Authoring for Interoperability

robert weir(@us.ibm.com



Different uses of documents

Document as the end product, e.g., reports, white
papers, customer presentations, etc.

Documents as an analysis/collaboration surface.

Document/Applications, with macros and scripts
and other forms of automation.

Documents integrated with the business process,
via transformation, forms, custom XML, etc.

Each of these has different interoperability needs



Interop 1s not always a user priority

e In many cases documents are exchanged within a single
organization among known users running the same
editors.

— Interop not a priority

e In some cases the documents are tightly tied to an
organizations business process via integrated scripting.

— Interop not a priority

e In some cases a document is created by a single user for
their own use.

— Interop not a priority



Interop 1s one of many goals

e Other goals include:

— Business goals
e Flexibility
e Extensibility
— Productivity goals

e Ease of ad-hoc use

e Familiar authoring practices

— Of course, some times interop 1s the primary goal.



An analogy: C programming

e There is the set of conforming C programs:
_ int *x = (int *) 42;
— mt x,y; memcpy(&x,&y,4);
* And then there 1s the set of portable C programs

* But not all programs need to be portable.



Conforming versus Portable

 We all learned this as programmers

— Some things that are allowed in C are discouraged in
portable code.

« Assuming size of integers, byte ordering
e Structure alignment/padding
e Writing to code segments

e Values of uninitialized memory

e Some things are undefined or implementation-
defined 1n C, and programmers know that these
should be avoided 1n portable code.



What helps programmers

Education on portable programming practices

Tools that warn when non-portable constructs are
used, e.g., lint -w4, especially when integrated
into the IDE

Isolate and conditionalize platform dependencies

Use of portable libraries and frameworks



Undefined/Implementation-Defined
in ODF

Line breaking algorithms

Page breaking algorithms

Scripts/Macros

String to number conversion 1n spreadsheets

The exact feature set supported by an application



What 1s Portable ODF?

e A constrained subset of ODF that 1s expressive
and useful, but far more portable across
implementations.

— Could be informal authoring guidelines

— Could be supported by the editor

— Could be a formal profile standard



What 1s Portable ODF?

e Features that are not portable are excluded:

— Extensions
— OLE embeddings
— macros/scripts

— Absolute page/content references
e Other features are constrained:

— Use only widely-supported fonts

— Use named styles rather than direct attributes



How editors can help

If a user wants to create a portable document

— Encourage the use of named styles

— Discourage direct application of attributes
— Discourage non-portable constructs

— Explicitly save default values into document

— Scan document for problems

Perhaps have a 'portable document' mode in the editor that
users can switch into?

Provide a template that encourages portable documents.

Bonus: a portable document will likely be more accessible
at the same time!



Summary

 We will never make it so that all ODF documents
will be interoperable. If we tried, we would need
first to remove all flexibility and extensibility
from the format.

o It 1s possible, though difficult, to ensure that all
reasonable (non-pathological) ODF documents
are interoperable. However, there may be many
pathological users.

e A complementary approach 1s to encourage
authors to create Portable ODF documents, via
education, tooling and/or a profile standard.



	Authoring for Interoperability
	Different uses of documents
	Interop is not always a user priority
	Interop is one of many goals
	An analogy: C programming
	Conforming versus Portable
	What helps programmers
	Undefined/Implementation-Defined in ODF
	What is Portable ODF?
	What is Portable ODF?
	How editors can help
	Summary

