
PCC Vivace: Online-Learning
Congestion Control

Mo Dong1, Tong Meng1, Doron Zarchy2, Engin Arslan3, Yossi Gilad4,
P. Brighten Godfrey1, Michael Schapira2

1 UIUC, 2 Hebrew University of Jerusalem, 3 University of Nevada, Reno, 4 MIT

Internet Congestion Control

PCC Vivace: Online-Learning Congestion Control 2

…

Reno

New Reno

Vegas

Illinois
CUBIC

Westwood

H-TCP

FAST
HyblaCompound

BIC

Remy

PCC

BBR

[Winstein et al. SIGCOMM13]
• Offline-optimization
• Generated TCP

[Dong et al. NSDI15]
• Utility framework
• Online learning

[Cardwell et al. Queue 2016]
• Bottleneck bandwidth probing
• Minimum RTT probing

Liverpool 2:1 Man City

Roma 3:0 Barcelona

Internet Congestion Control

…

…

Data Packets

ACKs

When is a packet sent
Whether a packet is lost
When is a packet acked

Assumptions on

Network

Change
Sending Rate

PCC Vivace: Online-Learning Congestion Control 3

Packet loss / RTT increment indicates congestion

Internet Congestion Control

Random loss

Shallow buffer

Self-induced
congestion

Congestion from
other heavy flows

PCC Vivace: Online-Learning Congestion Control 4

Strong Assumptions Cause Problem

PCC Vivace: Online-Learning Congestion Control 5

Packet loss

Decrease rate a lot

Maintain rate

Decrease rate slightly

Maybe even increase rate

Abstract assumption cannot capture Internet complexity

Self-induced
congestion

Congestion from
other heavy flows Shallow buffer

Random loss

Underlying cause Best response

PCC Utility Framework

Sending
rate r

Internet

SACK
Throughput

Loss rate
…

Utility
f(tpt, loss, etc.)

PCC Vivace: Online-Learning Congestion Control 6

PCC Rate Control

r1

r2

u1

u2

u1 > u2?

Move
to r1

Move
to r2

PCC Vivace: Online-Learning Congestion Control 7

Sender selfishly maximizes its own utility
(online learning in non-cooperative game)

(Causal relation)

Internet

(Online learning)

PCC Design Challenges

r1

r2

u1

u2

u1 > u2?

PCC Vivace: Online-Learning Congestion Control 8

utility function Rate control algorithm

- Capture application
performance objectives

- Guarantee equilibrium with
multiple competing senders

- Guarantee reaching equilibrium
upon convergence

- Rapidly adapt to network
dynamics

Requirements for consistently high performance:

PCC Allegro

Loss-based
utility function

Heuristic
rate control

Fixed rate
change step size

No latency-awareness
Can cause bufferbloat

Slow convergence
Slow reaction to network changes

[Dong et al. NSDI 2015]

PCC Vivace: Online-Learning Congestion Control 9

PCC Vivace: Online-Learning Congestion Control 10

RTT / loss keeps increasing!

Overshoot leads to RTT
inflation and loss!

r1 C r2

r1 C r2

(Small step size)

(Large step size)

• Leveraging powerful tools from online learning theory

PCC Vivace

PCC Vivace: Online-Learning Congestion Control 11

New utility function framework
- Latency-awareness
- Strictly concave ⇒ Equilibrium guarantee
- Flexibility among senders

New control algorithm
- Gradient-ascent ⇒ Convergence speed/stability
- Deals with measurement noise

PCC Vivace

Strictly concave
utility function

PCC Vivace: Online-Learning Congestion Control 12

No latency inflation
upon convergence if

Tolerate p-random-loss if

Strict socially concave game
Unique convergence equilibrium

PCC Vivace

PCC Vivace: Online-Learning Congestion Control 13

Sending
rate

Observed
utility

xx-δ x+δ

?

Techniques to deal with
measurement noise:

- Linear regression
- RTT gradient low-pass filter
- Double check

Gradient-ascent
rate control

PCC Vivace: Online-Learning Congestion Control 14

Large utility
gradient

Small utility gradient

r1 C r2

PCC Vivace

PCC Vivace: Online-Learning Congestion Control 15

"No-regret" guarantee:
A Powerful lens for analysis

Strictly concave
utility function

Gradient-ascent
rate control

• Implementation
• UDT-based user-space implementation
• Emulab experiments, Amazon EC2 experiments
• User-space PCC proxy for video streaming

• Protocols for comparison
• TCP variants (TCP CUBIC, TCP Illinois, TCP Vegas, etc.)
• BBR
• PCC Allegro
• PCC Vivace

Evaluation

PCC Vivace: Online-Learning Congestion Control 16

• Latency awareness (100Mbps, 30ms RTT Emulab bottleneck link)

