Alagonia (nom

Entillshed by

American Markematical Society Providence a Rirode Island

EQUIVARIANT BUNDLES WITH ABELIAN STRUCTURAL GROUP by R. K. Lashof, J. P. May, and G. B. Segal

Let G and A be compact Lie groups and recall that a principal (G,A)-bundle is a principal A-bundle p: D \rightarrow X such that X and D are G-spaces, p is a G-map, and the actions of G and A on D commute. For a G-space X of the homotopy type of a G-CW complex, define G(G,A)(X) to be the set of equivalence classes of principal G(G,A)-bundles over X. For a space Y of the homotopy type of a CW-complex, define G(G,A)(Y) to be the set of equivalence classes of principal A-bundles over Y. Let $X_G = EG \times_G X$, where EG is a contractible and G-free G-CW complex. Define a natural transformation

$$\Phi: \beta(G,A)(X) \longrightarrow \beta(A)(X_G)$$

by sending a (G,A)-bundle $p: D \to X$ to the A-bundle $p_{G}: D_{G} \to X_{G}$. We shall give an elementary proof of the following result.

Theorem A. If A is Abelian, then Φ is an isomorphism.

A choice of basepoint in EG determines a natural injection $\iota\colon X\to X_{\widehat{G}}$ and thus a natural transformation

$$i^*: \boldsymbol{\beta}(A)(X_G) + \boldsymbol{\beta}(A)(X).$$

If $\pi\colon EG\times X\to X_G$ is the quotient map and $\epsilon\colon EG\times X\to X$ is the projection, then $\iota \cdot \epsilon \simeq \pi$ and thus ι^* agrees with the composite

$$\beta(A)(X_G) \xrightarrow{\pi} \beta(A)(EG \times X) \xrightarrow{(\varepsilon^*)^{-1}} \beta(A)(X).$$

© 1983 American Mathematical Society 0271-4132/83 \$1.00 + \$.25 per page

The composite $\iota^*\Phi\colon \boldsymbol{\beta}(G,A)(X)\to \boldsymbol{\beta}(A)(X)$ coincides with the forgetful transformation Ψ from (G,A)-bundles to A-bundles. Its image consists of those A-bundles over X which admit a structure of (G,A)-bundle, that is, for which the action of G on X lifts appropriately to the total space.

Corollary B. If A is Abelian, then the image of i is the set of A-bundles over X which admit a structure of (G,A)-bundle.

When A is a torus and X is connected and locally finite, this is the main theorem of Hattori and Yoshida [1,1.1].

Since the product and inverse maps of an Abelian group are homomorphisms, they induce natural internal operations which make $\beta(G,A)(X)$ and $\beta(A)(Y)$ Abelian groups. When $A = S^1$, the product may be viewed as the tensor product of complex line bundles and these are known as Picard groups. Clearly Φ and Π^* are homomorphisms.

Corollary C. If A is Abelian, then the (G,A)-bundle structures (if any) on a given A-bundle over X are in bijective correspondence with the elements of the kernel of ι^* .

Again, when A is a torus and X is connected and locally finite, essentially this enumeration was given by Hattori and Yoshida [1,4.1].

Of course, 1 is the inclusion of a fibre in the natural bundle $\gamma\colon X_G\to BG \text{ and we can use the Serre spectral sequence of }\gamma \text{ to compute }1^{\textstyle *}.$ We assume that X is connected throughout the following discussion.

Since A is isomorphic to the product of a torus T^n and a finite Abelian group F, each (G,A)-bundle decomposes uniquely into the Whitney sum of a (G,T^n) -bundle and a (G,F)-bundle. Thus we can discuss these cases separately.

Of course, we have

$$\beta(F)(X) = [X,BF] = H^{1}(X;F)$$

an F-bundle ξ being given by an F-characteristic class $f_1(\xi)$. An immediate calculation gives that the bottom row is exact in the commutative diagram

Thus ξ lifts to a (G,F)-bundle if and only if $f_1(\xi)$ is G-invariant and annihilated by d_2 , and there is then one lift for each element of $H^1(BG;F)$.

