories of its modules. However the functor S A% (—) is an exact functor 
that converts such a category to the corresponding category of S t\& .R-modules 
and induces a homotopy equivalence of i£-theory spectra by Theorem 2.5. Thus, 
results about the /^-theory of A^ ring spectra follow from results about the 
K-theory of S-algebras. 

4. Homotopy invariance and Quillen's algebraic If-theory of rings 

In this section we prove some properties of the if-theory of the category f^R 
and compare with the if-theory of (discrete) rings. 

We observe that if-theory as defined above gives a functor from the category 
of 5-algebras to the stable category which has nice homotopical properties. 

PROPOSITION 4.1. If <f>: A —> B is a map of S-algebras, then the functor 
B A A (—): f&A —> f^B (or f^^A —> f^^B) is exact and preserves cylinder 
objects. This association makes K into a functor from the category of S-algebras 
to the stable category. 

PROOF. The first statement follows from III.4.1, the second from the isomor­
phisms C AB (B A A ( -)) = C AA ( - ) and A AA ( - ) = id. D 
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PROPOSITION 4.2. If <j>\ A —> B is a map of S-algebras that is a weak equiv­
alence, then K(j) is a homotopy equivalence. 

PROOF. Prom III.4.2, B AA (—) induces an equivalence of derived categories 
@A —> @B , which restricts to an equivalence of the derived categories of finite 
cell complexes by an easy application of the Whitehead theorem. The result 
follows from Corollary 2.7. • 

We compare this if-theory with Quillen's algebraic if-theory. Let k be a ring, 
and let Hk denote the Eilenberg-Mac Lane 5-algebra of k. We shall use the 
symbol K?k for the algebraic Zf-theory of the finitely generated free modules of 
fc, a covering spectrum of Kk. 

THEOREM 4.3. KHk is homotopy equivalent to K^k, naturally up to homo­
topy in k. 

PROOF. We can identify K*k with the K-theory of the WH category of finite 
free fc-chain complexes with w-cofi brat ions the split monies, weak equivalences 
the quasi-isomorphisms, and the cylinder functor given by the usual mapping 
cylinder, (see, for example, [68, 1.11.7].) We will denote this WH category as 

The functor C*: f^^Hk —> f^^k of IV§2 is exact and preserves cylinder 
objects. By the Hurewicz theorem IV.3.6, a map between finite CW modules 
is a weak equivalence if and only if its image under C* is a quasi-isomorphism, 
hence the theorem will follow from Theorem 2.2 if we can show that condition 
(ii) holds. 

Given a finite free chain complex M*, we can actually construct a CW Hk-
module X whose cellular chain complex C*(X) is isomorphic to M*. We proceed 
by induction. Since M* is finite, M* is zero below some m, and we take the i-
skeleton of X, X% to be the trivial iffc-module for i < m. Now assume that 
we have constructed Xn and an isomorphism C*(Xn) —• M r n , where M*-n 

denotes the brutal n-truncation of M*, i.e. M--n = Mi for i < n and Mfn — 0 
for i > n. By IV.2.3, ixn{Xn) S* iJn(M*-n), which is the kernel of the differential 
dn_i, i.e. the cycles of Mn. Via this isomorphism and a choice of basis for 
Mn+i, the differential dn specifies a homotopy class of maps from a wedge of 
Sftk to Xn. Choose a representative of this homotopy class, and let Xn+1 be the 
CW complex formed by attaching (n + l)-cells along this map. By construction 
Cn+ i (^ n + 1 ) = Mn+i, compatibly with the differentials. 

Given an Hk-modu\e A and a map / : C* (A) —• M*, we show that we can 
find a map a: A —> X such that C*(a) agrees with / via the isomorphism 
contructed above. Assume we have constructed this map as far as the n-skeleton 
of A, i.e. we have an : An —• X such that C*(an) = f-n. Now A71*1 is formed 
from An by attaching a finite wedge VCSjjk along a map a: V Sjjk —• An. 
The map / n + i : Cn+i(A) —> M n + i specifies a homotopy class of maps 

(vC5&fcIVS^fc) — (Xn+1,Xn) — (X,Xn), 

whose class on V5^^. agrees with [a noa] , since 7rn(Xn) coincides with the cycles 
of Mn. We choose a representative in the homotopy class whose restriction to 
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$Hk *s an ° a- This extends to a map 

a n + i : A n + 1 — + X n + 1 — + X 

and by construction C*(an+i) agrees with / ^ n + 1 . • 

REMARK 4.4. For a connective S-algebra i2 with A; = 7r0(i2), the functor C* 
of IV§3 is an exact functor fff^R —> f^^k- The induced map of if-theory 
can be thought of as "discretization" and factors as KR —> KHk —> K?k. 

REMARK 4.5. Another question one may ask is how the if-theory of k com­
pares with the if-theory of k regarded as an AOQ ring, i.e. the if-theory of the 
category of finite cell Aoo fc-modules (as constructed in [35]). In fact, Proposi­
tions 4.1 and 4.2 have exact analogs in the theory of discrete A^ rings (with 
close analogs of the proofs). In particular, it follows from Corollary 2.7 that the 
natural quasi-isomorphism of the ring k with its ^oo enveloping algebra induces 
a homotopy equivalence from the free if-theory of k to its ^oo-if-theory. 

5. Mor i ta equivalence 

Next, we discuss Morita equivalence, the relationship of the category of R-
modules to the category of modules over the analogue of a matrix ring of R. We 
introduce the shorthand notation VnX for V™=1X, and we define 

MnR = FR(VnR,VnR), 

Mnl =FR(R,VnR)^VnR, 
and 

Mln = FR(VnR,R)^l[R. 
n 

By III.6.12, we see that MnR is an 5-algebra, Mn\ an (MnR, #)-bimodule, and 
M\n an (R, Mn#)-bimodule. Classical Morita equivalence is the theorem that 
for a (discrete) ring R, tensoring with these two bimodules gives an equivalence 
between the category of .R-modules and the category of MnR-modules. The 
observation that this restricts to an equivalence between the categories of finitely 
generated projective modules proves that Quillen's algebraic J£-theory is Morita 
invariant. 

In the case we consider, it is unreasonable to hope for an equivalence between 
MR and ^MnR since products and coproducts are not isomorphic, but we can 
ask for an equivalence of @R and @MnR- Furthermore, because our if-theory 
is really the Zf-theory of free modules, we cannot expect the induced map of 
if-theory to give an isomorphism on KQ in general (since, for a discrete ring, 
the image of the free module of rank one is a projective but not free module 
for n > 1), but we can ask for an isomorphism of the higher AT-groups. In this 
section we find affirmative answers to each of these questions in the following 
theorems. 

THEOREM 5.1 (MORITA EQUIVALENCE). The derived functors of MnlAR(-) 
and MinAMnR(—) give an equivalence of categories @1R ~ @MnR> which restricts 
to an equivalence of the derived categories of semi-finite objects. 
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THEOREM 5.2 (MORITA INVARIANCE OF X-THEORY) . The point-set functor 
M\n /\MnR {—) induces a map of K-theory KMnR —> KR, which on homotopy 
groups (K-groups) sends a generator in dimension zero to n times a generator, 
and gives an isomorphism on the higher groups. 

We prove Theorem 5.1 by imitating as much as possible the proof of classical 
Morita equivalence. The following lemma gives a good start in this direction. 

LEMMA 5.3. The (R,R)-bimodules R and Mm f\MnR Mn\ are isomorphic. 

PROOF. By a comparison of colimits, using the map of 5-algebras R —> 
MnR, it is not hard to see that the following diagram is a coequalizer (cf. 
VII.1.9): 

Mln AR MnR AR Mni =£• Mln AR Mni *- Mm AMnK Mni-

The evaluation map Min AR Mni —• R coequalizes this diagram, so induces a 
map Mi n ^MnR Mni —> R, which is evidently an (R, i£)-bimodule map. We 
show that this is an isomorphism by observing that 

Mm AR MnR AR Mni = £ Mm AR Mni * R 

is a split coequalizer of S-modules. The splitting is given by maps analogous to 
those in the discrete case: The map R = RARR —» Mi n AR Mn i is the smash 
product of the map R —• Vni£ that includes it as the first wedge summand 
with the map R —> FR(VnR,R) that is induced by the map VnR —> R that 
collapses onto the first summand. The map 

Mm AR Mni = Mm A* Mni ARR —> Mln AR MnR AR Mm 

is the smash product of the identity on Mi n , the map Mni —> MnR induced by 
the map \ZnR —> R collapsing onto the first summand in the first variable, and 
the inclusion of R as the first summand in M n i . It is straightforward to verify 
that the composites are as required to split the diagram. • 

P R O O F OF THEOREM 5.1. We verify that the composite $)R —> @MnR —> 
Q>R is naturally isomorphic to the identity. Let X be a cell ^-module, and let Y 
be a cell MnH-module approximation to Mn i A^ X; we must show that the map 

Mm f\MnR Y —> Mm AMnR M n l AR X ^ X 

is a weak equivalence. Observe that the obvious map VnMni —> MnR is a weak 
equivalence and a map of (MnR, .R)-bimodules. Since X is a cell .R-module, the 
map V n M n i AR X —> MnR AR X is a weak equivalence and the composite 
map VnY —• MnR AR X is a homotopy equivalence. Now we conclude that 
Mm AMni? V n F —> VnX must be a weak equivalence, since the map VnX —> 
(Yin R) /\R X = Mm A/? X is, but the induced map on homotopy groups is just 
the direct sum of n copies of the map we are interested in, so this map must also 
be a weak equivalence. 

The reverse composite @MnR —> @R —> @MnR is simpler. Let X be a cell 
Mni?-module. Since Mn i AR (—) preserves weak equivalences, the composite 
functor can be represented by X H-> Mn i AR Mm ^MnR X. Observe that the 
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evaluation map Mn\ AR M\n —> MnR is a weak equivalence of (MnR, MnR)-
bimodules. On the underlying R-modules it is a map Vn f ] n R —> Yin ^nR 
inducing an isomorphsim © Yl ^* —> II ®^* • This induces the natural isomor­
phism (in ^M^R) to the identity. 

Since the derived categories of semi-finite objects are full subcategories of the 
derived categories Q)R and @MnRi w e s e e that this equivalence restricts, since 
both functors send wedge summands of finite objects to wedge summands of 
finite objects. • 

Let ^ be the smallest standard Waldhausen category with standard cylin­
der functor containing f^R and the image of f^MnR- By Proposition 3.5, the 
if-theory of ^ is homotopy equivalent to KR. Let J be the full subcategory 
of ^ of objects weakly equivalent to objects in the image of f^MnR- Since 
pushouts along cofibrations are homotopy equivalent to homotopy pushouts, 
which M\n/\MnR{—) preserves, it is easy to check that J is closed under pushouts 
along cofibrations and is therefore a standard Waldhausen category with stan­
dard cylinder functor; moreover, the functor M\n f\MnR (~) : f^MnR —> ^ is 
exact. 

LEMMA 5.4. The exact functor M\n AMnR (—): f^MnR —> *? induces a ho­
motopy equivalence of K-theory. 

PROOF. We apply Theorem 2.5: given A e f^MnR^ B £ y , and a map 
/ : Min AMnR A —• B, we find X e f^MnR, a weak equivalence e: M\n AMnR 
X —> B and a map a: A —• X, such that e o M\n /\MnR a is homotopic to 
/ . By assumption, B is weakly equivalent to the image of some X £ f^MnR-> 
so Mn\ AR B is an MnR-module weakly equivalent to Mn\ AR M\n AM^R X, 
which in turn is weakly equivalent to X. Thus, by the Whitehead Theorem, 
there exists a weak equivalence e: X —> M n l AR B. Since the natural map 
i: Mni AR Min AMnR A —> MnR AM^R A = A is a weak equivalence, it has a 
homotopy retraction r, and there exists a map a: A —> X such that e o a is 
homotopic to (Mni AR f) or, again by the Whitehead theorem. Thus the solid 
line part of the following diagram commutes up to homotopy. 

MnlARB. 

We apply the functor M\n AM^R (—)• The isomorphism constructed in Lemma 
5.3 induces a natural transformation ii\ id —> M\n AM^R Mn\ AR (—), from 

Mni ARMln AMnRA 
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which we get the diagram 

Mm AMnR A 

(Mi n Ai)o / i M i n A r 

Mln AMnR A 

M i n A a 
_ 1 o ( M i n A e ) 

Mln AMnR X 

By the associativity of the multiplication pairing, the diagram 

Mln AMnR Mnl AR Mln — ^ R AR Mln 

Min Ail 

MmAMnRMnR- - s ^Mln 

must commute, and we conclude that (Mm AMnR i) o fJ> is the identity. Now, 
letting e = / i _ 1 o M l n AMUR e, we see that e o Mm AMnR a is homotopic to / as 
required. • 

LEMMA 5.5. y is closed under extensions in *€. 

P R O O F . We need to show that for a cofibration sequence A >—• B -» C in 
V, if A and C are in S, then B is also in S. It suffices to consider the case 
when A, J5, and C are celluar ^-modules, since any cofibration sequence can be 
replaced by a weakly equivalent one of this form. Using the proof of the last 
lemma, the map * —> C allows us to find X in f^MnR together with a weak 
equivalence e: Mm AM^R X —• C. Composing with the map c: C —> HA 
implied by the cofibration sequence, and applying once again the proof of the 
last lemma, we find an object Y in f^MnRi a m a P a: X —> Y, and a weak 
equivalence / : Mm AMnR Y —• HA that make the following square homotopy 
commute: 

Mm AMnR X ^ 2 Mln AMnR Y 

C- ->-£A 
We conclude that the induced map on cofibers C(M\n AM^RO) —> C(c) is a weak 
equivalence. The functor M\n AMnR (—) commutes with smashing over S on the 
right with Sg1 and smashing on the right with the space S1, both composites 
of which are homotopic to the identity in f^MnR- We conclude that the map 
C(MmAMnRo)AsS^1 —> C^AsSg1 is a weak equivalence. But C^AsS^1 is 
homotopy equivalent to B dindC(MmAMnRd)AsSgl = MmAMnR{C(a)AsSgl) 
is in the image of f^MnR^ hence B is in J. • 

P R O O F OF THEOREM 5.2. The inclusion J —> <& is an exact functor. It 
is easy to see that on i^o it sends a generator (SM^R) to n times a generator 
(Mln AMnR MnR As Ss = Mln As Ss ~ V„5/j). We want to see that it induces 
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an isomorphism of the higher if-groups. Let ̂  be the full subcategory of *€ of 
all objects whose class in K§0> is in the image of K$<f (so in particular J C ^). 
It follows from the relations that define K0 that J? inherits the structure of a 
standard Waldhausen category with standard cylinder functor. By Proposition 
3.4, the inclusions J —• J? and J —> ̂  are exact functors. 

We use the argument of [24, §1] to show that J is strictly cofinal in J (in 
the sense of [71, 1.5.9]). We define an equivalence relation on the objects of ^ 
by letting A and A' be equivalent if there exists some X € J such that Av X 
is weakly equivalent to A' V X. Let G be the set of equivalence classes under 
this relation. Then G is a group under the operation "V" with the inverse of A 
represented by V n _iA We have an obvious homomorphism G —• Ktf€jK§J\ 
we construct an inverse to this homomorphism. If A >—• B -» C is a cofibration 
sequence in ^ , then VnA )—• B V (Vn_iA) V (Vn_iC) -» VnC is a cofibration 
sequence. But VnA and VnC are in J, so B V (Vn_iA) V (Vn_iC) is in J since 
J is closed under extensions in ̂ ; therefore, B V (Vn_i^4) V (Vn_iC) represents 
the identity in G and hence B represents the same element as A V C in G. If A 
is weakly equivalent to A' then they represent the same element in G. We see 
that the association of an object to its class in G satisfies the universal relations 
that define K§& and so specifies a map K§€ —• G. This map clearly factors 
through a map K§€jK^Jf —> G that is evidently inverse to the map above. 
Thus, we see that ^ consists of the objects whose class in G is the identity, so 
we conclude that for any 1 6 / , there exists Y € J such that X V Y is weakly 
equivalent to an object of J and hence X V Y is an object of J. 

Now by [71, 1.5.9], J —• J? induces a homotopy equivalence of if-theory, 
but by [68, 1.10.1], Kicp —• K£€ is an isomorphism for i > 0. • 

6. Multiplicative structure in the commutative case 

In this section, we prove the following theorem (cf. [65]). 

THEOREM 6.1. If R is a connective commutative S-algebra then KR is ho­
motopy equivalent to an EQO ring spectrum and therefore weakly equivalent to a 
commutative S-algebra. 

This result and the results of the next section depend on the following technical 
lemma, which the reader may recognize as a simple application of the theory of 
[71, §1.6-1.8] to our new categories. Although we believe that Theorem 6.1 may 
generalize to non-connective commutative 5-algebras, this lemma is peculiar to 
the connective case and relies on the existence of the ordinary homology theories 
of IV§3. For this lemma, we need R to be a connective but not necessarily 
commutative 5-algebra. Let ^ be a standard Waldhausen category of i?-modules 
that contains f&R and that only contains objects of the weak homotopy type of 
finite cell /^-modules. We see by Proposition 3.5 that K^ is homotopy equivalent 
to KR. We denote by <^rn the full subcategory of objects weakly equivalent to a 
finite wedge of 5 ^ . Observe that for each m, the category of weak equivalences 
of ^ m is a symmetric monoidal category under the operation of wedge, and 
denote the associated spectrum as kffm. Suspension induces a system of maps 
of spectra ktfm —• / c ^ m + 1 . 
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LEMMA 6.2. The homotopy colimit of the system {kff171} is homotopy equiv­
alent to K^. 

PROOF. The Hurewicz theorem IV.3.6 allows us to identify c€m with the 
full subcategory of ^ of objects whose ordinary homology H^ is zero in all 
dimensions except ra, and in dimension m is a finitely generated free module. 
Let ^Dm be the full subcategory of *€ of objects whose ordinary homology H^ 
is zero in all dimensions except m and in dimension m is a finitely generated 
stably free module, i.e. is isomorphic to the kernel of a surjective map of finitely 
generated free modules. Let ̂ -n be the full subcategory of *£ of those objects 
which are (n - l)-connected. By the Hurewicz theorem IV.3.6 these are exactly 
the objects whose homology is zero in dimensions less, than n. We give the 
categories ^ m and ^m Waldhausen structures by defining the w-cofibrations to 
be the w-cofibrations of ^ whose quotients lie in the subcategory in question. 
The categories <*f-n have the structure of standard Waldhausen categories with 
the standard cylinder functor. 

Suspension gives exact functors ^ m —> ̂ m + 1 and tf^n —• < ^ n . For 
m > n, the inclusion of <ifm in ^ - n is an exact functor; for fixed n, these 
inclusions induce a map 

hocolim \wS.&n\ —* hocolim \wS.^n\, 

where the colimit on the right is taken over repeated application of suspension. 
Next observe that ordinary homology H^ restricted to ̂ - n is a homology theory 
in the sense of [71, §1.7] (at least after shifting the indexing), and that the cate­
gories ^ m form categories of "spherical objects" for ff-n for the class of finitely 
generated stably free modules. Since this theory satisfies the "Hypothesis" of 
[71, 1.7.1], we conclude that the map above is a weak equivalence. On the other 
hand the inclusions ^ - n —> ^ - n + 1 are exact functors which induce cofibra-
tions \wS.^n\ —• \wS.^nJrl\, whose colimit is \wS.V\. Taking the colimit 
(over n) of the homotopy equivalence above, we get a homotopy equivalence 

hocolim \wS.^m\ —> hocolim \wSm<g\. 
m—»oo S 

The maps on the right are all homotopy equivalences (by [71, 1.6.2]), so we 
conclude that there exists a homotopy equivalence hocolim K ^ m —• Kff. 

We apply the Strict Cofinality Theorem [71, 1.5.9] to conclude that K&m is 
homotopy equivalent to Kff171. Now we are reduced to comparing Ktf171 with 
k^771. According to [71, 1.8.1], it suffices to observe that cofibrations in ̂ fm are 
"splittable up to weak equivalence". Given a cofibration A >—> J5, we can find 
a basis of the free module Hm(B) that represents the union of bases for HmA 
and Hm(B/A). The Hurewicz theorem IV.3.6 now specifies homotopy classes 
of weak equivalences from the wedge of A and a wedge of spheres to B and to 
A\f B/A, relative to the maps from A. • 

P R O O F OF THEOREM 6.1 Let ^ be the smallest standard Waldhausen cat­
egory with standard cylinder functor containing R, 5g for all n, and all finite 
smash products over R of these. It is easy to check that the bifunctor (—) AR (—) 
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restricts to ^ (up to equivalence), so ̂  is a symmetric bimonoidal category un­
der coproduct and smash product over R. Let ^ ° be as in the lemma above. 
Then ^ ° is the full subcategory of *€ of objects weakly equivalent to a finite 
wedge of SR. Since smash product over R with R and with 5# preserve weak 
equivalences, so do smash products over R with any object of ̂ , and the smash 
product over R of objects in ^ ° is weakly equivalent to a finite wedge of SR 
and therefore is an object of ^f°. Thus the smash product over R restricts to a 
bifunctor on ̂ ° that makes ^ ° a symmetric bimonoidal category. By the work 
of [50], we can construct k^° functorially as an E^ ring spectrum. 

Next observe that suspension and S^1 AR(-) give functors <?fm —> <^?m+1 and 
<^m+i —y cgm £or w n i c h both composites are weakly equivalent to the identity. 
We conclude that suspension gives a homotopy equivalence kff171 —> k<Wm+l, 
and that kff0 is homotopy equivalent to K*l£ by the previous lemma. • 

7. The plus construct ion description of KR 

We have observed that the category J^R gives a if-theory Kf^R that has 
some right to be called the algebraic if-theory of R. This section is devoted 
to a comparison with another possible definition, based on Quillen's plus con­
struction. In what follows, R is a fixed connective 5-algebra, and k = 7TQR. 
We shall make use of classifying spaces of the topological monoids *JZR(X,X). 
Unfortunately even when X = SR, we cannot guarantee that the inclusion of 
the identity element is a cofibration. There are well-known ways of overcoming 
this difficulty, e.g. whiskering the monoids [45] or using thickened realizations 
[66]. In this and the next section, we shall take advantage of such techniques 
implicitly wherever necessary without further comment. 

Let MnR be the topological space fVR(\/n SR, Vn SR)\ then 7T0MnR £ Mn(k), 
the ordinary matrix ring of the ring k. Let GLnR be the space consisting ofjthose 
connected components of MnR whose image in Mn(k) is invertible. Then GLnR 
is a topological monoid; indeed, it is the monoidjpf homotopy equivalences in 
MnR^We can consider its classifying space BGLnR. We have the inclusion 
in\ GLnR —• GLn+iR obtained by sending the last wedge summand to the 
last^wedge summand via the identity map, and it induces Bin: BGLnR —• 
BGLn+iR. Let BGLR be the telescope of these maps. 

Now TTIBGLR = GL(k) has a perfect normal subgroup, so we can form 
BGLR+ (Quillen's plus construction). We shall see shortly that K^k x BGLR+ 
is an infinite loop space^ Define K+R to be the connective spectrum obtained 
by delooping K$kx BGLR+. We prove the following "plus equals 5 , " theorem. 

THEOREM 7.1. K+R is weakly equivalent to KR. 

First we need to specify the infinite loop space structure on K$ k x BGLR+. 
For this, we observe that K^kxBGLR^ is the group completion of the classifying 
space of the topological category W whose (discrete) set of objects is the finite 
wedges of SR and whose space of morphisms is the set of homotopy equivalences 
topologized as a subspace of the space of morphisms of JMR. Call this group 
completion B. In the case when KQ k is the integers, the classifying space of W 
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is the disjoint union of the BGLnR and we may apply the remarks of [66, §4] 
to conclude^that we have a homology isomorphism to J3Jrom the telescope of 
maps U BGLnR to itself induced by the maps Bin: BGLnR —> BGLn+iR. 
This telescope is easily seen to be KQ k x hocolimn BGLnR. We conclude that 
B ~ K$k x (hocolimn BGLnR)+. 

In the pathological case when KQ k is not the integers, i.e. when there exists 
a homotopy equivalence VJSR ~ VkSR for j ^ k, we still have a homology 
isomorphism to the group completion B from the telescope T of maps from 
BW to itself induced by addition of an identity map on the wedges of sphere R-
modules. Proposition 7.2 below allows usrto see that BW is homotopy equivalent 
to a disjoint union of of some of the BGLnR, one choice for each isomorphism 
class of finitely generated free 7TQR-modules. Now^ we see that the telescope 
T is homotopy equivalent to K^k x hocolimn BGLnR, and we conclude that 
B ~ K^k x (hocolimn BGLnR)+. 

To identify the homotopy type of BW in the pathological case above, we 
need the following proposition. We will need a similar result again later, and 
we have written this proposition in the minimal possible generality necessary to 
handle both cases. The proposition says essentially that if the morphisms in a 
category are all homotopy equivalences (in a certain sense), then the classifying 
space of the monoid of endomorphisms of any object is homotopy equivalent to 
its connected component in the classifying space of the category. Because this 
proposition has obvious generalizations with more general scope than its use 
in this section, we break our rule of not mentioning the necessary cofibration 
assumptions. As always the reader has the choice of deleting the cofibration 
assumption by using a whiskering technique or employing the thickened realiza­
tion. 

PROPOSITION 7.2. (cf. [71, 2.2.7],) Let ^ be a topological category with dis­
crete set of objects such that the identity morphism (from objects to morphisms) 
is a cofibration. Let X be an object of ^ and denote by *€x the full subcategory 
offf containing X. Suppose that for each morphism / : Y —• Z in *&, there is 
some f: Z —> Y so that f'°f and f o / ' each lie in the same path component 
of<^'(YyY) and &(Z,Z) as the respective identity elements. Then the inclusion 
&X —• ^ induces a homotopy equivalence of the classifying space of ^ x with 
the connected component of its image in the classifying space of the category *€. 

PROOF. First observe that Quillen's "Theorem A" [58] holds with essentially 
the same proof for continuous functors between topological categories with dis­
crete object sets whose identity map (objects to morphisms) is a cofibration. 

Since the connected component of the image of ^x in the classifying space 
of ^ is the classifying space of the connected component (as a graph) of ^ that 
contains X, we can reduce to this smaller category and assume without loss 
of generality that ^ is connected (as a graph). Applying Quillen's Theorem 
A (dual formulation), we are reduced to showing that for every Y in ^ , the 
topological category ^x/y is contractible. But if / : Y —> Z is morphism in 
^ , then we have / ' : Z —• Y and paths 7: / ' o / —> 1Y and 7 ' : / o / ; >̂ lz. We 
can interpret the morphisms / and / ' as continuous functors ^x/y —* ^x/Z, 
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^x/Z —• ffx/y, and the paths 7 and 7' as continuous functors ^x/Y x I —> 
&x/y, ^x/Z x I —*• ̂ x/Z. Passing to the classifying spaces we see that the 
paths represent homotopies B(tfx/Y) x I —• B{VX/Y) and B{<gx/Z) x I —• 
B(^x/Z) from the composites BfoBf and BfoBf to the repective identities. 
In short, ^x/Y and ̂ x/Z are homotopy equivalent. Since we have reduced to 
the case when *€ is connected (as a graph), we see that ffx/Y is homotopy 
equivalent to ffx/X. The lemma is established by the observation that ^x/X 
has a final object and therefore is contractible. • 

We begin to compare K+R to Kf^R. One obvious obstacle is that we have 
defined K+R in terms of a topological category and Kf^R in terms of a discrete 
one. Let wtf0 denote the (discrete) full subcategory of W ( / ^ R ) whose objects 
are homotopy equivalent to wedges of S#; the set of morphisms is the set of 
homotopy equivalences. Using arguments similar to [71, 2.2], we relate wff° to 
both W and wS.ftfR. 

LEMMA 7.3. (cf. [71, 2.2.5]) There is a chain of weak equivalences relating 
the classifying spaces of the categories W and wff0. Each map in the chain is a 
map of EOQ spaces. 

PROOF. For each fc, let WAk be the (discrete) category whose objects are the 
objects of wtf0 and whose morphisms WAk(X, Y) consist of the set of continu­
ous maps A[fc] —• / % ( X , V ) whose image lands in the component of a weak 
equivalence, where A[fc] denotes the standard topological /c-simplex. In light of 
the adjunction & (A[k\ +, f<gR(X ,Y)) = fVR(X A A[/c]+,F), we see that this is 
the same as the set of weak equivalences I A A[fc]+ —> Y. This is a simplicial 
category. Let Nj^ be the nerve of this category. 

If we realize Njtk in the k direction, we obtain a simplicial space that is the 
nerve of a topological category with a discrete set of objects. We denote this 
category as \WA\. In particular, the objects of \WA\ are the objects of wtf0 

and the morphism space \WA\(X, Y) is the geometric realization of the total 
singular complex of the subspace of / ^ R ( X , Y) consisting of those components 
which contain homotopy equivalences. For each X G W, let \WA\x be the 
full subcategory of \WA\ consisting of the single object X. By the previous 
proposition, the inclusion \WA\x —• | ^ A | induces a homotopy equivalence 
from the classifying space of \WA\x to its connected component in the classifying 
space of | W A\. On the other hand we have a natural weak equivalence of monoids 
\WA\(X, X) —> W(X, X), giving a weak equivalence of their classifying spaces. 
Let \WASR\ be the full subcategory of \WA\ consisting of the finite wedges of 
SR. Then we have weak equivalences HiV^H <-̂ - ||/^AS#||—>|y^|. 

Next we produce a weak equivalence between w^° and WA*. The map 
A[fc]+ —> 5° induces a functor F: w^° —• WAk that is the identity on 
objects. Let G: WAk —> wtf0 be the functor induced by the map 5° —> A[fc]+ 
that sends the non-basepoint to the zeroth vertex of A[fc]. Then GF is the 
identity functor on w^°. We show that FG is homotopic to the identity. Let 
H: WA* —• ̂ Afc be the functor that takes X to XAI+ and that on morphisms 
is induced by a map / x A[fc] —> A[fc] that is the identity on the bottom face 
{0} x A [A;] and sends the whole top face {0} x A[k] to the zeroth vertex of 
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A[k]. There are obvious natural transformations id —> H and FG —> H 
given by the inclusion of bottom face and the inclusion of top face, from which 
we conclude that FG is homotopic to the identity. We may regard wff0 as a 
simplicial category constant in the k direction. The functors F are compatible 
with the faces and degeneracies (in k), and therefore assemble to a simplicial 
functor w^° —> WA* that induces a homotopy equivalence upon passage to 
classifying spaces. 

It is easy to see that the simplicial maps above realize to maps of E^ spaces 
as they are induced by functors that preserve wedges. • 

PROOF OF THEOREM 7.1. If we let # be the category / % , then wtf0 is 
exactly the subcategory of weak equivalences of the category ^ ° defined above 
Lemma 6.2, the associated spectrum of which we denoted kff0. Again suspen­
sion and SR1 AR ( - ) give functors <£m —• ^ m + 1 and <ifm+1 —> ̂ m whose 
composites are weakly equivalent to the identity. We conclude that the maps 
in the homotopy colimit are homotopy equivalences and that kff0 is homotopy 
equivalent to KR. On the other hand, the previous proposition shows that K+R 
is weakly equivalent to ktf0. • 

REMARK 7.4. Note that we only needed the connectivity hypothesis to show 
the relationship between k*£° and Kf^R. More generally we do have a homotopy 
equivalence k^° ~ K+R (the spectrum whose zeroth space is K*kxBGLR+), 
but there is no reason to expect that the map kff0 —> Kf^R will be a homotopy 
equivalence. In particular kff0 cannot see any relationships between spheres of 
different dimensions. For example, if KQ k = Z, but SR ~ S^, then \wSmf^R\ is 
contractible but \wN.€£Q\ is not. 

REMARK 7.5. We should also observe that this allows another interpretation 
of the discretization mapj_7ro applied to the simplicial space NW gives an Eoo 
map KR(0) ~ Kf

Qk x BGLR+ —+ K$k x BGLk+ ~ tf'Jfc(O), which evidently 
coincides with the discretization map and is a weak equivalence in the case when 
R = Hk. 

REMARK 7.6 (MONOMIAL MATRICES). Let Y be the subcategory of W of 
those maps VnSft —> VUSR that are wedges of n maps SR —• SR in any order. 
Thinking of W{ynSR,ynSR) as analogous to GLnR, then y(VnSRyVnSR) is 
analogous to the subgroup of monomial matrices, those matrices with a single 
non-zero entry in each row and column. Let Rx denote the monoid Y(SR,SR) = 
W(SR, SR). Then ^ ( V n 5 n , VnS#) is isomorphic to the monoid T,nfRx and the 
classifying space of *V is isomorphic to the disjoint union of the classifying spaces 
of these monoids; moreover, under this isomorphism the E^ space structure 
induced by wedge sums becomes the EQQ space structure induced by block sums. 
We conclude that the group completion of the classifying space of Y is homotopic 
to QBRX + , and that Y —> W induces a map of spectra E°°Biix + —• KR. 

REMARK 7.7. (Naturality) Let A —> B be a map of 5-algebras. We saw 
in Propostion 4.1 that the functor B A^ (—) induces a map of ^-theory spectra 
KA —• KB. This also restricts to a continuous functor of topological categories 
y/A —> WB that induces a map of the plus contruction spectra above. We 
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conclude that these two maps represent the same map in the stable category, 
since this functor commutes up to natural isomorphism with the functors used 
in comparing K+ with K. 

8. Comparison with Waldhausen 's iiT-theory of spaces 

Now we compare the new algebraic if-theory with Waldhausen's algebraic K-
theory of spaces. For this, let X be a connected pointed topological space, and 
let G — \GSX\, the geometric realization of the Kan loop group of the based 
singular complex of X. This is a topological group with non-degenerate identity. 
We let R = Yi°°(G+) (where the plus subscript is union with a disjoint basepoint) 
and we note that R is an 5-algebra (IV.7.8) with k = TTQR — Z[KQG]. 

DEFINITION 8.1. Let H™ denote the topological monoid of pointed G-equi-
variant homotopy equivalences of V n EmG+ with itself, and let BH™ denote its 
classifying space. We have monoid maps 7i™ —> W™+1, and H™ —> ^™+i 
which are induced by suspension and by addition of an identity map on the last 
wedge summand and which are cofibrations. The algebraic i^-theory of the space 
X is defined to be the space A(X) = K£z[7t0G] x (colimm>n BH™)+. This is 
obviously equivalent to Waldhausen's definition [71, 2.2.1]. We shall also use the 
symbol A(X) to denote the spectrum associated to its delooping, and under this 
interpretation we will prove the following result. 

THEOREM 8.2. The spectra KY,ocG+ and A(X) are homotopy equivalent, nat­
urally in X. 

Observe that the functors £ ^ give maps of topological monoids 

H™ -+ SS(SJnY.°°G+,\lnY.°°G+) 

which are easily seen to be compatible with suspension and addition of an iden­
tity map. Composing with the functors L and S A& (—), we obtain maps of 
topological monoids 

H™ —> ~^s(Vn S A* LE°°G+, Vn S A* LE°°G+) . 

We denote this composite functor by L™. The observation that the functor 
G+ A (—) is naturally isomorphic to the functor R As (—) immediately implies 
that L™ sends G-equivariant maps to H-module maps; therefore, we can interpret 
L™ as a map of topological monoids W™ —> MnR. Since for m > 2, H™ consists 
of the subspace of those connected components of MapG(Vn EmG+, V n ^ m G + ) 
which 7T0 maps to GLn(R), we see that L™ restricts to a map of monoids H™ —> 
GLnR. We will show that in the colimit this map is a homotopy equivalence. 

PROPOSITION 8.3. The map of topological monoids 

Ln: co\immH™ -^GLnR 

is a homotopy equivalence. 
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PROOF, We have defined L™ via a composition of functors so that it would 
be easy to see that it is a map of monoids; we rewrite this composition to make 
it easier to analyze homotopically. 

Consider the map of spaces 

fm: ^(V„ Sm, V„ EmG+) — ^ s ( V n SS, V„ SR) 
(for fixed n) induced by the composite of the functors E££, L, and S As (—). The 
colimit of the fm is the composite of the maps 

colimm^(VnS"\Vn£mG+) — ^(Vn5,VnS00G+) 
—> ^[L](VnL5,V„LE-G+) 

each of which is a homotopy equivalence. Via the obvious isomorphisms, the 
map Ln agrees with the restriction of this map to the connected components 
that consist of weak equivalences, and so it is also a homotopy equivalence. • 

Since the inclusion of thejdentity in G is a cofibration, we see that induced 
map colimm BH™ —> BGLnR is a homotopy equivalence, and hence the in­
duced map on the plus constructions of the telescopes is a homotopy equivalence. 

