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EQUIVARTANT BUNDIES WITH ABELIAN STRUCTURAL GROUP

by R. X. lLashof, J. P. May, and G. B. Segal

Iet G and A be compact Lie groups and recall that a prineipal (G,A)-

bundle is a principal Anbundle‘ p: D+ X such that X and D are G-

spaces, P 1is a G-map, and the actions of G and A on D commte. For a
G-space X of the homotopy type of a G-CW complex, define 5(G,A)(X) to be
the set of equivalence ciasses of prineipal (G,A)-bundles over X. For a
space Y of the homotopy type of a CW-complex, define @(A)(Y) to be the set
of equivalence classes of principal A-bundles over Y. let XG = BG xGX,
where EG 1is a contractible and G-free G-CW complex. Define a natural

transformation

o: fe,0 ) — Bla)(x,)

by sending a {G,A)-bundle p: D » X +to the A-bundle Pyt qa * XG' We shall
glve an elementary proof of the following result.
Theorem A. If A is Abelian, then ¢ is an isomorphism.

A choice of basepoint in EG determines a natural injection 1: X + XG

and thus a natufal transformation
*
! :g(A}(XG) + Blarx.

If @ BG x X » XG is the quotient map and e: EG x X + X is the projection,
*
then 1*¢ = # and thus 1 agrees with the composite

*),1

*
B T Buyme x ) L5, gy,
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* ,
The composite 1 ¢: B(G,AN(X) » B(A)(X) coincides with the forgetful
transformation ¥ from (G,A)-bundles to A-bundles. Its image consists of
those A-bundles over X which admit a structure of {G,A)-bundle, that is, for

which the action of G on X 1ifts appropriately to the total space.

) *
Corollary B, If A is Abelian, then the image of 1 18 the set of A-

bundles over X which admit a structure of (G,A)-bundle.

When A is a torus and X 1is commected and locally finite, this 1is the
main theorem of Hattori and Yoshida [1,1.1].

Since the product and inverse maps of an Abellan group are homomorphisms,
they induce natural internal operations which make £, (X) and B(a)(Y)
Abelian groups. When A = Sl, the product may be viewed as the tensor
product of complex line bundles and these are known as Picard groups. Clearly

¥
& and 1t are homomorphisms.

Corollary C. If A is Abelian, then the (G,A)-bundle structures (if any) on
a given A-bundle over X are In bljective correspondence with the elements of

*
the kernel of 1 .

Agaln, when A is a torus and X is connected and locally finite,
esgentially this enumeration was given by Hattori and Yoshida (1,4.1].

Of course, '1 is the inclusion of a fibre in the natural bundle

IRt XG + BG and we can use the Serre spectral sequence of vy to compute 1.

We assume that X 1is connected throughout the following discussion.

Since A is isomorphic to the product of a torus T® and a finite
Abelian group F, each (G,A)-bundle decomposes uniquely into the Whitney sum
of a (G,™)-bundle and a (G,F)-bundle. Thus we can discuss these cases

separately.
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Of course, we have
B(F)(X) = [X,BF) = HL(X;F),

an F-bundle &£ being given by an F-characteristic clasg fl( £}, An immediate
caleulation gives that the bottom row is exact in the commutative diagram

*
B(6,F)(pt) —> B(a,F)(X) —L G(F) )

wl | glq, U

* :
0 —s H'(By;F) —Y—s H (%, ;F) —L s H]‘(x;F)G;‘z--) H® (BG;F).

Thus £ 1ifts to a (G,F)-bundle if and only if fl(g) is G-invariant sand
annihilated by d;, and there 1s then one 1ift for each element of Hl(BG;F) .
In the torus cage, we have
B(T)(X) = [X,BI?] = H2(X;70),
a TM-bundle & being given by a ZP-characteristic class ¢, (E). We consider

Eg’q = Hp(BG;Hq(X;Zn)). The corollaries concern

%
B2 > 5003 cE? = P xz™ e ™,
. .wWhere E2,2 = Ker(d:’,:Eg’_2 *> Eg’o) C Ker(d2:]i:£,)”2 + Eg’l), and we have the

short exact sequence

1

3
-]

2,0

(o} 0 E’ ~——)Ker1*-———)E1-~) a,

2,0 <01 2,0 1,1 _ wl,l | 03,0
where E_’ Coker(dZ.Ez’ +E2’) and E’ —Ker(dz.Ez’ +E2’ Yo We

it

conclude that £ 1lifts to a (G,T%)-bundle if and only if ¢, (8) is G-

invariant and killed by d, and 44, and the exact sequence (a) then

determines the number of liftings.' For example, if G is simply comnected,

then BG 18 3-connected and every £ 1ifts uniquely, this being a result of
Stewart [8]. Now assume that HI(X;Z) = 0. Then the bottom row is exact in

the commutative diagram
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*
B, ™ ipt) S5 gla, ™ (x) --E HTH

b= _ ¥J¢ t)
% ‘ ¥

1, 2., 2 d
0 > H(BG;Z") L—> B (Xy;2") - HO(X;2

nG 35 w(ee;zh).