In the torus case, we have

$$\mathcal{B}(T^n)(X) = [X,BT^n] = H^2(X;Z^n),$$

a T^n -bundle ξ being given by a Z^n -characteristic class $c_1(\xi)$. We consider $E_2^{p,q}=H^p(BG;H^q(X;Z^n))$. The corollaries concern

$$\iota^*: H^2(X_G; \mathbb{Z}^n) \to \mathbb{E}_{\infty}^{0,2} \subset \mathbb{E}_{2}^{0,2} = H^2(X; \mathbb{Z}^n)^G \subset H^2(X; \mathbb{Z}^n),$$

where $\mathbb{E}^{0,2}_{\infty} = \text{Ker}(\mathbf{d}_3:\mathbb{E}^{0,2}_3 \to \mathbb{E}^{3,0}_3) \subset \text{Ker}(\mathbf{d}_2:\mathbb{E}^{0,2}_2 \to \mathbb{E}^{2,1}_2)$, and we have the short exact sequence

$$0 \longrightarrow \mathbb{E}_{\infty}^{2,0} \longrightarrow \operatorname{Ker} \iota^{*} \longrightarrow \mathbb{E}_{\infty}^{1,1} \longrightarrow 0,$$

where $E_{\infty}^{2,0} = \operatorname{Coker}(d_2: E_2^{0,1} + E_2^{2,0})$ and $E_{\infty}^{1,1} = \operatorname{Ker}(d_2: E_2^{1,1} + E_2^{3,0})$. We conclude that $\underline{\xi}$ lifts to a (G,T^n) -bundle if and only if $c_1(\underline{\xi})$ is G-invariant and killed by d_2 and d_3 , and the exact sequence (α) then determines the number of liftings. For example, if G is simply connected, then BG is 3-connected and every ξ lifts uniquely, this being a result of Stewart [8]. Now assume that $H^1(X;Z) = 0$. Then the bottom row is exact in the commutative diagram

Note that $H^3(BG;\mathbb{Z}^n)=0$ if G is Abelian and $H^2(X,\mathbb{Z}^n)^G=H^2(X;\mathbb{Z}^n)$ if G is connected. Thus every ξ lifts uniquely if G is a torus, this being a result of Su [9]. If n=1, the top row is the exact sequence of Picard groups discussed by Liulevicius [3,Thm 2].

To prove Theorem A, we first interpret Φ on the classifying space level; A need not be Abelian for this part. There is a classifying G-space B(G,A) such that

$$\boldsymbol{\beta}(G,A)(X) = [X,B(G,A)]_{G},$$

where $\{X,X'\}_G$ denotes the set of homotopy classes of G-maps $X \to X'$. We may take B(G,A) to be a G-CW complex. Of course, we also have

$$\boldsymbol{\beta}(A)(Y) = [Y,BA] = [Y,BA]_G,$$

where Y and BA are regarded as G-trivial G-spaces. As a nonequivariant space, B(G,A) is itself a classifying space for A-bundles. Moreover, there is a map $\zeta \colon BA \to B(G,A)$ which takes values in $B(G,A)^G$ (hence may be regarded as a G-map) and is a nonequivariant homotopy equivalence. On the level of represented functors on spaces, ζ corresponds to the transformation which sends an A-bundle to the same A-bundle regarded as a G-trivial (G,A)-bundle. The following diagram of functors clearly commutes.

We also have the obvious commutative diagram

$$[EG \times X,BA]_{G} \leftarrow \frac{\pi}{} [X_{G},BA]_{G} = [X_{G},BA]$$

$$\downarrow \zeta_{*} \qquad \qquad \downarrow \zeta_{*} \qquad$$

Here the upper map π^* is clearly a bijection and will be regarded as an identification. We shall see in a moment that the left map ζ_* is also a bijection. This implies that $\pi^*\zeta_*$ is a bijection in both diagrams and that Φ may be regarded as the composite

$$[X,B(G,A)]_G \xrightarrow{\varepsilon} [EG \times X,B(G,A)]_G \xrightarrow{\varsigma_{\star}^{-1}} [EG \times X,BA]_G.$$

For G-spaces X and X', let M(X,X') denote the function G-space of continuous maps X + X', with G acting by conjugation. Then ϵ^* and ζ_* are obtained by application of the functor $\{X,?\}_G$ to the G-maps

(*)
$$B(G,A) = M(pt,B(G,A)) \xrightarrow{\varepsilon} M(EG,B(G,A)) \xleftarrow{\zeta_*} M(EG,BA).$$

Recall that a G-map $f: D \to E$ is said to be a weak G-equivalence if its fixed point map $f^H: D^H \to E^H$ is an ordinary weak equivalence for each closed subgroup H of G. By the G-Whitehead theorem [5,10],

$$f_*: [X,D]_G \rightarrow [X,E]_G$$

is then a bijection for any G-space X of the homotopy type of a G-CW complex. Since we have restricted ourselves to such X, we may as well regard classifying G-spaces as defined only up to weak G-homotopy type. The point is that such function G-spaces as M(EG,BA) will generally fail to have the homotopy types of G-CW complexes. Our assertion above that ζ_{χ} is a bijection was proven by obstruction theory in [2,1.4], but we give the following simple argument to illustrate the convenience of using function G-spaces in this context.

Lemma 1 ζ_* : M(EG,BA) \rightarrow M(EG,B(G,A)) is a weak G-equivalence.