P R O O F OF THEOREM 8.1. We need to show that we have a map of spectra. 
But the infinite loop space structure on A(X) comes from the operation wedge 
on the colimit of the topological categories whose objects are finite wedges of 
E m G + (for each m) and whose maps are the H™, The functors £™ assemble to 
a continuous functor from this colimit to the category W which commutes with 
wedges and which coincides with the above homotopy equivalence on the plus 
constructions. We conclude that the map constructed above 

K£z[ir0G\ x (colimm,n5W™)+ —* Kfa[ir0G\ x BGLR+ 

is a map of E^ spaces. 
Since G is a CW space, E°°G+ is a CW spectrum, so MnR, GL n # , BGLnR, 

BGLR, and BGLR+ have the homotopy type of CW spaces; therefore, the plus 
construction of the previous section produces a spectrum homotopy equivalent to 
KR. We conclude that the spectrum A(X) is homotopy equivalent to KR. • 

REMARK 8.4 (LINEARIZATION). The map R — • HZ As R is a map of S-
algebras and a rational equivalence. The map 

HZ As ( - ) : ^R{^nSR,\/rnSR) > ^HZAsR(^nSHZAsR^mSHZr\sB) 

induces an equivalence on rational homology. We conclude that the induced map 
KR —• K(HZ As R) is a rational equivalence. A comparison of the categories 
of modules for the 5-algebra HZ As R and the simplicial ring Z[GSX] would 
then give a linearization result. We save this and other observations along these 
lines for a future paper. 
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CHAPTER VII 

72-algebras and topological model categories 

In Chapter II, we set up the ground category of 5-modules, and we developed the 
theory of 5-algebras and their modules by exploiting the good formal properties 
of that category. In Chapter III, we set up a ground category of modules over a 
commutative 5-algebra R that enjoys the same formal properties as the category 
of S-modules, and the previous three chapters gave applications of that theory. 
As we discuss in Section 1, we can go on to define J£-algebras and their modules 
simply by changing ground categories from Ms to JMR. 

At this point, we face a homotopical problem. We want to use point-set 
level constructions, such as bar constructions and constructions of topological 
Hochschild homology, that involve taking smash powers of a commutative R-
algebra A. To make homotopical use of these constructions, we need to know 
that the underlying i?-modules of these smash powers represent their smash 
powers in the derived category of R-modules. However, A need not have the 
homotopy type of a cell .R-module, so we must approximate it by a weakly 
equivalent ii!-algebra with better properties. We first attacked this problem by 
use of the bar construction of Chapter XII, but we shall here deal with it by use 
of Quillen model categories. 

Thus we shall prove that all of our various categories of Am and Eoo ring 
spectra, ii-algebras, commutative it!-algebras, and modules over any of these 
are complete and cocomplete, tensored and cotensored, topologically enriched 
categories that admit canonical (closed) model structures in the sense of Quillen 
[57]. Since cofibrations and fibrations in the classical sense are important in 
our theory, we shall use the terms g-cofibration and g-fibration for the model 
category concepts. 

The proofs that our categories are so richly structured are almost entirely 
formal, and these formal structures do not solve or even address the motivat­
ing homotopical problem since forgetful functors need not preserve g-cofibrant 
homotopy types. However, we shall see that the problem can be solved by com­
bining the formal theory with the homotopical analysis of the linear isometries 
operad. 

Much of the formal theory in this chapter is based on ideas and results orig­
inally due to Hopkins and McClure (in part in [32], but we have also benefited 
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from many profitable conversations) or to McClure, Schwanzl and Vogt [54]. 

1. j?-algebras and their modules 

We fix a commutative 5-algebra R and work in the symmetric monoidal cat­
egory MR of R-modules. 

DEFINITION 1.1. Ani^-algebraisamonoidin*/^. A commutative-R-algebra 
is a commutative monoid in MR. 

As in algebra, we obtain free i2-algebras by "extension of scalars" from 5 to R. 
To show this, we use an alternative description of i?-algebras and commutative 
R-algebras, which again is the same as in algebra. Say that a map r? : R —> A 
of i?-algebras is central if the following diagram commutes: 

R AS A >- A As R 

TjAid id A77 

A As A -j—>• A ^—£- A AS A 

We learned the following interpretation of this definition from McClure. 

REMARK 1.2. The center of an associative /c-algebra A with product 0 can 
be written as the equalizer displayed in the diagram 

C(A) *A=£Homk(A,A)-

here <t>(a)(b) = ab and </>r(a)(b) = ba. This suggests that the center C(A) of an 
5-algebra A should be defined as the equalizer displayed in the diagram 

C(A) >A==£FS(A,A). 
<f)T 

The definition of a central map 77 : R —• A then says precisely that 77 factors 
through C(A). 

LEMMA 1.3. An R-algebra A is an S-algebra with a central map R —> A of 
S-algebras. A commutative R-algebra A is a commutative S-algebra with a map 
R —• A of S-algebras. 

P R O O F . Trivially, if A is an i?-algebra, then its unit 77 : R —> A is a central 
map of R-algebras. Conversely, if A is an 5-algebra and r\ : R —> A is a map of 
5-algebras, then A is a left .R-module via the composite 

RASAJ!^1AASA-JL^A 

There is a symmetrically defined right action of R on A that makes A an (R, R)-
bimodule. Centrality ensures that the left and right actions agree under the 
commutativity isomorphism of their domains. The product of A therefore factors 
through A AR A to give the required -R-algebra structure. • 
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We leave the proofs of the next few results as exercises; as in the proofs above, 
one first writes down the proof of the algebraic analogue and then replaces tensor 
products with smash products. 

PROPOSITION 1.4. If Q is an S-algebra, then R As Q is the free R-algebra 
generated by Q, hence R As TM is the free R-algebra generated by an S-module 
M. If Q is a commutative S-algebra, then R As Q is the free commutative 
R-algebra generated by Q, hence R As FM is the free commutative R-algebra 
generated by M. 

REMARK 1.5. We may think of R As (S l\<e H&X) as the "free" fi-algebra 
generated by a spectrum X and R As (S A% CX) as the "free" commutative R-
algebra generated by a spectrum X. However, in view of II.1.3 (see also III§1), 
this is a misnomer since the right adjoints of these functors from the category 
of spectra to the category of .R-algebras or commutative J^-algebras are weakly 
equivalent rather than equal to the obvious forgetful functors. 

PROPOSITION 1.6. Let f : R —• Rr and g : R —> R" be maps of commu­
tative S-algebras. Then R' AR R" is both the coproduct of R' and R" in the 
category of commutative R-algebras and the pushout of f and g in the category 
of commutative S-algebras. More generally, let f : A —> A' and g : A —• A" 
be maps of commutative R-algebras. Then A' A& A" is the pushout of f and g 
in the category of commutative R-algebras. 

As in algebra, we can define the notion of a module over an R-algebra A, but 
it turns out to be equivalent to the notion of a module over A regarded just as 
an S-algebra. Recall III.3.1. 

DEFINITION 1.7. Let A be an .ft-algebra. A left or right A-module is a left or 
right A-object in MR. 

The free A-module generated by an 5-module M is 

A AR (R AS M) = A AS M. 

This gives an isomorphism of monads that implies the following result. 

LEMMA 1.8. Let A be an R-algebra. A module over A regarded as an S-
algebra is the same thing as a module over A regarded as an R-algebra. That is, 
an action AAsM —• M necessarily factors through an action A AR M —> M. 

Similarly, if M and N are A-modules, then M AA N is the same whether 
defined using a coequalizer diagram in the category of jR-modules or in the 
category of 5-modules. 

LEMMA 1.9. Let A be an R-algebra, and let M be a right and N a left A-
module. Then MAAN can be identified with the coequalizer MA(A,R)N displayed 
in the diagram 

fj,Ajiid 
M ARAARN I M ARN ^ M A(A,R) JV, 

id ARU 

The analogous result holds for function A-modules. 
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PROOF. The proof is a formal categorical chase of the following schematic 
diagram: 

MA s i?A s iV 

M As A As N ; M As N ^ M AA N 
I I - ^ A l 

1 

Y y ^ -" IY 
M ARAARN ? M ARN ^ M A(v4^) AT. 

Here the left vertical arrow is an epimorphism, and this implies that the diagonal 
dotted arrow factors through the dotted right vertical arrow. • 

Although we have only one notion of an A-module, it is helpful to think of 
its study as divided into an "absolute theory", in which we take the ground 
ring to be S, and a "relative theory", in which we take the ground ring to be 
R. The absolute theory is a special case of the study of modules over algebras 
that we developed in Chapter III. In particular, III. 1.4 shows that F^X is weakly 
equivalent to A AX for a CW spectrum X. Here the free functor F^ is isomorphic 
to the composite functor AAR (RAS^S) from spectra to A-modules. Again, the 
term free is a misnomer since the right adjoint of ¥s is only weakly equivalent to 
the forgetful functor. The theory of cell and CW A-modules and the definition 
of the derived category of A-modules are part of the absolute theory. 

The previous lemma shows that the absolute smash product A A and function 
module functors FA are isomorphic to the relative functors, so that M AA N 
and FA(M,N) are it-modules. Of course, if A is a commutative i?-algebra, 
then these are A-modules and duality theory applies. In the relative theory, if 
we replace (R,S) by (A,i?), with concomitant changes of notations for various 
functors, then all of the statements in Chapter III which make sense remain true. 
Note, for example, that we have relative versions of III.3.10 and of the pairings 
discussed in III§6. The results on pairings give the following generalization of 
IIL6.12. 

PROPOSITION 1.10. Let R be a commutative S-algebra, A be an R-algebra, 
and M and N be A-modules. Then FA{M, M) is an R-algebra and FA(M, N) is 
an (FA(N, N), FA(M, M))-bimodule. 

Of course, the case A = R is of particular interest. 

2. Tensored and cotensored categories of structured spectra 

As in I§1, consider the categories 2? and 5? of prespectra and spectra indexed 
on a universe U. It was proven in [38, p. 17-18] that these categories are topo­
logical^ enriched, in the sense that their Horn sets are based topological spaces 
such that composition is continuous. For prespectra D and D', £P{D,D') is 
topologized as a subspace of the product over indexing spaces V of the function 
spaces F(DV,DfV). Since maps between spectra are just maps between their 
underlying prespectra, this fixes the topology on *9*{E, Ef). It was also observed 
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in [38, p. 18] that all of the functors introduced in that volume are continuous 
and all of the adjunctions proven in it are given by homeomorphisms of Horn 
sets. 

For example, by [38, 1.3.3], there are natural homeomorphisms 

(2.1) y(E A X, E') * P(X, y{E, E')) = y{E, F(X, E')) 

for spaces X and spectra E and E'', where 2F denotes the category of based 
spaces. In categorical language [33, §3.7], (2.1) states that 5? is tensored with 
tensors E A X and cotensored with cotensors F(X, E). Adjoining disjoint base-
points to unbased spaces X, we obtain similar homeomorphisms involving the 
category W of unbased spaces. We give a formal definition in the unbased con­
text. 

DEFINITION 2.2. Let <f be a category enriched over the category °lt of unbased 
spaces. Then £ is tensored if there is a functor ®# : <f x <%£ —> <f, continuous 
in both variables, together with a natural homeomorphism 

£(E ®g X, E') S «T(X, £(E, E')) 

for spaces X and objects E and E' of &'. We write 0 for ®«? when £ is clear from 
the context. Dually, <f is cotensored if there is a functor Fg : 9/°v x £ —• £, 
continuous in both variables, together with a natural homeomorphism 

«r(X, S{E, E')) * £{E, F,(X, E')). 

As in the motivating example (2.1), Fg will always admit an explicit descrip­
tion. The tensors are more interesting and less familiar. We will give a way of 
describing them for many spaces X in the next section. 

Again, by the argument illustrated in [38, p. 18-19], colimits and limits of 
spectra are continuous (a better term would be topological). This means that 
the isomorphisms 

(2.3) y{co\\mEi,F) ^ \im^(EhF) 

and 

(2.4) S*(F, lim EJ £ lim J^(F, £*) 

are homeomorphisms. 
The continuity can also be deduced categorically. There are valuable general 

notions of indexed colimits and limits in enriched categories, which are defined 
and discussed in Kelly [33, §3.1]. Indexed colimits include tensors with spaces 
and continuous colimits as special cases, and dually for limits. We shall not 
repeat the general definition, since we shall not have occasion to use it, and we 
shall rely on the following result of Kelly [33, 3.69-3.73] to deduce the existence 
of indexed colimits and limits. 

DEFINITION 2.5. A category £ enriched over <% is topologically cocomplete if 
it has all indexed colimits and topologically complete if it has all indexed limits. 

Copyright 1996 by the American Mathematical Society. Not for distribution.



132 VII. ^-ALGEBRAS AND TOPOLOGICAL MODEL CATEGORIES 

THEOREM 2.6 (KELLY). Let & be a category enriched over the category of 
based or unbased spaces. Then & is topologically cocomplete if it is cocomplete and 
admits tensor products and is topologically complete if it is complete and admits 
cotensor products. In particular, the given colimits and limits are continuous. 

Our various categories of structured ring, module, and algebra spectra inherit 
subspace topologies on their Horn sets. Thus they are all topologically enriched. 
All of the functors and adjunctions that we have constructed in this paper are 
continuous, by the cited arguments of [38, p. 18-19]. We claim that our vari­
ous categories of rings, modules, and algebras are topologically cocomplete and 
complete. 

For modules, this is immediate from II. 1.4, III. 1.1, and inspection. If R is an 
5-algebra, M is an jR-module, and X is a based space, then 

(2.7) JCR{M A X, M') =* &{X, JtR{M, M')) = MR{M, S A<? F{X, M')). 

We deduce the first isomorphism from the first isomorphism of (2.1) by first writ­
ing JCsiM, M') as the equalizer of a pair of maps S*(M, M') —• y ( L M , M') 
and then writing MR[M, M') as the equalizer of a pair of maps ^ s ( M , M') —> 
Ms{R As M, M'). We deduce the second isomorphism from the first by use of 
the isomorphisms 

M AX^M AS E°°X and S A<? F(X, M) £ FS(X°°X, M). 

PROPOSITION 2.8. For any S-algebra R, MR is topologically cocomplete and 
complete. Its tensors MAX and all other indexed colimits are created in Ms 
or, equivalently, in 5?\ Its cotensors Fs(E°°X,M) and all other indexed limits 
are created in Ms or, equivalently, by applying the functor S A% (—) to indexed 
limits created in S*. 

Now consider the categories of ^-algebras and of commutative i2-algebras. 
We agree to denote these categories by &/R and ffj^R, respectively. We must 
enrich these categories over ^ , since there are no "trivial maps" to take as 
basepoints of Horn sets. We have already observed in II§7 that the categories 
S&R and ^S^R are complete and cocomplete. Continuing that discussion, we 
obtain the following result. The proof works equally well in the categories of 
AOQ and Eoo ring spectra, where the result is due to Hopkins and McClure [32] 
and, in the Eoo case, is the main technical result of McClure, Schwanzl, and 
Vogt [54, Thm A]. 

THEOREM 2.9. For any commutative S-algebra R, the categories srfR of R-
algebras and ^S^R of commutative R-algebras are topologically cocomplete and 
complete. Their cotensors and all other indexed limits are created in Ms or, 
equivalently, by applying the functor S A^> (—) to indexed limits created in 5?. 

PROOF. By II.7.1 (compare IL4.5), we have monads T and IP in the category 
of .R-modules whose algebras are the i?-algebras and commutative .R-algebras, 
and these monads are continuous (e.g., by inspection when R = S and use 
of Proposition 1.4). Now II.7.2 and II.7.4 apply to show that srfR and ^s^R 

are cocomplete. In the commutative case, the construction of colimits is quite 
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simple since Proposition 1.6 gives coproducts and pushouts, and it is trivial to 
construct coequalizers from them. Moreover, by an easy bootstrap argument 
from the continuity of colimits in the ground category of spectra, coequalizers 
in &/R and ^S^R are continuous. Now II.7.2 and the following categorical result 
complete the proof. • 

PROPOSITION 2.10. Let T : *& —• *€ be a continuous monad defined on a 
topologically enriched category *£ and let tf[T] be the category of algebras over 
T. Assume that *& is topologically cocomplete and complete. 

(i) The forgetful functor ^[T] —> *£ creates all indexed limits. 
(ii) / / T preserves reflexive coequalizers, then &[T] has all indexed colimits. 

PROOF. Part (i) is the enriched version of [43, VI.2, Ex 2]. Our version of 
(ii) seems to be new, although part of the proof is due to Hopkins [32]. Reflexive 
coequalizers are defined in II.6.5. By II.7.4, we know that ^[T] is cocomplete in 
the ordinary sense. By Kelly's theorem (Theorem 2.6), we need only construct 
tensors in ^[T]. Thus let (C, £) be a T-algebra and I b e a space. Let C <g) X 
denote their tensor in *€. Define v : TC ® X —• T(C <g> X) to be the adjoint of 
the composite map of spaces 

X >- V{C, C ® X) - ^ V(TC, T(C <8> X)), 

where the first arrow is adjoint to the identity map C (g> X —• C ® X. Define 
C ®<g>[T] X to be the coequalizer in *& displayed in the following diagram: 

T(£®id) 
T(TC <8> X) T T(C ® X) ^ C ®¥[T] X. 

Clearly the parallel arrows are both maps of T-algebras. We claim that this 
diagram is a reflexive coequalizer in ^ . It will follow from II.6.6 that the diagram 
is a coequalizer in ^[T]. We check the adjunction homeomorphism 

^[T](C ®¥[T ] X, C ) £ «T(X, ̂ [T](C, C')) 

required of a tensor by using the fact that <if [T](C,C) is the equalizer in W of 

tf(C,C')^^tf(TC,C') 

and 
V(C, C')-±+V(TC, TC'f-^Qtf(TC, C). 

To see that the displayed coequalizer is reflexive, as claimed, consider the map 

T(?7 <g> id) : T(C <8> X) —> T(TC ® X). 

Clearly T(f (8) id) o Y(r) <8> id) = id. Less obviously, /i o TV o T(T; (8) id) = id. This 
follows by adjunction from the commutative diagram 

X 2 ^ tf (c , T(C (g) X)) 

^ (C, C (8) X) - ^ V(T, T(C ® X)). 

^(id,7]) 
?fa,id) 
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Here the commutativity of the upper left triangle defines the adjoint 77, and the 
lower right triangle commutes by the naturality, 77 o / = T / o 77, of rj on maps 
/ : C —• C <8>X. Thus T(T7 <g> id) gives the required reflection. • 

In particular, Fs(£°°J!f+, A) is the cotensor of a space X and an ii-algebra 
or commutative i?-algebra A. The diagonal on X and the product on A induce 
the product on Fs(E°°X+,A). The following instance of a general categorical 
observation explains the relationship between the smash product A A X+ in the 
category of i?-modules and the tensor A <g> X in the category of .R-algebras or 
commutative R-algebras. 

PROPOSITION 2.11. For R-algebras A and spaces X there is a natural map of 
R-modules 

UJ : AAX+ —• A®X 

such that u is the canonical isomorphism ifX = {*} and the following transitivity 
diagrams commute: 

(A A x+ ) A y+ - ^ ^ {A ® x) A y+ —£-*• (A ® x) ® Y 

AA{XX y ) + ^ A ® (x x y). 

For x G l , Ze£ ix : A —• A A X + 6e £fte map induced by the inclusion {#}+ —> 
X+. A map f : A A X + —• £ 0/ spectra into an R-algebra B such that each 
composite f oix \ A —• B is a map of R-algebras uniquely determines a map of 
R-algebras f : A® X —• B such that f = / o UJ. The same statement holds for 
commutative R-algebras. 

PROOF. We have a natural map 

sfR[A ®X,B)^ ty(X,*fR(A,B)) —• «T(X, JlR{A,B)) * JtR(A A X + , B), 

and UJ is the image of the identity map of A <g> X. The rest is easy diagram 
chasing, using the natural map JKR{A A X+,B) —> S*(A A X+,B) for the last 
statement. D 

REMARK 2.12. For .R-algebras A and B, the previous result says that a map 
A®X —> J5 of jR-algebras determines and is determined by a map AAX+ —• B 
of spectra that is pointwise a map of .R-algebras. A similar construction and 
result apply whenever one has a tensored category <f with a continuous forgetful 
functor to spectra. For objects A and B in <£°, we define a homotopy to be a 
map h : A <8> / —> B. Then ft is induced by a homotopy A A /+ —> JE? through 
maps in &. 
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3. Geometric realization and calculations of tensors 

To prepare for our construction of model structures and our study of thh, 
we explain how to calculate tensors E <S> X for certain spaces X, and we use 
this calculation to study pushouts and cofibrations in the context of it-algebras. 
Our main tool is geometric realization, and the reader is urged to read the first 
two sections of Chapter X, which give a down to earth study of the geometric 
realization of simplicial spectra, before reading this section. 

Fix a topologically complete and cocomplete category & with a continuous 
forgetful functor to spectra. We have the notion of a simplicial object E+ in 
S'. There are two notions of the geometric realization of such an object. We 
can first forget down to the category of simplicial spectra and take the geometric 
realization |.E*| there, or we can rework the definition and carry out the construc­
tion entirely in <f, obtaining the internal geometric realization |i£*|<£>. Explicitly, 
\E+\s is the coend 

(3.1) \E+\* = J Eq®#Aq. 

The following relationships between these two kinds of geometric realization 
generalize and clarify observations of McClure, Schwanzl, and Vogt [54, 4.3, 4.4] 
about the category of E^ ring spectra. We defer the proofs to the end of the 
section. 

PROPOSITION 3.2. Let X* be a simplicial space and let A € &. Then there is 
a natural isomorphism 

A®#\X*\ ^\A®#X*\#, 

of objects of &'. 

The realization of underlying simplicial spectra is more amenable to homo-
topical analysis than the internal realization. In favorable cases, the realization 
\E+\ will again be an object of <f, but this is not formal. We shall prove in X§1 
that this holds for all of the categories of interest to us. In such cases, the two 
geometric realizations are isomorphic. In particular, the following result holds. 

PROPOSITION 3.3. Let R be any commutative S-algebra, such as R = S. For 
simplicial R-algebras A*, there is a natural isomorphism of R-algebras 

\A*\ = \AA*„ 
and similarly for simplicial commutative R-algebras. 

COROLLARY 3.4. For R-algebras A and simplicial spaces X*, there is a nat­
ural isomorphism of R-algebras 

and similarly for commutative R-algebras. 
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In the following discussion, we let S denote either S&R or ^S^R and write <g) for 
(£>£>. We use the term il-algebra in either case. The computation of A% \X+\ just 
given applies particularly effectively to simplicial sets X*, regarded as discrete 
simplicial spaces. We have a categorical coproduct II in £. This is AR in the 
commutative case, but it is the "free product" in the non-commutative case. In 
the commutative case, the codiagonal map V : A II A —> A is the product on 
A. In both cases, the unit rj : R —> A is the unique map from the initial object. 
Since a discrete set n with n points is the coproduct of its elements and the 
functor A <g> (—) preserves coproducts, A <g> n is the coproduct of n copies of A. 
To calculate A <g> |X*|, we need only identify the induced face and degeneracy 
operators on coproducts of copies of A in terms of the structure maps 7 and rj. 

In order to understand homotopy theory in <f, we need to understand A 0 L 
We shall describe it in terms of a bar construction that is defined on R-algebras. 
Recall that we defined the bar construction B(M, R, N) for a commutative S-
algebra R and R-modules M and N in IV. 7.2. We shall later use the evident 
generalization in which we replace R and its modules by a commutative R-
algebra A and its modules. We here introduce a variant that applies equally 
well to either commutative or non-commutative R-algebras. In the commutative 
case, it is just the specialization of the cited generalization in which the given 
A-modules are restricted to be commutative A-algebras. 

DEFINITION 3.5. Let A be an ^-algebra, and let / : A —> A' and g : A —> 
A" be maps of R-algebras. These maps and the identity maps of A' and A" 
determine maps of i^-algebras 

fi : A' U A —+ Af and v : A II A" —• A" 

Define a simplicial -R-algebra (3^(A', A, A") by replacing As and 0 by II and V 
in IV.7.2. Then define an ^-algebra 0R{A',A,A") by 

0R(A',A,A") = \p?(Af,A,A")\. 

There is an evident natural map of R-algebras 

iP:/3R(Af,A,A") -^A'UAA" 

from the bar construction to the displayed pushout. 
Define the double mapping cylinder .R-algebra M(A', A, A") by 

(3.6) M(A', A, A") = Af UA {A 0 1 ) UA A" 

and observe that the map / —> {pt} induces a collapse map 

tl> : M(A',A,A") —> A'UAA". 

We have the following identification of these two constructions. 

PROPOSITION 3.7. Let A be an R-algebra with given maps to R-algebras A' 
and A!'. Then there is a natural isomorphism 

J3R(A,A,A)^A®I 
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of R-algebras over A and under AM A, and there is a natural isomorphism 

{3R{A',A,A")^M(A',A,A") 

of R-algebras over A! LU A!' and under A! II A". 

PROOF. Let i* be the standard simplicial 1-simplex with realization / . It has 
p + 2 p-simplices, and a simple comparison of its face and degeneracy operations 
(e.g., [44, p.14]) with those of the bar construction shows that we have a natural 
identification of simplicial -R-algebras 

0*(A,A,A)*A<»I+. 

In fact, one can see this quite directly, since the only non-degenerate simplices 
of I* are a 1-simplex Ai and its faces, and similarly for P^(A}A,A). The rest 
follows. • 

We use this to obtain a result about cofibrations that will be at the heart of 
our construction of model structures on <f in Section 6. Let T : J6R —> & be the 
free jR-algebra functor; thus T must be interpreted as P in the commutative case. 
We shall prove in XII.2.3 that the functor T preserves cofibrations of -R-modules. 
Since T preserves tensors and pushouts and since R = T(*), we have 

TCM ^ R U T M (TM <8> J). 

PROPOSITION 3.8. For an R-module M and a map of R-algebras TM —> A, 
the natural map of R-algebras 

i) : M(TCM, TM, A) —> TCM UtM A 

is homotopic rel A to an isomorphism. 

PROOF. For a based space X, it is trivial to see that the map 

CX UX (X A /+) —+ CX 

that retracts the cylinder onto the base of the cone is homotopic to a homeomor-
phism. Working in the category of R-modules, the same argument works with 
X replaced by M. Applying the functor T, the cited map then becomes the map 

p : R IITM (TM (8) I) UTM (TM <g> / ) —> R UT M (TM ® I) 

that retracts the second copy of TM <g> / onto the base of the first. We have 

M(TCM, TM, A)*R UT M (TM ® / ) I I T M (TM ® / ) I I T M A, 

and \j) is obtained by applying the functor (—) IITM A to p. The conclusion 
follows. • 

Copyright 1996 by the American Mathematical Society. Not for distribution.



138 VII. H-ALGEBRAS AND TOPOLOGICAL MODEL CATEGORIES 

PROPOSITION 3.9. For any pushout diagram of R-algebras 

TM >- A 

\i 
J Y 

TCM • B, 

the map i is a cofibration of R-modules and therefore of spectra. 

PROOF. The essential point is just that the unit map 77 : R —> TCM is 
the inclusion of a wedge summand of it-modules and a retract of it-algebras. 
Prom this, we find that the induced map A —• TCM II A of it-algebras is also 
the inclusion of a wedge summand of it-modules and a retract of it-algebras. 
By the previous lemma and proposition, the pushout is isomorphic under A 
to the bar construction (3R(TCM, TM, A). All of the degeneracy operators of 
f3R(TCM, TM, A) are inclusion of wedge summands of .R-modules, and it follows 
that (3j*(TCM, TM, A) is proper in the sense of X.2.2. This implies that the map 
from the zero skeleton TCMIIA into (3R(TCM, TM, A) is a cofibration, and the 
conclusion follows. • 

We shall also need the following elementary complement. 

LEMMA 3.10. Let {Ai} be a sequence of maps of R-algebras that are cofibra-
tions of spectra. Then the underlying spectrum of the colimit of the sequence 
computed in the category of R-algebras is the colimit of the sequence computed 
in the category of spectra. 

PROOF. The colimit in the category of spectra computes the colimit in the 
category of it-modules and satisfies 

(colim Ai) f\R (colim A%) = colim (Ai AR Ai). 

Therefore the spectrum level colimit inherits an it-algebra structure from the 
Ai, and the universal property in the category of it-algebras follows from the 
universal property in the category of it-modules. • 

We must still prove Propositions 3.2 and 3.3. Let stf denote the category of 
simplicial objects in a category *&. 

P R O O F OF PROPOSITION 3.2. For a space Y, let °l/(A*,Y) be the evident 
simplicial space with g-simplices ^/(Aq,Y). This functor of Y is right adjoint 
to geometric realization, 

(3.11) V{\X.\,Y) * sW(X*,W{A+,Y)). 

Similarly, for an object F of &\ let Ff(A+,F) be the evident simplicial object of 
& with g-simplices F#(Aq, F). This functor of F is right adjoint to the internal 
geometric realization, 

(3.12) £(\E*\#,F)^s£(E*,F#(A*,F)). 
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These adjunctions, together with tensor and cotensor adjunctions, give the chain 
of natural isomorphisms 

f(E®*\X*\,F)*V(\X*lf(E,F)) 
^sW(X*,W(A*,<?(E,F)) 
^sW(X*,<?(E,Fe(A*,F)) 
^s<?(E®#X*,F#(A*,F)) 

The conclusion follows. • 

P R O O F OF PROPOSITION 3.3. Our interest is in the examples <f = JH/R and 
<f = *&&?&, but the argument works more generally. In fact, it applies whenever 
realizations \E+\ inherit structure present in <?, with the induced structure "aris­
ing pointwise". To explain what this means, note that we have an adjunction 
like those of (3.11) and (3.12) for simplicial spectra K* and spectra L, namely 

(3.13) y(\K*\,L) * sy(K*,F((A*)+,L)), 

where F((A*)+,L) has #-simplices F((Ag)+,L). Now let E+ be a simplicial 
object of <f and F be an object of <f. When \E*\ is again an object of <f, we 
have the subspace 

S(\E.\,F)CS'(\E.\,F) 

of maps in S\ We say that the induced structure on |25*| arises pointwise 
if this subspace coincides under the adjunction (3.13) with the subspace of 
S * ^ ( J E * , F ( ( A * ) + , F ) ) consisting of those points / = {fq} such that the ad­
joint fq : Eq A (Ag)+ —• F of fq : Eq —• F((A q )+,F)) restricts to a map 
Eq —y F in £ on the copy of Eq in Eq A (Aq)+ determined by each point of Aq. 
By Proposition 2.11 and Remark 2.12, such a map fq extends uniquely to a map 
gq : Eq <8>£ Aq —• F in <f. In turn, under the tensor-cotensor adjunction, gq 

corresponds to a map gq : Eq —> F#(Aq,F) in &. The function {fq} —> {gq} 
determines an adjunction 

(3.14) f(\E*\,F) * s<f (F*, F^ (A*, F)). 

Comparison of (3.12) and (3.14) gives the conclusion. An alternative argument 
based on the properties of the monads T and P is also possible. The adjunctions 
above can be used to check that 

T\A*\*\T(A*)\*R. 

The functor T commutes with |-| on simplicial ^-modules, the functor | - |^ 
preserves coequalizers, and a comparison of coequalizer diagrams gives the re­
sult. • 
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4. Model categories of ring, module, and algebra spectra 

We shall prove that our various categories of structured spectra admit model 
structures. A more general, axiomatic, framework is possible; compare Blanc 
[5]. We assume familiarity with the language of model categories, by which 
we understand closed model categories in Quillen's original sense [57]. A good 
exposition is given in [18]. We explain our results in this section and prove them 
in the next. 

In this paper, cofibrations and fibrations in any of our categories mean maps 
that satisfy the homotopy extension property (HEP) or covering homotopy prop­
erty (CHP) in that category. Cofibrations in this sense will play a central role 
in the work of the next section. It is a pity that the language of model cate­
gories has, in the literature, been superimposed on the classical language, with 
resulting ambiguity. We shall use q-cofibrations and q-fibrations for the model 
theoretic terms. 

In all of our model categories, the weak equivalences in the model sense will be 
those maps in the category which are weak equivalences of underlying spectra. 
We say that the weak equivalences are created in 5?. Observe that a retract of a 
weak equivalence is a weak equivalence. Recall that a g-fibration or g-cofibration 
in a model category is said to be acyclic if it is a weak equivalence. 

Implicitly or explicitly, we must constantly think in terms of diagrams 

i\ V \p 
Y / T 

where the square is given to be commutative and we seek a lift g that makes 
both triangles commute. We say that i has the left lifting property (LLP) with 
respect to a class of morphisms & if there exists such a lift g for any square 
in which pG ^ . We say that p satisfies the right lifting property (RLP) with 
respect to a class of morphisms J if there exists such a lift g for any square in 
which % 6 «/\ 

For example, a Serre fibration of spectra is a map that satisfies the CHP with 
repect to the set of "cone spectra" 

{E£°CS n | q>0 and n > 0}. 

This means that it is a map that satisfies the RLP with respect to the set of 
inclusions 

io : ££°CSn —-> Z™CSn A /+. 
Again, a retract of a Serre fibration is a Serre fibration. The <?-fibrations in 5? 
will be the Serre fibrations. 

The following definition will allow us to give succinct statements of our results. 

DEFINITION 4.1. Let ^ be a model category with a forgetful functor to S? 
that creates weak equivalences and let £ be a category with a forgetful functor 
to c£. We say that ^ creates a model structure in & if <f is a model category 
whose weak equivalences are created in 5? and whose g-fibrations are created in 

Copyright 1996 by the American Mathematical Society. Not for distribution.



4. MODEL CATEGORIES OF RING, MODULE, AND ALGEBRA SPECTRA 141 

#\ That is, a map in & is a g-fibration if it is a g-fibration when regarded as a 
map in *€. The <7-cofibrations in £ must then be those maps which satisfy the 
left lifting property with respect to the acyclic g-fibrations. 

Our categories are enriched, and our model structures will reflect this. Quillen 
defined the notion of a simplicial model category in [57, II§2], and the appropriate 
topological analogue of his definition reads as follows. 

DEFINITION 4.2. A model category <f is topological if it is topologically com­
plete and cocomplete and if, for any g-cofibration i : E —• F and g-fibration 
p : X —• Y, the induced map 

(4.3) (i*,p„) : <f(F, X) —> f(E,X) x#{E}Y) f(F,Y) 

is a Serre flbration of spaces which is acyclic if either i or p is acyclic. 

THEOREM 4.4. The category y is a topological model category with respect 
to the weak equivalences and Serre fibrations. If T : S? —> 5? is a contin­
uous monad that preserves reflexive coequalizers and satisfies the ((Cofibration 
Hypothesis", then 5? creates a topological model structure in ^ [ T ] . 

We think of the first statement as the specialization to the identity monad 
of the second. We shall specify the "Cofibration Hypothesis" shortly. It will 
obviously be satisfied by the identity monad and by the monad L, and arguments 
like those of the previous section verify it for the monads TL and PL that define 
AQO and EQO ring spectra. 

COROLLARY 4.5. The categories ofh-spectra and of Aoo and EOQ ring spectra 
are topological model categories. 

Of course, we are far more interested in our categories of modules and algebras. 
The crux of the proof of Theorem 4.4 is the adjunction 

y,[T){jx,A)^y{x,A) 

for spectra X and T-algebras A. By the adjunction, the g-fibrations in S?[T] are 
the maps that satisfy the RLP with respect to the set of inclusions 

Ti0 : TX™CSn —• T £ ^ C 5 n A /+. 

That is, they satisfy the CHP with respect the set of "cone T-algebras" T££°C5 n . 
These maps deserve to be called Serre fibrations of T-algebras. 

Similarly, we define a Serre flbration of ^-modules to be a map that satisfies 
the CHP with respect to the "cone 5-modules" S A# L££°CSn . For 5-modules, 
the adjunction above must be replaced by the adjunction 

JCS{S A <? UC, M) 9* J/%X, F<?(S, M)) 

that we obtain by composing the first adjunction of II.2.2 with the freeness 
adjunction for the monad L. Thus, when interpreting Definition 4.1 for 5-
modules, we must change our forgetful functor from the obvious one to the 
functor F&(S, - ) . Since F^(S, M) is naturally weakly equivalent to M, by 1.8.7, 
the weak equivalences are unchanged. However, the (^-fibrations are changed. 
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THEOREM 4.6. The category Ms is a topological model category with weak 
equivalences created in 5?. Its q-fibrations are the Serre fibrations of S-modules, 
which are the maps f : M —> N of S-modules such that 

F(id, / ) : F* (5, M) —* F* (S, N) 

is a Serre fibration of spectra. 

Although the functor TX — S A& LX from spectra to 5-modules is not 
a monad, the proof of Theorem 4.4 nevertheless applies. To understand this, 
we think in terms of the "mirror image" category Ms of counital L-spectra 
specified in II.2.1. By II.2.7 and composition (see II.6.1), we have a continuous 
monad F%{S,L(—)) on 5? whose algebras are the counital L-spectra. We have a 
topological equivalence of categories Ms —> Ms that carries N to S A& N. By 
II.2.5, S N<£ F&(S,M) is naturally isomorphic to S A& M for any L-spectrum 
M. Thus the monad that defines counital L-spectra is transported under the 
equivalence to the functor T relevant to the construction of the model structure 
on Ms- The equivalence has the effect of changing the forgetful functor. 

The proof of Theorem 4.4 will apply equally well if we change our ground 
category to Ms-

THEOREM 4.7. If T : Ms —• Ms is a continuous monad that preserves 
reflexive coequalizers and satisfies the "Cofibration Hypothesis", then Ms creates 
a topological model structure in Ms[T]. 

Of course, the description of the g-fibrations as maps / such that F& (5, / ) 
is a Serre fibration persists. Again, the Cofibration Hypothesis will be specified 
shortly and holds in our examples. 

COROLLARY 4.8. The categories of S-algebras, commutative S-algebras, and 
modules over an S-algebra R are topological model categories. 

Now that we have a model structure on MR, we can generalize Theorem 4.7 
by changing its ground category to MR. 

THEOREM 4.9. Let R be a commutative S-algebra. IfT : MR —> MR is a 
continuous monad that preserves reflexive coequalizers and satisfies the "Cofi­
bration Hypothesis", then MR creates a topological model structure in MR[T). 

COROLLARY 4.10. The categories of algebras and commutative algebras over 
a commutative S-algebra R are topological model categories. 