L]

Note that H(BG;ZM) = 0 if G 1is Abelian and H2(ZMC = B(GZD) 1ir @
ig commected. Thus every & 1ifts uniquely if G is a torus, this being a
result of Su-[9]. If n =1, the top row is the exact sequence of Plcard
groups discussed by Iiulevicius 3, Thm 2].

To prove Theorem A, we first interpret ¢ on the classifying space
level; A need not be Abelian for this part. There is a classifying G-

space B{(G,A) such that
816,00 (X) = [X,B(6,A) g,

' .
where [X,X‘IG denotes the set of homotopy. classes of G-maps X + X . We may

take B(G,A) to be a G-CW complex. Of course, we also have
§(n)(Y) = [Y,BA) = {Y,BA)g,

where ¥ and BA are regarded as G-trivial G-spaces. As a nonequivariant
space, B(G,A) is itself a classifying space for A-bundles. Moreover, there
ig a map g: BA » B{G,A) which takes values in B(G,A)G (hence may be
regarded as a G-map) and is a nonequlvariant homotopy equivalence. On the
level of represented functors on spaces, ¢ corresponds to the transformation
which sends an A-bundle to the same A-bundle regarded as a G-trivial (G,A)-
bundle. The following diagram of functors clearly commutes.

bla,00 2o glarxy

(1) ls* flc*
¥*

m
$(6,A) (EG x X) & §(G,A) (X,)

We also have the cbvious commutative diagram
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*
T ’ _
_ (EG x X,BA]G e IXG,BA]G = [XG,BA] .
(II) C*l M lc* B

[BG x X,B(G,A)], «— [X,B(G,A)], = [X.,B(G,A)C)
G It G G
*
Here the upper map = is clearly a bijection and will be regarded as an
ldentification. We shall see in a moment that the left map Ly 1s also a
K

bijection. This implies that Ly 18 a bljection in both diagrams and that
$ may be regarded as the composgite

* -1

£ Sy

[X,B(G,A)IG —> [EG x X,B(G,A)]G —> [BEG x X,BAlg.
For G-spaces X and X’, let M(X,X') denote the function G-spaece of

eontinuous maps X + X', with G acting by conjugation. Then e* and g,

are obtained by application of the funector (X,?lg to the G-maps

* L
*
(*) B(G,A) = M{pt,B(G,A)) —£ M(EG,B(G,A)) e—— M(EG,BA).
Recall that a G-map f: D + E is said to be a weak G-equivalence if its
fixed point map fﬂi DH +> EH is an ordinary weak equivalence for each closed

subgroup H of G. By the G-Whitehead theorem [5,10],
fyi (X,Dly » X,E],

is then a bijection for any G-space X of the homotopy type of a G-CW
complex. Since we have restricted ourselves to such X, we may as well
regard classifying G-spaces as defined only up to weak G-homotopy type. The
point is that such function G-spaces as M(EG,BA) will generally fail to have
the homotopy types of G-CW complexes. Our assertion above that Ly is a
biljection was proven by obstruction theory in [2,1.4], but we give the
following simple argument to illustrate the convenience of using function G-

-gpaces in this context.
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Lemma 1 ¢,: M(EG,BA) + M{EG,B(G,A)} i1s a weak G-equivalence,

Proof: Via f ¢3»9g if oa(x) = (x,f(x)), M(EG,B(G,%))H may be identified

with the space of sections of the natural fibration
EG * B{G,A) ——> EG/H = BH.
Similarly, M(EG,BA)! = M(BH,BA) is the space of sections of

EG x, BA = BH x BA —— BH.

Since l‘x £: EG x BA + EG x B(G,A) 1s a G-map and a nonequivariant homotopy
eﬁuivalence between free G-spaces of the homotopy type of G-CW complexes, it
is a G-homotopy equivalence by the G-Whitehead theorem. Therefore 1 xy € is
a homotopy equivalence over BH and thus a fibre homotopy equivalence (by a
standard elementary argument)}. The induced homotopy équivalence between the

respective spaces of sections coineides with the fixed point map (c*)H.

Henceforward, we assume that A is Abelian. It iz clear from the
discussion above that Theorem A is an immediate consequence of the following
result, which implies that (*) displays a weak G-equivalence between

B(G,A) and M(EG,BA).