Vivace Utility Performance

PCC Vivace: Online-Learning Congestion Control 17

0

20

40

60

80

100

0 300 600 900

RT
T

In
fla

tio
n

Ra
tio

(%
)

Buffer Size (KB)

PCC Vivace
PCC Allegro
BBR
TCP CUBIC
TCP Illinois

< 2ms inflation in all cases
90% smaller than BBR under 2BDP

• Rapid reaction to network changes (10-100Mbps, 10-100ms RTT,
0-1% random loss)

Vivace Rate Control Performance

PCC Vivace: Online-Learning Congestion Control 18

0

20

40

60

80

100

100 120 140 160 180 200

Se
nd

in
g

Ra
te

 (M
bp

s)

Time (sec)

Slow reaction
upon RTT surge

Cannot resist
random loss

Less Packet Losses
TCP CUBIC

BBR

PCC Allegro PCC Vivace

• Fair equilibrium (100Mbps, 30ms RTT, 75KB buffer)

Vivace upon Convergence

PCC Vivace: Online-Learning Congestion Control 19

PCC Vivace

BBR CUBIC

PCC Allegro-Latency
Fast convergence to fair share with high stability

TCP Friendliness

PCC Vivace: Online-Learning Congestion Control 20

Per-flow share
BBR not friendly
with small buffer

BBR keeps
grabbing 50%

bandwidth

RTT gradient à 0,
stops being over

friendly

Insights from Learning-Theoretic Tools

• Flexible equilibrium state with heterogeneous senders

PCC Vivace: Online-Learning Congestion Control 21

Limitation in Extremely Dynamic Networks

PCC Vivace: Online-Learning Congestion Control 22

• LTE (Mahimahi emulator [Netravali et al. ATC 2015])

Low
Throughput

PCC Vivace: Online-Learning Congestion Control 23

https://www.youtube.com/watch?v=Y3IzuCdwdUo&t=27s
(Demo comparing PCC with UDP and TCP video streaming)

PCC In Action

• Open source release on GitHub (https://github.com/pccproject)
• UDP implementation used in experiments presented here
• QUIC implementation with Google
• Pantheon implementation for test purpose
• Kernel implementation in the works

• VACC variant of PCC by and
• Kernel implementation with optimizations for video over LTE
• Ongoing research project with successful field tests

PCC Vivace: Online-Learning Congestion Control 24

Conclusion

• PCC Vivace: Leveraging no-regret learning for congestion control
• Consistent high performance as PCC Allegro
• Latency awareness, mitigated bufferbloat (latency inflation, congestion

loss)
• Provably fair, yet also flexible equilibrium convergence
• Fast and stable convergence, even with changing network conditions
• Improved TCP friendliness, safer to deploy

• Thanks for generous project support

PCC Vivace: Online-Learning Congestion Control 25

Thanks!

PCC Vivace

Heuristic
rate control

PCC Vivace: Online-Learning Congestion Control 27

Gradient-ascent

Sending
rate

Observed
utility

xx-δ x+δ

?

PCC Vivace

Loss-based
utility function

Heuristic
rate control

PCC Vivace: Online-Learning Congestion Control 28

Strictly concave Gradient-ascent

Linear regression
Low pass filter (> 0.01)

L(x+δ) = 0.01% L(x-δ) = 2.0%
Double check

• Latency awareness (100Mbps, 30ms RTT Emulab bottleneck link)

Vivace Utility Performance

PCC Vivace: Online-Learning Congestion Control 29

0

5

10

15

20

25

0 50 100 150

Pa
ck

et
 L

os
s

Ra
te

 (%
)

Buffer Size (KB)

PCC Vivace
PCC Allegro
BBR
TCP CUBIC
TCP Illinois

< 0.5% loss with 13.5KB buffer
55% smaller than TCP CUBIC

• Convergence Speed/Stability Tradeoff (100Mbps, 30ms RTT, 75KB
buffer)

Vivace Rate Control Performance

PCC Vivace: Online-Learning Congestion Control 30

Insights from No-Regret Guarantee

• Random loss tolerance vs. Congestion loss (8Mbps, 25KB per-flow
share)

PCC Vivace: Online-Learning Congestion Control 31

~15%

~ 5%

Performance in Real-World

PCC Vivace: Online-Learning Congestion Control 32

11.6% median
gain over BBR

3.7x median gain
over CUBIC

Limitation of No-Regret

PCC Vivace: Online-Learning Congestion Control 33

“Sender's choices of rates are asymptotically (across time) no
worse, utility-wise, than sending at what would have been (in
hindsight) the best fixed rate”

Still make sense in highly dynamic
environment?