In fact, Theorems 4.7 and 4.9 both apply, and they give the same model 
structures since they give the same g-fibrations and weak equivalences. We 
prefer to think of the model structure as created in MR, since that makes visible 
more information about the g-cofibrations. While the model category theory 
dictates what the g-cofibrations must be, the proofs of the theorems will lead to 
explicit descriptions. 
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DEFINITION 4.11. Let T be a monad in S? as in Theorem 4.7. A relative cell 
T-algebra Y under a T-algebra X is a T-algebra Y = colim Yn, where Y0 = X and 
y n + 1 is obtained from Yn as the pushout of a sum of attaching maps TSq —> Yn 

along the coproduct of the natural maps TSq —• TCSq. When X is an initial T-
algebra, we say that Y is a cell T-algebra. Relative and absolute cell T-algebras 
are defined in precisely the same way for a monad T in MR as in Theorem 4.9, 
except that the sphere spectra Sq are replaced by the sphere R-modules S^. 

REMARK 4.12. The functor T : S? —• ^ [ T ] , being a left adjoint, preserves 
coproducts. Thus, when attaching a coproduct of cells TCSq to Yn to obtain 
Yn+i, we are considering a pushout in S*[T] of the general form 

TE >A 

(4.13) \i 
y Y 

TCE >B, 

where E is a wedge of spheres, and similarly when the ground category is Ms 
or MR. 

The Cofibration Hypothesis is just the minimum condition necessary to obtain 
homotopical control over these pushout diagrams and their colimits. It holds in 
our examples by Proposition 3.9 and Lemma 3.10. 

COFIBRATION HYPOTHESIS. The map i in any pushout of the form (4.13) is 
a cofibration of spectra (for Theorem 4.4) or of 5-modules (for Theorem 4.7) 
or of .R-modules (for Theorem 4.9). The underlying spectrum of the T-algebra 
colimit of a sequence of cofibrations of T-algebras is their colimit as a sequence 
of maps of spectra. 

Actually, for the model structure in Theorems 4.7 and 4.9, we only need the 
maps i to be cofibrations of spectra, or even just spacewise closed inclusions of 
spectra. However, the stronger i^-module cofibration condition holds in practice 
and is important in the applications. 

THEOREM 4.14. Under the hypotheses of Theorems 4-4> 4-7> and 4-9, a map 
of T-algebras is a q-cofibration if and only if it is a retract of a relative cell T-
algebra. Moreover, any q-cofibration is a cofibration of underlying spectra (in 
Theorem 4-4) or of underlying S-modules (in Theorem 4-V or of underlying 
R-modules (in Theorem 4-9). 

By the Cofibration Hypothesis, the second statement will follow from the first. 
In all of our categories of T-algebras, the trivial spectrum is a terminal object and 
every T-algebra is g-fibrant. By the previous result, a T-algebra is g-cofibrant if 
and only if it is a retract of a cell T-algebra. Note in particular that the unit 
R —> A of a g-cofibrant .R-algebra or commutative .R-algebra is a cofibration of 
.R-modules. 

As in our discussion of Theorem 4.6, the proof of the previous theorem will 
apply to give the following expected conclusion. 
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THEOREM 4.15. For an S-algebra R, such as R = S, a map of R-modules is 
a q-cofibration if and only if it is a retract of a relative cell R-module. 

Thus, in the case of ^-modules, model category theory just brings us back to 
the cell theory that we took as our starting point. We can turn this around. We 
certainly want the weak equivalences and g-cofibrations in *MR to be the weak 
equivalences of underlying spectra and the retracts of relative cell JR-modules. 
Since the weak equivalences and q-cofibrations determine the q-fibrations, we see 
that the g-fibrations specified in Theorem 4.6 are in fact forced on us by the cell 
theory that we began with. 

Returning to the general context of Theorem 4.14, we also have that the 
natural notion of homotopy in any of our categories of T-algebras, namely that 
discussed in Remark 2.12, agrees with the notion of homotopy that is dictated 
by our model category structures. 

LEMMA 4.16. If A is a q-cofibrant T-algebra, then A® I is a cylinder object 
for A in the sense of Quillen. That is, the folding map id + id : A U A —> A 
factors as the composite of a q-cofibration AHA —> A®I and a weak equivalence 
A® I —> A. 

5. The proofs of the model structure theorems 

We must prove Theorems 4.4, 4.6, 4.7, 4.9, 4.14, and 4.15 and Lemma 4.16. 
For uniformity of treatment, let ^ be either 5? or MR for a commutative S-
algebra R. Logically, of course, we should treat the case R = S before going on 
to the general case. Let T be a continuous monad in ^ that preserves reflex­
ive coequalizers. By Proposition 2.10, we already know that f̂ [T] is complete, 
cocomplete, tensored and cotensored, and indeed has all indexed limits and col-
imits. It is clear that if go/ is defined and two of / , g, and go f are weak equiv­
alences, then so is the third. It is also clear that the collections of g-fibrations, 
g-cofibrations, and weak equivalences are closed under composition and retracts 
and contain all isomorphisms. It remains to prove that arbitrary maps factor 
appropriately and that the g-fibrations satisfy the right lifting property (RLP) 
with respect to the acyclic g-cofibrations. The essential point is that Quillen's 
"small object argument" applies to construct the required factorizations. A gen­
eral version of Quillen's original argument is given in [18, §6], and we shall give 
a modified version of that argument. 

DEFINITION 5.1. For the purposes of this section, define a finite pair of spectra 
to be a pair of the form (E£°£?, H^A), where B is a finite based CW complex, A 
is a subcomplex, and q > 0. Define a finite pair of L-spectra to be a pair obtained 
by applying L to a finite pair of spectra. Define a finite pair of i2-modules to be 
a pair obtained by applying WR to a finite pair of spectra. 

As a matter of esoterica, we actually only need A, not B, to be finite in our 
arguments. 
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LEMMA 5.2. Let & be a set of maps in *£[$], each of which is of the form 
TE —> T F for some finite pair (F, E) in ff. Then any map f : X —> Y in 
^[T] factors as a composite 

X + X'- -^Y, 

where p satisfies the RLP with respect to each map in & and i satisfies the LLP 
with respect to any map that satisfies the RLP with respect to each map in 3P. 

PROOF. Let X = XQ. We construct a commutative diagram 

XQ —2->- X\ *- >• Xn — ^ Xn+i ->- • • • 

(5.3) f=PO Pn+1 

+ Y- id + Y-

as follows. Suppose inductively that we have constructed pn. Consider all maps 
from a map in & to pn. Each such map is a commutative diagram of the form 

(5.4) 

Summing over such diagrams, we construct a pushout diagram of the form 

UjEI>+xn 

IJTF-
Y 

The maps j3 induce a map pn+i : Xn+i —> Y such that pn+i ° i>n = Pn- Let 
X' = colim Xn, let i : X —• X1 be the canonical map, and let p : X' —• Y 
be obtained by passage to colimits from the pn. Constructing lifts by passage 
to coproducts, pushouts, and colimits in ^[T], we see that each in and therefore 
also i satisfies the LLP with respect to maps that satisfy the RLP with respect 
to maps in &. Assume given a commutative square 

where i is in &. To verify that p satisfies the RLP with respect to i, we must 
construct a map g that makes the diagram commute. The Cofibration Hypothesis 
implies that X' is constructed as the colimit of a sequence of cofibrations of 
spectra. By [38, App.3.9], a cofibration of spectra is a spacewise closed inclusion. 
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Therefore, using that T is the free functor from ^ to ^[T], we see by III.1.7 that 
the natural map 

(5.5) colim tf [T](TE, Xn) —> V[t\(TE, X') 

is a bijection. This ensures that a1 : TE —> X' factors through some Xn, giving 
us one of the commutative squares (5.4) used in the construction of Xn+\. By 
construction, there is a map TF —> Xn+i whose composite with the natural 
map to X' gives a map g as required. • 

LEMMA 5.6. Any map f : X —> Y in ^[T] factors as p o i, where i is an 
acyclic q-cofibration that satisfies the LLP with respect to any q-fibration and p 
is a q-fibration. 

PROOF. Let & be the set of pairs obtained by letting (B,A) in Definition 
5.1 run through all pairs of spaces (CSn A I+,CSn A {0}+), n > 0. By chasing 
through adjunctions and using the definition of g-fibrations and g-cofibrations, 
we see that a map is a #-fibration if and only if it satisfies the RLP with respect 
to every map in & and that every map in & is a g-cofibration, of course an 
acyclic one. Note the relevance of the first adjunction of II.2.2 when # = Ms'-
this is where the definition of g-fibrations in Theorem 4.6 is forced on us. Now 
use Lemma 5.2 to factor / . Then that lemma says that p is a g-fibration and 
that i satisfies the LLP with respect to all g-fibrations. In particular, i is a 
g-cofibration. We use the cylinders (—) <g> J to define homotopies in the category 
*«f[T], as discussed in Remark 2.12. Then the free functor T and the adjoint 
forgetful functor preserve homotopies. A formal argument shows that each in is 
the inclusion of a deformation retraction of T-algebras, and it follows that i is 
also a deformation retraction. Therefore i is an acyclic g-cofibration. • 

LEMMA 5.7. The q-fibrations satisfy the RLP with respect to the acyclic q-co-
fibrations. 

PROOF. This is formal. Let / : E —> F be any acyclic #-cofibration. We 
must show that / satisfies the LLP with respect to g-fibrations. By the previous 
lemma, we may factor / as / = poi, where i : E —• E' is an acyclic g-cofibration 
that does satisfy the LLP with respect to g-fibrations and p : E' —> F is a q-
fibration. Since / and i are weak equivalences, so is p. Since / satisfies the LLP 
with respect to acyclic g-fibrations, there exists g : F —> E' such that g o / = % 
and p o g = idjp. Clearly p and g, together with the identity map on E, express 
/ as a retract of i. Since i satisfies the LLP with respect to g-fibrations, so does 

/• • 
LEMMA 5.8. Any map f : X —> Y in S*[T] factors as p o i} where i is a 

q-cofibration and p is an acyclic q-fibration. 

P R O O F . This is another application of Lemma 5.2. Let srf& be the set of 
pairs obtained by letting (B, A) in Definition 5.1 run through all pairs of spaces 
(CSn, 5 n ) , n > 0. By tracing through adjunctions again, we see that a map of 
T-algebras is an acyclic g-fibration if and only if it satisfies the RLP with respect 
to all maps in srf& and that each map in srf'& is thus a #-cofibration. In the 
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factorization / = p o i that we now obtain from Lemma 5.2, that lemma says 
that p is an acyclic g-fibration and i is a g-cofibration. • 

We must still prove that ^[T] is topological, in the sense of Definition 4.2. As 
in [57, SM7(a), p.II.2.3], the description of g-cofibrations as retracts of relative 
cell T-algebras implies that we need only check that the map (4.3) is a Serre 
fibration when i : E —• F is in the set & defined in the proof of Lemma 5.6 
and an acyclic Serre fibration when i : E —• F is in the set srf& defined in the 
proof of Lemma 5.8. The freeness adjunction for the monad T reduces this to 
the case of spectra or of -R-modules, and further adjunctions then reduce it to 
its known space level analogue. This completes the proofs of Theorems 4.4, 4.6, 
4.7, and 4.9. 

PROOF OF THEOREM 4.14. As in the proof of Lemmas 5.2 and 5.8, a relative 
cell T-algebra E —• E' satisfies the LLP with respect to the acyclic g-fibrations 
and is thus a g-cofibration. Let / : E —> F be a g-cofibration. The proof of 
Lemma 5.8 gives a factorization of / as the composite of a relative cell T-algebra 
i : E —> E' and an acyclic g-fibration p : E' —• F. As in the proof of Lemma 
5.7, there exists g : F —> E' such that g o f = i and p o g = idjp, and p and g 
express / as a retract of i. • 

PROOF OF LEMMA 4.16. We may assume without loss of generality that A 
is a cell T-algebra. Write A = colimAn, where Ao = T(*) and, for n > 0, 
An = T(CEn) IlT(JBn) An-i for some wedge En of sphere objects of # \ Let 
Bn = AU.An (An®I) UAn A. Since the functor (—) <8>I commutes with colimits, 
we have 

A <g> I = A UA (A ® I) UA A ^ colim Bn. 

Clearly B0 ^ A II A. We have T{En A 1+) ^ TEn <g> J, and, for n > 0, Bn is 
constructed from f?n_i by a pushout diagram of the form 

T(En A J+ U CEn A (dl)+) ^ B n - i 

T(CEn A /+) ^ Bn 

It follows that A (g> / is the colimit of a sequence of inclusions of cell T-algebras 
relative to A II A. The canonical weak equivalences An 0 I —• An induce the 
canonical weak equivalence A® I —> A on passage to colimits. • 

The reader should be convinced that the construction of model structures is 
a nearly formal consequence of the monadic descriptions of our various notions 
of structured ring, module, and algebra spectra. 

REMARK 5.9. In [35], categories of A^ and ^oo fc-algebras and their modules 
were defined, and derived categories of modules were constructed, using a cell 
theory based on "sphere and cone modules". Replacing the ground category 5? 
with the ground category M^ of differential graded /c-modules, the arguments of 
this section apply to give model structures to the analogous algebraic categories 
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of modules. Unlike the treatments in [57, 5, 18], with this approach there is not 
the slightest reason to restrict attention to bounded below fc-modules. 

6. The underlying i^-modules of g-cofibrant J£-algebras 

Let R be a fixed #-cofibrant commutative ^-algebra. We study the underlying 
/^-modules of g-cofibrant i^-algebras and commutative /^-algebras. The main 
point is to prove that the point-set level iterated smash products of g-cofibrant 
-R-algebras represent their smash product in the derived category QlR. 

We begin with the simpler non-commutative case, and we do not need R to be 
g-cofibrant in the following two results. Recall from III.7.3 that smash products 
of cell #-modules are cell R-modules. 

PROPOSITION 6.1. Let A and B be R-algebras that are cell R-modules relative 
to R. Then their coproduct AUB is a cell R-module relative to R. In more detail, 
All B is the colimit of an expanding sequence of relative cell R-modules {Cn} 
such that Co = R and, for n > 1, C n /C n _i is the wedge of the two monomial 
word modules of length n in A/R and B/R. 

PROOF. The monomial word modules in i2-modules M and N are the smash 
products 

M AR N AR M AR • • • and TV AR M AR N AR • • • . 

By II.7.4, we see that A II B is constructed via a coequalizer diagram in ^ R 

T(TL4 V YE) T Y{A V B) ^ A II B. 

Writing out the source and target of the pair of parallel arrows as wedges of 
smash products and restricting to those wedge summands with at most n smash 
factors, we define Cn to be the coequalizer of the resulting restricted parallel pair 
of arrows. Clearly there result compatible maps Cn —> C n + i and Cn —> AJ1B 
such that A II B is the colimit of the Cn. In view of the use of the action maps 
YA —> A and YB —> B in II.7.4, we see that the wedge of the monomial 
words in A and B of length at most n maps onto Cn. That is, elements of word 
monomials involving A AR A or B AR B are identified in the coequalizer with 
elements of word monomials of lower length. 

Let Un be the coproduct in the category of JR-modules under R of the two 
monomial words in A and B of length n, so that the copies of R in these R-
modules under R are identified. Then Un is a relative cell il-module. Let Vn be 
the union of the subcomplexes of Un that are obtained by replacing any one A 
or B in either of the monomial words by its submodule R. The isomorphisms 
R AR A —> A and R AR B —> B induce a map Vn —> Cn. Inspection of 
the restricted coequalizer diagrams (and comparison with algebra for intuition) 
shows that there result pushout diagrams of .R-modules 

Vn ^Cn 

T T 

Un+1 *" Cn+1-
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Inductively, the Cn and A U B are cell ^-modules relative to R. • 

THEOREM 6.2. If A is a q-cofibrant R-algebra, then A is a retract of a cell 
R-module relative to R. Thus the unit R —• A is a q-cofibration of R-modules. 

PROOF. If M is a cell i?-module, then M? is a cell .R-module for j > 1 and 
(TM, R) is a relative cell .R-module. Moreover, since M —> CM is cellular, 
TM —> TCM is the inclusion of a subcomplex in a relative cell .R-module. 
Now suppose that (A, R) is a relative cell jR-module and that we have a pushout 
diagram of .R-algebras 

TM ^A 

TCM *B. 
As in the proof of Proposition 3.9, B is isomorphic to the geometric realization of 
a simplicial .R-module that is proper because its degeneracies are given by inclu­
sions of wedge summands. The previous proposition implies that its .R-module 
of p-simplices is a cell .R-module relative to R. Moreover, the face and degen­
eracy maps are sequentially cellular. Therefore, by X.2.7, (B,R) is isomorphic 
to a relative cell .R-module, and A is a subcomplex. By passage to colimits, any 
cell .R-algebra is a relative cell .R-module. The conclusion follows from Theorem 
4.14. • 

In the commutative case, the argument fails because we must pass to orbits 
over actions of symmetric groups. Tracing the proof of III.7.3 back to that of 
1.6.1, we see that it depends on the homeomorphism JSf(j) = -^(1) induced 
by a linear isomorphism / : W —• U. Since this homeomorphism is not E7-
equivariant, we cannot deduce that symmetric powers of CW L-spectra are, or 
even have the homotopy types of, CW L-spectra, although they do have the 
homotopy types of CW spectra. For this reason, we cannot conclude that the 
symmetric power M J / E j of a cell .R-module M has the homotopy type of a cell 
-R-module; we refer the reader to III.5.1 for an analysis of the homotopy type 
of its underlying spectrum. We get around this problem by use of the following 
result, which gives canonical CW 5-module approximations of smash products of 
"extended powers" of CW spectra. Here the j th extended power of X is defined 
to be 

DjX = (lLXy/Xjm?(j)KxjXi. 
We adopt the convention that DQX = S. 

THEOREM 6.3. Let {Xi,... , Xn} be CW spectra, let j% > 0, and consider the 
following commutative diagram of "L-spectra: 

A JS A^ LDj.Xi) - ^ i ATLD^Xt 

A_s? (id A^fO As?C 

A ^ A ^ X O - ^ ^ A ^ A * -
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All spectra in the diagram have the homotopy types of CW-spectra, all maps in 
the diagram are homotopy equivalences of spectra, and As(S A& 'LD^Xi) has the 
homotopy type of a CW S-module. 

PROOF. By [38, VI.5.2 or VIII.2.4], X* has the homotopy type of a E r C W 
spectrum indexed on UK By XI.1.7, Sf(j) has the homotopy type of a Ej-
CW complex. Therefore, by the equivariant form of 1.2.6, Sf(j) ix X^ has the 
homotopy type of a Ej-CW spectrum indexed on U. Thus, by [38, 1.5.6], DjX 
has the homotopy type of a CW-spectrum. By 1.4.6 and II.1.9, ILDjX has the 
homotopy type of a CW L-spectrum and 5 A& JLDjX has the homotopy type of 
a CW S-module. These conclusions pass to smash products by 1.6.1 and III.7.3. 
The top horizontal arrow is a homotopy equivalence of L-spectra by 1.4.6 and 
1.8.5, and the bottom horizontal arrow is a homotopy equivalence of spectra by 
XI.2.5. We claim that the right vertical arrow and therefore the left vertical 
arrow are also homotopy equivalences of spectra. Indeed, if all ji > 1, then use 
of 1.5.4 and 1.5.6 shows that the right vertical arrow is isomorphic to 

(JSf(n) x JSftfi) x ••• x JSf(jn)) K2 i i X . . .x E i n (Xf A - . - A X J H 

7Kid 

T 

%{h + • • • + Jn) XSj lx...XE jn (X{> A • • • A Xfr). 

Since 7 is a (Ej1 x • • • x EJn )-equivariant homotopy equivalence, the map before 
passage to orbits is an equivariant homotopy equivalence by the equivariant 
version of 1.2.5. If any ji = 0, then use of 1.6.1 reduces us to the case when a 
single ji = 0, and in this case the conclusion follows from 1.8.6. • 

Now return to the study of our given g-cofibrant commutative S-algebra R. 

DEFINITION 6.4. Define &R to be the collection of i?-modules of the form 

R As (S A* DjX), 

where X is any spectrum of the homotopy type of a CW-spectrum and j > 0. 
Define <£R to be the closure of &R under finite A^-products, wedges, pushouts 
along cofibrations, colimits of countable sequences of cofi.brations, and homo­
topy equivalences, where all of these operations are taken in the category of 
.R-modules. That is, if {Mi , . . . , Mn) C <?R, then Mi AR • • • AR Mn € SR, and 
so forth. 

Observe that #R contains all .R-modules of the homotopy types of cell R-
modules, that being the collection that would be obtained if we only allowed 
j = 1 in our initial class. One point of the definition is the following observation. 
Its proof is just like that of Theorem 6.2, and we shall say more about the 
commutative case shortly. 

THEOREM 6.5. The underlying R-module of a q-cofibrant R-algebra or com­
mutative R-algebra A is in SR. 

Another point is the following reassuring consequence of Theorem 6.3 and the 
definition. 
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PROPOSITION 6.6. The underlying spectrum of an R-module in &R has the 
homotopy type of a CW-spectrum. 

These lead to the main point, which is that we have control of the behavior 
of derived smash product of J?-modules that are in £R. 

THEOREM 6.7. Let R be a q-cofibrant commutative S-algebra. Choose a cell 
R-module TM and a weak equivalence of R-modules 7 : TM —> M for each 
M e £R. Then, for any finite subset {Mi , . . . , Mn} of SR, 

7 A/? • • • AR 7 : TMi AR • • • AR TMn —• Mx AR • • • AR Mn 

is a weak equivalence of R-modules. That is, the derived smash product of the 
Mi in the category Q>R is represented by their point-set level smash product. 

PROOF. When R = S and each Mi is in ^5 , Theorem 6.3 gives the conclusion. 
The conclusion for general Mi follows by standard commutation formulas relating 
smash products to the chosen operations. For general R and Mi = RAsNi, where 
Ni € Ss has CW 5-approximation TA^, R As TNt is a CW ^-approximation of 
Mi. Here we have the identification 

(R AS Ni) AR-.-AR(R AS Nn) ^RAsiNxAs--- As JVn), 

and similarly and compatibly for the TNi. By Theorem 6.5, R is in <?s, hence 
the result for 5 implies the result for these Mi. The result for general Mi follows 
as in the case R = S. • 

Observe that the 7 and their smash products are necessarily homotopy equiv­
alences of underlying spectra, since these are CW homotopy types. 

REMARK 6.8. In any model category, the coproduct of g-cofibrant objects is 
g-cofibrant. In particular, if A and B are ^-cofibrant commutative iZ-algebras, 
then so is A AR B. 

7. g-Cofibrations and weak equivalences; cofibrations 

Again, let R be a fixed g-cofibrant commutative 5-algebra. We here prove 
several useful lemmas concerning the relationship between g-cofibrations and 
weak equivalences. We also prove a key technical lemma about cofibrations. 
Recall the bar construction /3R(Af, A, A") from Definition 3.5. The following 
result is a direct consequence of Proposition 3.7 and Lemma 4.16. 

LEMMA 7.1. If A —• Af and A —• A" are maps of q-cofibrant R-algebras, 
then /3R(A,

1AJA,/) is a q-cofibrant R-algebra over A! MA A", and the natural 
map A' II A" —> PR{A', A, A") is a q-cofibration. The same statement holds for 
commutative R-algebras. 

This result gains force from the following two, which give good homotopical 
behavior of the functor PR(Af, A, A") and allow us to transport that behavior to 
the functor A' IIA A". Remember that A! U^ A!' = A! A A A" in the commutative 
case. 
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LEMMA 7.2. If A —> A1 is a map of q-cofibrant R-algebras, then the functor 
f3R(Af,A,—) preserves weak equivalences between q-cofibrant R-algebras. The 
same statement holds for commutative R-algebras. 

PROOF. This is not obvious since the given weak equivalence of .R-algebras 
will be a homotopy equivalence of .R-algebras but not necessarily of .R-algebras 
under A. The functor /3R is obtained by passage to geometric realization from 
a functor (3R to simplicial R-modules. Since coproducts of weak equivalences 
between g-cofibrant objects are weak equivalences in any model category, it is 
clear from Definition 3.5 that each functor (3R(A',A—) preserves weak equiva­
lences. By Lemma 7.4 below, /3*(A'', A, A") is a proper simplicial .R-module, and 
the conclusion follows from X.2.4. • 

LEMMA 7.3. If A —> A! is a q-cofibration of q-cofibrant R-algebras and A!' 
is a q-cofibrant R-algebra, then the natural map I/J : /3R(A', A, A") —• Af 11^ A" 
is a weak equivalence of R-algebras. The same statement holds for commutative 
R-algebras. 

PROOF. Recall from Proposition 3.7 that we can identify (3R(Af', A, A") with 
the double mapping cylinder M(A', A, A") as an .R-algebra over A'11 A A". With­
out loss of generality, we may assume that A —• A! is the inclusion of a relative 
cell jR-algebra. Write A' = colim A!n where Af

0 = A and A'n = T(CEn)UTEriA,
n_1 

for some wedge of sphere .R-modules En. Then each map A!n LU A!' —> 
A ; + 1 UA A" and M(A'n,A,A") —• M(A'n+1,A,A") is a ^-cofibration of R-
algebras and therefore a cofibration of .R-modules. Thus it suffices to show that 
each map ip : M(A!n, A, A") —> A'n HA A" is a weak equivalence. This is clear 
for n = 0; assume inductively that it is true for n — 1. We have the following 
commutative diagram, in which the horizontal arrows are the evident isomor­
phisms: 

i, idIIi/> 

A'n UA A" g p ^ T(CEn) UTEn An_x MA A". 

We also have the following commutative diagram: 

M(T(CEn),JEn,M(A'n_1,A,A"))-^^T(CEn)UTEnM(A'n_1,A,A") 

M(id,id,i/>) idlty 

M(T(CEn),TEn, A'n^ UA A")— ^T{CEn) UTEn A!n_x UA A". 

Here, by Proposition 3.8, the horizontal maps ip are homotopic to isomorphisms 
and are thus weak equivalences. The map M(id, id, ip) is a weak equivalence 
by the previous lemma. Therefore id Jlip is a weak equivalence. The conclusion 
follows. • 

This has the following important consequence concerning cobase change. 
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PROPOSITION 7.4. / / A —• A' is a q-cofibration of q-cofibrant R-algebras, 
then the functor A! MA (—) preserves weak equivalences between q-cofibrant R-
algebras. The same statement holds for commutative R-algebras. 

In fact, in the commutative case, we need only assume given a weak equiva­
lence between R-algebras that are g-cofibrant as S-algebras, since the construc­
tion of A A A A!' does not depend on R. 

We conclude with the following lemma on cofibrations. It will imply that the 
simplicial ^-modules used in the following chapters are proper, in the sense of 
X.2.2. As explained at the start of X§2, we abuse language by writing about 
unions, images, and inclusions when we should be writing more precisely about 
maps from a suitable coend to Aq. The abuse is justified by the conclusion, since 
a cofibration of spectra is a spacewise closed inclusion [38, 1.8.1]. 

LEMMA 7.5. Let A be a q-cofibrant R-algebra or a q-cofibrant commutative 
R-algebra. Let sAq C Aq be the "union of the images" of the maps 

Sl = (id)1 A n A (id)*"* : Aq~l — • Aq. 

Then the "inclusion" sAq C Aq is a cofibration of R-modules. In particular, the 
unit TJ : R —• A is a cofibration of R-modules. 

PROOF. In the non-commutative case, (A,R) is a relative cell i?-module. Its 
qth smash power inherits such a structure, by III.7.3, and sAq is a subcomplex. 
In the commutative case, we can apply the same brief argument, once we observe 
that (A, R) is a suitably general kind of relative cell jR-module. Thus we consider 
generalized relative cell -R-modules that are constructed with (cell, sphere) pairs 
replaced by pairs of the form (N A B\, N A S^1), where N runs through all 
finite smash products over R of i^-modules of the form (Sp)j /T>j or {CSR)J / E J 
for integers n and for j > 1. Here the (Bq,Sq~l) are ordinary space level (cell, 
sphere) pairs. Observe that these .R-modules are finite colimits of compact R-
modules, so that III. 1.7 applies to them. Let P be the monad in the category of 
-R-modules that defines commutative /^-algebras. Obviously PM and FCM are 
relative cell .R-modules in this generalized sense when M is a wedge of sphere 
R-modules. Equally obviously, the smash product over R of two such generalized 
relative cell jR-modules is another such. Suppose that A is such a commutative 
.R-algebra and consider a pushout diagram 

¥M ^A 

FCM- >B. 

As explained in 3.5-3.9, B is isomorphic to the geometric realization of the 
proper simplicial iZ-module /?f (PCM, PM, A). Remember that, here in the com­
mutative case, the coproduct used in VII§3 is the smash product over i2. We 
may construct the geometric realization by first using degeneracy identifications, 
which serve simply to eliminate redundant wedge summands from the relevant 
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coend, and then face identifications; compare X.2.6. The latter identifications 
can be expressed by pushout diagrams of H-modules 

/?f (PCAf, PM, A) A dAq+ - 2 - * . Fq^pR(FCM, PM, -4) 

Y Y 

/?*(PCM, PM, A) A Ag+ ^ Fg/?*(PCM, PM, A). 

Of course, we think of (Ag ,9Ag) as a model for (Bq^Sq~1). Proceeding induc­
tively and using III.1.7 and the proof of III.2.2, we can make g a sequentially 
cellular map and deduce that the qth filtration is a generalized relative cell R-
module. By passage to colimits, so is any commutative cell i^-algebra. The 
same holds for smash powers. The inclusion of a subcomplex is a cofibration, by 
reduction to the obvious case of cell pairs, and the conclusion follows. • 
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CHAPTER VIII 

Bousfield localizations of Z?-modules and algebras 

We study Bousfield localizations in this chapter. For any 5-algebra R and cell 
^-module E, we show that ^R admits a new model category structure in which 
the weak equivalences are the ^-equivalences. With this model structure, a 
factorization of the trivial map M —> * as the composite of an E-acyclic E-
cofibration and an £?-fibration constructs the localization of M at E. 

Restricting to a ^-cofibrant commutative 5-algebra R, we combine formal 
constructions with the homotopical analysis of the previous chapter to prove 
that localizations at E of cell i^-algebras can be constructed as cell i?-algebras, 
and similarly for commutative cell i?-algebras. Of course, this applies quite 
generally since any .R-algebra is weakly equivalent to a cell fi-algebra. That 
is, we can conclude that Bousfield localizations of ii-algebras and commutative 
R-algebras are again such. In the case R = 5, Hopkins and McClure had an 
unpublished argument, sketched in e-mails to us, that Bousfield localizations of 
î oo ring spectra are E^ ring spectra. 

We deduce that the derived category of jEMocal .R-modules is equivalent to 
the full subcategory of the derived category of ^ -modu les whose objects are 
those /^-modules that are E-local as R-modules. In particular our new derived 
categories of 5^-modules are intrinsically important to a complete understanding 
of the classical Bousfield localizations of spectra. 

As a simple direct application, we deduce that KO and KU are commutative 
ko and /cu-algebras since they are Bousfield localizations of ko and ku obtained 
by inverting the Bott elements. By neglect of structure, they are therefore com­
mutative 5-algebras. This solves a problem that was first studied in McClure's 
1978 PhD thesis. 

We refer the reader to [26] for a discussion of the special cases of Bousfield 
localization that give localizations and completions of .R-modules at ideals of the 
coefficient ring R*. 

1. Bousfield localizations of /^-modules 

Let R be an 5-algebra, such as 5 itself, and suppose given a cell i?-module 
E. We shall construct Bousfield localizations of i?-modules at E. The treatment 
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is based on Bousfield's papers [11, 12], but in the latter he was handicapped by 
working in a primitive category of spectra that did not admit a model category 
structure. 

A map / : M —• N of JR-modules is said to be an £-equivalence if the 
induced map 

id A H / : E ARM —• E AR N 

is a weak equivalence. Homo logically, we should call such maps inequivalences, 
and we shall often refer to them as E-acyclic maps. An R-module W is said to be 
E-acyclic if E AR W ~ *, and a map / is E-acyclic if and only if its cofiber is E-
acyclic. We say that an ^-module L is E-local if /* : 9R(N,L) —• @}R(M,L) 
is an isomorphism for any ^-equivalence / or, equivalently, if @R(W,L) = 0 
for any E-acyclic .R-module W. Since this is a derived category criterion, it 
suffices to test it when W is a cell -R-module. A localization of M at E is a 
map A : M —> ME such that A is an ^-equivalence and ME is E-local. Of 
course, the formal properties of such localizations discussed in [11, 12] carry over 
verbatim to the present context. We shall construct a model structure on MR 
that implies the existence of ^-localizations of i^-modules. 

THEOREM 1.1. The category J#CR admits a new structure as a topological 
model category in which the weak equivalences are the E-equivalences and the 
cofibrations are the q-cofibrations in the model structure already constructed. The 
fibrations in the new model structure are the maps that satisfy the right lifting 
property with respect to the E-acyclic q-cofibrations. 

Although the theorem gives the best way to think about the new model struc­
ture, it will be convenient to construct it in a way that parallels the proofs in 
VII§5. To that end, we give apparently different definitions of E-fibrations and 
E-cofibrations. 

DEFINITION 1.2. A map f : M —> N is an E-fibration if it has the right 
lifting property with respect to the E-acyclic inclusions of subcomplexes in cell 
i?-modules. A map / : M —> N is an E-cofibration if it satisfies the left lifting 
property with respect to the E-acyclic E-fibrations. 

The following comparisons will emerge during our proof of Theorem 1.1. 

LEMMA 1.3. A map is an E-cofibration if and only if it is a q-cofibration. 

LEMMA 1.4. A map is an E-fibration if and only if it satisfies the RLP with 
respect to the E-acyclic q-cofibrations. 

An .R-module L is said to be E-fibrant if the unique map L —• * is an 
E-fibration. 

PROPOSITION 1.5. An R-module is E-fibrant if and only if it is E-local. 
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PROOF. The argument is the same as that of [11, 3.5]. As in [11, 3.6], one 
checks that the class of ^-equivalences in the derived category &R admits a 
calculus of left fractions. This implies [11, 2.5] that an .R-module L is J^-local 
if and only if /* : @R(N, L) —> Q>R{M, L) is a surjection for any ^-equivalence 
/ : M —> N. Since we are working in derived categories, there is no loss of 
generality to assume that / is the inclusion of a subcomplex in a cell i?-module. 
If L is jE-fibrant, the RLP already gives surjectivity on the point-set level, hence 
on the level of homotopy classes. If L is E-local, we have surjectivity on the level 
of homotopy classes and deduce it on the point-set level by use of HEP. • 

THEOREM 1.6. Every R-module M admits a localization A : M —> ME-

P R O O F . We may factor the trivial map M —• * as the composite of an 
^-acyclic -E-cofibration A : M —• ME and an £?-fibration ME —> *. • 

Localizations of the underlying spectra of ^-modules at spectra can be re­
covered as special cases of our new localizations of R-modules at .R-modules. 
Therefore, up to equivalence, the localization of an i?-module at a spectrum can 
be constructed as a map of #-modules. 

PROPOSITION 1.7. Let K be a CW-spectrum and let E be the R-module ¥RK. 
Regarded as a map of spectra, a localization A : M —> ME of an R-module M 
at E is a localization of M at K. 

P R O O F . By IV.1.9, we have K+(M) = E*{M) for ^-modules M. Therefore 
an ^-equivalence of .R-modules is a if-equivalence of spectra. If W is a if-acyclic 
spectrum, then WRW is an E-acyclic .R-module since E ARWRW is equivalent to 
WR(KAW). Therefore, if TV is an E-local .R-module, then [W, N] ^ \JFRW, N]R = 
0 and TV is a if-local spectrum. The conclusion follows. • 

The argument generalizes to show that, for an .R-algebra A, the localization 
of an A-module at an .R-module E can be constructed as a map of ^-modules. 

PROPOSITION 1.8. Let A be a q-cofibrant commutative R-algebra, let E be a 
cell R-module and let F be the A-module A AR E. Regarded as a map of R-
modules, a localization A : M —> Mp of an A-module M at F is a localization 
ofM atE. 

We prove Theorem 1.1 in the rest of the section. Of course, *J6R is topo­
logical^ complete and cocomplete. It is clear that retracts of ^-equivalences, 
i£-cofibrations, and S-fibrations are again such (and similarly with cofibrations 
and fibrations as in the statement of the theorem). The following result moti­
vates our definition of i£-fibrations in terms of inclusions of subcomplexes rather 
than general g-cofibrations. Let # X denote the cardinality of the set of cells 
of a cell .R-module X and let c be a fixed infinite cardinal that is at least the 
cardinality of E^(SR). Long exact sequences and the commutation of homology 
with colimits imply that if X —> Y is the inclusion of a subcomplex in a cell 
R-module Y such that #Y < c, then the cardinality of E?(Y/X) is at most c. 
Let & be the set of .E-acyclic inclusions of subcomplexes in cell it-modules Y 
such that # y < c. Then ^ is a test set for ^-fibrations. 
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LEMMA 1.9. A map f : M —> N is an E-fibration if and only p has the RLP 
with respect to maps in 9". 