- Theorem 2. e*: B(G,A) + M(EG,B(G,A)) dis a weak G-equivalence when A 1is
“Abelian,

For the proof, we note first that & and Ly in (¥) are Hopf G-maps
between Hopf G-spaces. Indeed, our G-spaces have equivariant sums which make
them Abelian topological G-groups up to homotopy. This is clear for
M(EG,BA), which inherits a structure of Abelian topological G-group from the
structure of Abelian topological group on BA. For B(G,A) and

M(EG,B{G,A)), it follows from the fact that, up to G-homotopy, B(G,A) is a
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product-preserving functor of A. The zero of 'B(G,A) 1is the image of the

point B(G,{0}}. We shall use the following triviality.

Iemma 3. Iet Y be a homotopy associative and commutative Hopf space such
that TrOY “1s a group and let Yy be the basepoint component of Y. Then

Y is naturally equivalent as a Hopf space to YO ® on.

Proof: Choose a point a in each component Y,, writing a~l for the
chogen peoint in the inverse comp-onent. Define oa; Y + YO % TrOY by

aly) = (a"l -y,Ya) for ¥ € Y& and define B: ‘.Co % "TOY +Y by

B(z,Ya) = g+ for z e Yo. Homotopy associativity ensures that o and 8

are inverse equivalences; homotopy commutativity ensures that they are Hopf

maps.

*
Thus to prove Theorem 2 it suffices to show that (e )H restricts to an
equivalence on basepoint components and induces an isomorphism on L for

éach H<G.

The basepoint component of B(G,A)H clasgifies H-trivial (H,A)~bundles
and ig thus a copy of BA. Indeed, ¢ may be regarded as the inclusion of
the basepoint eomponent in B(G,A)H for any H. In view of lemms 1 and the

obvious commutative diagram

*

BA —%-—  M(BH,BA) = M(EG,BA)Y |
H

cl o H l(c*)

Bla,nH (e ) > M(EG,B(G,AN"

* *
(e )H will be a weak equivalence on basepoint components provided that e
is a weak equivalence from BA +to the basepoint component Mo(BH,BA) of

M(BH,BA), +the basepoint being the trivial map. Now A has the form F x Tn,
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where F ig finite, and we have the commutative diagram

n B = wisdF) @ stz

e*l : l e* .@-)!e*

n Mo (BH,BA) = a9t m) ® B2 (et 2™,

where BH® 1is the union of BH and a disjoint basepoint. If q = 1, the
first summand e* is clearly an isomorphism and the second summands are zero
gince Hl(BH;Z) =0, If q =2, the first summands are clearly zeroc and the
second summeand s* is clearly an isomorphism. If q 2 3, all groups are
ZETO.

Tt remains to consider (e )0 on mye For any-G-space X,
wO(XH) = !G/H,X]G. By Iemma 1 and diagrams (I} and (II), (e*)H will induce

an isomorphism on T provided that
o: B(G,p)(G/H) —> G(A)(BH)

is an isomorphism. We claim that & here may be identified with the

homomorphism
B: Hom(H,A) —> [BH,BA]

given by the classifying space functor, where Hom{H,A} denotes the Abelian
group of continuous homomorphisms p: H + A. Indeed, we obtain an isomorphism
from Hom(H,A) to $(G,A)(G/H) by sending p to the natural (G,A)-bundle
Ep: G XHAp + G/H, where Ap denotes A regarded as an H-space via p, and
® carries Ep to the natural A-bundle EG XHAp + BH. It is c¢lassical bundle
theory that the latter is classified by Bp. Thus the following result

completes the proof of Theorem 2.

Proposition 4. B: Hom(G,A} + [BG,BA] is an isomorphism when A is Abelian.
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Proof: If A is finite, elementary calculations show that mn and @, are

iaomorphisms in the commutative diagram

Hom(G,A) 2%  [BG,BAJ. |
™ ",
Hom{n G, mA) = Hom(, BG, 7, BA)

‘In general, A =F x ™ where T is finite, hence it suffices to prove the
regsult when A is the eircle group sl. This is very easy 1f G is finite

- (by group cohomology [4,IV.5.5]}, if G is a torus (by inspection), or if

G is connected (by use of a maximal torus). The general case 1s easily
handled by use of the third author's continuous group echomology theory [7].
For topological G-modules A, there are cchomology groups H*(G;A) {denoted
R 1y in [7]), ‘We shall only be concerned with trivial G actions. Here
H*(G;A) 1is the ordinary cohomology H'(BG;A) if A is discrete [7,3.3],
and Hl(G;A) = Hom(G,A) in gemeral [7,4.3]. If A is contractible, then
H*(G;A) can be calculated by continuous cochains [7,3.1], and it follows from
Mostow [6,2.5 and 2.14] that HMG;R) = 0 for gq > 0. Suitable topological
short exact sequences in A give rise to long exact sequences of cohomology
groups [7,1.3]. In particular, the extension Z + R » st gives rise to a
connecting isomorphism 6: Hl(G;Sl) * H2(G;Z). A comparison of definitions

shows that 6 c¢oincides with B.
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