
Authoring for Interoperability

robert_weir@us.ibm.com

Different uses of documents

● Document as the end product, e.g., reports, white
papers, customer presentations, etc.

● Documents as an analysis/collaboration surface.
● Document/Applications, with macros and scripts

and other forms of automation.
● Documents integrated with the business process,

via transformation, forms, custom XML, etc.

Each of these has different interoperability needs

Interop is not always a user priority

● In many cases documents are exchanged within a single
organization among known users running the same
editors.
– Interop not a priority

● In some cases the documents are tightly tied to an
organizations business process via integrated scripting.
– Interop not a priority

● In some cases a document is created by a single user for
their own use.
– Interop not a priority

Interop is one of many goals

● Other goals include:
– Business goals

● Flexibility
● Extensibility

– Productivity goals
● Ease of ad-hoc use
● Familiar authoring practices

– Of course, some times interop is the primary goal.

An analogy: C programming

● There is the set of conforming C programs:
– int *x = (int *) 42;
– int x,y; memcpy(&x,&y,4);

● And then there is the set of portable C programs

● But not all programs need to be portable.

Conforming versus Portable
● We all learned this as programmers

– Some things that are allowed in C are discouraged in
portable code.

● Assuming size of integers, byte ordering
● Structure alignment/padding
● Writing to code segments
● Values of uninitialized memory

● Some things are undefined or implementation-
defined in C, and programmers know that these
should be avoided in portable code.

What helps programmers

● Education on portable programming practices
● Tools that warn when non-portable constructs are

used, e.g., lint -w4, especially when integrated
into the IDE

● Isolate and conditionalize platform dependencies
● Use of portable libraries and frameworks

Undefined/Implementation-Defined
in ODF

● Line breaking algorithms
● Page breaking algorithms
● Scripts/Macros
● String to number conversion in spreadsheets
● The exact feature set supported by an application

What is Portable ODF?

● A constrained subset of ODF that is expressive
and useful, but far more portable across
implementations.
– Could be informal authoring guidelines
– Could be supported by the editor
– Could be a formal profile standard

What is Portable ODF?

● Features that are not portable are excluded:
– Extensions
– OLE embeddings
– macros/scripts
– Absolute page/content references

● Other features are constrained:
– Use only widely-supported fonts
– Use named styles rather than direct attributes

How editors can help
● If a user wants to create a portable document

– Encourage the use of named styles
– Discourage direct application of attributes
– Discourage non-portable constructs
– Explicitly save default values into document
– Scan document for problems

● Perhaps have a 'portable document' mode in the editor that
users can switch into?

● Provide a template that encourages portable documents.
● Bonus: a portable document will likely be more accessible

at the same time!

Summary

● We will never make it so that all ODF documents
will be interoperable. If we tried, we would need
first to remove all flexibility and extensibility
from the format.

● It is possible, though difficult, to ensure that all
reasonable (non-pathological) ODF documents
are interoperable. However, there may be many
pathological users.

● A complementary approach is to encourage
authors to create Portable ODF documents, via
education, tooling and/or a profile standard.

	Authoring for Interoperability
	Different uses of documents
	Interop is not always a user priority
	Interop is one of many goals
	An analogy: C programming
	Conforming versus Portable
	What helps programmers
	Undefined/Implementation-Defined in ODF
	What is Portable ODF?
	What is Portable ODF?
	How editors can help
	Summary