PROOF. Arguing as in [11, 11.2,11.3], we see that for any proper E-acyclic 
inclusion X —> Y of a subcomplex in a cell R-module Y, there is a subcomplex 
X' C.Y such that #X* < c, X' is not contained in X, and X' n X —• X' is 
E-acyclic. We construct Xf as the union of a sequence of subcomplexes Xn of 
Y such that # X n < c, Xn is not contained in X, and the map 

E?(xn/xn n X) — * E^(xn+1/xn+1 n x) 
is zero. The fact that homology commutes with colimits and that Ej*(Y/X) = 0 
allows us to perform the inductive step by adjoining a finite subcomplex of Y to 
Xn to kill each element of E^(Xn/Xn n X). We conclude that if / has the RLP 
with respect to maps in 9", then it has the RLP with respect to X —• X' \J X 
since it has the RLP with respect to X' D X —> X''. By transflnite induction, 
it follows that / has the RLP with respect to X —> Y. • 

LEMMA 1.10. Any map f : M —> N factors as a composite 

where p is an E-fibration and i is an E-acyclic q-cofibration that satisfies the 
LLP with respect to E-fibrations. 

PROOF. The construction is exactly like that in the proof of VII.5.2, with & 
here playing the role of & there. However, since we do not have compactness, we 
must perform the construction transfinitely. We carry the construction through 
to the least ordinal of cardinality greater than c. We can then use set theory 
rather than VII.5.5 to ensure the requisite factorization a' in the cited proof. 
The resulting map p is certainly an E-fibration. The construction by successive 
pushouts of wedges of maps in 5? for ordinals n that are successors and by pas­
sage to colimits for limit ordinals shows that the constructed map i is E-acyclic 
and satisfies the LLP with respect to the E-fibrations. To see that i, despite its 
transfinite construction, is a g-cofibration, we must specify a sequential filtra­
tion inductively. Given the sequential filtration on Mn , we obtain a sequential 
filtration on M n + i by using III.2.3 to arrange that the pushout that constructs 
M n + i is a diagram of sequentially cellular maps. If n is a limit ordinal and we 
have compatible sequential filtrations on the M m for m < n, then each cell of 
Mn has a preassigned filtration and we take the qth filtration of Mn to be the 
union of the gth filtrations of the Mm for m < n. • 

REMARK 1.11. The previous proof uses that if i : X —> Y is an E-acyclic 
^-cofibration and / : X —> M is any map, then the pushout j : M —• M Ux Y 
is E-acyclic. This holds because i and j are cofibrations of .R-modules with 
isomorphic quotients Y/X ^ (M Ux Y)/M. 

LEMMA 1.12. The following conditions on a map f : M —> N are equivalent. 
(i) / is an E-acyclic E-fibration. 

(ii) / is an E-acyclic map that satisfies the RLP with respect to all q-
cofibrations. 
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(iii) / is an acyclic q-fibration. 

P R O O F . Obviously (ii) implies (i) and (iii) implies (ii). Assume (i). Clearly 
/ is a g-fibration, and we must prove that it is a weak equivalence. By factoring 
a weak equivalence from a cell -R-module to M as the composite of an acyclic 
#-cofibration and a g-fibration, we can construct an acyclic g-fibration p ; M' —> 
M, where M' is a cell JR-module. By VII.5.8, we may factor fop as the composite 
of a g-cofibration i : M1 —> Nf and an acyclic g-fibration p' : TV' —> N. By 
III.2.6 and the proof of VII.5.2, we can arrange that N' is a cell i2-module that 
contains M' as a subcomplex. Since / op is E-acyclic, so is i. Summarizing, we 
have the diagram 

Mf==M/-±^M 
fop f 

N'—r+N== N. 
p 

Since / op is an E'-fibration and i is an E-acyclic inclusion of a subcomplex in a 
cell il-rnodule, there exists a lift r. This expresses / op as a retract of the weak 
equivalence pf. Therefore fop and / are weak equivalences. • 

Observe that Lemma 1.3 is an immediate consequence of Lemma 1.12. 

P R O O F OF LEMMA 1.4. It suffices to show that any ^-acyclic g-cofibration 
i : X —> Y satisfies the LLP with respect to all E'-fibrations. Factor i as in 
Lemma 1.10 and consider the resulting diagram 

where p is an E-fibration and j is an E-acyclic g-cofibration that satisfies the 
LLP with respect to the E-fibrations. Clearly p is E-acyclic, hence Lemma 1.12 
implies that it satisfies the RLP with respect to the cofibration i. There results 
a lift 6, and i and p show that i is a retract of j . Since j satisfies the LLP with 
respect to all E-fibrations, so does i. • 

P R O O F OF THEOREM 1.1. We have proven one of the factorization axioms 
in Lemma 1.10, and the remaining axioms for a model structure are now direct 
consequences of the corresponding axioms for the original model structure on 
^ R . • 

2. Bousfleld localizations of ii-algebras 

In this section, we restrict R to be a g-cofibrant commutative 5-algebra and 
let E b e a cell .R-module. We shall prove the following pair of theorems. 
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THEOREM 2.1. For a cell R-algebra A, the localization A : A —> AE can be 
constructed as the inclusion of a subcomplex in a cell R-algebra AE- Moreover, 
if f : A —> B is a map of R-algebras into an E-local R-algebra B, then f lifts 
to a map of R-algebras f : AE —• B such that f o A = / , and f is unique up 
to homotopy through maps of R-algebras. If f is an E-equivalence, then f is a 
weak equivalence. 

THEOREM 2.2. For a cell commutative R-algebra A, the localization A : A —> 
AE can be constructed as the inclusion of a subcomplex in a cell commutative 
R-algebra AE- Moreover, if f : A —> B is a map of R-algebras into an E-local 
commutative R-algebra, then f lifts to a map of R-algebras f : AE —> B such 
that / o A = / , and f is unique up to homotopy through maps of commutative 
R-algebras. If f is an E-equivalence, then f is a weak equivalence. 

PROOFS. The idea is to replace the category MR by either the category JZ/R 
or ^S^R in the work of the previous section. Most arguments go through with 
little change, the crucial exception being the part of the proof of Lemma 1.10 
that is singled out in Remark 1.11. The problem there is that, to prove the 
analogue of the cited lemma in full generality, we would have to allow A to be an 
arbitrary .R-algebra or commutative .R-algebra. However, to keep homotopical 
control, we need A to be a cell .R-algebra. This is enough to prove our theorems, 
although we do not actually obtain new model structures on S&R and ^S^R. 

For definiteness, consider the non-commutative case. Proceeding as in the 
proofs of VII.5.2 and Lemma 1.10, we let AQ = A and construct a transfinite 
sequence 

(2.3) Ao-^At > ^An-^An+1 - • • • 

as follows. Suppose inductively that we have constructed An. Consider all 
diagrams of .R-modules 

(2.4) Y^~X~^^An, 

where i is in 3?. Using the free .R-algebra functor T on .R-modules, we take the 
sum over such diagrams of the adjoint maps a : TX —* An and construct the 
pushout diagram of .R-algebras 

UJX^^An 
(2.5) 

II TY •An+L 

If n is a limit ordinal and Am has been constructed for m < n, we let An be 
the colimit of the Am. We take AE to be the colimit up to the least ordinal of 
cardinality greater than c. Then any map of .R-modules from a cell .R-module 
X with # X < c into AE factors through some An, and we let A : A —> AE 
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be the canonical map. Regarded as an i?-module, AE is £-fibrant and therefore 
E-\oc&\. To see this, consider a diagram of R-modules 

X-^AE, 

i\ 9y 

Y 

where i is in 3T. We must construct a map g that makes the diagram commute. 
Since ot! factors through some An, we have one of the diagrams (2.4) used in 
the construction of An+i. By construction, there is a map TY —> An+\ the 
adjoint of whose composite with the natural map to AE is a map g as required. 
As in Lemmas 1.10 and 1.12, we can use the cell .R-algebra analogue of III.2.6 to 
arrange that A : A —> AE is the inclusion of a subcomplex in a cell i?-algebra. 

We must prove that A is an ^-equivalence. By the commutation of homology 
with directed colimits, only the pushout maps An —• An+\ are at issue. Observe 
that UTX ^ T(VX). Lemma 2.6 below shows that the left vertical arrow in (2.5) 
is an Inequivalence. In the commutative case, we must replace T by P, and here 
Lemma 2.7 shows that the left vertical arrow in the commutative analogue of 
(2.5) is an E'-equivalence. Finally, in both cases, Lemma 2.8 shows that the right 
vertical arrow An —> A n + i is an ^-equivalence. 

We prove the lifting statement for a map / : A —> B by inductively lifting / 
to maps fn : An —• B. For the inductive step when fn : An —> B is given, we 
apply the fact that B is ^-fibrant to lift the evident composites 

X —> TX —+ An —+ B 

to maps of R-modules Y —• B and then apply freeness to obtain maps of R-
algebras TY —• B that lift the maps of R-algebras TX —> B. Passage to 
pushouts then gives the required map / n +i : An+\ —> B. We construct fn 
by passage to colimits when n is a limit ordinal. It is clear that / must be an 
.E-equivalence and therefore a weak equivalence if / is an ^-equivalence. 

To see the uniqueness of / up to homotopy through maps of R-algebras, it 
suffices by VII.2.11 to construct a homotopy A®I —• B between two such maps. 
We observe that AE 0 I can be built inductively as the union of its subalgebras 

(A ® / )„ .= (A ® {0}) UAn (An ® I) UAn (A ® {1}), 

where (A 0 J)n+i is obtained from (A <g> I)n by adding a cell 

(T(y A /+), T(y v x (x A /+) v x Y)) 

for each cell (TY,TX) used in forming An+i from An. Since the map 

Y V X (X A J+) V X Y —• Y A /+ 

is an E-acyclic f?-cofibration, we can construct the required homotopy one such 
cell at a time. • 

LEMMA 2.6. If f : M —> N is an E-equivalence of cell R-modules, then 
Tf : TM —> TN is an E-equivalence of R-modules. 
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PROOF. If / : M —• N and / ' : M' —> N' are E-equivalences, then, 
factoring 

id A H / ARf :EARM ARM' —>EARN AR N' 

as the composite (id ARf ARid)(id A#id AR/') and using the commutativity and 
associativity of AR and the fact that all .R-modules in sight are cell .R-modules, we 
see that id ARJ ARJ' is an equivalence and thus that / AR/' is an ^-equivalence. 
Inductively, P : AP —• JVJ' is an E-equivalence for all j > 0. D 

LEMMA 2.7. / / / : M —• N is an E-equivalence of cell R-modules, then 
P / : PM —> FN is an E-equivalence of R-modules. 

PROOF. We must show that fj/Y*j : M*/Hj —• Nj/Sj is an E-equivalence 
for all j > 0. By III.5.1, this will hold if 

id A / ' : (JSE,)+ AE. Mj —-> (££,•)+ AEi AP 

is an ^-equivalence. By the previous proof, we have an ^-equivalence before 
passage to orbits. Using the skeletal filtration of EEj, we may set up a natural 
spectral sequence 

H^E^M*)) = • ER{{EY,j)+ AS. Mi) 

and so deduce the conclusion. • 

LEMMA 2.8. Suppose given a pushout diagram of R-algebras 

A—^C 

i\ \j 
Y Y 
B-r*D, 

where i is an E-acyclic inclusion of a subcomplex in a cell R-algebra and C is 
a cell R-algebra. Then j is E-acyclic. The same conclusion holds in the case of 
commutative R-algebras. 

PROOF. Recall the bar construction f3R(B,A,C) of VII.3.5. By definition 
or by VII.3.7, we may interpret (3R(B, A,C) as the homotopy pushout of i and 
/ . Since i is a cofibration of ^-algebras, the natural map (3R(B,A,C) —• D 
is a homotopy equivalence of i?-algebras under C. Moreover, the map C —• 
f3R{B,A,C) factors as the composite of a map r\ : C —> f3R(A,A,C) and the 
map 

0R(i, id,id) : f3R(A, A, C) — (3R(B, A,C). 
Here n is a homotopy equivalence of .R-modules by XII. 1.2 and X.1.2. The map 
fiR(i, id, id) is the geometric realization of a map of proper simplicial jR-modules, 
where properness is defined in X.2.2. Properness holds in the case of .R-algebras 
since, by VII.6.2, the inclusions of degeneracy sub R-modules are inclusions of 
subcomplexes in relative cell .R-modules. It holds in the case of commutative R-
algebras by VII.7.5. The smash product over R with E commutes with geometric 
realization by X.1.4. Since i is an E-equivalence, we find in the .R-algebra case 
that the map E AR (3R{i, id, id) on g-simplices is a homotopy equivalence for 
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each q because it is a weak equivalence between relative cell ii-modules. In the 
commutative case, this map is the smash product over R of the weak equivalence 
E AR A —• E ARB with the identity map on Aq AR C and is therefore a weak 
equivalence by VII.6.7. In either case, we conclude from X.2.4 that / ^ ( s , id, id) 
is an ^-equivalence. • 

3. Categories of local modules 

Again, let R be a g-cofibrant commutative 5-algebra and E be a cell R-
module. let RE be a g-cofibrant commutative i2-algebra whose unit is a lo­
calization of R at E. The fact that Bousfield localization preserves jR-algebras 
and commutative .R-algebras gives a powerful tool for the construction of new 
-R-algebras and opens up a new approach to the study of Bousfield localizations. 

To see the latter, let us compare the derived category @RE to the stable ho-
motopy category Q>R[E~1] associated to the model structure on MR determined 
by E. Here @R[E~1] is obtained from @R by inverting the Inequivalences and is 
equivalent to the full subcategory of @R whose objects are the E-local .R-modules. 
Observe that, for a cell R-module M, we have the canonical E'-equivalence 

^ = rj Aid: M^RARM — > R E A R M . 

The following observation is the same as in the classical case. 

LEMMA 3.1. If M is a finite cell R-module, then RE AR M is E-local and 
therefore £ is the localization of M at E. 

PROOF. If W is an ^-acyclic R-module, then 

®R(W, RE AR M) * ®R{W AR DRM, RE) = 0 

since W AR DRM is ^-acyclic and RE is 25-local. • 

We say that localization at E is smashing if, for all cell .R-modules M, REARM 
is £-local and therefore £ is the localization of M at E. The following observation 
is due to Wolbert [72]. 

PROPOSITION 3.2 (WOLBERT). If localization at E is smashing, then the cat­
egories 9)R\E~X\ and @RE are equivalent. 

These categories are closely related even when localization at E is not smash­
ing, as the following elaboration of Wolbert's result shows. 

THEOREM 3.3. The following three categories are equivalent. 
(i) The category &R[E~l] of E-local R-modules. 

(ii) The full subcategory ^RE[E~1] of Q)RE whose objects are the RE-modules 
that are E-local as R-modules. 

(Hi) The category 3>RE \{RE AR E)~l] of (RE AR E)-local RE-modules. 

This implies that the question of whether or not localization at E is smashing 
is a question about the category of #£-modules, and it leads to the following 
factorization of the localization functor. In the classical case R = 5, this shows 
that our new commutative 5-algebras SE and their categories of modules are 
intrinsic to the theory of Bousfield localization. 
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THEOREM 3.4. The E-localization functor <2)R —> @R[E~X] is equivalent to 
the composite of the extension of scalars functor 

RE Afi ( - ) : ®R —+ ®RE 

and the (RE AR E)-localization functor 

{-)REARE : @RE —> ^[(RE^RE)-1}. 

COROLLARY 3.5. Localization at E is smashing if and only if all RE-modules 
are E-local as R-modules, so that 

9R\E-l\ « ®RE « ®RE\{RE AR E)-1}. 

The proofs of the results above are based on the following generalization of 
III.4.4 and a special case of III.4.1 from the ground category S to the ground 
category R. The proofs are the same as those of the cited results. 

PROPOSITION 3.6. Let A be an R-algebra with unit rj : R —• A. The forgetful 
functor 77* : &A —• @R has the functor A AR ( - ) : <0R —> @A as left adjoint, 
and it also has a right adjoint r}# : Q)R —> Q)A. 

P R O O F OF THEOREM 3.3. We apply the previous result to r\ \ R —> RE, 
obtaining 

®RE{NrfM)**9R{rfN,M) 

and 

®RE{RE AH M, N) * 9R(M,ri*N) 

for i^-modules M and ^ -modu les N. We claim that the functors n* and rj# of 
the first adjunction restrict to give inverse adjoint equivalences between @R[E~1] 
and 3>RE [E~l\, and we also claim that an i?£-module N is (RE AR £)-acyclic if 
and only if rj*N is E-acyclic. These claims will give the conclusion. 

If W is an ^-acyclic .R-module, then RE AR W is an (RE AR i?)-acyclic RE-
module since 

(RE AH W) ARE (RE AR E) * RE AR (W AR E) ~ *. 

Therefore, by the second adjunction, if N is an (RE AR i?)-local i^-module, 
then r]*N is an E-local R-module. 

If V is an (RE AR i?)-acyclic it^-module, then rfV is an E-acyclic /^-module 
since 

(V*V) ARE^ V*(V ARE (RE AR E)) a *. 

Therefore, by the first adjunction, if M is an E-local .R-module, then rj#M is an 
(RE AR i?)-local /^-module and thus rfrf'M is again an E-local it!-module. 
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We claim that if if M is E-local, then the counit e : rfrftM —• M of the 
first adjunction is a weak equivalence of ^-modules. To see this, consider the 
commutative diagrams: 

9RE(REARS^V^M) 

®R(r]*{REARSi),n*n#M) ^ *9R(S<,TI'TI*M) 
£*\ e * 

®R{rf{RE A* S«), M) £ ^ @R(S*, M). 

The left vertical composite £* o 77* is an instance of the first adjunction. The 
right diagonal is an instance of the second adjunction. The horizontal arrows 
are induced by £ : Sq —> RE A R Sq and are isomorphisms since £ is localization 
at E and M and rj*rj#M are E-local. Therefore the maps £* in the diagram are 
isomorphisms and £ is a weak equivalence. 

If N is an JR^-module such that 7?*iV is E-local, then the unit ( : N —• 
r]#r)*N of the first adjunction is a weak equivalence since the composite 

is the identity and e is a weak equivalence. Since t]^rj*N is (RE A R E)-loeal, 
this also implies that N is (RE A R E)-local and so completes the proof. • 

P R O O F OF THEOREM 3.4. Any E-local ^-module is isomorphic in Q)R to one 
of the form r]*Ny where N is an i?£-module that is E-local as an R-module. 
Therefore the E-localization of any i?-module M is given by a map A : M —• 
ME, where ME is an ^ - m o d u l e . Such a map A factors uniquely through a map 
A : RE A R M —> ME in @RE . Clearly A is an E-equivalence of R-modules and 
therefore an (RE A R E)-equivalence of ^ -modules . This proves the claimed 
factorization of localization at E. • 

P R O O F OF COROLLARY 3.5. Localization at E is smashing if and only if all 
R-modules of the form RE A R M for an R-module M are E-local. In this case, 
if M is an ifo-module, then, as an .R-module, M is a retract of RE A R M and is 
therefore also E-local. • 

4. Periodicity and if- theory 

We illustrate the constructive power of our results on ^-algebras by showing 
that the algebraic localizations of R considered in Chapter V take R to commu­
tative ^-algebras on the point set level and not just on the homotopical level 
studied in V.2.3. Thus let X be a set of elements of R* and consider R[X~1]. 
We saw in V.2.3 that J R [ X _ 1 ] is a commutative and associative .R-ring spectrum 
whose product is an equivalence under R. For an /^-module M, we have the 
canonical map 

A = A AR id : M ^ R AR M —> R[X-1} AR M. 
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PROPOSITION 4.1. For any R-module M, A is the Bousfield localization of M 
atRlX-1}. 

P R O O F . Upon smashing with i^X"""1], A becomes an equivalence with inverse 
given by the product on i2[X - 1]. Thus A is an #[X_1]-equivalence. By a stan­
dard argument, RIX'1} AR M is i?[X_1]-local since it is an R[X~^-module 
spectrum. • 

So far we have been working homotopically, in the derived category @R. The­
orem 2.1 allows us to translate to the point-set level: R is a cell i?-algebra, so 
its localization at E = R[X~l] can be constructed as a map of i?-algebras. We 
are entitled to the following conclusion. 

THEOREM 4.2. The localization R —> RIX'1} can be constructed as the unit 
of a cell R-algebra. 

By multiplicative infinite loop space theory [50] and our model category struc­
ture on the category of 5-algebras, the spectra ko and ku that represent real 
and complex connective if-theory can be taken to be g-cofibrant commutative 
5-algebras. It is standard (see e.g. [48, II§3]) that the spectra that represent 
periodic if-theory can be reconstructed up to homotopy by inverting the Bott 
element f3o € 7rs(A;o) or @u e ^(fcit). That is, 

KO ~ ko[^\ and KU ~ ku[(5^1]. 

We are entitled to the following result as a special case of the previous one. 

THEOREM 4.3. The spectra KO and KU can be constructed as commutative 
ko and ku-algebras. 

Restricting the unit maps ko —• KO and ku —> KU along the unit maps 
5 —> ko and 5 —• ku, we see that KO and KU are commutative 5-algebras. 
McClure studied the problem of obtaining such a structure in his thesis. He 
proved that KO and KU are Hoo ring spectra, this being a weakened up-to-
homotopy analogue of the notion of an Eoo ring spectrum, with some additional 
structure; see [14, VII§7]. More recently, in unpublished work, he returned to 
the problem and proved that the completion of KU at a prime p is an E^ ring 
spectrum. Of course, this also follows from our work since completion at p is 
another example of a Bousfield localization. 

Wolbert [72] has studied the algebraic structure of the derived categories of 
modules over the connective and periodic versions of the real and complex K-
theory 5-algebras. 

REMARK 4.4. For finite groups G, Theorem 4.3 applies with the same proof 
to construct the periodic spectra KOQ and KUQ of equivariant if-theory as 
commutative koc and &uc?-algebras. As explained in [27], this leads to an elegant 
proof of the Atiyah-Segal completion theorem in equivariant K-cohomology and 
of its analogue for equivariant if-homology. 
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CHAPTER IX 

Topological Hochschild homology and cohomology 

As another application of our theory, we construct the topological Hochschild 
homology of il-algebras with coefficients in bimodules. The relevance to THH of 
a theory such as ours has long been known. McClure and Staffeldt gave a good 
introduction of ideas in [55, §3], and in fact our paper provides the foundations 
that were optimistically assumed in theirs (with reference to a four author paper 
in preparation that will never exist). Our generalization of Bokstedt's topological 
Hochschild homology [8] is under active investigation by a number of people, and 
we shall just lay the foundations. 

Actually, in Sections 1 and 2, we give two different constructions. First, for a 
g-cofibrant commutative 5-algebra R, a g-cofibrant .R-algebra A, and an (A, A)-
bimodule M, we define THHR{A; M) to be the derived smash product M A ^ A, 
exactly as in algebra (for flat algebras over rings). With this definition, we prove 
that algebraic Hochschild homology can be realized as the homotopy groups of 
the topological Hochschild homology of suitable Eilenberg-Mac Lane spectra, 
and we construct spectral sequences for the calculation of the homotopy and 
homology groups of THHR(A; M) in general. 

Second, we define thhR(A\M) by mimicking the standard complex for the 
computation of algebraic Hochschild homology and we prove that, when M is a 
cell Ae-module, thhR{A\M) and THHR(A\M) are equivalent. When M = A, 
the resulting construction thhR(A) has exceptionally nice formal properties. For 
example, it is immediate from the construction that thhR(A) is a commutative 
^-algebra when A is. While A is not equivalent to a cell Ae-module, we shall use 
our standing hypotheses that R and A are g-cofibrant to prove that THHR(A) 
is equivalent to thhR(A). 

Further formal properties of thhR(A) are explained in the brief Section 3, 
which contains the results of the recent paper [54] of McClure, Schwanzl, and 
Vogt. They exploit the tensor structure of the category of commutative S-
algebras to give a conceptual description of thhR(A) as A <g> S1 when A is a 
commutative jR-algebra. Their paper was based on the now obsolete definitions 
of a preliminary draft of this paper, and we have since found simpler ways to 
carry out their intriguing application of our theory. 

Bokstedt's original definition of topological Hochschild homology [8] (see also 

167 
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[10]) was based on "functors with smash products", abbreviated FSP's. These 
are defined in elementary spacewise terms, and Mandell has recently made 
rigorous an insight of Jeff Smith that shows how to compare FSP's and 5-
algebras. He has also proven that our construction of thhs{A\ M) is equivalent 
to Bokstedt's. However, Bokstedt's construction is intrinsically restricted to the 
"absolute case" R = S. There is no previous construction of the general relative 
version thhR(A;M) or of topological Hochschild cohomology. At this writing, 
passage from topological Hochschild homology to topological cyclic homology, 
which is vital to the applications to algebraic if-theory, relies on Bokstedt's 
definition; see for example Hesselholt and Madsen [30]. However, it seems pos­
sible that a variant of our construction will allow a rederivation and relative 
generalization of topological cyclic homology: this is work in progress. 

1. Topological Hochschild homology: first definition 

We assume given an algebra A over a commutative 5-algebra R and an (A, A)-
bimodule M. We here define the topological Hochschild homology and coho­
mology spectra THHR{A\M) and THHR(A\M). We mimic the conceptual 
definition of Hochschild homology and cohomology given by Cartan-Eilenberg 
[15, IX§§3-4]. In the next section, we give an alternative construction that mim­
ics Hochschild's original definition in terms of the standard complex [31] and 
compare definitions. 

We are only interested in relative (A, A)-bimodules, that is, those for which 
the induced left and right actions of R agree under transposition of M and R, 
and we define the enveloping J?-algebra of A by 

Ae = A AR Aop. 

Then an (A, A)-bimodule M can be viewed as either a left or a right Ae-module. 
We usually view A itself as a left Ae-module and our general bimodule M as a 
right or a left Ae-module, whichever is convenient. If A is commutative, then 
Ae = A AR A, the product Ae —> A is a map of R-algebras, and A can be viewed 
as an (Ae, A)-bimodule. 

We assume once and for all that our given commutative 5-algebra R is q-
cofibrant in the model category of commutative 5-algebras and that A is q-
cofibrant in the model category of R-algebras or of commutative ^-algebras. 
There is no loss of generality in these assumptions since we could replace any 
given pair (A, R) by a weakly equivalent pair that satisfies our assumptions. By 
VII.6.7, these assumptions ensure that if 7 : TA —• A is a weak equivalence of 
/^-modules, where YA is a cell i£-module, then 

7 A 7 : TA AR TA —> AARA 

is a weak equivalence of i^-modules. Thus the underlying i?-module of Ae rep­
resents A AR A in the derived category @R. 

DEFINITION 1.1. Working in derived categories, define topological Hochschild 
homology and cohomology with values in QIR by 

THHR(A-) Af) = Af AAe A and THHR(A; M) = FA* (A, M). 
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If A is commutative, then these functors take values in the derived category @A* . 
On passage to homotopy groups, define 

THHR{A;M) = To r f (Af, A) and THH*R{A\M) = Ext*Ae(A,M). 

When M = A, we delete it from the notations. 

Since we are working in derived categories, we are implicitly taking M to be 
a cell ^4e-module in the definition of THHR(A; M) and approximating A by a 
weakly equivalent cell Ae-module in the definition of THHR(A; M). When A is 
commutative, we have the following observation, which will be amplified in the 
next section. 

PROPOSITION 1.2. If A is a commutative R-algebra, then THHR(A) is iso­
morphic in @Ae to a commutative Ae-algebra. 

PROOF. By VII.6.8, Ae is a g-cofibrant commutative i2-algebra since A is 
assumed to be one, and A is clearly a commutative Ae-algebra. Let \£A —> A 
be a weak equivalence of Ae-algebras from a g-cofibrant commutative Ae-algebra 
$A to A. Then, by VII.6.5 and VII.6.7, the commutative Ae-algebra VAAA* VA 
is isomorphic in @A* to THHR{A). • 

The module structures on THHR(A;M) have the following standard impli­
cation. 

PROPOSITION 1.3. If either R or A is the Eilenberg-Mac Lane spectrum of a 
commutative ring, then THHR{A\M) is a product of Eilenberg-Mac Lane spec­
tra. 

As we have said, there is no analogue in the literature of our THHR(A\ M) 
except in the absolute case JR = 5, and there is no analogue of our THHR(A; M) 
even then. The relationship between algebraic and topological Hochschild homol­
ogy becomes far more transparent when one works in full generality. To describe 
this relationship, we must first fix notations for algebraic Hochschild homology 
and cohomology. For a commutative graded ring it!*, a graded ^-a lgebra 4̂* 
that is flat as an #*-module, and a graded (A*,^4*)-bimodule M*, we write 

HH%(A.; M.) = Tor^\M„A,) 

and 
HH™(A*-M*) = Ext™ )e(A*,M*), 

where p is the homological degree and q is the internal degree. When M* = A*, 
we delete it from the notation. 

Observe that there is an evident epimorphism 

(1.4) L:M*—>HH£:(A.;M*) 

and that i is an isomorphism if the left and right action of A on M are related 
DV €e — £r ° f- If A* is commutative, then HHRz(A*) is a graded A*-algebra 
and i is a ring homomorphism; see [15, XI§6]. 
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There is also a map 

(1.5) a:A*—+HHR*(A*) 

that sends an element a to the 1-cycle 1 ® a in the standard complex, and a is 
a derivation if A is commutative. 

Specialization of IV.4.1 gives the following result. Observe that (Aop)* = 
(A*)0?. 

THEOREM 1.6. There are spectral sequences of the form 

Elq = Tor*q(A.,A°/) = • (Ae)p+q, 

E*>q = TorgP'iM^A.) = > THH*.q(A;M), 
and 

E%q = Ext™ r (A*,M*) = > THHp
R+q(A-,M). 

If A* is a flat R*-module, so that the first spectral sequence collapses, then the 
initial terms of the second and third spectral sequences are, respectively, 

HH*i {A,; M*) and HH%;(A*; M *). 

This is of negligible use in the absolute case R = S, where the flatness hy­
pothesis is unrealistic. However, in the relative case, it implies that algebraic 
Hochschild homology and cohomology are special cases of topological Hochschild 
homology and cohomology. 

THEOREM 1.7. Let R be a (discrete, ungraded) commutative ring, let A be an 
R-flat R-algebra, and let M be an (A,A)-bimodule. Then 

HH*{A\ M) * THH?R{HA-, HM) 

and 
HH*R(A] M) £ THH*HR(HA; HM). 

If A is commutative, then HH*{A) = THH^R(HA) as A-algebras. 

P R O O F . By VII. 1.3 and the naturality of multiplicative infinite loop space 
theory [50], we can construct HA as an i/i?-algebra, commutative if A is so. The 
results of IV§2 construct HM as an (HA, i7A)-bimodule. Thus the statement 
makes sense. The spectral sequences collapse since their internal gradings are 
concentrated in degree zero. We will prove the last statement below. • 

We concentrate on homology henceforward. In the absolute case R = S, it is 
natural to approach THH*f(A\ M) by first determining the ordinary homology of 
THHS(A; M), using the case E = HWP of the following spectral sequence, and 
then using the Adams spectral sequence. A spectral sequence like the following 
one was first obtained by Bokstedt [9]. An interesting case, essentially THH{ku), 
was worked out by McClure and Staffeldt [55], who assumed without proof that 
the second spectral sequence in the following theorem could be constructed. The 
flatness hypotheses required when E is only a commutative ring spectrum are 
still unrealistic in the absolute case, but the situation is saved by the lack of 
need for such hypotheses when E is a commutative 5-algebra, such as H¥p. 
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Observe that there is a natural map 

(1.8) C = ^ A</>: M Q* M AA. Ae —• M AAe A = THHR(A\ M). 

THEOREM 1.9. Let E be a commutative ring spectrum. If E+(R) is a flat 
R*-module, or if E is a commutative S-algebra, there is a spectral sequence of 
differential E*(R)-modules of the form 

E2
Piq = Tor*f(E*A, E*{A°P)) =*> Ep+q(A'). 

If E*(Ae) is a flat (Ae)*-module, or if E is a commutative S-algebra, there is a 
spectral sequence of differential E*{R)-modules of the form 

Ejiq = TOT^A'\E*(M),E*(A)) = > Ep+q(THHR(A;M)). 

In either case, if E*(A) is E*(R)-flat, so that 

Elq = HH*l{R){E*{A)\E*{M)) 

in the second spectral sequence, then the composite 

E*(M) - ^ El, ^ Eft -£+ E.(THHR{A', M)) 

coincides with (* : E+(M) —> E*(THHR(A; M)). 

PROOF. When E is just a commutative ring spectrum, both spectral se­
quences are immediate from IV.6.2. When E is a commutative 5-algebra, both 
spectral sequences are immediate from IV.6.4. The statement about ( is clear 
from the discussion of the edge homomorphism in IV§5. • 

Applied to Eilenberg-Mac Lane spectra, the following complement implies 
the last statement of Theorem 1.7. Clearly Proposition 1.2 implies that if A is 
a commutative i^-algebra, then THHR(A) is a commutative -R-ring spectrum. 
Moreover, by Corollary 3.8 below, there is then a natural map (in ®R) 

(1.10) u) : A A S\ —• THHR(A). 

PROPOSITION 1.11. Let A be a commutative R-algebra and assume sufficient 
hypotheses that Theorem 1.9 gives a spectral sequence 

£&, = HH^R\EM)) = » Ep+q{THHR{A)). 

Then this is a spectral sequence of differential E* (A)-algebras such that E2 has 
the standard product in Hochshild homology. Moreover, the composite 

E*(A) - 2 - * . El* *- Eft S ^ E*{THHR{A))/ im C* 

coincides with the restriction of 

(u)+ :E*(AASl) —+ E*(THHR(A))/im(* 

to the wedge summand E A 
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PROOF. We may use the standard complex for the computation of algebraic 
Hochschild homology in the construction of the spectral sequences in IV§5. We 
can then construct a pairing of the resolutions constructed there that realizes 
the standard product and so deduce a pairing of spectral sequences. We omit 
details, since the result will be more transparent with the alternative construction 
of the spectral sequence (albeit under different hypotheses) in the next section. 
For the last statement, under the usual stable splitting of S\. as S° V Sl, the 
restriction of UJ to the wedge summand A coincides with £. Under the equivalence 
with the standard complex description of THH in the next section, u lands in 
simplicial filtration one. Thinking of HA as £ ( F 5 A^e A), where F is the free Ae-
module functor, we find that the restriction of a; to E.4 provides a factorization 
through A AAe A of the first stage of the inductive construction of the spectral 
sequence given in IV§5. Again, this will be more transparent with the alternative 
construction of the spectral sequence. • 

REMARK 1.12. We have given Theorem 1.9 in the form appropriate to clas­
sical stable homotopy theory. It is perhaps more natural to give a version that 
makes sense from the point of view of the multiplicative homology theories E? 
on R-modules of IV. 1.7, where E is a commutative i^-algebra. The ground ring 
in this context is E* = Ej*(R). We leave the details to the reader. The essential 
point is the relative case of III.3.10. 

2. Topological Hochschild homology: second definition 

We again assume given a g-cofibrant commutative 5-algebra i?, a g-cofibrant 
.ft-algebra or g-cofibrant commutative il-algebra A, and an (A, A)-bimodule M. 
Write Ap for the p-fold A^-power of A, and let 

<j): A AR A —• A and rj : R —• A 

be the product and unit of A. Let 

& : A AR M —• M and £r \ M ARA —> M 

be the left and right action of A on M. We have canonical cyclic permutation 
isomorphisms 

T: M ARAP ARA —> AARM AR Ap. 

The following definition precisely mimics the definition of the standard complex 
for the computation of Hochschild homology, as given in [15, p. 175]. The topo­
logical analogue of passage from a simplicial A;-module to a chain complex of 
fc-modules is passage from a simplicial spectrum I£* to its geometric realization 
|£*l-

DEFINITION 2.1. Define a simplicial E-module thhR(A;M)t as follows. Its 
i?-module of p-simplices is M An Ap. Its face and degeneracy operators are 

C^A(id)"-1 if« = 0 
di = < id A(id)'-1 A 4> A (id)?-4-1 if 1 < i < p 

IteAfidjP-'JoT iii=p 
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and Si = id A(id)* A ry A (id)*"*. Define 

thhR{A;M) = \thhR{A;MU. 

When M = A, we delete it from the notation, writing thhR(A)* and \thhR(A)*\. 

Since geometric realization converts simplicial i?-modules to ^-modules, by 
X.1.5, thhR(A\M) and thhR(A) are .R-modules. Observe that the maps 

CP = id Arf :M^M ARRP —> M AR Ap 

specify a map of simplicial -R-modules from the constant simplicial ^-module M 
to thhR(A; M)*; it induces a natural map of ii-modules 

£ = | ^ | : M —*thhR(A\M). 

Inspection of the simplicial structure shows that, if A is commutative, there is a 
natural map of ^-modules 

OJ:AASX—> thhR(A) 

with image in the simplicial 1-skeleton; see (3.2) and Corollary 3.8 below. More­
over, we then have the following observation. 

PROPOSITION 2.2. Let A be a commutative R-algebra. Then thhR(A) is nat­
urally a commutative A-algebra with unit ( : A —> thhR(A), and thhR(A; M) is 
a thhR(A)-module. By neglect of structure, thhR(A) is a commutative R-algebra. 

PROOF. Clearly thhR(A)* is a simplicial commutative .R-algebra, thhR(A; M)* 
is a simplicial thhR(A)*-mod\i\e, and £* : A —• thhR(A)* is a map of simplicial 
commutative /2-algebras. Since all structure in sight is preserved by geometric 
realization, by X.1.5, this implies the result. • 

The definition of THHR(A\ M) was homotopical and led directly to spectral 
sequences for its calculationai study. The definition of thhR(A\ M) is formal and 
algebraic. We must establish a connection between these two definitions. 