<u>Proof:</u> Via $f \longleftrightarrow \sigma$ if $\sigma(x) = (x, f(x)), M(EG, B(G, A))^H$ may be identified with the space of sections of the natural fibration

$$EG \times_{H} B(G,A) \longrightarrow EG/H = BH.$$

Similarly, $M(EG,BA)^H = M(BH,BA)$ is the space of sections of

$$EG \times_{H} BA = BH \times BA \longrightarrow BH$$
.

Since $1 \times \zeta$: EG \times BA \to EG \times B(G,A) is a G-map and a nonequivariant homotopy equivalence between free G-spaces of the homotopy type of G-CW complexes, it is a G-homotopy equivalence by the G-Whitehead theorem. Therefore $1 \times_H \zeta$ is a homotopy equivalence over BH and thus a fibre homotopy equivalence (by a standard elementary argument). The induced homotopy equivalence between the respective spaces of sections coincides with the fixed point map $(\zeta_*)^H$.

Henceforward, we assume that A is Abelian. It is clear from the discussion above that Theorem A is an immediate consequence of the following result, which implies that (*) displays a weak G-equivalence between B(G,A) and M(EG,BA).

Theorem 2. ϵ^* : B(G,A) \rightarrow M(EG,B(G,A)) is a weak G-equivalence when A is Abelian.

For the proof, we note first that ε^* and ζ_* in (*) are Hopf G-maps between Hopf G-spaces. Indeed, our G-spaces have equivariant sums which make them Abelian topological G-groups up to homotopy. This is clear for M(EG,BA), which inherits a structure of Abelian topological G-group from the structure of Abelian topological group on BA. For B(G,A) and M(EG,B(G,A)), it follows from the fact that, up to G-homotopy, B(G,A) is a

product-preserving functor of A. The zero of B(G,A) is the image of the point $B(G,\{0\})$. We shall use the following triviality.

Lemma 3. Let Y be a homotopy associative and commutative Hopf space such that $\pi_0 Y$ is a group and let Y_0 be the basepoint component of Y. Then Y is naturally equivalent as a Hopf space to $Y_0 \times \pi_0 Y$.

Proof: Choose a point a in each component Y_a , writing a^{-1} for the chosen point in the inverse component. Define α : $Y + Y_0 \times \pi_0 Y$ by $\alpha(y) = (a^{-1} \cdot y, Y_a)$ for $y \in Y_a$ and define β : $Y_0 \times \pi_0 Y + Y$ by $\beta(z, Y_a) = a \cdot z$ for $z \in Y_0$. Homotopy associativity ensures that α and β are inverse equivalences; homotopy commutativity ensures that they are Hopf maps.

Thus to prove Theorem 2 it suffices to show that $(\epsilon^*)^H$ restricts to an equivalence on basepoint components and induces an isomorphism on π_0 for each $H \subset G$.

The basepoint component of $B(G,A)^H$ classifies H-trivial (H,A)-bundles and is thus a copy of BA. Indeed, ζ may be regarded as the inclusion of the basepoint component in $B(G,A)^H$ for any H. In view of Lemma 1 and the obvious commutative diagram

 $(\varepsilon^*)^H$ will be a weak equivalence on basepoint components provided that ε^* is a weak equivalence from BA to the basepoint component $M_O(BH,BA)$ of M(BH,BA), the basepoint being the trivial map. Now A has the form $F \times T^n$,

where F is finite, and we have the commutative diagram

$$\pi_{\mathbf{q}}^{\mathbf{B}\mathbf{A}} = \mathbf{H}^{1}(\mathbf{S}^{\mathbf{q}};\mathbf{F}) \oplus \mathbf{H}^{2}(\mathbf{S}^{\mathbf{q}};\mathbf{Z}^{\mathbf{n}})$$

$$\varepsilon^{*} \downarrow \qquad \qquad \downarrow \varepsilon^{*} \oplus_{,} \varepsilon^{*}$$

$$\pi_{\mathbf{q}}^{\mathbf{M}_{\mathbf{Q}}}(\mathbf{B}\mathbf{H},\mathbf{B}\mathbf{A}) = \mathbf{H}^{1}(\Sigma^{\mathbf{q}}\mathbf{B}\mathbf{H}^{+};\mathbf{F}) \oplus \mathbf{H}^{2}(\Sigma^{\mathbf{q}}\mathbf{B}\mathbf{H}^{+};\mathbf{Z}^{\mathbf{n}}),$$

where BH⁺ is the union of BH and a disjoint basepoint. If q=1, the first summand ϵ^* is clearly an isomorphism and the second summands are zero since H¹(BH;Z) = 0. If q=2, the first summands are clearly zero and the second summand ϵ^* is clearly an isomorphism. If q > 3, all groups are zero.