The starting point is the relative two-sided bar construction BR(M,A,N), 
which is defined for a commutative 5-algebra R, an .R-algebra A, and right and 
left A-modules M and N. The definition is the same as that of B(M, R, N) = 
BS(M, R, N) in IV.7.2, except that smash products over S are replaced by smash 
products over R. By XII. 1.2 and X.1.2, there is a natural map 

iP:BR(A,A,N) —+N 

of A-modules that is a homotopy equivalence of i^-modules. More generally, by 
use of the product on A and its action on the given modules, we obtain a natural 
map of i^-modules 

%l) : BR(M, A,N)—*M AA N. 
The proof of the following result is the same as that of its special case IV.7.5. 

PROPOSITION 2.3. For a cell A-module M and an A-module N, 

^:BR{M,A,N) —* M AA N 

is a weak equivalence of R-modules. 
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The relevance of the bar construction to thh is shown by the following obser­
vation, which is the same as in algebra. We agree to write 

BR(A) = BR{A,A,A). 

Observe that BR(A) is an (A, A)-bimodule; on the simplicial level, BR(A) = Ae. 

LEMMA 2.4. For (A,A)-bimodules M, there is a natural isomorphism 

thhR{A- M)^M AAe BR(A). 

PROOF. If M is the constant simplicial (A, A)-bimodule at M, then 

M AAe BR{A) £ |M AAe BR{A, A, A)\. 

We have canonical isomorphisms 

M AR AV ^ M AAe (Ae AR Ap) ^ M AAe (A AR Ap AR A) 

given by the permutation of Aop = A past Ap. Inspection shows that these 
commute with the face and degeneracy operations and so induce the stated 
isomorphism. • 

Since the natural map ip : BR(A) —> A of (A, A)-bimodules is a homotopy 
equivalence of .R-modules, this has the following immediate consequence, by 
III.3.8. 

PROPOSITION 2.5. For cell Ae-modules M, the natural map 

thhR(A; M)^M AA* BR(Af^M AAe A = THHR(A\ M) 

is a weak equivalences of R-modules, or of Ae -modules if A is commutative. 

While we are perfectly happy, indeed forced, to assume that M is a cell Ae-
module in our derived category level definition of THH, we are mainly interested 
in the case M = A of our point-set level construction thh, and A is not of the 
Ae-homotopy type of a cell Ae-module except in trivial cases. However, we have 
the following result. 

THEOREM 2.6. Let 7 : M —• A be a weak equivalence of Ae-modules, where 
M is a cell A€-module. Then the map 

thhR(id;-f) : thhR(A]M) —> thhR(A\A) = thhR(A) 

is a weak equivalence of R-modules, or of Ae-modules if A is commutative. 
Therefore THHR{A\M) is weakly equivalent to thhR(A). 

PROOF. With the notation of VII.6.4, it is clear from VII.6.5 that M and A 
are both in <£#, and it follows from VII.6.7 that the map thhR(id; 7) of p-simplices 
is a weak equivalence for each p. By Proposition 2.8 below, the simplicial R-
modules BR(A) and thhR(A) are proper, in the sense of X.2.2, and X.2.4 gives 
the conclusion. • 

Combining the previous two results, we arrive at the conclusion we really 
want. 
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THEOREM 2.7. If R is a q-cofibrant commutative S-algebra and A is either a 
q-cofibrant R-algebra or a q-cofibrant commutative R-algebra, then thh(A) and 
THH(A) are canonically isomorphic in the derived category $R. 

PROPOSITION 2.8. For right and left A-modules M and N, Bf (M, A, N) is a 
proper simplicial R-module. For an (A, A)-bimodule M, thh^(A; M) is a proper 
simplicial R-module. 

P R O O F . The condition of being proper involves only the degeneracy and not 
the face operators of a simplicial .R-module. In our cases, the degeneracies are 
obtained from the unit rj : R —> A and, since smashing over R with M and 
N in the first statement and with M in the second preserves cofibrations of 
R-modules, the result in both cases is an immediate consequence of VII.7.5. • 

Returning to the study of spectral sequences in the previous section, we find 
that use of the standard complex gives us spectral sequences under different 
flatness hypotheses, just as in IV§7. We consider the spectral sequence derived 
in X.2.9 from the simplicial filtration of thhR(A; M). For simplicity, we restrict 
attention to the absolute case R = S. 

THEOREM 2.9. Let E be a commutative ring spectrum, let A be an S-algebra, 
and let M be a cell Ae-module. If E*(A) is E*-flat, then there is a spectral 
sequence of the form 

Elq = HH%(E.(A);E.(M)) = • Ep+q(thhs(A;M)). 

The composite 

E*(M)-^^El* *Eft-±+Em(thhs(A; M)) 

coincides with (* : E*(M) —• E*(thhs(A; M)). If A is a commutative S-algebra 
then the spectral sequence 

£&, = HH%(E.(A)) = • Ep+q{thhs{A)) 

is a spectral sequence of differential E* (A)-algebras, and the composite 

E*{A) -*-+ El* ^ £ f t - ^ - E*(thhs(A))/imC* 

coincides with the restriction of 

(a;)* : Em(A A S | ) - ^ E*(thhs{A))/ im{* 

to the wedge summand HA. 

PROOF. Using VII.6.2 or VII.6.7 and our standing <?-cofibrancy hypothesis 
to see that our point-set level constructions can be used to compute derived 
smash products, we see that the E1 term is exactly the standard complex for 
the computation of the algebraic Hochschild homology groups in the E2 term. 
The standard product on the standard complex is realized on J51, and the rest 
is clear. • 
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3. The isomorphism between thhR(A) and A <g> S1 

We here explain a reinterpretation of the definition of thhR(A) that was ob­
served by McClure, Schwanzl, and Vogt [54]. Recall that the category ^S^R of 
commutative .R-algebras ^ W R is tensored and cotensored over the category ^ 
of unbased topological spaces, so that we have adjunction homeomorphisms 

(3.1) V*/R(A 0 1 , 5 ) ^ «T(X,VJ*R(A,B)) * VstfR(A,F(X+,B)). 

As in VII.3.7, we easily obtain an identification of simplicial commutative 
R- algebras 

(3.2) thhR(A)* *M®5j. 

by writing out the standard simplicial set Sl whose realization is the circle 
and comparing faces and degeneracies. We give a slightly different proof of the 
following result. We think of Sl as the unit complex numbers. 

THEOREM 3.3 (MCCLURE, SCHWANZL, VOGT) . For commutative R-algebras 
A, there is a natural isomorphism of commutative R-algebras 

thhR(A)^A®S\ 

The product of thhR{A) is induced by the codiagonal Sl II Sl —• Sl. The unit 
£ : A —• thhR(A) is induced by the inclusion {1} —> 5 1 . 

PROOF. We may identify 5 1 with the pushout in the diagram 

dl ^1 

{pt} >Sl. 

We arrange our identification to map {pt} to {1}. Applying the functor A® ( - ) , 
we obtain a pushout diagram 

A <g) dl *• A® I 

A®{pt} ^A®S\ 

By VII.3.7, we have BR(A) * M <g> I. By Lemma 2.4, thhR(A) ^ A AAe BR{A). 
This gives the isomorphism thhR(A) ~ A <g> S1 by a comparison of pushouts. 
The statement about the product follows from the isomorphism of coproducts 

(A®R S1) ARiA^RS^^A® (51U51). 

Since ( is determined by {pt} —> S1, the last statement is clear. D 

COROLLARY 3.4. The pinch map Sl —> S1 V 5 1 and trivial map S1 —> * 
induce a (homotopy) coassociative and counital coproduct and counit 

iP : thhR(A) —• thhR(A) AA thhR{A) and e : thhR{A) —> A 

that make thhR{A) a homotopical Hopf A-algebra. 
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PROOF. Since Sl V S1 is the pushout of Sl <— * —> Sl and the functor 
A <g> ( - ) preserves pushouts, we see from VII. 1.6 that 

thhR(A) AA thhR(A) * thhR(A) ® (S1 V S1). 

The rest is clear. • 

The next few corollaries are based on the case X — S1 of the adjunctions 
(3.1). Of course, left adjoints preserve colimits. 

COROLLARY 3.5. The functor thhR(A) preserves colimits in A. 

The word "naive" in the following corollary refers to the fact that we only 
consider spectra indexed on universes with trivial iS^-actions here; genuine S1-
spectra must be indexed on universes that contain all representations of S1. In 
the naive sense, we define commutative S1-S-algebras, and so on, simply by 
requiring S1 to act compatibly with all structure in sight. We think of S1 as 
acting trivially on R and A. 

COROLLARY 3.6. thhR(A) is a naive commutative S1-R-algebra. If B is a 
naive commutative Sl-R-algebra and f : A —> B is a map of commutative 
R-algebras, then there is a unique map of naive commutative Sl-R-algebras f : 
thhR(A) —• B such that fo( = f. 

PROOF. The product on S1 gives a map 

a : (A (g) 51) 0 S1 £ A 0 (S1 x S1) —• A 0 S1 . 

Its adjoint S1 —> <^s^R{thhR{A),thhR{A)) gives actions by elements of Sl via 
maps of commutative .R-algebras, with the requisite continuity, and the adjunc­
tion immediately implies the universal property. • 

For an integer r, define <j)r : S1 —• S1 by 

0r(e27rit) = e2lxirt. 

It is immediate that these induce power operations <£r on thhR(A). 

COROLLARY 3.7. There are natural maps of commutative R-algebras 

$r : thhR(A) —+ thhR{A) 

such that 
<f>° = (e, ^ x = i d , <f>ro$s = $rs, 

and the following diagrams commute: 

thhR{A) <g> Sl -Z—^thhR{A) 

Y 

thhR{A) ® Sl-dr^thhR{A). 
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COROLLARY 3.8. There is a natural S1-equivariant map of R-modules 

u>: AAS\ —+thhR(A) 

such that if B is a commutative R-algebra and f : A A S+ —> B is a map of 
spectra such that the composite f o (id Mx) : A —• B, ix : {x} + C S+, is a map 
of R-algebras for each x £ S1, then f uniquely determines a map of R-algebras 
f : thhR(A) —> B such that f = / o u. Moreover, u is obtained by passage to 
geometric realization from the natural map of simplicial spectra 

CJ* : AA(Sl)+ —> A®Sl 

PROOF. This is immediate from VII.2.11. Its transitivity diagram and a 
naturality diagram imply the S^equivariance. • 

The image of LJ lies in the simplicial 1-skeleton. The intuition is that the rest 
of thhR(A) freely builds up the il-algebra structure. 

REMARK 3.9. When A is an E-algebra, inspection of the simplicial structure 
shows that thhR(A)* is a cyclic spectrum, and it follows exactly as for cyclic 
spaces [17] that thhR(A) is a naive 51-i?-module. We believe that a variant of 
our construction of thhR(A) will yield a genuine 51-spectrum that is cyclotomic 
in the sense of Hesselholt and Madsen [30, 1.2]. If so, this variant should lead to 
a relative generalization of topological cyclic homology. We intend to return to 
this elsewhere. 
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CHAPTER X 

Some basic constructions on spectra 

We have used geometric realization of simplicial spectra in several places, and 
we shall make further use of it to prove some of our earlier claims. We study 
it in the first two sections, concentrating on formal properties in Section 1 and 
on homotopical properties in Section 2. We then use geometric realization to 
define homotopy colimits in Section 3. All of the basic definitions and much of 
the work in the first three sections carries over to any of our model categories 
of module, ring, and algebra categories, as we have already indicated in VII§3. 
We prefer to be more concrete in this service chapter. It will be evident that 
geometric realization in the category of L-spectra or the category of i?-modules 
for an 5-algebra R is given by geometric realization in the underlying category 
of spectra. 

After discussing various special kinds of prespectra in Section 4, we use ho­
motopy colimits to construct the "cylinder functor" in Section 5. This functor 
converts spectra to weakly equivalent E-cofibrant spectra while preserving ring, 
module, and algebra structures. 

Much of the material of this chapter has long been known to the authors, and 
to others, but little if any of it has appeared in the literature. 

1. The geometric realization of simplicial spectra 

We first recall from [43] the definition of a coend, or tensor product of functors. 
Let A be any small category and let ^ be any category that has all (small) 
colimits. Write V for the categorical coproduct in *€. Suppose given a functor 

F : Aop x A —-> <*f. 

Define the coend of F , denoted 

J F(n,n) 
to be the coequalizer of the pair of maps 

\Jt.m^nF{n,m)=X\jnF{n,n) 

179 
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where the restriction of e to the (f)th summand is F(cf), id) and the restriction of 
/ to the 0th summand is F(id, 0). Using equalizers, we obtain the dual notion 
of the end of F, denoted JA F(n, n). 

Now recall that a simplicial object in any category ^ is a contravariant functor 
from the simplicial category A to *&. We have the classical geometric realization 
functor, denoted |X*|, from simplicial spaces to spaces, and we need to extend it 
to the level of spectra. We shall begin with a spectrum level definition, and we 
shall then show how to interpret it in terms of the space level definition. This 
will allow us to deduce many properties of the spectrum level functor simply by 
quoting standard properties of the space level functor. Recall that, using the 
usual face and degeneracy maps, we obtain a covariant functor from A to spaces 
that sends q to the standard topological ^-simplex Ag. 

DEFINITION 1.1. Let K* be a simplicial spectrum. Define its geometric real­
ization to be the coend 

\K*\ = J KqA(Aq)+. 

Of course, the functor Aop x A —> S* that is implicit in the definition sends 
(p, q) to Kp A(Aq)+ . The geometric realization of a simplicial space X* is defined 
similarly: 

|X*| = f Xqx Aq. 

If X* is a simplicial based space, so that all its face and degeneracy maps are 
basepoint-preserving, then all points of each subspace * x Aq are identified to 
the point (*, 1) € XQ X AO in the construction of |X*|, hence 

1**1=/ XqA(Aq) + . 

This places the two definitions in the same form. Actually, as with any cate­
gorical colimit, the geometric realization of a simplicial spectrum is obtained by 
applying the spectrification functor L to the spacewise geometric realization of 
its underlying simplicial prespectrum. In more detail, for a simplicial prespec-
trum K*, we have simplicial based spaces K*(V) for indexing spaces V. Their 
geometric realizations form a prespectrum with structural maps induced from 
those of K* as the composites 

i:w-v\K*(V)\ * \LW-VK*{V)\ —> \K*(W)\. 

If K* is a simplicial spectrum, then |if*| is obtained by applying L to this 
prespectrum. 

As we explain in the proof, the following result has two different senses, and 
it is correct in both senses. 

PROPOSITION 1.2. The geometric realization functor from simplicial spectra 
to spectra preserves homotopies. 
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PROOF. AS on the space level [45, §11], we have two kinds of homotopy be­
tween simplicial maps, and geometric realization carries both to homotopies of 
the usual sort. One kind is just a simplicial map with domain of the form 
K* A / + , and geometric realization preserves this kind of homotopy by part (ii) 
of the next proposition applied to the constant simplicial space at /+. The other 
is the combinatorial kind of homotopy that makes sense for maps between sim­
plicial objects in any category [45, 9.1]. It can be viewed as a simplicial map with 
domain of the form K* AA*[1] + , where A*[l] is the standard simplicial 1-simplex 
viewed as a discrete simplicial space, hence part (ii) of the next proposition also 
applies to show that geometric realization preserves this kind of homotopy. • 

On the level of based spaces, it is standard that geometric realization com­
mutes with wedges and products and therefore with smash products. This easily 
implies a direct proof of (ii) and (iv) of the following result, and (i) can be viewed 
as a special case of (ii). Recall that functors on if are extended termwise to sim­
plicial objects in ^ ; for example (J* A K*)q = Jq A Kq for simplicial spectra J* 
and K*. 

PROPOSITION 1.3. Geometric realization enjoys the following properties. 
(i) For simplicial based spaces X*, there is a natural isomorphism 

(ii) For simplicial based spaces X* and simplicial spectra K*, there is a nat­
ural isomorphism 

\K*AX*\^\K*\A\X*\. 

(iii) For simplicial spectra K* indexed on U and spaces A over J^(U,U'), 
there is a natural isomorphism 

\AKK*\^AK \K+\. 

(iv) For simplicial spectra | J*| and \K*\} there is a natural isomorphism 

\J*AK.\*\J+\A\K*\, 

where external smash products are understood. 
(v) For simplicial spectra K*, there are natural isomorphisms 

\MK*\ * M\K*\ and \CK*\ * C\K+\, 

and similarly for the monads B[l] and C[l] and for the corresponding 
reduced monads that were defined in i7§§^-5. 

PROOF. Part (i-iii) hold since left adjoints commute with colimits. Parts (iv) 
and (v) follow from parts (i)-(iii) and a Fubini theorem for iterated coends. • 

PROPOSITION 1.4. For simplicial L-spectra K* and L*, there is a natural iso­
morphism 

\K*\A<?\L*\^\K*A<?L*\. 
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For an S-algebra R, such as R = S, and simplicial R-modules M* and N*, there 
is a natural isomorphism 

\M*\AR\N+\**\M*ARN.\. 

PROOF. The first isomorphism is immediate from the previous proposition, 
and it directly implies the second when R = S. In view of the coequalizer descrip­
tion of smash products over R, the case of general R follows by the commutation 
of coequalizers with geometric realization. • 

PROPOSITION 1.5. The geometric realization of a simplicial A^ or Eoc ring 
spectrum is an A^ or E^ ring spectrum. For a commutative S-algebra R, such 
as R = S, the geometric realization of a simplicial (commutative) R-algebra 
is a (commutative) R-algebra. The analogous preservation properties hold for 
modules. 

2. Homotopical and homological properties of realization 

To discuss the behavior of geometric realization with respect to equivalences 
and CW homotopy types, and to obtain useful spectral sequences from its canon­
ical filtration, we need the following technical definition. 

DEFINITION 2.1. Let K* be a simplicial spectrum and let sKq c Kq be the 
"union" of the subspectra SjKq_i, 0 < j < q. Say that K* is proper if the 
"inclusion" sKq —> Kq is a cofibration for each q > 0. 

The term "union" must be interpreted in terms of appropriate pushout dia­
grams. The corresponding "inclusions" must be interpreted, a priori, in terms of 
associated maps. However, a cofibration of spectra is a spacewise closed inclusion 
[38, 1.8.1]. Rigorous notation would make this section unreadable, so we shall 
use notations as if we were dealing with simplicial spaces, leaving the translation 
to rigorous categorical language to the reader. One way to be precise about the 
degeneracy subspectrum sKq and its associated map to Kq is to interpret the 
latter as the following map of coends 

fDq-i fDq 

J KPA D(q,p)+ — J KPA D{q,p)+ * Kq. 

Here D is the subcategory of A consisting of the monotonic surjections (which 
index the degeneracy and identity maps), and Dq is its full subcategory of objects 
1 with 0 < i < q. The isomorphism is an application of Yoneda's lemma. With 
this interpretation, we can generalize the context to L-spectra or to i?-modules 
for a fixed 5-algebra R. Recall that colimits in the categories of L-spectra and 
of i2-modules are created in the category of spectra. 

DEFINITION 2.2. A simplicial L-spectrum is proper if the canonical map of 
L-spectra sKq —• Kq is a cofibration for each q > 0. A simplicial i2-module is 
proper if the canonical map of .R-modules sKq —• Kq is a cofibration for each 
q > 0 . 
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Since mapping cylinders of i?-modules are created in ^ , a cofibration of L-
spectra or of /^-modules is a cofibration of spectra, but not conversely. Note 
that the inclusion M —> N of a relative cell iJ-module (iV, M) is a cofibra­
tion, by HELP, and that VII.4.14 gives that g-cofibrations of i2-algebras and of 
commutative iZ-algebras are cofibrations of ^-modules. 

LEMMA 2.3. Let i : A —> X be a cofibration of spectra, IL-spectra, or R-
modules. Then 

j = i A id : (A A A q + ) U (X A <9Aq+) —> X A AQ+ 

is a cofibration of spectra, IL-spectra, or R-modules. Therefore, if K* is a proper 
simplicial spectrum, IL-spectrum, or R-module, then the inclusion 

(sKq A A9+) U (Kq A dAq+) —• Kq A A 9 + 

is a cofibration for each q > 1. 

PROOF. With the usual conventions on products and smash products of pairs, 
we are given that 

(X,A)A(I+,{0}+) 

is a retract pair, and we must deduce that 

(X,A)A(Ag+,dAg+)A(I+,{0}+) 

is a retract pair. There is a homeomorphism of pairs 

(A„ 8Aq) x (I, {0}) S (A, x I, Aq x {0}). 

In based notation, this clearly implies a homeomorphism of pairs 

(Aq+, dAq+) A (I+, {0}+) s (7+, {0}+) A Aq+. 

The conclusion follows upon smashing with (X, A) and using the given retrac­
tion. • 

Similarly, the theorems to follow are valid with essentially identical proofs in 
the contexts of spectra, L-spectra, and R-modules. 

THEOREM 2.4. Let /* : if* —> K'+ be a map of proper simplicial spectra, 
IL-spectra, or simplicial R-modules. 

(i) / / each fq : Kq —• K'q is a homotopy equivalence, then so is |/*| : 
\K*\ — \K\. 

(ii) In the h-spectrum case, and therefore also in the R-module case, if each 
fq : Kq —> K'q is a weak equivalence, then so is |/*| : \K*\ —> \K*\; 
in the spectrum case, this holds if all given and constructed spectra are 
tame. 
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PROOF. The proof is precisely parallel to the proof of the space level analogues 
[46, A.4]. The essential point is just the gluing theorem to the effect that a 
pushout of (weak) equivalences is a (weak) equivalence when corresponding legs 
of the given pushout diagrams are cofibrations. For tame spectra, the weak 
version of this statement is a consequence of 1.3.5. For L-spectra, the weak 
version is a consequence of 1.6.5. 

For 0 < k < q, let skKq be the union over 0 < j < k of the subspectra SjKq-\ 
of Kq. We claim first that the inclusion sk~xKq —> shKq is a cofibration for 
0 < k < q. This holds vacuously if q — 1. We assume it for q — 1 and deduce 
it for q. Since a composite of cofibrations is a cofibration and K* is proper, the 
left vertical inclusion in the following commutative diagram is a cofibration: 

* * - % _ ! ^ sk~lKq n skKq^ ^ sk~lKq 

( 2 . 5 ) I I I 
tfg-l • S f e t f g - l >8kKq. 

The left horizontal arrows are induced by s& and are isomorphisms with inverses 
induced by d^+i, and the right square is a pushout. Therefore the middle and 
right vertical arrows are also cofibrations. This proves our claim. 

Since so ' Kq-i —> s°Kq is an isomorphism, we find by induction on q and, 
for fixed g, by induction on k that fq : skKq —• skK'q is a (weak) equivalence 
for each k and q. In particular, fq : sKq —> sKq is a (weak) equivalence for 
each q. As usual, \K*\ is filtered, and we have successive pushouts 

sKq A dAq+ *• Kq A 9A9+ 

Y T 

(2.6) sKq A A g + ^ (sKq A Aq+) U (Kq A dAq+) -^-^ Fq-i\K+\ 

Kq A Aq+ ^Fq\K+\. 

Here the restrictions of the map g to sKq AA9+ and Kq/\dAq+ are dictated by the 
coequalizer description of |i£*|. The vertical arrows are cofibrations, the bottom 
middle one by Lemma 2.3. Therefore the restrictions |/*| : Fq\K*\ —> ^ | i ^ * | 
are (weak) equivalences by successive applications of the gluing theorem, and 
|/*| is a (weak) equivalence by passage to colimits over q, using III.1.7 in the 
weak case. • 

THEOREM 2.7. Let K* be a simplicial spectrum, L-spectrum, or R-module. 
(i) If each Kq is a cell object, each degeneracy operator is the inclusion of 

a subcomplex, and each face operator is sequentially cellular, then \K*\ 
is a cell object, and similarly for CW objects. 

(ii) If K* is proper and if each Kq has the homotopy type of a cell object, 
then so does \K*\} and similarly for CW objects provided that, in the 
R-module case, R is connective. 
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PROOF. The proofs follow the same outline as in the previous theorem, and 
part (i) is clear from the second pushout in (2.6). For the CW case of (ii), if 
each Kq has the homotopy type of a CW object, then, by induction on q and, for 
fixed g, by induction on A;, (2.5) shows that each skKq has the homotopy type 
of a CW spectrum. By induction on q, (2.6) then shows that each Fq\K*\ has 
the homotopy type of a CW spectrum. Therefore \K*\ has the homotopy type 
of a CW spectrum. 

The essential point is that if J, K, and L are CW homotopy types, then a 
pushout diagram obtained from a cofibration J —> K and a map J —• L is 
equivalent to a pushout diagram obtained from the inclusion of a subcomplex 
Jf in a CW object K' and a cellular map from J' to a CW object V. Since 
we are applying the cellular approximation theorem, we must assume that R is 
connective in the .R-module case. By the gluing theorem, the pushout K Uj L 
is therefore homotopy equivalent to the CW object K' Uj/ V'. Since colimits are 
constructed from wedges and coequalizers and thus from wedges and pushouts, it 
follows that the colimit of a sequence of cofibrations of objects of the homotopy 
types of CW objects has the homotopy type of a CW object. The proof of the 
statement about cell objects is similar; here III.2.2 substitutes for the cellular 
approximation theorem. • 

REMARK 2.8. A result similar to Theorem 2.4(i) was proven for simplicial 
LEC spectra (see §4) in [21]; in that context the argument proceeds by an imme­
diate reduction to the space level analogue. However, that proof does not work 
to give Theorem 2.7(h) and does not apply to the .R-module setting. 

The following is the spectrum level analogue of a frequently used space level 
spectral sequence. We have used it in our discussion of bar constructions and 
of topological Hochschild homology. For a spectrum £", we can apply Eq to the 
simplicial spectrum K* to obtain a simplicial abelian group Eq(K+). Taking the 
homology of its normalized chain complex, we obtain groups Hp(Eq(K*)), and 
we obtain the same groups if we take the homology of its unnormalized chain 
complex [44, 22.3]. If E is an R-module and K* is a simplicial R-module, then, 
with the notation of IV.1.7, we obtain groups Hp(Ej*(K*)) the same way. If 
R is commutative, then each HP(E^(K*)) is an ^-module . If, further, E is a 
commutative .R-ring spectrum, then HP(E^(K*)) is an .E*-module. 

THEOREM 2.9. Let K* be a proper simplicial spectrum and let E be any spec­
trum. There is a natural homological spectral sequence {EpqK*} such that 

Ep,qK* = Hp{Eq{K*)) 

and {EpqK*} converges strongly to E*(\K*\). With E* replaced by E^, the same 
statement holds for a proper simplicial R-module if* and an R-module E. Here, 
if R is commutative, then the spectral sequence is one of differential R*-modules, 
and if E is a commutative R-ring spectrum, then the spectral sequence is one of 
differential E^-modules. 

PROOF. Let Fp|if*| be the image in \K*\ of the wedge over 0 < q < p of the 
spectra Kq A (A9+). Then the inclusions FP-\\K*\ C FP\K*\ are cofibrations, 
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and we have isomorphisms 

F p | t f , | /F p - i | t f , | £ (Kp/sKp) A (AP/SAP) * YP{Kp/sKp). 

We apply i£* to obtain an exact couple, and thus a spectral sequence, with 

Ep+q{Fp\KA/Fp-X\K*\) = ElqK*. 

We now see that EpqK* is isomorphic to the p-chain group of the normalized 
chain complex of Eq(K*), and a diagram chase just like that of [45, p. I l l ] 
shows that d1 agrees with the differential of this chain complex. This identifies 
JB2, and the convergence is standard. • 

3. Homotopy colimits and limits 

Homotopy colimits and limits of spectra do not appear explicitly in the litera­
ture. However, in view of our results on geometric realization, these constructions 
present no more difficulty in the category S? of spectra than they do in the cate­
gory 5F of based spaces. Of course, we are concerned with precise point-set level 
versions rather than with the cruder homotopical versions that are present in 
any Quillen model category. We record the definitions in this section. The same 
definitions apply in the category of i?-modules for any 5-algebra R. 

Let Q) be any small category. Let Bq(@) be the set of ^-tuples / = ( / i , . . . , fq) 
of composable arrows of 0 , depicted 

(3.1) d o ^ i L _ _ d l ^ L _ . . . ^ A _ d < ? , 

and let S(f) = dq and T( / ) = do be the source and target of / . We understand 
B0(@) to be the set & of objects of 0 . With the usual faces and degeneracies, 
B*(0) is a simplicial set whose geometric realization is the classifying space 
B(9). 

We first specify homotopy colimits. A ^-shaped diagram of spectra is a 
covariant functor D : @ —• 5?. For any such D, there is a simplicial spectrum 
£*(*, @,D), the space level analogue of which was specified in [47, §12]. (The 
left variable * is a place holder.) The spectrum of g-simplices is the wedge over all 
/ G Bq{@) of the spectra D(S(f)). The faces and degeneracies are the standard 
ones of the two-sided bar construction [47, §7]. Applied to / as in (3.1), the last 
face on Bq{&) forgets fq; the last face on the / t h wedge summand of Bq(*, @, D) 
is the map D(fq) : D(dq) —• D{dq-\). By definition, hocolimD is the geometric 
realization of this simplicial spectrum. Using the abbreviation B(-) = | #* ( - ) | , 
we may write this as 

(3.2) hocolim D = B(*, 0 , D). 

For example, if K_: 9 —• S? is the constant functor at a spectrum K, then we 
see by inspection of definitions that 

(3.3) hocolim K = B{$)+/\K. 
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A map / : D —• D' of diagrams is a natural transformation of functors, and, 
since B*(*,@,D) is clearly proper, Theorem 2.4 has the following immediate 
implication. 

PROPOSITION 3.4. If f : D —> Df is a map of diagrams such that each 
f(d) is a homotopy equivalence, then hocolim/ : hocolim £> —• hocolim £>' is a 
homotopy equivalence. If all given and constructed spectra are tame, the same 
holds for weak equivalences. 

We shall need the following lemma on cofibrations. While we shall only use 
it in the context of based spaces, it works equally well in the context of spectra. 

LEMMA 3.5. Let & be a subcategory of Q> such that any morphism of @ with 
target in & is a morphism of <$'. Let D be a functor from @ to the category of 
spaces, based spaces, or spectra and let D' be the restriction of D to &. Then 
the induced map hocolim D' —> hocolim D is a cofibration. 

PROOF. We work with based spaces for definiteness, but the argument is the 
same in the other two cases. It suffices to construct a retraction 

r : (hocolim D) A J+ —• (hocolim D) U ((hocolim D') A i+) 

from the reduced cylinder to the reduced mapping cylinder of the inclusion. A 
point z = | ( / , x), I*| A 5 of the domain is given by a composable tuple / of maps 
as in (3.1), a point x € D{dq), a point u € Aq, and a point s € I. There is an 
i > 0 such that the maps / i , • • • , fa are in & - %)' and the maps / i+i, • • • , fq are 
in @f. If i = 0, define r(z) = z. If i — #, define r(z) by replacing s by 0; that 
is, r is here just the retraction to the base of the cylinder. If 0 < i < q, write 
u = (tv, (1 — t)w), where v G A^-i, w € A9_i, and t £ I. Then define 

r(z) = /l(/^)» (Ml A (1 " 2t)s if 0 < t < 1/2 
\ l ( / , z ) , ((2* - I K (2 - 2t)w)\ A 0 if 1/2 < t < 1. 

It is straightforward to check that r is a well-defined retraction. • 

Although we shall not need it here, we take the opportunity to record our 
preferred definition of homotopy limits, which is precisely dual to the definition 
of homotopy colimits. We suppose given a contravariant functor E : @ —• 5?. 
We obtain a cosimplicial spectrum C*(E, @, *), a two-sided cobar construction. 
Its spectrum of g-cosimplices is the product over all / G Bq(&?) of the spectra 
E(T(f)). The cofaces and codegeneracies with target Cq(E, @, *) have / t h co­
ordinate obtained by projecting onto the coordinate of the source that is indexed 
by the corresponding face or degeneracy applied to / , and, for the zeroth coface, 
composing with the map E(f\) : E(d0) —> E{d{). 

We define the geometric realization or totalization "Tot K*" of a cosimplicial 
spectrum if* to be the end 

(3.6) Tot if, = / F((Aq)+,Kq). 

Here we are using the evident functor Aop x A —> S? that sends (p,q) to 
F((Ap)+,Kq). 
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We define the homotopy limit of a contravariant functor E : @ —• 5? to be 
the totalization 

(3.7) holimE = Tot C*(E,9,*). 

For example, if K_: @ —> S? is the constant functor at a spectrum K, then we 
see by use of adjunctions and inspection of definitions that 

(3.8) holim K_ = F{B{9)+,K). 

The essential point is that the definition makes perfect sense with the precise 
point-set level definitions of product and function spectra given in [38, pp. 13, 
17]. 

4. E-cofibrant, LEC, and C W prespectra 

We here discuss several special types of prespectra that play an important 
technical role in point-set level studies in stable homotopy theory. We first put 
the notion of a E-cofibrant spectrum (from 1.2.4) into perspective by recalling 
the following definitions from [38, I§8] and [21]. A space X is said to be LEC 
(locally equiconnected) if the inclusion of its diagonal subspace is an unbased 
cofibration; see e.g. Lewis [36] for a discussion of such spaces. 

DEFINITION 4.1. A prespectrum D is said to be 
(i) E-cofibrant if its structure maps 

a : Y,W~VDV —> DW 

are based cofibrations. 
(ii) an inclusion prespectrum if its adjoint structure maps 

a:DV—> QW~VDW 

are inclusions. 
(iii) cofibrant if its adjoint structure maps a are based cofibrations. 
(iv) LEC if it is E-cofibrant and each space DV is LEC. 
(v) CW if it is LEC and each DV has the homotopy type of a CW complex. 

A spectrum E is said to be E-cofibrant or LEC if it is isomorphic to LD for 
some E-cofibrant or LEC prespectrum D. 

If E is a spectrum, then the maps a are homeomorphisms. Therefore, as a 
prespectrum, E is cofibrant, but it is not E-cofibrant (unless it is trivial). The 
first statement of the following result is clear. Although we have concentrated 
on E-cofibrant prespectra and spectra, the second statement, which is due to 
Lewis [36], gives one reason for interest in the LEC notion. 

LEMMA 4.2. A Y,-coftbrant prespectrum is an inclusion prespectrum. An LEC 
prespectrum is cofibrant. 
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Our CW prespectra must not be confused with CW spectra; the latter are 
defined in terms of spectrum-level spheres and attaching maps. Since we are 
interested in notions that are appropriate for serious point-set level work and 
that admit usable equivariant generalizations, we have no interest in the old-
fashioned and, to our minds, obsolete, notion of a CW prespectrum that requires 
CW complexes Dn and cellular structure maps EZ)n —> Dn+i. We have the 
following relations between CW prespectra and CW spectra [38, 1.8.12-14]. 

THEOREM 4.3. If D is a CW prespectrum, then LD has the homotopy type of 
a CW spectrum. If E is a CW spectrum, then each space EV has the homotopy 
type of a CW complex and E is homotopy equivalent to LD for some CW pre­
spectrum D. Thus a spectrum has the homotopy type of a CW spectrum if and 
only if it has the homotopy type of LD for some CW prespectrum D. 

The first statement is an immediate consequence of the following description 
of spectra in terms of shift desuspensions of spaces [38, 1.4.7]. The second is 
based on use of the cylinder construction defined in the next section. 

PROPOSITION 4.4. / / D is an inclusion prespectrum, then 

L P ^ c o l i m E ^ W , 

where the colimit is computed as the prespectrum level colimit of the maps 

E$<7 : Y$DV £ E ^ E ^ - ^ D V —• S ^ M 

That is, the prespectrum level colimit is a spectrum that is isomorphic to LD. 

In particular, if D is E-cofibrant, then LD is the colimit of shift desuspensions 
of space level based cofibrations. This makes the point-set level analysis of such 
spectra particularly convenient. The condition of being E-cofibrant is quite weak. 
It is clear from Theorem 4.3 that tame spectra, that is, spectra of the homotopy 
types of E-cofibrant spectra, are considerably more general than spectra of the 
homotopy types of CW spectra. The output spectra of the standard infinite loop 
space machines are E-cofibrant no matter what their input. The following closure 
properties of the category of E-cofibrant spectra are more directly relevant to 
us. 

LEMMA 4.5. The suspension and shift desuspension spectra of based spaces 
are Y,-cofibrant. 

PROOF. The prespectrum level structure maps of shift desuspensions are iden­
tity maps or the inclusions of basepoints (which are always based cofibrations) 
[38, 1.4.1]. Explicitly, E ^ X = LU^X for an indexing space V cU, where 

(IVpX)(W) = ZW~VX IfWDV and (U^X){W) = {*} otherwise. • 
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PROPOSITION 4.6. Suppose given compact spaces Ai, based cofibrations Ai —• 
Bi, and indexing spaces Vi, where i runs through any indexing set. If 

V 4 S ^ *E 

S/iZfiBi *F 

is a pushout of spectra and E is E-cofibrant, then F is E-cofibrant. If 

ViLE^Ai ^L 

\ \ 
y.h^Bi—^M. 

is a pushout ofh-spectra and L is tame, then M is tame. 

PROOF. Let E = LD, where D is a E-cofibrant prespectrum. Since E is 
a prespectrum level colimit, A{ is compact, and E'y, is adjoint to the V t̂h 
space functor, we find that the given map E'y.Ai —• E is induced by a map 
Ai —> QWi~ViDW{ for some W% D Vi. There results a map of prespectra 
W^.EWi~Vi Ai —> D that induces the given map of spectra under the isomor­
phism E^.Ai = E^.EWi~ViAi. This allows us to construct the pushout on the 
prespectrum level, where an inspection from the fact that the structure maps of 
the TL^XWi~Vi Ai and U.^,EWi"ViBi are wedges of identity maps or inclusions 
of basepoints shows that the pushout is E-cofibrant. This proves the first state­
ment. Since there is no claim about the action of L, the second statement is an 
easy consequence, by comparisons of pushout diagrams and use of the fact that 
rj : T.'yA —• 'LHy'A is a homotopy equivalence for any A and V. • 

PROPOSITION 4.7. The external smash product of two H-cofibrant spectra is 
Y>-cofibrant. The j-fold external smash power of a T,-cofibrant spectrum is E-
cofibrant as a Ej -spectrum. 

PROOF. The smash product / Ag of based cofibrations is a based cofibration 
since it is the composite of based cofibrations / A id and id Ag. Indexing smash 
products on inner product spaces V®V, as we may, we see immediately that the 
smash product of E-cofibrant prespectra is a E-cofibrant prespectrum. Similarly, 
for j-fold smash powers, we may index on j-fold sums Vj and use the fact that the 
j th smash power of a based cofibration is a based Ej-cofibration to see that the j -
fold smash power of a E-cofibrant prespectrum is a E-cofibrant E;-prespectrum. 
By the following lemma, these prespectrum level observations imply the desired 
spectrum level conclusions. • 

LEMMA 4.8. For prespectra D and D', the units D — • £LD and D' — • ILD1 

of the specification adjunction induce an isomorphism of spectra 

L{D AD') —> L{£LD A lLDf). 
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P R O O F . Factoring the map in question through L(D AiLD') in the evident 
way, we see that it suffices to prove that L(D A D') —> L(D A £LDf) is an 
isomorphism. We have adjoint function prespectra and spectra [38, II.3.3] such 
that if E is a spectrum and D' is a prespectrum, then F(D',£E) is a spectrum. 
Moreover, a glance at the cited definition shows that 

FiD'.^^tF^D'.E). 

This isomorphism of right adjoints implies the desired isomorphism of left ad-
joints. • 

Although the fact will not be used in our work, results like those above also 
apply to LEC spectra [21]: the suspension and shift desuspensions of LEC spaces 
are LEC spectra, and the smash product of LEC spectra is LEC. 

For twisted half-smash products, we only have an up to homotopy version of 
Proposition 4.7. 

PROPOSITION 4.9. If E e J7U is T,-cofibrant and A is a compact space over 
<#(U, Uf), then A K E is Y-cofibrant. If E € 5?U is tame and A is a space over 
S(U,Uf) that has the homotopy type of a colimit of a sequence of cofibrations 
between compact spaces, then A K E is tame. 

PROOF. The first statement is immediate from the prespectrum level con­
struction of twisted half-smash products in the Appendix (or [38, VI.2.7]). For 
the second statement, we may assume that E — LD, where D is a E-cofibrant 
prespectrum and, by 1.2.5, we may also assume that A = colim Ai for a sequence 
of cofibrations Ai —• Ai+i between compact spaces Ai. Then [38, VI.2.5 and 
VI.2.18] give a concrete description of A K E as L(A K D), where the prespectrum 
A K D is obviously E-cofibrant. • 

For example, the second statement applies when A has the homotopy type of 
a CW complex with finite skeleta. 

5. The cylinder construction 

We show here that we can functorially replace an AQQ or £oo riug spectrum R 
by a weakly equivalent E-cofibrant A^ or EQQ ring spectrum KR, and similarly 
for modules. This replacement already works on the prespectrum level. We 
have used it in several technical proofs, and we shall use it again later. An 
iterated mapping cylinder functor K that sends prespectra to weakly equivalent 
E-cofibrant prespectra was constructed in [38, 1.6.8]. We shall use the language 
of homotopy colimits to give a more conceptual version of the construction that 
allows us to prove that it preserves structured ring and module spectra. 

CONSTRUCTION 5.1. Let D be a prespectrum indexed on U. Define KD as 
follows. For an indexing space V, let T£ be the category of subspaces V C V 
and inclusions. Define a functor Dy from V_ to the category of based spaces by 
letting DV(V) = EV-V'DV. For an inclusion V" —• V\ 

V- V" = (V-V)® {V -V"), 
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and a : Yy'-V"DV" —- DV induces DV(V") —-> ZV(^')- Define 

(JK'£))(Vr) = hocolimJDv 

An inclusion z : V —• VF induces a functor i : F —> W_, there is an evident 
isomorphism Ew~v Dy = Dwi of functors V_ —> W_, and the functor Y,w"v 

commutes with homotopy colimits. Therefore i induces a map 

a : Y>w~v hocolim £V = hocolim E ^ ' ^ j D y — hocolim Dwi —• hocolim D\y, 

and this map is a cofibration by Lemma 3.5. Thus, with these structural maps, 
KD is a E-cofibrant prespectrum. The structural maps a : Z^yV7 —• DV 
specify a natural transformation to the constant functor at DV and so induce 
a map r : (KD)(V) —> DV, and these maps r specify a map of prespectra. 
Regarding the object V as a trivial subcategory of V, we obtain j : DV —> 
(KD)(V). Clearly rj = id, and jr ~ id via a canonical homotopy since V is a 
terminal object of V_. The maps j do not specify a map of prespectra, but they do 
specify a weak map, in the sense that ja ~ aHw~vj : Ew~vDV —• (KD)(W), 
via a canonical homotopy. Clearly K is functorial and homotopy-preserving, and 
r is natural. 

The following example may be illuminating. 

EXAMPLE 5.2. Let X be a based space and let D be the suspension prespec­
trum of X, so that DV = TtVX and the structure maps a : EW~VT>VX —• 
Y*wX are the evident identifications. Via these identifications, the functor Dy 
is isomorphic to the constant functor at Y,VX, hence 

{KD){V)*B{V)+AJ:VX. 

The structure maps of KD are induced by the cited identifications and the maps 
B(i). In this case, we can use the initial objects {0} of the V_ rather than the 
terminal objects V to obtain maps S v X —• (KD)(V). Because the functors i 
preserve initial points, this gives a map of prespectra v : D —• KD such that 
rv — id. We have simply fattened up the EVX via the compatible system of 
contractible spaces B(V). 

Construction 5.1 is a conceptual version of [38, 1.6.8], and the discussion of 
"preternaturality" given in [38, 1.7.5-1.7.7] applies to it. As usual, we extend the 
construction to spectra by setting KE = LK£E, and we then have a natural 
weak equivalence r — Lr£ : KE —• E. The following result implies the second 
statement of Theorem 4.3. 

PROPOSITION 5.3. (i) If each space DV has the homotopy type of a CW 
complex, then LKD has the homotopy type of a CW spectrum. 

(ii) If E has the homotopy type of a CW spectrum, then KE has the ho­
motopy type of a CW spectrum, hence r : KE —> E is a homotopy 
equivalence. 
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PROOF. By Proposition 4.4, LKD ^ colim££°(tf£>)n, (KD)n = (iO})(IRn), 
where the colimit is taken over the cofibrations 

V?(KD)n S E~+1E(AX>)n — X%+1(KD)n+1. 

The conclusion of (i) follows since the colimit of a sequence of cofibrations of 
spectra of the homotopy types of CW spectra has the homotopy type of a CW 
spectrum. By [38,1.8.14], each space EV of a CW spectrum E has the homotopy 
type of a CW complex. Thus (ii) follows from (i) and the Whitehead theorem. • 

We must still discuss the behavior of the functor K with respect to smash 
products and twisted half-smash products. 

PROPOSITION 5.4. Let D and D' be prespectra indexed on U and U'. Then 
there is a natural unital, associative, and commutative system of isomorphisms 

u:KDA KD' —• K(D A D') 

over D A D1', where external smash products are understood. 

PROOF. Recall that the prespectrum level external smash product D A D' is 
naturally indexed on direct sums V® V of indexing spaces V in U and V in U'. 
Clearly the product category V_ x V^_ is isomorphic to a cofinal subcategory of 
V 0 V\ and we can restrict to this subcategory in our construction of K(D/\D'). 
By definition, 

(D A D')(V ® V) = DVA D'V, 

with the evident structural maps. Since homotopy colimits are two-sided bar 
constructions and geometric realization and simplicial bar constructions com­
mute suitably with products, we obtain isomorphisms 

(hocolimDv) A (hocolimD^) = hocolim(£V A D'v,) = hocolim(£> A D')v®v 

that are evidently compatible with the retractions to DV A D'V'. The coherence 
statements are easily verified. For the unital condition, we allow U = {0}, in 
which case K is the identity functor; the space 5° is the unit for the external 
smash product. • 

Clearly this extends to j-fold external smash products, with all possible as­
sociativity and equivariance. We next consider changes of universe, preparatory 
to considering twisted half-smash products. 

LEMMA 5.5. Let f : U —> V be a linear isometry. For prespectra Df indexed 
on U', Kf*D' is isomorphic over f*D' to f*KD'. For spectra E indexed on U, 
there is a natural map ui : f*KE —> Kf*E over f*E. 

PROOF. For an indexing space V in U, f induces an isomorphism of categories 
Y- —* f(V)- By definition, (f*D')(V) = D'f(V), with the evident structural 
maps. By inspection, 

(Kf*D')(V) = hocolim(/*D/)v = hocolimjty ( lo = (f*KD')(V), 
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and these isomorphisms are compatible with the retractions to (f*D')(V). The 
functor /* is left adjoint to /* [38, p.58]. For a prespectrum D indexed on U, 
the unit D —• f*f*D of the adjunction induces a natural map 

KD —* Kf*f+D <* f*KUD. 

The adjoint of this map is a natural map (j) : f*KD —> Kf*D over f*D. The 
spectrum level left adjoint to /* is f*E = Lf*£E. The unit D —> £LD of the 
(L,£) adjunction induces natural maps 

Lf*D —+ LfJLD = f*LD and LKD —^ LK£LD = KLD. 

By [38, pp. 19, 58], the first of these is an isomorphism of spectra since f*£E = 
£f*E. Therefore </> specializes to give the required map 

f+KE = Lf*£LK£E £ Lf*K£E —• LKfJE —* LK£LfJE = Kf+E. D 

LEMMA 5.6. For based spaces X, there is a natural map u : E^X —> KE^X 
such that r o u = id. 

PROOF. We can obtain u by applying the previous lemma to i : {0} —> U 
since, as noted in the proof of 1.3.2, i*X = E°°X. The map UJ so obtained is 
the same as the map of spectra induced by the map v of prespectra described in 
Example 5.2. • 

PROPOSITION 5.7. Let a : A —• J{JJ,U') be a space over S(U,Uf). For 
spectra E € S?U'} there is a natural map 

u:A\xKE—> K(A tx E) 

over AK E. 

PROOF. By A.5.4, a map of spectra A K E —> E' determines and is de­
termined by maps of spectra a(a)*E —> E' for a G A that satisfy a certain 
continuity condition. In particular, the identity map of A X E is determined by 
the evident maps i(a) : a{a)*E —• Ax E. Composing maps u from Lemma 5.5 
with maps Kt(a), we obtain maps 

a{a)*KE —> K{a{a)*E) —• K(A x E). 

It is not hard to trace through the definitions to check the required continuity 
condition, and it is clear by pointwise inspection that the resulting map UJ covers 
the retractions to A x E, r o UJ = id XUJ. D 

There are coherence diagrams that relate the maps UJ of the proposition to 
the isomorphisms recorded in 1.2.2. Putting these results together, using the 
definitions of L-spectra and their smash product and its unit map (1.4.2, 1.5.1, 
1.8.3) and the definition of the L-spectrum structure on E°°X (1.4.5), we arrive 
at the following conclusions. 
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THEOREM 5.8. If N is an h-spectrum with action f, then KN is an L-
spectrum with action the composite 

•Sf(l) K KN^±+K(Sf(l) K N)-^+KN. 

Moreover, r : KN —• N is a map of h-spectra. If X a based space, then 
UJ : E°°X —• KE°°X is a map ofL-spectra over E°°X. For h-spectra M and 
N, there is a natural map of h-spectra 

u : KM A<? KN —> K(M A* N) 

over M A& N such that the following unit, associativity, and commutativity 
diagrams commute: 

SA^KN-^^KSA^KN 

KN^ KX 
•K(SA<?N), 

and 

KL N<e KM A<e KN-^i-K(L A<? M) A* KN 

i d A U H ^ 

Y Y 

KL A* K{M A* N) — 3 - ^ - K(L A* M A<? N), 

KM hse KN — ^ KN A<e KM 
K(M Kx N) —£*~ K{M Aj? N). 

THEOREM 5.9. Let R be an ACQ ring spectrum with unit TJ and product <j>. 
Then KR is an A.QQ ring spectrum with unit and product the composites 

>KS^>KR and KR A<e KR^UK{R A& R) ^>KR 

Moreover, r : KR —> R is a map of A^ ring spectra. If R is an EQC ring 
spectrum, then so is KR. If M is an R-module (in the sense of 11.3.3), then 
KM is a KR-module such that r : KM —• M is a map of KR-modules. 
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CHAPTER XI 

Spaces of linear isometries and technical theorems 

This chapter contains several deferred proofs concerning the structure of the 
linear isometries operad. They were used to build the foundations of Chapter I, 
but were not referred to thereafter. 

1. Spaces of linear isometries 

Many of our results depend on understanding the point-set topological and 
homotopical properties of spaces of linear isometries. We collect together the 
results that we need in this section and the next. However, we begin with a 
result on limits of cofibrations of unbased spaces. To prove it, we need the fol­
lowing generalization of the standard fact that a cofibration which is a homotopy 
equivalence is the inclusion of a strong deformation retract; it applies when the 
given map is also the map of total spaces of a pair of fibrations. 

LEMMA 1.1. Assume given a commutative diagram of spaces 

p\ 

B-

++X 

+ Y 

in which p and q are fibrations and i and j are cofibrations and homotopy equiv­
alences. Assume given a map f : X —• B such that f o i — p together with a 
homotopy h : q ~ jof rel A. Then there is a map r : X —• A such that roi = id 
and p o r = f together with a homotopy h : id ~ ir rel A such that q o h = h. 

PROOF. Both (X,A) and (X, A) x (I,dl) = (X x I,X x dl U A x / ) are 
DR-pairs. The standard lifting property for fibrations and acyclic cofibrations 
gives r and h via the diagrams: 

and 

X xdlUAxI^-pX 

X'y.1—E -Y, 

197 
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where fc(x,0,£) = x, fc(x, l,t) = ir(x), and fc(a, s) = i(a). Q 

PROPOSITION 1.2. Forn > 1 ; assume given a commutative diagram of spaces 

A €n > X 
sin ^ s^n 

Pn\ 9n 

T Y 

An-1 en_> Xn-i 

in which the pn and qn are fibrations and the en are cofibrations and homotopy 
equivalences. Then the induced map 

e: A = \imAi —• limXi = X 

is the inclusion of a strong deformation retract and a cofibration. 

PROOF. Proceeding inductively, we use the lemma to construct retractions 
rn : Xn —• An and homotopies hn : id ~ en o rn rel An that are compatible 
with the given fibrations. The roles of f and h in the lemma are played by 
r n - i ° Qn and /in_i o (qn x id). We obtain the retraction r : X —• A and 
homotopy h : id ~ e o r rel A by passage to limits. By the standard (N)DR-
pair criterion, to show that e is a cofibration, we need only construct a map 
u : X —• i" such that u~l(0) = A] of course, this is given by Urysohn's lemma 
if X is normal (e.g., metric). Since each (Xn,An) is a DR-pair, there are maps 
vn : Xn —> I such that ^~1(0) = An. Let un = vn o 7rn, where ixn : X —• X n 
is the projection, and define 

00 1 

n=lZ 

Then u is continuous and u(x) = 0 if and only 7Tn(x) G An for each n. • 

REMARK 1.3. The preceding may appear to be a model category result, but it 
depends on properties peculiar to the classical cofibrations of topological spaces. 

Now Let U and U' be universes and write U and U' as the unions of expanding 
sequences of finite dimensional subspaces {Vn} and {V^}, with the topology of 
the union. Thus a subset N of U is open if it intersects each Vn in an open 
subset. This topology is finer than the evident metric topology. If we identify U 
with M°° and think of M°° as a subset of the product of countably many copies 
of M, then the intersection of M°° with the product of the intervals (—1/g, l/q) 
is an open neighborhood of zero which is not an open set in the metric topology. 

For finite dimensional inner product spaces V and V , the space ^(V,V) 
of linear isometries from V to V is a smooth compact manifold. For a finite 
dimensional V, J{V,U') is the union of the S(V, V^). It is homeomorphic to 
the Stiefel space of g-frames in Uf, where q = d imF. As a union of smooth 
compact manifolds, it can be triangulated as a CW complex, and it is therefore 
paracompact. 

The function space functor map(—,Y) converts colimits to limits, and it 
follows that y(U,Uf) is the inverse limit of the Jr(Vn,Uf). Each projection 
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J(Vi+i,Vj) —• ^(Vi,Vj) is a bundle. By checking that the trivializations ex­
tend as j increases, we deduce that each projection J(Vi+i,U') —> Jr(ViiU/) 
is also a bundle. 

Recall that a space X is LEC if the diagonal map X —> X x X is a cofibration. 
It is standard that the inclusion {x} —• X is then a cofibration for all x € X\ 
that is, every point is a nondegenerate basepoint. In fact, more generally, the 
inclusion of a retract in an LEC space is a cofibration [36, 3.1]. 

PROPOSITION 1.4. The space S(U,U') is LEC. 

P R O O F . Any CW complex is LEC [36, 2.4], hence each J{yuV) is LEC. 
Since J{Vi, U1) is also contractible [38, II.1.5] (or see the following lemma), its 
diagonal map is a cofibration and a homotopy equivalence. The diagonal map 
of S(U, U') is the inverse limit of the diagonal maps of the J(Vi, Uf). Now the 
conclusion is immediate from Proposition 1.2. • 

Breaking with our rule of ignoring equivariant considerations, we prove the 
following result in full equivariant generality. As we have already used, <^(C/, {/') 
is contractible. Thus, trivially, ^(U,Uf) has the homotopy type of a CW com­
plex. We record equivariant generalizations of these facts. We assume that some 
compact Lie group G acts on U and U'. Then G acts on ^([7, U') by conjugation. 

LEMMA 1.5. For a G-space X, any two G-maps f,g : X —> y(U,Uf) are 
homotopic. 

P R O O F . Write U' = U[ ®U^ where U[ and U^ are G-universes isomorphic to 
U'. Deformations of the identity on Uf to isometries Uf —• U[ and Ur —• U'2 
show that / and g are homotopic to maps / ; : X —• *^(U, U[) and gf : X —• 
S(U, U2). Orthogonalization of the linear homotopy, (1 — t)ff 4- tg' shows that 
f'^g'. D 

LEMMA 1.6. Assume that there is a finite dimensional representation V C U 
such that the projection TT : y(U,U/) —• ~^(V, U') is a weak G-equivalence. 
Then n is a G-homotopy equivalence, and S(U, U') has the homotopy type of a 
G-CW complex. 

P R O O F . AS a union of smooth G-manifolds, S(V,U') is triangulable as a 
G-CW complex. Therefore, by the G-Whitehead theorem, there is a G-map 
<t> : S(V, Uf) —• y(U> U') such that TT O 0 2̂  id. The previous lemma gives that 
4> o 7r ĉ  id, completing the proof. • 

In practice, S(U, U') and J(V, Uf) have the appropriate behavior on fixed 
point spaces to be universal .^-spaces for some family & of subgroups of G [38, 
II.2.11], and this allows one to verify the hypothesis on TT. We will shortly use 
the following example. 

LEMMA 1.7. The space 3?(j) = J?(Ui,U), U <=* R°°, has the homotopy type 
of a Yij-CW complex. 

PROOF. The previous lemma applies with V replaced by Vi for any non-zero 
finite dimensional V <ZU. • 
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2. Fine structure of the linear isometries operad 

We here prove two deferred technical results about the linear isometries operad 
that were used in I§8, namely 1.8.1 and 1.8.4. Actually, we will prove a general­
ization of 1.8.4 and of its consequence 1.8.5, and we shall also prove III. 1.7. The 
essential point is to give the analogues of 1.5.4 in the cases i — 0 and j = 0 that 
it excludes. 

P R O O F OF 1.8.1. We must prove that -Sf(2)/jS*(l) x JSf(l) consists of a single 
point. Consider points / and g in JSf (2). Let V\ and V2 be the images of the 
restrictions of / to the two copies of U in 17® C/, and let W\ and W2 be the images 
of the restrictions of g to these copies of U. Clearly the point / is specified by 
isomorphisms U —> V\ and U —> V2. We can find pairwise orthogonal infinite 
dimensional sub inner product spaces V{, V2, W[, and W2 of Vi, V2, W\, and 
W2, respectively. If f is specified by isomorphisms U —• V{ C V\ and U —• 
V2' C V2, then / ' = fk for some k e JSf (1) x JSf (1), namely k = f-l(h 0 i 2 ) / ' , 
where i\ : V{ —> Vi and %2 : V2' —> V2 are the inclusions. Via the right action of 
^f (1) x JSf (1), / is equivalent to such an / ' , which in turn is equivalent to a point 
specified by isomorphisms U —> V{ © W[ and U —> V{ 0 W2. By symmetry, 
the same is true for #, hence / is equivalent to g. • 

To explain the analogue of 1.5.4 for the case i = 0 or j = 0, let JSf°(j) 
denote the subspace of JSf (j) that consists of those linear isometries whose images 
have infinite dimensional orthogonal complements. Note that, for / e J?°(j), 
im(/) 0 i m ( / ) x is contained in but not necessarily equal to U. Define 

(2.1) Sf(j) = JSf (2) x* ( 1 ) x J S r ( 1 ) ^f(O) x JSf (j). 

LEMMA 2.2. TAe map 

7 : JSf (2) x JSf (0) x JSf (j) — JSf (j) 

induces a continuous bijection 

7 : i f (j) —» ^ ° ( J ) -

Bot/i JSf (jf) and Sf°(j) are Ej-free and contractible and have the homotopy types 
ofUj-CW complexes, hence 7 and 7 are Yjj-equivariant homotopy equivalences. 

Before giving the proof, we explain some consequences. We begin with the 
proof of III. 1.7, and we need the following point-set level result. As in I§1, we 
let yU denote the category of spectra indexed on U when U is not clear from 
context. 

LEMMA 2.3. Let A be a space over J?{U, Uf) and let v : B —> A be a surjec-
tive map. Then the induced map 

yV\A x E, E') —+ yU'{B x E, E') 

Copyright 1996 by the American Mathematical Society. Not for distribution.



2. FINE STRUCTURE OF THE LINEAR ISOMETRIES OPERAD 201 

is injective for spectra E G $£ and Ef € W. Moreover, if a : E' —> E" is a 
spacewise inclusion of spectra, then the following diagram is a pullback of spaces: 

yU\A tx E, E') — ^ 3>U'{A K E, E") 

yU'(B K EiE^—z+STU'iB K E,E"). 

PROOF. This can be verified by use of the point-set level description of maps 
A x E —• E' given in A.5.4. A more conceptual proof uses the following result 
to reduce the claims to easily verified space level assertions. • 

The point-set level analysis of twisted half-smash products, such as is needed 
for the previous proof, is facilitated by the point of view developed in the first 
author's paper [20]. There is an enlarged category of spectra, which we denote 
by S? in this discussion, that contains all of the 5?U. An object of 5? is just a 
spectrum in 5?U for some U. A map E —• E1 in S? between spectra E G yU 
and E' € S?Uf is a linear isometry / : U —> U' together with a map g : E —• 
f*Ef in yiJ\ we write g for such a map, letting / be understood. The full 
definition of 5? exploits the topology of Grassmannian manifolds to topologize 
the set y(E, Ef) of maps E —> E' in such a way that the function 

e:S*(E,E')—*S(U,U') 

that sends a map g to its underlying linear isometry / is continuous. The twisted 
half-smash product and twisted function spectra are implicitly built into the 
topology in view of the following result [20, Thm 0.5]. Let <%£/'s(UtU') denote 
the category of spaces over y(U1Uf). 

THEOREM 2.4. There are natural homeomorphisms 

^U,{AKE,Ef)^^/^{u^UI){A,y'{E,Et))^^U{E1F[A,E,)) 

for spaces A over J{U, Uf) and spectra E G S?U and E' G S?U'. 

PROOF OF III. 1.7. We return to our fixed universe U and write S? = 5?U. 
Given a compact /^-module L and a sequence of spacewise inclusions of R-
modules Mi —> Afi+i, we must prove that the natural map 

colim^R(L,Mi) —> ^(R(L,colimMi) 

is a bijection. Let L = WRK for a compact spectrum K. Since colimits of 
^-modules are computed on the spectrum level and 

^R(WRK, M) ^ Jts(S A* LK, M) = 3*\L](S A<? ILK,M), 

it suffices to show that 

colimJ^[L](S A* LK,Mi) —> 3*\L](S A* Lif, colim M,) 

is a bijection for a sequence Mi —> Mi+i of spacewise inclusions of L-spectra. 
We have S A<? hK £ if(1) K K. Fix / G JSf°(1) such that im(/) 0 im(f)L = U 
and let g be its preimage in JSf (1). Clearly any other point / ' G J£?°(l) has the 
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form e o / for some e e &{l). That is, J$?°(l) consists of a single orbit under the 
action of J£?(l). Obviously this property is inherited by 3?(l)> Thus the map 
v : JS?(1) —> -^(1) defined by v(e) = e • g is a surjection. Using 1.2.2, we see 
that v induces a map of L-spectra 

v x id : Lf*K — > 5 A y ILK. 

Consider the following commutative diagram: 

colimy[h}(S A# LK, Mi) * S*\L](S A<? LK, colim Mi) 

T T 

colim y\L) (Lf.K, Mi) >- y[h] (L/*X, colim Mi) 
^ I = 

T T 

colim 3?(K, f*Mi) > S*(K, /* colim Mi). 

Since i/ is a surjection, we can deduce from the preceding lemma and the evident 
description of ^[L](M, N) as an equalizer that the top two vertical maps are 
injections and that, for each z, the ith top square, before passage to colimits 
on the left, is a pullback. We have f*(M){V) = M(/(V)) , hence /* colimMt 
is the colimit of the sequence of inclusions f*Mi —> f*Mi+\. The spectrum 
level analogue [38, 1.4.8] gives that the bottom horizontal arrow is a bijection. 
It follows immediately that the top horizontal arrow is a bijection, the cited 
pullback squares implying the surjectivity. • 

The following result generalizes the first statement of 1.8.5 from j = 1 to 
j > 1. It was used in the proof of VII.6.3. 

THEOREM 2.5. Let ji > 1 and let Yi, 1 < i < n, be a tame Hj^spectrum 
indexed on U^, such as Yi = (Xi)ji for a tame spectrum X indexed on U. Then 

n 
/ \ A : l \ x S A* (J?(ji) K Yi) — / \ x J?(ji) K Yi 
1 = 1 

is a (E ; i x • • • x T,jn)-equivariant homotopy equivalence of spectra. If the Yi have 
the homotopy types of CW E^ -spectra, then f\x^{ji) x Yi has the homotopy 
type of a CW (E ; i x • • • x Ejn)-spectrum, and its orbit spectrum has the homotopy 
type of a CW spectrum. In particular, if X is a tame spectrum indexed on U, 
then 

A : S Nx MX —• MX and A : S A<? CX —• CX 

are homotopy equivalences of spectra, and similarly for smash products over S£ 
of such maps. 

PROOF. By the associativity and commutativity of A% and the isomorphism 
S KB S £ 5, 

/ \ ^ S A* (Sf(ji) * * ) * S Ax ( A ^ *Ui) * Yi)). 
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Using 1.5.4 and 1.5.6, we find that 

Ax &(ji) *Yi= #Ui + • • • + in) * {Yi A • • • A Yn). 

Let j — ji + • • • + j n and Z — Y\ A • • • A Yn. By definition and inspection (see 
1.5.1 and the proofs of 1.3.2 and 1.8.3), 

S A* (JSf (j) *Z)= JSf (2) K ^ ( 1 ) X ^ ( 1 ) (JS»(0) K 5°) A (J?(j) KZ)* S?(j) x Z 

and, under our isomorphisms, the smash product of maps A coincides with 

A = 7 K id : Sf(J) K Z —-> Sf(j) K Z. 

The claimed homotopy equivalence follows from the equivariant form of 1.2.5; see 
A.7.4 and A§9. The statements about CW homotopy type follow from A.7.3, the 
equivariant form of 1.2.6, and standard results on smash products and passage 
to orbits [38, II.3.8, VI.5.2, and 1.5.6]. • 

P R O O F OF LEMMA 2.2. We obtain a homeomorphism Sf(j) —• JSf(l) of left 
JSf(l)-spaces by composing on the right with an isomorphism U^ —> U. It 
follows that, except for the equivariance statements, the result will be true in 
general if it is true when j = 1. It is clear that both spaces are E;-free since -Sf (j) 
is, and an elaboration of Lemma 1.6 gives the assertion about Ej-CW homotopy 
types. Thus we assume that j = 1 in the rest of the proof. 

Let i : {0} —• U and i2 = i 0 id : U —• U 0 U be the obvious isometries. 
Then, for / e Jif (1) and g e i f (2), 

l(9',hf) = 9°hof. 

To see the surjectivity of 7, let h e JS?°(1), let V be the orthogonal complement 
of the image of h, and choose an isomorphism j : U 0 V —> V. Then h is the 
composite 

U^U 0 U^U 0 h(U) CU®V® h{U)j-^V 0 h{U) C U. 

Let g = (j 0 id) o (id 0/i). Then h = g o i2 = 7(3; i, id). 
To see the injectivity, consider (#, / ) and (fir7,/') in if(2) x JSf(l). Let "~" 

be the equivalence relation generated by (g, f) ~ (gf, / ' ) if 

(2.6) 9' = 9°{ji®J2) and j 2 o f = f 

for points j i and J2 in &(X)- It suffices to show that 

(#', / ' ) ~ (0, / ) <=> #' ° *2 o / ' = g o i2 o / , 

and the forward implication is clear. The isometry g is given by the orthogonal 
pair of subspaces V\ — (g o i\)(U) and V2 = (g o 22)(t/) of 17 together with 
isomorphisms [7 —• 14 and U —> V2, and we let h = goi2 o f : U —• V2. Thus 
(#, / ) determines a triple (Vi, V2,/i) consisting of a pair of orthogonal infinite 
dimensional subspaces of U 0 U and a linear isometry h : U —• V2. Moreover, 
every such triple comes from some (p, / ) , as we see by choosing a linear isometry 
g such that Vi = (g o ii)(U) and V2 = (<? ° ^2){U) and setting f = (g o i2)~l o ft. 
Let "~" be the equivalence relation on such triples generated by (Vi,V2^) ~ 

Copyright 1996 by the American Mathematical Society. Not for distribution.



204 XL SPACES OF LINEAR ISOMETRIES AND TECHNICAL THEOREMS 

(Vf\ V{, h!) if V{ C Vu V{ C V2, and h = h! as maps U —• U. If these triples 
arise from (#, / ) and (gf, / ' ) and we set 

ji = (0 ° n)_1 °g' °h and j 2 = (0 ° ^ ) _ 1 ° g' ° n, 
then we find that (2.6) holds and can conclude that (gf,ff) ~ (<?,/)• Thus the 
injectivity will follow if we can show that (Vi, V^^O ~ ( V i ' ^ ' O f° r a n y t w o 

triples such that h = h*'. Choose infinite dimensional subspaces W\ of V\ and 
W[ of V{ such that W î, W '̂, and h(U) are mutually orthogonal. Then 

(Vi, Va.fe) - (Wl5/i((7),/i) - (Wi + W^Mtf),**) - W,/* ' (£/) , Ji') - G M , / i ' ) . 

This proves the injectivity and thus the bijectivity of 7. 
The contractibility of Sf°(l) is clear since it is closed under the homotopies 

described in Lemma 1.5. To see the contractibility of .if (1), write U = U\ © U2l 

where U\ and U2 are isomorphic to U, and define 

je(2) = {g\g({0}®U)cU2}cSf(2)> 

X{\) = J f (2) xJS f (1 ) x^ ( 1 ) j?(0) x JSf(l), 

and 
^ ° ( 1 ) = ( / l / ( ^ ) C C/2} C JSf°(l). 

Since JT°(1) = < (̂17, E/2), it is contractible. Since JSf°(l) is also contractible, the 
inclusion J^° ( l ) —> JSf°(l) is obviously a homotopy equivalence. We have the 
following commutative diagram, in which the vertical arrows are inclusions: 

JT(1 )—^JT° (1 ) 

Y Y 

j s f ( i ) — ^ ^ I ) . 

Modifying the proof that 7 is a bijection by restricting V2 to be contained in 
U2, we see that (3 is also a bijection. Choose linear isometric isomorphisms 
k\ : U —• U\ and k2 : t/ —• E/2 and define 

a : JT°(1) —» J f (2) x J5f(0) x JSf (1) 

by 0"(/) = (fci 0 &2, ^ 2̂~X ° / ) • Then a is a continuous section of 

7 : Jf(2) x JSf(0) x JSf(1) —> JT°(1). 

It follows that /3 is a homeomorphism and in particular that J^ ( l ) is contractible. 
We claim that the inclusion 1 : JT(2) —> -^(2) is a homotopy equivalence of 
right JSf (1) x J^(l)-spaces. It will follow that the inclusion X(V) —> JSf(1) is a 
homotopy equivalence, proving the contractibility of ^f(l). 

Define p : JSf (2) —> JT(2) by p(g) — i2 o &2 og. To prove our claim, it suffices 
to find a homotopy h : i2 o k2 ^ id such that ht(U2) C E/2 for all £, for then 
# € J^(2) will imply ht o g e JT(2) and, via right composition with maps g, h 
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will induce the required homotopies id ~ i o p and id ~ p o t. Trivially, we have 
the following commutative diagram: 

U1®U2
h^Ul®Ui®U2 

k; id©/c2 

u2 —-^u1eu2-
We can homotope i2 0 i d to i\ 0 i d by homotoping i2 to ii, after which the right 
composite becomes id (B(k2\u2)- We can then homotope k2\u2 to the identity, 
after which the right composite becomes the identity. It is clear that U2 is 
carried into U2 by these homotopies. • 

REMARK 2.7. It seems unlikely to us that 7 is actually a homeomorphism. 

3. The unit equivalence for the operadic smash product 

We here prove 1.6.2, and we restate each of its clauses as a lemma. 

LEMMA 3.1. Forh-spectra N, there is a natural weak equivalence ofh-spectra 

LU:LS/\<? N —> N. 

PROOF. Let JSf (1) act from the right on JSf (2) by setting fe = / o (1 0 e) 
for / G JSf (2) and e e JSf (1). Regard JSf (2) as a space over JSf (1) via the map 
G2 : JSf(2) —• JSf(1) specified by a2(f) = f o i2, where i2 : U —> U2 is the 
inclusion of the second summand. Then 

(3.2) L S Aif N ^ i f (2) K ^ ( 1 ) AT, 

and cr2 induces the required natural map 

u; = cr2 x id : JSf(2) K ^ ( 1 ) N —> JSf (1) K ^ ( 1 ) iV ^ TV. 

Observe that, by 1.2.5, UJ is a homotopy equivalence of spectra when TV = L S n . 
We must prove that u induces an isomorphism on homotopy groups. By 

adjunction, we may identify 7rn(N) with / i^[L](LSn , N). First, to prove surjec-
tivity, suppose given a map of L-spectra a : L S n —> N. Write 

a = id A<?a : LS A<? L S n —> LS A^ JV. 

The following diagram commutes: 

L S Ajsr L S n - £ - * * L S A ^ iV 

L S n
 5 *" W. 

Since a; on the left is an equivalence, a e Im(u;*). 
To prove injectivity, suppose given an L-map (3 : L S n —> LS A^ iV such that 

a = ujo0~O. Define d as above. Since a - 0 and LS A& ( - ) : ^ [L] —• ^ [L] 
is a homotopy preserving functor, a ~ 0. Define 

^ / 3 o u ; : L 5 A ^ L S n — • LS A ^ JV. 

Copyright 1996 by the American Mathematical Society. Not for distribution.



206 XI. SPACES OF LINEAR ISOMETRIES AND TECHNICAL THEOREMS 

Since to is an equivalence, to prove that /? ~ 0, it suffices to prove that & ~ /?. 
Here, by the naturality of u, (3 coincides with the composite 

L 5 IK* L 5 n i ^ L 5 A% (JLS A<? N)-^->1LS A<? N, 

while a coincides with the composite 

LS A<? L 5 n i ^ L 5 Ax (JLS Aj? Nf^JLS A& N. 

Thus it suffices to show that u ~ idAu;. Let JSf (1) act from the right on i f (3) 
by setting ge = g o (1 0 1 e e) for g e i f (3) and e £ i f (1). Regard i f (3) as a 
space over if(1) via the map 0*3 : if(3) —> if(1) specified by cr3(/) = / o i 3 , 
where 23 : J7 —> £73 is the inclusion of the third summand. By the proof of the 
associativity isomorphism 1.5.5, we have 

(3.3) L 5 Ajsf (LS Ajsr TV) ^ i f (3) K ^ ( 1 ) A/. 