It remains to consider $(\epsilon^*)^H$ on π_O . For any G-space X, $\pi_O(X^H) = [G/H,X]_G$. By Lemma 1 and diagrams (I) and (II), $(\epsilon^*)^H$ will induce an isomorphism on π_O provided that

$$\Phi \colon \mathcal{B}(G,A)(G/H) \longrightarrow \mathcal{B}(A)(BH)$$

is an isomorphism. We claim that Φ here may be identified with the homomorphism

B:
$$Hom(H,A) \longrightarrow [BH,BA]$$

given by the classifying space functor, where $\operatorname{Hom}(H,A)$ denotes the Abelian group of continuous homomorphisms $\rho\colon H\to A$. Indeed, we obtain an isomorphism from $\operatorname{Hom}(H,A)$ to $\boldsymbol{\beta}(G,A)(G/H)$ by sending ρ to the natural (G,A)-bundle $\boldsymbol{\xi}_{\rho}\colon G\times_{H}A_{\rho}\to G/H$, where A_{ρ} denotes A regarded as an H-space via ρ , and Φ carries $\boldsymbol{\xi}_{\rho}$ to the natural A-bundle $EG\times_{H}A_{\rho}\to BH$. It is classical bundle theory that the latter is classified by $B\rho$. Thus the following result completes the proof of Theorem 2.

Proposition 4. B: $Hom(G,A) \rightarrow [BG,BA]$ is an isomorphism when A is Abelian.

<u>Proof:</u> If A is finite, elementary calculations show that π_0 and π_1 are isomorphisms in the commutative diagram

$$\begin{array}{ccc} \text{Hom}(G,A) & \xrightarrow{B} & [BG,BA]. & , \\ & & & \downarrow \pi_{0} & & \downarrow \pi_{1} \\ \text{Hom}(\pi_{0}G,\pi_{0}A) & = & \text{Hom}(\pi_{1}BG,\pi_{1}BA) \end{array}$$

In general, $A = F \times T^N$ where F is finite, hence it suffices to prove the result when A is the circle group S^1 . This is very easy if G is finite (by group cohomology [4,IV.5.5]), if G is a torus (by inspection), or if G is connected (by use of a maximal torus). The general case is easily handled by use of the third author's continuous group cohomology theory [7]. For topological G-modules A, there are cohomology groups $H^*(G;A)$ (denoted $H^*(G;A)$ is the ordinary cohomology $H^*(G;A)$ if $H^*(G;A)$ is the ordinary cohomology $H^*(G;A)$ if $H^*(G;A)$ is the ordinary cohomology $H^*(G;A)$. If $H^*(G;A)$ is contractible, then $H^*(G;A)$ can be calculated by continuous cochains [7,3.1], and it follows from Mostow [6,2.5 and 2.14] that $H^*(G;A) = 0$ for $H^*(G;A)$ is an accompanion of cohomology groups [7,1.3]. In particular, the extension $H^*(G;A)$ gives rise to a connecting isomorphism $H^*(G;A) = H^2(G;A) = H^2(G;A)$. A comparison of definitions shows that $H^*(G;A) = H^*(G;A) = H^*(G;A)$.

Bibliography

- 1. A Hattori and T. Yoshida. Lifting compact group actions in fibre bundles. Japan J. Math. 2 (1976), 13-25.
- 2. R. K. Lashof. Obstructions to equivariance. Springer Lecture Notes in Mathematics Vol 763, 1979, p. 476-503.
- 3. A. Liulevicius. Homotopy rigidity of linear actions: characters tell all. Bull. Amer. Math. Soc. 84 (1978), 213-221.
- 4. S. Maclane. Homology. Springer-Verlag. 1963.
- 5. T. Matumoto. On G-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Tokyo 18 (1971), 363-374.
- 6. G. D. Mostow. Cohomology of topological groups and solvmanifolds. Annals Math. 73 (1961), 20-48.
- 7. G. B. Segal. Cohomology of topological groups. Symposia Mathematica, vol IV (INDAM, Rome, 1968/69), p. 377-387.
- 8. T. E. Stewart. Lifting group actions in fibre bundles. Annals Math. 74 (1961), 192-198.
- 9. J. C. Su. Transformation groups on cohomology projective spaces. Trans.

 Amer. Math. Soc. 106 (1963), 305-318.
- 10. S. Waner. Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc. 258 (1980), 351-368.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CHICAGO CHICAGO, IL 60637

and

DEPARTMENT OF MATHEMATICS UNIVERSITY OF CHICAGO CHICAGO, IL 60637

and

UNIVERSITY OF OXFORD - MATH INSTITUTE 24-29 ST. GILES OXFORD ENGLAND