Under the identifications (3.2) and (3.3), the maps u and id Au; in our factoriza­
tions of J3 and a coincide with the maps 

^2,3 K*(l) id : i f (3) K* (1) TV —* i f (2) K ̂  (1) TV 

and 
^1,3 Kjar(i) id : if(3) x ^ ( 1 ) TV —• if(2) x ^ ( 1 ) AT, 

where 
(72|3 : i f (3) —> i f (2) and <n,3 : i f (3) —• i f (2) 

are the maps that restrict g G i f (3) to the second and third and first and 
third coordinates, respectively. Thus, it suffices to show that 0-2,3 and 0*1,3 a r e 

homotopic as maps of right if(l)-spaces over i f ( l ) . Since the images under 
cr2}3(g) and &i,3(g) of the first copy of U in U2 are orthogonal and the right action 
of i f (1) is on the second copy, to which we restrict when mapping to i f (1), we 
obtain the required homotopy by normalizing the evident linear homotopy 

h{g,t)(uiiu2) =tflf(ui,0,u2)-f (1 -t)g(0,ui,u2)- • 

LEMMA 3.4. The suspension homomorphism E : 7Tn(N) —-> 7rn+i(EA/") is an 
isomorphism for any IL-spectrum N and integer n. 

PROOF. We shall construct an explicit inverse isomorphism 

E-1 : Kn+iPN) —>7rn(N). 

We again think of 7rn(N) as / i^[L](L5 n ,N). Since the functors E and L com­
mute, we may identify L 5 n + 1 with ELS71. Similarly, we have a natural isomor­
phism 

L-.hS-1 A^EN^hSA^N. 
Since LS A& L S n and L S n are CW L-spectra, the weak equivalence 

u) : LS Nx LSn —> LS n 
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is a homotopy equivalence of L-spectra, and we choose a homotopy inverse v. 
Suppose given an L-map (3 : E L 5 n —• EiV. We define E - 1 /3 to be the composite 

LSn-^LS Ajsr L 5 n ^ > L 5 ~ 1 A^ E L 5 n i ^ L 5 " 1 A^ ETV-^LS A^ A ^ i V . 

If (3 = Ea, then the naturality of j, and u; imply that E - 1 /? = aocjoz/ ~ a. Thus 
E - 1 o E = id. To evaluate E o E - 1 , consider the following diagram: 

E L 5 n ' 
l 

Y 

E L S n ^ -

Ei/ ^ E ( L 5 A ^ L 5 n ) 

T 

•LS Ajar E L 5 n - ^ — E(L5~X A* EL5 n ) 

EiV^-
I 

EJV-^ 

id A/3 

T 

•LSA^EiV-

Ew 

E(idA/?) 
T 

•EQLS"1 A<? EiV) 

• E(L5 A^ TV) 

The upper left dotted arrow is the composite homotopy equivalence dictated 
by commutativity of the top rectangle. The maps Et and t appearing in the 
bottom rectangle differ by an interchange of circle coordinates, hence we obtain 
a dotted homotopy equivalence making the bottom rectangle homotopy commute 
by using a map of degree minus one on the circle coordinate. This implies that 
the composite E o E _ 1 is an isomorphism, and it follows formally that it must 
be the identity. • 
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CHAPTER XII 

The monadic bar construction 

The monadic bar construction was a central tool in earlier drafts of this paper, 
but it plays a very minor role in this version. It is nevertheless an important 
construction. We shall say just enough about it to prove the two deferred results 
that depend on it and to allow rigorous use of it in later work. The essential point 
is to prove certain lemmas on cofibrations, one of which played a role in our con­
struction of model structures on the categories of ^-algebras and commutative 
R- algebras. 

1. The bar construction and two deferred proofs 

Recall the definitions of an action of a monad on a functor and of a monadic 
bifunctor from II.6.3. 

DEFINITION 1.1. For a triple (F,S,R) consisting of a monad (§,^,r/) in a 
category ^ , an §-algebra (R, £), and an §-functor (F, v) in c€\ define a simplicial 
object B*(F,§,R) in V by letting the g-simplices Bq(F,§,R) be F§qR (where 
§9 denotes § composed with itself q times); the faces and degeneracies are given 
by 

(vS*-1 ifi = 0 

[FS^-1^ r£i = q 

and Si = FSl7]Sq~l. If §' is a monad in *€' and F is an (§/,§)-bifunctor, then 
S*(F, S,JR) is a simplicial §'-algebra. 

When F takes values in a category with a forgetful functor to ^ , we write 

B(F,S,R) = \B*(F,$,R)\. 

We use a similar notation for pairs when F takes pairs of spectra as values. All 
of the bar constructions used earlier, such as BR(M,A,N), can be interpreted 
as instances of this general construction. In the context of II.6.4, we have the 
following standard example. 

209 
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210 XII. THE MONADIC BAR CONSTRUCTION 

EXAMPLE 1.2. We have a simplicial S-algebra £*(§,§,#) associated to an §-
algebra R. Let R denote R regarded as a constant simplicial object, Rq = R for 
all q, with each face and degeneracy the identity map. Iterates of JJL and £ give a 
map e* : £*(§, S, R) —• R of simplicial §-algebras in *€. Similarly, iterates of 77 
give a map 77* : R —> B*(§, §, i?) of simplicial objects in f̂ such that e*r\* = id. 
Moreover, there is a simplicial homotopy 77*6* ~ id [45, 9.8]. 

By II.4.1, we have monads M and C in 5? whose algebras are the A^ and 
EQO ring spectra. We shall work in the ground category of spectra, rather than 
that of L-spectra, for definiteness and because we envision more applications 
in that setting. Recall that geometric realization carries simplicial AQQ and 
EOQ rings, modules, and algebras to A^ and E^ rings, modules, and algebras, 
by X.1.5. We assume that all given spectra are E-cofibrant. In the contrary case, 
we first apply the cylinder construction K to make them so. By the results of 
X§4, this implies that the spectra of g-simplices in all of our constructions are 
tame. As we shall explain in the next section, it also implies that our simpli­
cial spectra are proper, so that our homotopical results on geometric realization 
apply. 

DEFINITION 1.3. For an AQQ ring spectrum R, define an -Aoo ring spectrum 
UR by 

UR = B(M,B,R). 
For an E^ ring spectrum i?, define an £00 ring spectrum UR by 

UR = B(C,C,R). 
The following result is immediate from Example 1.2 and X.1.2. 

LEMMA 1.4. For E^ ring spectra R there is a natural map of E^ ring spec­
tra e : UR —• R that is a homotopy equivalence of spectra, and similarly for 
Am ring spectra. 

We shall prove the following addendum in the next section. 

LEMMA 1.5. The unit 77 : S —> UR is a cofibration of'L-spectra. 

REMARK 1.6. The A^ and E^ versions of the lemmas are compatible. If R 
is an Eoo ring spectrum, then the natural map 

B(M,M,R) —>B(C,C,JR) 

of AQO ring spectra is a map under S and over R and is therefore a homotopy 
equivalence of spectra. 

We now prove our change of operads result II.4.3. The proof is virtually the 
same as that given on the space level in [45]. 

PROOF OF II.4.3. We are given an E^ operad ff over J£? and an ^-spectrum 
R. Technically, we must assume that the unit element of 0(1) is a nondegenerate 
basepoint in order to ensure that the arguments of the next section apply to show 
that the simplicial spectra we use are proper. As in II.4.1, we have a monad O 
whose algebras are the ^-spectra together with a map O —> C of monads. 
We define VR to be the bar construction S ( C , 0 , i i ) . By X.4.7, X.4.9, and the 
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2. COFIBRATIONS AND THE BAR CONSTRUCTION 211 

equivariant version of 1.2.5, &X —• CX is a homotopy equivalence of spectra 
for any tame spectrum X. By X.2.4, there result maps of ^-spectra 

R <— £(©, O, R) —->J3(C, O, R) = VR 

that are homotopy equivalences of spectra. • 

We have precisely analogous constructions for modules. By II.6.2, we have a 
monad C[l] in the category of pairs of spectra whose algebras are pairs consisting 
of an Eoc ring spectrum and a module over it. Its second coordinate is made 
explicit in II.5.7. We have a similar monad B[l] in the Aoc case. 

DEFINITION 1.7. For an E^ ring spectrum R and an .R-module M, define a 
U^-module UM by 

(UR- UM) = B(C[1], C[l], (R; M)) 

Replacing C by IB, we obtain an analogous functor U on modules over an A^ ring 
spectrum. 

LEMMA 1.8. There is a natural map of UR-modules e : UM —> M that is a 
homotopy equivalence of spectra. 

REMARK 1.9. The Aoo and E^ interpretations of the lemma are compatible. 
If M is a module over an EQQ ring spectrum R, then the natural map 

B(B[1],B[l], (i?; M)) — S(C[1], C[l], (R\ M)) 

is a map over (R; M) and is thus a pair of homotopy equivalences of spectra. 

P R O O F OF II.5.2. The argument is much the same as the proof of II.4.3. As 
in II.5.7, we have a monad 0\\] such that a ^[l]-algebra is a pair consisting of an 
^-spectrum and a module over it, and we have a map of monads &[\] —• C[l]. 
For an ^-spectrum R and an .R-module M, we define VM to be the V^-module 
given by the second coordinate of £?(C[1], &[l], (R; M)). The second coordinate 
of the weak equivalence 

(R; M) <— B{&[\\, &[1], (R; M)) —> B(C[1], ^[1], (R; M)) = (VR; VM) 

is the required weak equivalence between the i?-module M and the VR-mod\i\e 
VM] it is a homotopy equivalence of spectra. • 

2. Cofibrations and the bar construction 

We must prove that our simplicial bar constructions are proper and prove 
Lemma 1.5. Recall the definition of a proper simplicial L-spectrum K* from 
X.2.2, and remember that the simplicial filtration of \K±\ is then given by a 
sequence of cofibrations of L-spectra; it follows that the inclusion KQ —> \K*\ 
is a cofibration of L-spectra. 

PROPOSITION 2.1. The simplicial bar constructions used to construct the var­
ious functors U and V in the previous section are all proper simplicial IL-spectra. 

P R O O F OF LEMMA 1.5. The unit S —> UR is the composite of the inclusion 
of S as a wedge summand of CR and the inclusion CR —• UR. • 
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The following two lemmas directly imply Proposition 2.1 in the case of UR. 
The proofs in the remaining cases are similar. Looking back at JB*(F, S, iJ), we 
see that all of its degeneracy operators are maps of the form F(—), so that the 
inclusion 

sBq(F,^R)cBq(F,§,R) 
is obtained by applying the functor F to an inclusion that we may write 

(2.2) sSqR c §qR. 

As explained after X.2.1, pedantic care with pushouts and coends is needed to 
be precise about this. The following lemma shows that the functor C converts 
cofibrations of spectra to cofibrations of L-spectra. Here we are thinking of C as 
playing the role of F in our bar construction. The second part of the lemma is 
more interesting. It was essential to make sense of the Cofibration Hypothesis 
of VII§4. 

LEMMA 2.3. The following statements hold. 
(i) The monads T and P in S^\L] that define A^ and EQQ ring spectra pre­

serve cofibrations of "L-spectra. Therefore the monads M and C in y 
convert cofibrations of spectra to cofibrations of "L-spectra. 

(ii) For any commutative S-algebra R, the monads T and P in ^R that 
define R-algebras and commutative R-algebras preserve cofibrations of 
R-modules. 

PROOF. We prove the second statement. The first is similar; its second state­
ment holds because B = TL, C = PL, and L carries cofibrations of spec­
tra to cofibrations of L-spectra. Let ft : Mi —> Nt be cofibrations of R-
modules, 1 < i < j . We claim that f\ AR • • • AR fj is a cofibration of R-
modules. There are retractions of .R-modules r* : Ni A I+ —• Mfi, where 
Mfi = Ni U (Mi A I+) is the mapping cylinder of fit The diagonal map 
A : / —> P is a deformation retraction of spaces, with retraction p given by the 
averaging map (£i, • • • , t,) —> Yl^i/J- The following composite is a retraction 
of i^-modules, proving our claim: 

(N1AR---ARNJ)AI+ 

idAA + 
T 

(Ni Afi • • • AR N^ A (P) + £* (JVi A 1+) AR • • • AR (Nj A 1+) 

r i A- - -Ar j 

T 

(Mh) Afl • • • A« (Mfj) S ( ^ A f i - AH Nj) U {(Ml A* • • • A* Mj) A (I>) + ) 

idu(id Ap+) 
T 

(iVi AR.-.AR NJ) U ((Mi AR • • • AR MJ) A /+) = M( / i A • • • A fj). 

Now let / i = • • • = fj = / , say. Then the j-fold A^-power /•? is a cofibration. 
Moreover, since A and p are Ej-equivariant, /•*' is a Ej-cofibration. Since passage 
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to orbits carries E^-cofibrations to cofibrations, / J ' /Ej is also a cofibration of -R-
modules. By II. 7.1, our monads are given by wedges of j-fold smash powers or 
j-fold symmetric smash powers, and the conclusion follows. • 

LEMMA 2.4. For each q > I, the inclusion sCqR C CqR is a cofibration of 
spectra. 

PROOF. Recall that CR = \/j>0^f(j) x E j RJ. Our standing assumption 
that R is E-cofibrant implies that each RJ is Ej-equivariantly E-cofibrant, by 
X.4.7. This allows us to apply A.8.1 and its equivariant version A§9 to show 
that maps between twisted half-smash products are cofibrations. The unit map 
7] : R —> CR is the composite 

rjKid: R= {1} K R —> JSf(l) x R C CR. 

Here the first map is induced by the inclusion {1} —> -^(1) and is a cofibration 
by XI. 1.4 and A.8.1, and the second map is the inclusion of a wedge summand. 
We shall prove that the inclusion sCqR C P f i is a wedge of inclusions of the 
general form A! x G R J —• A tx Q R3\ where G is a subgroup of Ej and A' —> A 
is a G-cofibration. By A.8.1 and A§9, this will imply the conclusion. Although 
the combinatorics of the proof are a bit messy, it is easy to see what is going on 
by writing out the first few cases explicitly. The subspectrum sCq is the union of 
the images of the inclusions Cl7]Cq"1'1 : Cq~lR —> CqR, 0 < i < q-l. We first 
show by induction on q that CqR is a wedge of spectra of the form AKGRJ - This 
is obvious if q = 1 and we assume it for q — 1. We first consider -£?(j) *£., QJ •> 
where Q is a wedge of spectra Qv indexed on a totally ordered set Y. (See [14, 
II§2] for more details of this analysis of extended powers of wedges.) Let V run 
through the set of ordered j-tuples of elements of Y\ these V can be viewed as 
canonical elements in the distinct orbits of Y3' under the permutation action of 
Ej . For such a V, let (i>(l), • • • , v(n)) be the distinct elements of Y appearing in 
V. let v(i) appear j(i) times, so that j = ^2j{i)-. and let Ey C Ej be the image 
of Ej(i) x • • • x Ej(n) under the block sum homomorphism. Then 

*U) * r , Qj = V ^ O ' ) "sv (Qiw A • • • A <#("))• 
V 

Now suppose that each spectrum Qv is of the form X(v) KQ(V) Rk^ for some 
subgroup G(v) of E ^ ) and some G(t')-space X(i;) over Sf(k(v)). Then canonical 
isomorphisms in 1.2.2 imply that 

*(j) *xv ( Q i S A • • • A QJJ5) S A(V) *G(V) RW, 

where k(V) = ^2j(i)k(v(i)), G{V) C Ejt(v) is the image under the canonical 
homomorphism of the product of wreath products 

£7(1) / Gv(i) x • • • x E j ( n ) / G v ( n ) , 

and 
A(V) = SfU) x X>$ x . . . x * J » j 
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with its structural map 7 to Sf(k(V)). This implies that CqR is a wedge of spec­
tra of the form A t< Q R?, and it implicitly gives a complete inductive description 
of the relevant spaces A and groups G. The wedge summands are indexed by 
certain directed trees T. Each vertex of T has a prescribed level 2, 1 < i < q. 
There is a unique vertex of level <?, there are directed edges from vertices of level 
i to vertices of level i - 1, and each vertex of level less than q is the target of 
exactly one edge: 

Each vertex is labelled with some Sf(j), where, if the vertex has level greater 
than 1, then the vertex is the source of j edges. (We allow j = 0, when the 
vertex is the source of no edges.) For such a tree T, the space A(T) that is used 
to construct the corresponding wedge summand is the product of the labelling 
spaces -Sf (j), ordered as prescribed by the tree and the inductive specification of 
the wedge summands given above. The degeneracy subspace lies in those wedge 
summands whose corresponding trees have all of their labels J^(l) at one or 
more levels, and it is obtained by replacing J£?(l) by the point {1} in the labels 
of vertices at those levels. This proves the lemma. • 
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CHAPTER XIII 

Epilogue: The category of L-spectra under S 

In a previous draft of this paper, certain variants of smash products that are 
defined between L-spectra under S played a central role. In the present version, 
the only vestige remaining is the definition of free modules over AQQ ring spectra 
given in II.5.3. 

However, the parallel algebraic theory of [35] still requires such variant tensor 
products. We imagine that there is a functor, like the singular chain complex 
functor, from topological A^ and E^ rings and modules to algebraic ones. Such 
a construction would require the old definitions. The point is that, in algebra, it 
seems that one cannot hope to have an analogue of the isomorphism S/\& S = S. 
The theory of [35] is based on the algebraic operad tf = C*(J£f), where C* is 
the singular chain complex functor. Hopkins' lemma, 1.5.4, carries over since C* 
preserves split coequalizers. However, the relation S£(2)/(Jfc?(l) x -£?(1)) = {*} 
does not carry over, and in fact one cannot have the relation #(2)®<$>(i)®<tf^Z = 
7L in any Eoo operad of (connected) chain complexes. Thus the topological theory 
is intrinsically better behaved algebraically than the parallel algebraic theory. 

We explain just enough of the old definitions to give the idea and to explain 
how the new theory gives homotopical information about the old definitions. 

1. The modified smash products < ^ , o ^ , and *^ 

We return to the prologue and work in the category of L-spectra in this section. 
We shall leave all proofs as exercises for the reader. They are easy consequences 
of results in Chapter I. Let S?[h]\S denote the category of L-spectra under 5. 
We write rj generically for the given map S —• M. 

DEFINITION 1.1. Let M be an L-spectrum under 5 and let TV be an L-
spectrum. Define the mixed smash product M <%> N to be the pushout dis­
played in the following diagram of L-spectra: 

(1-2) J I 
N >- M <& N. 

215 
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Define N £>& M by symmetry. 

If we apply the functor S Ax ( - ) to the diagram (1.2), we obtain a weakly 
equivalent pushout diagram whose left arrow is an isomorphism and whose right 
arrow is therefore also an isomorphism. This implies the basic relation 

(1.3) 5 A-ar (M <x N) £ (5 Ax M) As (S Ax N), 

which allows us to deduce homotopical properties of <\x from homotopical prop­
erties of As- It also implies the following result. 

PROPOSITION 1.4. For any h-spectrum N, the canonical map 

N —* S<<? N 

is an isomorphism of h-spectra and the canonical map 

M A<£ N —> M <x N 

is a weak equivalence of "L-spectra. 

For any L-spectrum N under 5, the canonical map 

S A* N —> S>x N 

is an isomorphism because A : S A& S —> S is an isomorphism. Composing the 
inverse of this isomorphism with the unit weak equivalence S Ax N —> TV, we 
obtain the following result. 

PROPOSITION 1.5. For h-spectra N under S, there is a natural weak equiva­
lence of h-spectra X : S [>x N —> N. 

LEMMA 1.6. Let M and N beh-spectra. Then 

( M v 5 ) < y N^ (M A^ N) V N. 

The commutativity and associativity of Ax imply the following commuta-
tivity and associativity isomorphisms relating Ax and <x; these isomorphisms 
imply various others. The monad on S*\L] whose algebras are the L-spectra 
under S sends M to M V S, hence the L-spectra M V S are the free L-spectra 
under S. Results like the following one can be proven by first checking them on 
the M V S and then deducing them in general. 

LEMMA 1.7. Let M and M' be h-spectra under S and let N and N' be L-
spectra. Then there are natural isomorphisms 

M <x N^ N \>x M, 

M <x {N Ax N') * (M <x N) Ax N\ 
and 

M <x {N >x M') *£ (M <x N) >x M'. 

With a view towards generalization to arbitrary ground -EQC ring spectra, for 
which R AX.R R will not be isomorphic to R, we give the following definition in 
a form that does not rely on the isomorphism S Ax S = S. 
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DEFINITION 1.8. Let M and TV be L-spectra under 5. The coproduct of M 
and TV in ^ [ L ] \ S is the pushout M Us TV. There is an analogous pushout 

( M A ^ S ) U 5 A * 5 ( S A ^ T V ) , 

and the unit maps A determine a natural map of L-spectra 

A : (M A^ S) USAXS {S A^ N) —> M U5 N. 

The restrictions to 5 Ax S of the maps 

id Ax T? : M l\<e S —• M Ax TV and r\ Ax id : S Ax TV —> M Ax N 

coincide, hence these maps determine a map 

9 : ( M A ^ 5) U S A * s (5 A ^ TV) —> M A ^ TV. 

Define the unital operadic smash product M *x TV to be the pushout displayed 
in the following diagram of L-spectra: 

(M Ax S) USAXS {S A# TV) - ^ M U5 TV 

Af A f̂ TV >- M • ^ TV. 

Then M *x TV is an L-spectrum under S with unit the composite of the unit 
S —• M Us TV and the displayed canonical map MUs N —> M*x N. 

The essential, obvious, point is that 5 is a strict unit for the product • ^ . 

REMARK 1.9. Because S Ax S = S,*x can be defined less conceptually but 
more succinctly as the pushout in the diagram 

(M A^ S) V (5 Ax TV) - * — ^ M V JV 

T T 

M Ax TV >• M *x N. 

An immediate comparison of pushout diagrams gives a natural map 

M >x N —> M *<e TV, 
and a diagram chase shows that the product +x can be constructed in terms of 
the product t>x-

LEMMA 1.10. If M and TV are h-spectra under S, then the following diagram 
is a pushout: 

S>x N-^tM>x N 

( I - " ) A| I 
f r 

N >- M *x N. 
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If M is an h-spectrum and N is an h-spectrum under S, then 

(M V S) * ^ TV <=* (M \>x N) V TV. 

Applying the functor S A& ( - ) to the diagram (1.11) and using (1.3), we find 
that 

(1.12) S A <? (M * * TV) £ (5 A* M) A5 (5 A^ TV). 

Again, homotopical properties of *% can be deduced from homotopical prop­
erties of As, and we have the following result. 

PROPOSITION 1.13. The canonical map 

M ># TV —> M *<£ TV 

is a weak equivalence ofh-spectra. 

LEMMA 1.14. Let M and N beh-spectra. Then 

(M V 5) • * (TV V S)*(M N* TV) V MVJVV 5. 

LEMMA 1.15. The following associativity relation holds, where M and M' are 
h-spectra under S and TV is an h-spectrum: 

(M*<? Af') <seN*M <<? (M' «*> TV). 

THEOREM 1.16. The category y[h]\S is symmetric monoidal under *%. The 
categories of monoids and commutative monoids in ^ [ L ] \ 5 are isomorphic to 
the categories of Aoc ring spectra and Eoc ring spectra. 

We have a mixed function IL-spectrum (but not a unital operadic one). 

DEFINITION 1.17. Let M be an L-spectrum under S and TV be an IL-spectrum. 
Define F^(M.N) to be the IL-spectrum displayed in the following pullback dia­
gram: 

F»{M,N) >F*(M,N) 

TV - iMS,7V) ; 

here the bottom arrow is adjoint to AT : TV !\% S = S f\& TV —> TV. 

PPVOPOSITION 1.18. Let M be an h-spectrum under S and L and TV be h-
spectra. Then 

y[h)(M <* L,TV) 3 y[h]{L ><? M,N) £ ^ [ L ] ( L , F £ (M,TV)). 
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2. The modified smash products <# , ># , and • # 

We assume that R is an Aoo ring spectrum in this section, and we understand 
modules in the sense of II.3.3. Thus the unit weak equivalences are not required 
to be isomorphisms. The cell and CW theory of such .R-modules is developed in 
the same fashion as for modules over 5-algebras. The appropriate definition of 
a smash product over R in this context reads as follows. 

DEFINITION 2.1. Let R be an ^oc ring spectrum and let M be a right and 
iV be a left jR-module. Define M /\&,R N to be the coequalizer displayed in the 
following diagram of JSf-spectra: 

jxAid 
(M >& R) A# N £ M A& (R <# N) j M Ay N >- M A#}R N, 

id Aiy 

where \x and v are the given actions of R on M and TV; the canonical isomorphism 
of the terms on the left is implied by Lemma 1.7. 

When R = 5, M ># S = M, S <# N S TV, and we are coequalizing the 
same isomorphism. Therefore our new AfAy^N coincides with our old M A&N. 
We have used the notation A&^R to emphasize the conceptual point that we are 
here generalizing A& rather than As. 

REMARK 2.2. We have given the definition in the form most convenient for 
proofs, because the displayed coequalizer is split. However it is equivalent to 
define M A^^R N more intuitively as the coequalizer displayed in the diagram 

/ iAid 
M Ax R Ay N I M Ay N • M Ay ,H N. 

id Ai/ 

We can define modified smash products <R, >R, and *R when one or both 
of the variables comes with a given map of ^-modules rj : R —• M, copying 
Definitions 1.1 and 1.8 with S replaced by R, 

DEFINITION 2.3. Let M be a right /^-module under R and let N be a left R-
module. Define the mixed smash product M <R N to be the pushout displayed 
in the following diagram of L-spectra: 

RA<tMN-AM A^.RN 

A 
| T 

N >M <RN. 

Define >R by symmetry. Observe that the displayed pushout is a diagram of 
^-modules when R is an E^ ring spectrum. 

DEFINITION 2.4. Let M be a right and N a left i?-module under R. Define 
the unital smash product M *R N to be the pushout displayed in the following 
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diagram of L-spectra: 

(M A^)jR R) URAJ,RR {R /\*IR N) -+-+ MURN 

e\ 
Y T 

M A^ ) j R N >- M *R N. 

Here, as in Definition 1.8, A is induced by the unit maps A of M and N and 6 
is induced by the structure maps rj of M and N. Observe that the displayed 
pushout is a diagram of /^-modules when R is an E^ ring spectrum. 

All of the results of the previous section apply verbatim in the context of 
^-modules, except for those that depend on the isomorphism S A& S = S. 

LEMMA 2.5. Let M be a right and N be a left R-module. Then 

(MvR)<RN 9* (M A^)jR N) V N 

and 
[M V R) *R (NvR)^ (M A^?jR N) V M V N V R. 

If N is an R-module under R, then 

{MvR)*RN^ {M t>R N) V N. 

/ / M and N are R-modules under R, then the following diagram is a pushout, 
where the unit map A : R>R N —• N is constructed by a comparison of pushout 
diagrams: 

R[>RN-^tM>RN 

x\ 

AT ^ M *R N. 

Using this, we can deduce alternative expressions for these products in terms 
of coequalizer diagrams like that which defines /\&,R. 

LEMMA 2.6. For a right R-module M under R and a left R-module N, M <R 
N can be identified with the coequalizer displayed in the diagram 

(M*jif R)<# N* M <<? (R <# N) > M <* N » M <R N. 
id<3f 

For a right R-module M under R and a left R-module N under R, M *RN can 
be identified with the coequalizer displayed in the diagram 

(M *# R)*x N *M *<? (R**> N) ? M*<? N > M*R N. 
'ld-*rl/ 

PROPOSITION 2.7. The following statements hold. 
(i) For any R-module N, the canonical map of R-modules 

N—>R<RN 

is an isomorphism. 
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(ii) For any R-module M under R, the canonical map of R-modules 

M A^}R N —• M <R N 

is a weak equivalence. 
(iii) For any R-module N under R, the canonical map of R-modules 

\:R>RN—>7V 

is a weak equivalence. 
(iv) For any R-modules M and N under R, the canonical map of R-modules 

M >R N —• M*RN 

is a weak equivalence. 

We have various commutativity and associativity isomorphisms that involve 
several A^ rings, as in III.3.4. Note that an (R, .R'j-bimodule is the same thing 
as an (R*& i?/op)-module) and an (R*& # /op)-module under {R*s? R,op) is both 
a right fi-module under R and a left i^-module under R1'. 

PROPOSITION 2.8. Let M be an (R, R')-bimodule, N be an (Rf, Rn)-bimodule, 
and P be an {R"\R'")-bimodule. 

(i) If M is an Rf-module under R', then 

M <R, N ^ N >R>OP M 

as R*x R,,op-modules and 

M <R. {N AR„ P) ^ (M <R> N) AH- P 

as (R, R"')-bimodules. 
(ii) If Ad is an R'-module under R' and P is an R"-module under R", then 

M <R> (N \>R>I P) * (M <R, N) >R» P 

as (R, R'")-bimodules. 
(iii) If M is an R'-module under Rf and N is an (i?'*j? Rf/op)-module under 

(Rf*xR"°P), then 

(M *R. N) <Rn P £ M <R, (N <R„ P) 

as (R, R"')-bimodules. 
(iv) If M is an R'-module under R', N is an (R' *%> R"op)-module under 

(Rf *%> R,f0p), and P is an R"-module under R"', then 

(M *R. N) **- P^M *R> (N *R„ P) 

as (R,R'")-bimodules. 
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PROOF. This is a formal exercise in the commutation of coequalizers with 
coequalizers, starting with the analogous isomorphisms for our various smash 
products over 5. One writes down three-by-three diagrams of coequalizers and 
uses that the coequalizer of coequalizers is a coequalizer vertically and horizon­
tally to deduce the stated isomorphisms. The top left-hand corner of the diagram 
needed for the isomorphism of (iii), for example, is 

( ( (M*# R') *<? N) *# R") <<? P * M <* {R' <*> {N <<? (R" <<? P))). • 

Similarly, all other results of III§§3-4 carry over directly to the present context, 
and we reach the following conclusion in the commutative case. 

THEOREM 2.9. The category of R-modules under R is symmetric monoidal 
under *R. 

We can define R-algebras and commutative i?-algebras to be monoids and 
commutative monoids in this symmetric monoidal category. Of course, if we 
apply the functor SAy (—) to such algebras we obtain weakly equivalent algebras 
over the S-algebra S f\<e R. 

Again, we have a mixed function ^-spectrum giving an adjunction like Propo­
sition 1.18. 

DEFINITION 2.10. Let M be an .R-module under R and let TV be an R-
spectrum. Define FR(M,N) to be the L-spectrum displayed in the following 
pullback diagram: 

F%(M,N) *FR(M,N) 

r 
N— *F*(J2,i\r); 

here the bottom arrow is adjoint to AT : N AR R = R AR N —> N. If R is an 
Eoc ring spectrum, then F£ (M, N) is an i?-module. 

REMARK 2.11. Geometric realization behaves as expected. If L* and L'w are 
simplicial .R-modules under R and K* is a simplicial ^-module, then 

| £ . | < i H t f * | ^ | L * < * #*| 

and 
\L,\*<s\L:\*\U*<eL'%\. 

Similarly our work on enriched model categories carries over to the present 
framework. There is an analogue of VII.2.8 for the category of .R-modules under 
R. Here we must enrich over the category of unbased spaces. Recall that a colimit 
is said to be connected if it is indexed on a diagram whose domain category is 
connected. 

PROPOSITION 2.12. The category of R-modules under R is topologically co-
complete and complete. The cotensors F(X+,E) and all other indexed limits 
are created in 5?; ordinary connected colimits are also created in 5?. For an R-
module N, the functor M <\R N on R-modules M under R preserves connected 
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colimits. For an R-module N under R, the functor M *R N on R-modules M 
under R preserves connected colimits. 

PROOF. The colimit, colimreiRD of a diagram D of J?-modules under R is 
computed from its colimit as a diagram of /^-modules via the pushout 

colim R >• R 

| T 

colim D *- colimre/fl D\ 

the right vertical arrow gives the unit. Here R is the constant diagram at R. 
The top horizontal arrow is an isomorphism if the domain category of D is 
connected, and the relative and ordinary colimits colimits then agree. Since this 
holds for coequalizers. VII.2.6 and 2.8 imply the first statement. The remaining 
statements follow since the products < and • are defined in terms of ( - ) A&^RN 
and pushouts, which preserve colimits of jR-modules. • 

THEOREM 2.13. For any E^Q ring spectrum R the categories of R-algebras 
and of commutative R-algebras are topologically cocomplete and complete. Their 
cotensors and all other indexed limits are created in 5?. 

Similarly, all categories in sight admit model structures. 

THEOREM 2.14. The categories of modules over an A.cc ring spectrum R and 
of algebras and commutative algebras over an E^c ring spectrum R are topological 
model categories. In all cases, the weak equivalences andq-fibrations are the maps 
which are weak equivalences or Serre fibrations of underlying spectra. 
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APPENDIX A 

Twisted half-smash products and function spectra 

by Michael Cole 

1. In t roduct ion 

Let [/, U' be universes, ^{U, U') the space of linear isometries U —> £/', A a 
space, a: A —> J{U, U') a map, and let E e S^U, E' € S?U' be spectra. The 
twisted half-smash product a K E G S?U' and the twisted function spectrum 
F[a, E') 6 yU are fundamental constructions which underly the foundations 
of stable homotopy theory that were introduced in [38] and developed further 
in this book. These functors specialize to the change of universe functors that 
are necessary to define internal smash products and function spectra, and they 
provide a simple way to prove that the different internal smash products so 
obtained are canonically and coherently equivalent upon passage to the stable 
category. 

In connection with the research presented in this book, the theory of twisted 
half-smash products has undergone major clarification and sharpening of the re­
sults originally given in [38]. In particular, the improved "untwisting theorem", 
given as Theorem 5.5 below, has led to corresponding improvements of the the­
orems concerning the homotopy invariance properties of a x E and F[a,E') in 
the variable a — the crucial point being that for tame spectra E, the homotopi-
cal properties of a x E depend only on the homotopical properties of the space 
A rather than on the particular map a. In particular, it is vital to the theory 
that for tame spectra E the functor a x E is well-behaved homotopically before 
passage to the stable category. 

We present new definitions of twisted half-smash products and function spec­
tra which have considerable advantages, both conceptually and expositionally, 
compared to the definitions in [38]. In particular, our definitions do not re­
quire choosing arbitrary cofinal sequences of representations and therefore our 
treatment avoids the technical complications concerning the behavior of colim-
its found in the approach of [38]. We shall recast much of the material of [38, 
VI§§l-3] in a simpler, more user-friendly, form. 

225 
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The treatment of twisted half-smash products and function spectra in [38] is 
written in the equivariant context, with a compact Lie group G acting on all 
spaces and spectra in sight. We present our definitions and theorems nonequiv-
ariantly here and note that virtually everything that we say carries over mutatis 
mutandis to the equivariant case. We will point out the small exceptions to this 
at the end. 

We give preliminary definitions and constructions in Sections 2-4, reaching 
the definition of twisted half-smash products and function spectra in Section 5. 
That section also gives a simple proof of the untwisting theorem, which describes 
an isomorphism a tx E = E A A+ when the spectrum E is a finite desuspension 
of a space. Our proof relies on an idea of Neil Strickland. We give some formal 
properties of our functors in Section 6 and consider their homotopical properties 
in Section 7. In Section 8 we prove a cofibration theorem that plays an important 
technical role in the theory of 5-modules. We shall derive it from the untwisting 
theorem. We conclude in Section 9 with a brief discussion of the equivariant 
versions of our constructions; more details will appear in [16]. 

2. The category S*(U'\ U) 

To define our constructions we introduce a category y(Uf\U). An object 
& G y{U'; U) is a family of spectra &v G yU', one for each indexing space 
V C U. We require isomorphisms pv,w • T,w~v<?w —• <fv, V C W, that 
satisfy the evident transitivity relation. Here we are mixing universes since we 
are suspending the spectrum &w which is indexed on U' by the indexing space 
W — V which is in [/, but in any case Y,w~v<?w just means the usual smash 
product of the spectrum <fw with the space Sw~v. We think of <f as the 
spectrum &§ G yUf, an object stable with respect to suspension by indexing 
spaces in U', but also equipped with a choice of compatible desuspensions by 
indexing spaces in U. 

EXAMPLE 2.1. If V = U and X is a space, we get an associated object 
<?(X) G y{U\U) by setting &{X)v = 'E'yX and considering the canonical 
natural isomorphisms HW^VT^X = E ^ X as structure maps. 

EXAMPLE 2.2. Generalizing Example 2.1, let / : U —• U' be a linear isome-
try and X a space. The specification <£f(X)y = HfvX defines an object #f(X) € 
y{U'\U) with structure maps given by Ew~vi:fwX £ &w-fvTtfwX S 

We will prove shortly that a map a : A —• S(U, Uf) gives rise to an object 
Ma G y(U'\ U) for which jtia§ = £ ° ° J 4 + . The construction is natural in spaces 
over ^{U, U'). If a is the constant map at / € S(U, U') then ^a is the object 
discussed in Example 2.2 with X = A+. 

We will define a smash product 

A-.y(uf;U) xyu —>yu' 
and a function spectrum 

F(-, - ) : s?{u'\ u)op x yu' —> yu 
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satisfying an adjunction isomorphism 

(2.3) yu'(<? A E, E1) S yU{E, F(<f, E% 

where E e ^ t / , £ ' € ^ [ / ' , <f G J^(£/'; U). For a map a : A —• S{U, Uf) and 
spectra E € yV\ E' € < W we will define 

a x E = Jta A JB 

and 
F[a,Ef) =F{Jta,E') 

and show that this agrees with the definitions of [38]. 

3. Smash products and function spectra 

We first record the following obvious fact. 

PROPOSITION 3.1. For an object <f e y(U'; U) and a space X e 9 there is a 
smash product <f f\X e y{Uf; U) defined by {& AX)v = <?V AX and the evident 
structure maps. There is an adjunction isomorphism 

y{U'\ U){£ A X, 9) £ ^{X, 3>{U'\ U)((F, 0) ) 

where the morphism set y{U'\ U)(&, 9) is given the evident topology and base-
point. 

Although not obvious from the definitions, it can be shown that there is a 
"function object" F(X, 9) £ y(U'\ U) such that the adjunction extends in the 
expected way. 

We now define the object F(£,E'). 

DEFINITION 3.2. For objects <f e y(Uf;U) and E' € yU' the spectrum 
F{<F,E') e yU is given by F(£,E'){V) = yU'{£v,Ef). Abbreviating y' = 
yUf, the structure maps are given by the sequences of isomorphisms 

y^^v^E^^y'^^^w^E^^y^^w.^^E^^^^y'^w^E'). 
For £ € y{U'\ U) and E € yU, our definition of cf A E € yW is dic­

tated by the desired adjunction (2.3). Recall that for a spectrum E G yU and 
prespectrum D e &U, the morphism set &>U(D,E) may be described by 

(3.3) 0>U{D, E) = \\mVcU P{DV, EV), 

where the limit is taken over the maps 

P(DW,EW) —+ ^{Hw'v DV.EW) * P(DV,Slw-vEW) £ f(DV,EV). 

It follows that 

yU(E,F{<?,E')) = lim P(EV,F{£,E')V) 
= lim P(EV,yU\£v,E')) 
= lim yUf{£v AEV,E') 
= yU'(colim <?v A EV,E'), 
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where the colimit is taken over the maps 

(3.4) £v A EV £ E ^ ^ u / A EV * £w A E W - V J5V —> £w A £W. 

Hence our definition of £ A E: 

DEFINITION 3.5. If £ e S?{U'\ U) and E € S?U, then £ A E e S*U' is the 
spectrum co\imycu £y A £ V where the colimit is taken over the maps (3.4). 

We have contrived our definitions to make the following true. 

PROPOSITION 3.6. There is an adjunction isomorphism 

yV\£ A E, E') * yU{E, F{£, E')). 

The following result is easy. 

PROPOSITION 3.7. If £ € S?(U'\ U)f E e S^U, and X e P there are natural 
isomorphisms 

(£ A E) A X 3* £ A (E A X) ^ {£ A X) A E. 

In practice if a spectrum E is the specification LD of a prespectrum D, it is 
often useful to describe £ A E as a colimit involving the spaces DV rather than 
the spaces EV. A simple adjunction argument together with (3.3) proves the 
following result. 

PROPOSITION 3.8. If D e &U is a prespectrum and £ e y{U'\ U) then 

£ A LD ^ colim^cc/ <?v A DV 

where the colimit is taken over the maps (3.4) (replacing E by D). 

In particular, if E is the desuspension spectrum £ ^ X of a space X, this has 
the following consequence. 

PROPOSITION 3.9. For a fixed indexing space V C U there is an isomorphism 

£ A Z^X * £v A X 

that is natural in £ and X. 

PROOF. By Proposition 3.8 we see that 

£ A E^X £? colimwcc/ rfW A HW'VX. 

But clearly, for V C W the structure map 

£y A X £ E W - V ^ y A X £ <?w A E ^ ' ^ 

is an isomorphism. Hence the colimit stabilizes at V and the claim follows. • 
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4. The object Ma € 5*(I/'; [/) 

Let a : A —> . / ( [ / , [/') be a map. For any V C !7 and V C U\ let ^ v y 
denote the pullback 

AVy • ^ ( K V ) 

A tt > S(U,U') >S{V,U') 

Thus -Av.v is the set of a e A such that a(a)V C V. Note that J4V,V will 
often be empty (for example, if V is too small). Note that Aoy = A for any 
V. UVCW then Aw.v> C 4v,v"- If V' c TV then ,4v,v C Ayy and, for 
fixed V, A = Uv'cc/' -^v.v- In particular, if 4̂ is compact, or more generally 
has compact image, then, for fixed V, we see that A = Ayy for large V7. 

Now for any V, V let 77(a)^v denote the vector bundle over Ayy with total 
space 

E(>n(a)yy) = {(asv) € Xv.v x V" | 1/ ± a(a)V}. 
Let Ta^ .v be the Thorn space of rj(a)vtv>. In the case that Ayy = 0 then 
77(a)yy is the empty bundle 0 —• 0 and, by convention, the Thorn space is a 
single point. 

OBSERVATION 4.1. For fixed V, {Tay.y} is a prespectrum indexed over U\ 
which we will denote by &ay. The structure maps E w ~v Tayy —• Tayw 
are induced by the evident vector bundle morphisms 

r]{a)yy © (W - V) ^ r){a)v.w>\Av.v, —> r){a)vw>. 

OBSERVATION 4.2. For fixed V we have maps Ew~vTawy —• Tayy that 
are induced by the evident vector bundle morphisms 

r}{a)Wy 0 {W - V) * r)(a)yy\AwtV, —• r}{a)yy. 

Thus for each V C U we have a prespectrum &ay € £?U' and we have 
maps of prespectra Hw~v &aw —• 2?ay that satisfy the evident transitivity 
condition. Let May G S^U' be the spectrification of Stay. Then we have maps 
of spectra Hw~v Maw —> May that satisfy the transitivity condition. 

PROPOSITION 4.3. 77ie maps Y,w~v Maw —> ^ a y are isomorphisms of 
spectra. Hence Ma is an object in the category 5?(U'\ U). 

PROOF. For a compact K C A let a\K be the composite K —> i4-^^(C7, [/'). 
Since, as always, we are working in the category of compactly generated spaces, 
A is topologized as the union of its compact subspaces and it follows that in 
the category of spaces over */([/,£/'), a = colim^ a\x where the colimit is 
taken over all compact K C A. All constructions we have made are natural 
in spaces over Jr(U,Uf), and they commute with filtered colimits. In particu­
lar, May — colim/r M{O\K)V and, of course, Y}v~v commutes with colimits. 
Hence it suffices to show that the map E1^ ~vMaw —> May is an isomorphism 
when A is compact. 
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Assume then that A is compact. Fix V C W C U and choose V large 
enough that Ayy = Awy = A. Then for V C W C U' the structure maps 
T}v ~v Tavy —> Totv^w are isomorphisms. Hence STcxy agrees cofinally with 
the desuspension prespectrum {Lw ~v Tay.v} and thus Jtcxy — Z^Tayy. 
Similarly Maw = T^^Tawy and we have the sequence of isomorphisms 

Hw-V^aw * Xw-vX$,TaWy = H^w"vTaWy ^ Yt^Tayy S ^ a v . 

a 
LEMMA 4.4. 77iere zs an isomorphism *rftcx§ = E ° ° J 4 + that is natural in a. 

PROOF. It is immediate from the definitions that r](a)oy is the trivial bundle 
AxV over A and hence Ta0y £ E v ' A+. D 

Together with the fact that EvJCcxy — -^^ch this leads one to suspect that 
May is isomorphic to a shift desuspension of the space A+. That turns out 
to be the case and, in our version of twisted half-smash products, this is the 
explanation for the untwisting theorem which we will discuss in the next section. 

LEMMA 4.5 (UNTWISTING). Let V c U and V c U' be indexing spaces such 
that V = V and let a : A —> J(U,U') be a map. There is an isomorphism 
May = T,^,A+ that is natural in a. 

PROOF. Let (?(U') be the orthogonal group of linear isometric isomorphisms 
U' —• U' that are the identity off a finite subspace. Since the restriction map 
r ' : &(U') —• J?(V',U') is a bundle over the contractible paracompact space 
f{Vr, U'), it admits a section s' : S(V\ U') —• &{U'). Fixing an isomorphism 
/ : V —> V\ we obtain a homeomorphism /* : J(V\ U') —> J(V, U'). Hence 
we have a composite 

* = * ' o f / * ) " 1 : . / ( ! / , [ / ' ) —>0{U') 

with the property that s{g)(fv) = gv for any g € S(V} U') and v € V. 
Now a : A —> J(U, Uf) passes to a map a : A —> J{V* Uf) which we also 

write as a. For W C Ur, let -Ajv.iv'] denote 0 unless V C W, in which case 
-4[v,W'] denotes the pullback 

A[vm ^ 0{Wf) 

A a > J{V, U') — ^ 0(U'). 

Thus when V C W\ A[VjW<] is the set of all a e A such that s(a) € 0(W). 
Note that ^4[KVV] C Ay.w and A = \Jw>cU, A[v,w]- Let ((&)[vw] denote the 
trivial bundle J4[V,W] x (W- V). Taking Thorn spaces, we obtain a prespectrum 
&a[V) € yU' with 

9*{V]V' = T(C(a){yW/]) * HW'-V'{A^WI])+ 

and the obvious structure maps. Let Ma\y^ be the specification of 3?OL\V\-
Note that Ma\y\ is functorial in a and commutes with filtered colimits of spaces 
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over J{JJ,Uf). We will show that 1) Jta[v] 2 E^,A+ and 2) Jta[v] £ Jtcxv, 
naturally in a. 

For 1) we observe that *4tot]y\ = colim/c ^K(OI\K)[V] where the colimit is 
taken over all compact K C A. Hence it suffices to establish 1) when A is 
compact. But for compact ^4, ^4[v,w] = A for W large enough, so we see that 
2?OL[V] agrees cofinally with the desuspension prespectrum { E ^ ~v A+}. The 
conclusion follows. 

For 2) we construct bundle morphisms C(a)[v,vv] —> v{a)vyW'- Recall that 

E(ri(a)v,w') = {(a,™') € Av,w x W \ w' ± a(a)V}. 

We define a map 

6w> : A[ViWf] x (W - V) — E(ri(a)v,w>) 

by 9w{a,w') = (a, s(a(a))(u/)). The properties of s ensure that these maps are 
well-defined and induce a map of prespectra 6 : ^a^v] —> ^ocy on passage to 
Thorn spaces. To show that the resulting map of spectra 6 : Ma\y\ —• JMOLV 
is an isomorphism, the colimit argument again lets us reduce the problem to 
the case when A is compact. But for compact A, with W large enough so that 
A(v.vv'] = A, the bundle map 6w is an isomorphism. Therefore the map of 
prespectra 9 : ^a jv j —• ^ Q y is cofinally a spacewise isomorphism, and the 
conclusion follows. D 

Observe that the isomorphism Mo.y = ££?,>!+ depends on the choice of / 
and of the section sf. The idea of exploiting such a section, although proposed 
in the context of a very different proof of the untwisting theorem, is due to Neil 
Strickland. 

5. Twisted half-smash products and function spectra 

DEFINITION 5.1. For a : A — • S{U,U'), E e STU, and Ef G S*U', the 
twisted half-smash product a K E G S^U' is the spectrum Ma. A E and the 
twisted function spectrum F[a,E') G 5?U is the spectrum F(^?a,E'). 

PROPOSITION 5.2. The above definitions agree with the definitions of [38]. 

PROOF. Consider first the case of A compact. Then for a given V C U one 
can find V C U' large enough that JCay £ E ^ T a ^ v - Thus 

F [ Q , E')V = yU'{J?av,E') * yUf(Z^,TaVy>,Ef) S F(Tav,v;E'V'), 

wThich is the definition of [38]. Therefore, by uniqueness of adjoints, the defi­
nitions of a K E agree for compact A. For general A one simply observes that 
our constructions and the definitions of [38] behave "properly" with respect to 
colimits. Specifically, 

a K E = colim/c a\x * E and F[a,Ef) = lim/c F[a\K,E'), 

where K runs through the compact subspaces of A. • 

Copyright 1996 by the American Mathematical Society. Not for distribution.



232 A. TWISTED HALF-SMASH PRODUCTS AND FUNCTION SPECTRA 

The difference between our approach and the approach of [38] is this: The 
definitions in [38] of a K E and / [a , E') are simple and concrete when A is 
compact, but they depend on arbitrary choices of cofinal sequences of indexing 
spaces in U and U'. Hence naturality in a is difficult to prove. To get around 
this, the authors of [38] develop an elaborate theory of "connections" that allows 
them to show that the definitions oi a K E and F[a, E') are independent of the 
choices involved and, therefore, that the constructions are natural in a. Only 
after proving all this is it possible to define a K E for non-compact A as the 
relevant spectrum-level colimit and F [ Q , E') as the limit. The advantage of our 
treatment is that the objects a K E and F[a, E') are defined once and for all for 
arbitrary A and naturality in a is immediate from the definitions. 

We show in the following pair of results that twisted half-smash products and 
function spectra generalize change of universe functors and are in a sense built 
up out of them. 

PROPOSITION 5.3. / / / : U —> V is a linear isometry regarded as a map 
* —> J^(U)U/) then f x E = fmE and F[f,Ef) = / * £ ' , where fm : S?U —> 
S^U1 and /* : yU' —> S^U are the standard change of universe functors. In 
particular, if U — U' and id denotes the identity map then id K E = E. 

PROOF. For any V C U we have Tav,jv = {/}+ = S° and thus JCfv = 
HfvS°. Therefore 

F[f, E')V = srU'iZfyS0, E') ^ F(5°, E'(fV)) S E'(fV) = {f*E')V. 

The structure maps work properly and thus F[f,E') = /*£". The fact that 
/ x E = f+E follows by the uniqueness of adjoints, or by an easy inspection. • 

One should think of a K E intuitively as the union over a € A of the spectra 
a(a)*£, suitably topologized. Similarly, F[a,El) should be thought of as a 
suitably structured object that arises from the collection of spectra {a(a)*Ef}. 
More precisely, we have the following result [38, VI.2.7], which admits an easy 
proof in our setup. 

PROPOSITION 5.4. Let a : f(U,U') be a map and let E 6 S^U and E1 6 S^U' 
be spectra. A map f : a K E —• E' determines and is determined by maps 
£(a) : E —• a(a)*E' for points a € A such that the functions 

(v.v> : TaVy> A EV —• E'V 

specified by (V,V'((Q>,V') Ay) = <j(£(a)(y) A v') for a G Av,v, v' G V - a(a)V, 
and y G EV are continuous, where a denotes the structure map 

oaWv,v • ZV'-a{a)vE'(a(a)V) —* E'V. 

PROOF. Since for any V C C/, May is the specification of ^ay = {Tayy>} 
we can write May as the spectrum level colimit 

May = colimvcc/' T/ytTayy-
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Therefore 

S*U'{a K £ , E') = yV {co\imVcU ^<*v A EV, E') 
= limvct/ W ( ^ a v A £V, £ ' ) 
= limvct/ ^t/ 'Ccolimvct/ ' Ev?'r<*v,v" A£V,E ' ) 
= limbec/ Hm^ct/' J^£/ '(£^Tav,V' A EV,E') 
= hmvcu l impet/ ' &(Tav,v> AEV,EfV). 

This gives the connection between maps of spectra a K E —• E' and families of 
maps QVy, : TaVy A EV —• E'V'. 

By restriction to points a € ^4, a given map £ : a K £* —• JE" induces maps 
a(a)*£ -—• E' which are adjoint to maps f (a) : £ —> a(a)*E'. By projection 
from the double limit, £ induces the map (vy • 3H#v,v A E'V —• E'V, which 
may be checked to have the claimed description. 

Conversely, given maps £(a) : E —• a(a)*£ ' satisfying the hypotheses, the 
maps (v, v : TayyAEV —> E'V specified by (v.v((a,i>')Ay) = a(£(a)(y)Av') 
are easily checked to be compatible with the maps over which the double limit 
is taken, and therefore they specify a map of spectra a x E —> E'. • 

The following untwisting theorem is an important sharpening of the result 
originally given in [38] and is vital to the theory of S-modules. The original 
proof of Elmendorf, Kriz, May, and Mandell, although not long or difficult, is 
rather technical in that it relies heavily on Elmendorf 5s category of spectra [20]. 

THEOREM 5.5 (UNTWISTING). Let V C U and V c U' be indexing spaces 
such that V = V, let a : A —• J?(U,U') be a map, and let X be a based space. 
There are isomorphisms 

and 
n^F[a ,F)*F( i4+ , f i?? , jE ' ) 

that are natural in a and X. 

PROOF. By Proposition 3.9 there is an isomorphism <f AEJ?X = Sy AX that 
is natural in spaces X G ^ and objects & e S*(U'\ U). Thus 

a x E^X = J Q A E^X * JCav A X. 

By the untwisting lemma, J{a.y = E^,A+, so it follows that 

a K Z^X * (E??,4+) A X * A+ A E??,X. 

The isomorphism SVffF\a,E') = F(A+,Q(y,E') follows by uniqueness of ad-
joints. • 
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6. Formal properties of twisted half-smash products 

We here give three basic formal properties of twisted half-smash products and 
function spectra. They have been used over and over in the text of the book. 
The first is an easy direct consequence of Proposition 3.7. 

PROPOSITION 6.1. For a map a : A —> J{U,U'), spectra E e ^U and 
E' € yUf and a based space X, there are natural isomorphisms 

(a x E) A X ^ a K (E A X) 

and 
F\a,F(X,E'))*F(X,F[a,E')). 

Moreover, if Y is an unbased space and we denote by a x Y the map 

AxY ^A^jr(U,U'), 

there are natural isomorphisms 

( Q X y ) K ^ ( Q X E ) A 7 ^ Q K ( E A Y+). 

The following two results relate twisted half-smash products to the naturality 
properties of spaces of linear isometries. 

PROPOSITION 6.2. Let a : A —> J{\J, U') and 0 : B —> S(U\ U") be maps 
and let 0 xca denote the composite 

BxA - ^ > J(U\U") x f{U,U') ^ S(U,U"), 

where c denotes composition. Then there are isomorphisms 

(0xca)x E^ 0x (a IX E) 

and 
F[0xca,E")^F[a,F{0,E")) 

that are natural in E € 5?U and E" e y\Jn. 

PROPOSITION 6.3. Let a : A —> J(Ui,U[) and (3 : B —> S(U2,U'2) be 
maps and let a x e 0 denote the composite 

A x B ^ L JilJ^U'x) x S{U2, U2) - ^ S{Ui © U2, U[ © U'2). 

There is a natural isomorphism 

(a x e 0) x {El AE2)^(axE1)A{0^< E2), 

where A denotes the external smash product of spectra. 
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PROOF OF PROPOSITION 6.2. For 9 e S*(U"\U') and £ e S?(U'\U), we 
define the composition smash product Q)t\cS € S?{U"\ U) by (@>/\c£)y = @A<fy • 
It is elementary to check that 

( ^ A c ( f ) A £ ^ @ A ( ( f A £ ) 

for E € yU. Thus it suffices to show that J((0 xc a) 2£ Jt0 Ac JCOL. 
We begin by constructing bundle morphisms 

v{P)v,V" x 77(a)yy> —> rj(0 xc a)Vy»-

By definition, 

E(v(0)vtv») = {(^v") € Bv.y. x V" I t/" 1 0(b)V'}, 

E(r]{a)v,v>) = {(a,vf) e AVlv x Vf \ vf 1 a{a)V), 
and 

E{rj{f3 xc<x)vy») = {(b,a,v") 6 (B x A)Vy x V" \ v" 1 0(b)a{a)V}. 

It is easily seen that By y>> x Ayy C (B x A)yy. Consider the map 

E{v{P)v;v) x E(ri{a)v,v) —+ E(rj{0 xc a)v%v») 

that takes (b,v") x (a,v') to (6, a,t>" + 0(b)v'). Passing to Thorn spaces, we 
obtain maps 

T0V',V" A Tav.v —> T{0 xc a)Vy» 
which define a map of prespectra 

&0v A Totyy, —> ^(/3 x c a)v 

and therefore a map of spectra 

jft&w A Ta^y / —» ^r(/3 x c a)v-

One checks that, for V C Wf', the diagram 

J4C0V A Tav/.y **^0w A Toty%w' 

^ ( / ? x c a)y 

commutes, where the top row is the composite isomorphism 

^ # / V A Tayy = Zw'-V' J{0W, A Tayy 

^ .# /3w A Y>w'-v'TaVy = ^ j 9 w A T a v , w 

Thus we obtain a map of spectra 

(J20/\c^a)v = jt(0 NJ&OLV — colimyct/' ^£0v> /\Tayy> —> *^(/? x c a ) y . 

One checks that these maps are compatible with the structure maps of our 
objects and so define a morphism 6 : ̂ /l'0 f\cjtitoL —> M{fi xca) in the category 
y(U"-U). 
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To show that 6 is an isomorphism, we invoke the familiar colimit argument. 
We have 

M$ Ac Mot — colim/cL ^# /3 |L AC J&OL\K 

and 
Jt{fi x c a) = colimK,L ^{& x c a ) | L x K , 

where the colimits are taken over all compact K C A and all compact L C B. 
Thus it suffices to show that 6 is an isomorphism when A and B are compact. 
In that case, for a fixed V, we may choose V large enough that Ayy = A 
and we may then choose V" large enough that Byy = B. It follows that 
(B x A)v,v = B x A and the map T/3v,v" A Tayy —• T(0 x c a)v,v" is a 
homeomorphism. Therefore 

(^/? Ac JIOL)V = ^ / ? A ̂ a v ^ ^ / 3 A E^Ta^v-
^ ^ / 3 V , A T W . v ^ (E&.TPvy.) A TQV.V 

£ E ^ T / V , V " A TaVy = %v"T{P xc a)Vy» 

S ^ ( / 3 X C Q ) V . D 

PROOF OF PROPOSITION 6.3. For 0 e y{U[\Ui) and <f € - ^ ( t ^ j t ^ ) we 
define the external direct sum smash product Q> A$ & € y ( [ / 1 © f / 2 ^ i ® ^ 2 ) by 

(0Ae<f)V lev2 = 9Vl A<?y2. 

Since the set {Vi 0 V2} is cofinal in U\ 0^2 this specifies an object in the category 
y{V'x 0 Jj'2\ U1 0 (72)- It is easily checked that, for spectra Ex € S^Ul, 

(9 Ae <f) A (Ei A E2) = (0 A Ei) A (<f A £2). 

Thus it suffices to show that J?a A$ ^/{(3 = ^t[pt x e /?). 
By definition, 

£:(77(a)v1)v;) = { ( a ^ i ) G ^ v 1 ) v ; x l / i K -La(a)Vi}, 

^ ( ^ ) V 2 . K 2 0 = {(M 2 ) € B ^ x V2 I v'2 1 /J(6)V2}, 

and 

£ ( i ( f l X «% 1 «v ! l v>v;) = 

{(a.fi.v'j,^) e (A x B)V]eV2iV<eV,, x (Vi' © V2') I «; + u2 J. a(o)V'i ®0{b)V2}. 

It follows immediately that there is a bundle isomorphism 

Thus we have isomorphisms of Thom spaces 

TaVuV; A T0V2V, - T(a x e / 3 ) V i e v , , v > v ; 

and therefore an isomorphism of prespectra 

faVl A ̂ /3Vs a ^"(a x e /3)Vl©v2. 
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It follows that 

(^aAe^p)Vl&V2 ¥^?aVl f\J(Pv2 = ^ ( a x e / ? ) ^ e r 2 . 

• 

7. Homotopical proper t ies of a K E and F[a, E') 

We now turn our attention to the homotopy preservation properties of our 
constructions. It is evident from the definitions that at< E and F[a,E') preserve 
homotopies in E and E' and homotopies over S(U, U') in a. However, it is vital 
to the theory that many homotopical properties of a K E and F[a,Ef) depend 
only on the homotopical properties of the space A. 

PROPOSITION 7.1. If A has the homotopy type of a CW complex, then the 
functor a tx E preserves CW homotopy types in E and the functor F[a, E') 
preserves weak equivalences in E''. 

PROOF. It is a standard categorical observation that the two assertions are 
equivalent since a * - and F[a, —) are an adjoint pair of functors. Let E[ —• E'2 
be a weak equivalence in 5?U'. Then each E[V' —> E2V is a weak equivalence 
of spaces. Since A has CW homotopy type, F{A+,E[V') —• F(A+,E'2V') is a 
weak equivalence for any V C Uf. It follows from the untwisting theorem that 
F[a.E[) —> F[a, E'2) is a spacewise weak equivalence and therefore a weak 
equivalence of spectra. • 

COROLLARY 7.2. If a : A —> J(U,U') is a map and A has CW homotopy 
type then the functors a x — and F[a)—) pass to an adjoint pair of functors on 
the stable categories. 

As always, a functor such as a K E that does not preserve weak equivalences in 
E is defined on the stable category by first replacing E with a CW approximation. 
We can strengthen Proposition 6.1 by obtaining a CW structure on a x E from 
CW structures on A and E. 

PROPOSITION 7.3. Let a : A —• J(U,U') be a map, where A is a CW 
complex with skeletal filtration {An}. Let E be a CW spectrum with skeletal 
filtration {En} and sequential filtration {En}. Then a K E is a CW spectrum 
with skeletal filtration 

{a*E)n= ( J ( Q U P ) K E * , n e Z , 
p+q = n 

and sequential filtration 

{a*E)n= ( J ( a U p ) * £ „ n > 0. 
p+q=n 
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PROOF. We induct up the sequential filtration. Since EQ = *, ( a x E)o = *• 
Assume that (a K E)n-\ is a CW spectrum. Let £ : Dp —> A be a p-cell with 
restriction cr to S*3"1. Let CS7""1 —> i?9 be an r-cell of J?9 with attaching 
map Sr~l —> J59-i, where p + q = n and r 6 Z. Then (a x i?)n is obtained 
from (a K J£)n_i by attaching "twisted cells" of the form (aoe) x CSr~l along 
attaching maps 

( a o ^ 5 r ~ 1 U(ao C r ) K CSr~l —> (a K £ ) n _ i . 

It follows from the untwisting theorem and inspection on the space level that the 
pair ((aoe) K CSr'\ (aoe) K Sr~l) is isomorphic to the pair (CSp+r-l,Sp+r-1). 
Therefore (a K i?)n is constructed from (a K £ ) n - i by attaching genuine cells 
along cellular maps and is thus a CW spectrum. • 

Recall that a prespectrum D is said to be E-cofibrant if the structure maps 
Ew~v DV —• DW are cofibrations. A spectrum is E-cofibrant if it is isomorphic 
to LD for some E-cofibrant prespectrum D. A spectrum is tame if it is homotopy 
equivalent to a E-cofibrant spectrum. Roughly speaking, tame spectra are to 
spacewise homotopy equivalences of spectra as spectra with CW homotopy type 
are to weak equivalences of spectra. Thus, if D is tame and / : E\ —• E2 is a 
map of spectra such that each fV : E\V —• E^V is a homotopy equivalence, 
then 

U : h^U(D,Ex) —* h^U(D)E2) 

is a bijection. It follows formally that a spacewise homotopy equivalence of tame 
spectra is a genuine homotopy equivalence. Pursuing the analogy further, the 
cylinder construction KE may be thought of as a "E-cofibrant approximation" 
to the spectrum E, and there is a map KE —• E that is a spacewise homotopy 
equivalence. Categorically, it is generally true that if L : SfJJ —• S^U* and 
R : yU' —• yU are a left-right adjoint pair of functors, then L preserves 
tameness if and only if R preserves spacewise homotopy equivalences. 

THEOREM 7.4. Let <j> : A —• B be a homotopy equivalence, let 0 : B —> 
S(U,U') be a map, and let a : A —• S(U,Uf) be the composite 0 o <f>. If 
E € S^U is tame, then the map (j) K E : a K E —> 0 x E is a homotopy 
equivalence. For any E' € S^U', the map F[4>,E') : F[0,Ef) —> F[a,E') is a 
spacewise homotopy equivalence. 

PROOF. It follows from the untwisting theorem that for any spectrum E' e 
SfU/, the maps F[<f>,Ef)(V) are homotopy equivalences. Thus for any tame 
spectrum E and any spectrum E' the map 

F[4>,E\ : hyU{E,F\0,E')) —> hyU(E,F[a,E')) 

is a bijection. By adjunction, this says that the map 

(4> K E)* : hyU'{0 K £ , £ ' ) —> hyV{a x £ , £ ' ) 

is a bijection. It is now formal that 4> tx E is a homotopy equivalence. • 
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COROLLARY 7.5. Let aua2 : A —> f{U,U') be maps. If E € SfU is tame, 
then a\ x E and a2t<E are homotopy equivalent. If E' € S?U' is any spectrum, 
then F[a\*E) and F[a2*E) are weakly equivalent 

PROOF. We note that since J(IJ,U') is contractible, ct\ and a2 are homo-
topic. Let H : A x I —• J(JJ, U') be a homotopy and apply Theorem 6.4 with 
B = A x I and <f> = it : A —> 4 x J for t = 0,1. • 

Since CW spectra are tame, this implies the following result. 

COROLLARY 7.6. If A has CW homotopy type, the functors a x - obtained by 
varying the map a are canonically and coherently equivalent upon passage to the 
stable category. Similarly the functors F[a, —) are canonically and coherently 
equivalent as functors on the stable category. 

8. The cofibration theorem 

In this section we prove the following analog for coflbrations of Theorem 7.4. 
The original proof of Elmendorf, Kriz, May, and Mandell relied heavily on the 
properties of Elmendorf's category of spectra [20], using bundle theoretic argu­
ments about the morphism sets in that category. We shall show that it actually 
follows formally from the untwisting theorem and some elementary homotopy 
theory. 

THEOREM 8.1. Let (p : A —> B be a cofibration, let 0 : B —• S(U,Ul) 
be a map, and let a : A —> J{JJ. U') be the composite /3 o 0. If E € &U is 
Yj-cofibrant or is a CW spectrum, then <j> K E : a K E —• /3 K E is a cofibration. 

PROOF. Consider a test diagram 

a* E a x E) A 7+ 

( / 3 K £ ) A / + 

for which we must prove that the dotted arrow exists making the diagram com­
mute. By adjunction, we may consider instead the test diagram 

/ . 

h s 

EAI+ 

•F[0,Ef) 

T 

F[a,E') 

and try to prove that h exists. We are not claiming that F[<j>, E') : F[(5, Ef) —• 
F[a, E') is a fibration of spectra, but we will show that it does have the covering 
homotopy property (CHP) with respect to E-coflbrant spectra and CW spectra. 
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It is easily seen that F[0, £ ' ) is a spacewise fibration. For if V C U and 
V c U' are such that V = V, then F[<p, Ef) is equivalent to a map 

F ( 0 + , £ V ) : F(B+,E'V) —> F(A+,E'V), 

which is clearly a fibration. It follows now that F[</>,Ef) has the CHP with 
respect to spectra of the form S ^ X for any V C U. In particular, F[0, £") 
has the CHP with respect to sphere spectra and hence F[<t>,E') may be thought 
of as a spectrum level Serre fibration. The standard arguments now show that 
F[</>, E') has the CHP with respect to CW spectra. 

The argument for E-cofibrant spectra is a bit more delicate. Let E = LD 
where D is a E-cofibrant prespectrum. We want to use the cofibration condition 
on the structure maps Ew~vDV —• DW to construct the lift h for the diagram 
of prespectra 

^F[0,Ef) D-

D A L 

/ / ^ \F[4>,E') 

-^F[a,E'). 

We do this by choosing a cofinal sequence V0 C V\ C . . . of representations in 
U and then arguing that after having constructed the map hVi : DV% A 1+ —• 
F[(3, E')(Vi) we can construct the map hVi+i in a compatible way so as to obtain 
a map of prespectra. 

The problem reduces to the following: Define 

k : DV l+1 A {0}+ U EK + 1"V 'DV; A J+ 

to be the pushout of the maps 

F[/? ,F ' )(^-n) 

DVi+l F[0,E')(Vl+1) 

and 

E K + 1 - K D K A / + 
E V ' I + I - tJ^^v^-^F[0iE')(Vt) F[/?,F')(K+i). 

Then hVi+i : DVl+x A 1+ 
problem 

FlfiiE^^+i) must be a solution to the lifting 

DVt+l A {0} + U Yy^-^DVi A / + ^ F[/3, E')(Vl+l) 

F[0,£ ' ) (K+i) 

- % F ) ( K + 1 ) . 

>>K + 1 ^ 

I>K+lA/+-
0V.+1 

By the untwisting theorem, if V C £/' is such that K+i = V then we can replace 
F[<p,E')(Vi+i) with the map 

F(tt>+,E'V') : F(B+,E'V) — F ( . 4 + , F V ) . 

The existence of the lift /iK+i follows from our next lemma. • 
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LEMMA 8.2. If X —• Y is a cofibration of based spaces, A —• B is a cofi-
bration of unbased spaces, and Z is a based space, then any diagram of the form 

Y A {0}+ U X A J+ ^ F ( S + , Z) 
i ^ i 
I ** 

^ I 
y A / + - ^ F ( A + , ^ ) 

can be completed by the dotted arrow. 

PROOF. By playing with adjunctions we can replace the above diagram with 
an equivalent diagram 

B+ A {0}+ U A+ A J+ * F(Y, Z) 
I '* \ 
i ** i 
I *"" I 

J3+ A /+" *• F(X, Z). 

But this diagram of based spaces is equivalent to the diagram of unbased spaces 

Bx{0}uAx J *F(Y,Z) 
I ^ I 

y 

Bxf- >F(X,Z). 

The based fibration F(Y, Z) —> -F(X, Z) is also an unbased fibration and the 
solution now follows from the fact that (B x LB x {0}U A x I) is a DR pair. • 

9. Equivariant twisted half-smash products 

As we have stated previously, all of our definitions and results on twisted 
half-smash products and function spectra generalize to the equivariant context 
with little change. In this section we discuss briefly the few exceptions to this 
assertion. More details will appear in [16]. 

The basic source material on categories of equivariant spectra is found in 
[38] and we briefly summarize that setup. For a compact Lie group G, a G-
universe U is defined to be a countably infinite dimensional real inner product 
space on which G acts smoothly through linear isometries. We require that U 
contain a trivial representation and we require that whenever V C U is a finite 
dimensional representation then U must contain an isomorphic copy of V e o c . 
At the one extreme, a G-universe is called complete if it contains copies of all 
the irreducible G-representations; at the other extreme, a G-universe is called 
G-trivial if it contains only the trivial representations. 

By a G-spectrum indexed on a G-universe U we mean a spectrum E indexed 
on the finite dimensional subrepresentations of U such that each component 
space EV is a G-space and the structure maps Y,W~VEV —> EW are G-maps. 
The resulting category is denoted GyU. Thus for non-isomorphic G-universes 
Us [/' we have associated non-equivalent categories of G-spectra that pass to 
non-equivalent equivariant stable categories. 
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For G-universes £/,£/', we let G act on J{JJ,U') by conjugation. For a G-
map a : A —• S(U,U') and G-spectra E <E G ^ t / , £ ' € GS?U' there is a 
twisted half-smash product a K E £ GS?Uf and a twisted function spectrum 
F[a, E') e G^(7 whose definitions and properties are wholly analogous to the 
nonequivariant constructions. Sections 2 to 6 generalize in a straightforward way 
that requires little comment. The category GS?{U'\ U) is defined in the evident 
way. In the equivariant version of Definition 3.2, for an object £ £ GS?(U'\ U) 
and G-spectrum E' £ GS?U' the G-space F{£,E')(V) = yU'{£v,E') must be 
understood to mean the space of all nonequivariant maps of spectra &v —• E' 
with G acting by conjugation. The equivariant versions of the untwisting results, 
Lemma 4.5 and Theorem 5.5, are true, except that the existence of a V C U' 
isomorphic to the given G-indexing space V C U is a non-trivial hypothesis that 
may not be satisfied. 

Fix a copy of M00 in U. It is a crucial fact [38, 1.4.6] that for a map / : 
E\ —> £2 of G-spectra indexed on U to be a spacewise weak equivalence of 
G-spaces, it suffices that fW1 : E1W1 —• EiRn be a weak equivalence for all n. 
Since all G-universes contain the trivial representations, the untwisting theorem 
applies to the trivial representations, and we see that the equivariant versions of 
Proposition 7.1 and Corollary 7.2 hold. The equivariant version of Proposition 
7.3 only holds when G is finite. In analogy with [38, 1.4.6], it can be shown 
that in order for a map of G-spectra to be a spacewise homotopy equivalence, 
it is sufficient to consider only the trivial representations. Hence the equivariant 
version of Theorem 7.4 holds. While J(U,Uf) is not a G-contractible G-space, 
it does have the property that if A is a G-CW complex then any two maps 
a i , a 2 : A —> S(U,U') are G-homotopic. Hence the equivariant versions of 
Corollaries 7.5 and 7.6 hold. 

The equivariant version of Theorem 8.1 holds in full generality for the case 
that E is a G-CW spectrum. The reason is that the sphere spectra relevant to 
a G-CW structure are of the form Sn A (G/H)+ where n is an integer. Hence 
the problem of lifting cells over the map F[(p, El) only requires consideration of 
the maps F[(p,Ef)(Rn) for which the untwisting theorem applies. For general 
universes U, U', if E is tame, but not G-CW7, I do not know whether the map 
(f) K E : a K E —> /3 K E must always be a cofibration. Our proof of Theorem 
8.1, like the original proof given by Elmendorf, Kriz, May, and Mandell, works 
equivariantly only if we add the additional assumption that the universe Uf is 
"as big or bigger" than U in the sense that there exists a G-linear isometry 
U —>U'. 
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S-cofibrant, 13, 188-192 

see also tame 
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twisted half, see twisted half-smash 
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Spanier-Whitehead duality, see duality 
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bar construction, 89 
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spectrum, 9 
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Waldhausen's S» construction, 104 
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WH category, see Waidhausen homotopy 
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Whitehead theorem, 57 
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tensor, 131 
THHy see topological Hochschild homol­

ogy 
topological Hochschild homology, 167-178 
topologically enriched category, 130 
totalization, 187 
twisted function spectrum, 231 
twisted half-smash product, 12, 14, 191, 
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