
26    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

SYSADMINMaking “Push on Green” a Reality
D A N I E L V . K L E I N , D I N A M . B E T S E R , A N D M A T H E W G . M O N R O E

Daniel Klein has been a Site
Reliability Engineer at Google’s
Pittsburgh office for 3.5 years.
His goal is to automate himself
out of a job, so that he can get

on with the work of looking for new things to
do at Google. Prior to Google, he bored more
easily and did a myriad different things (look
on the Web for details). dvk@google.com

Dina Betser is a Site Reliability
Engineer who has worked
on projects such as Google
Calendar and Google’s large
machine learning systems that

maintain high quality ads. As an SRE, she
often works on ensuring that products behave
reliably with as little manual intervention as
possible. She studied computer science as an
undergraduate and master’s student at MIT.
dinabetser@google.com

Mathew Monroe is a Site
Reliability Engineer who has
worked on both the payments
and anti-malvertising systems
at Google. When not trying to

make the Internet a safer and better place,
he is trying to make running Internet services
a magical experience. He has a master’s in
software engineering from Carnegie Mellon
University and worked in distributed file
systems and computer security before coming
to Google. onet@google.com

Updating production software is a process that may require dozens, if
not hundreds, of steps. These include creating and testing new code,
building new binaries and packages, associating the packages with

a versioned release, updating the jobs in production datacenters, possibly
modifying database schemata, and testing and verifying the results. There
are boxes to check and approvals to seek, and the more automated the pro-
cess, the easier it becomes. When releases can be made faster, it is possible to
release more often, and, organizationally, one becomes less afraid to “release
early, release often” [6, 7]. And that’s what we describe in this article—mak-
ing rollouts as easy and as automated as possible. When a “green” condition
is detected, we can more quickly perform a new rollout. Humans are still
needed somewhere in the loop, but we strive to reduce the purely mechanical
toil they need to perform.

We, Site Reliability Engineers working on several different ads and commerce services at
Google, share information on how we do this, and enable other organizations to do the same.
We define “Push on Green” and describe the development and deployment of best practices
that serve as a foundation for this kind of undertaking. Using a “sample service” at Google
as an example, we look at the historical development of the mechanization of the rollout pro-
cess, and discuss the steps taken to further automate it. We then examine the steps remain-
ing, both near and long-term, as we continue to gain experience and advance the process
towards full automation. We conclude with a set of concrete recommendations for other
groups wishing to implement a Push on Green system that keeps production systems not
only up-and-running, but also updated with as little engineer-involvement and user-visible
downtime as possible.

Push on Green
A common understanding of Push on Green is “if the tests are good, the build is good, go push
it!” but we define Push on Green in three distinct ways:

1.	 A pushmaster says “this build is ready to go—push it.” The criteria for this judgment may
be based on a predefined push/freeze schedule, may have political or compliance-related
considerations, may need to be coordinated with other projects, etc. Automated testing may
occur, but the human is the ultimate arbiter.

2.	 In a continuous-build system (also known as “continuous deployment” or “continuous de-
livery”), a collection of smoke tests (simple tests that examine high-level functionality) and
regression tests for a current build all pass at a given revision. That revision is “green” and
may be pushed to production. The testing framework is the ultimate arbiter.

3.	 A change to a configuration file is made (which may enable or disable an existing feature, al-
ter capacity or provisioning, etc.). This rollout may likely reuse an already green build, so the
incremental tests and approvals are substantially simpler, and the reviewers and the testing
framework are together the arbiters.

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  27

SYSADMIN
Making “Push on Green” a Reality

Other definitions are certainly possible (including the cur-
rent state of the production system, so that we can consider a
green-to-green transition), but above are the three that we use in
this article. In all cases, we consider a system supported by Site
Reliability Engineers (SRE) who are responsible for both the
manual steps and the construction of the automated processes
in the rollout.

Development and Deployment Best Practices
With the complexity and interconnectedness of modern systems,
some development/rollout best practices have evolved which
attempt to minimize problems and downtime [2, 3]. To better
understand the issues involved in creating a Push on Green
system, an outline of a typical Google development environment
and deployment process provides a useful introduction.

Development
All code must be peer reviewed prior to submitting to the main
branch to ensure that changes make sense, adhere to the overall
project plan, and that bug fixes are sanely and reasonably imple-
mented. All changes must be accompanied by tests that ensure
the correct execution of the code both under expected and unex-
pected conditions [5]. As new libraries, APIs, and standards are
introduced, old code is migrated to use them. To provide as clean
and succinct an interface as possible for developers, libraries are
updated and old APIs are removed as new ones are introduced
[8]. The next push after a library update, then, has the same
chance of breaking production as a local developer change.

The at-times draconian review process can slow down release
of new code, but it ensures that whatever code is released is as
likely as possible to perform as desired. And, because we live in
the real world, we also extensively test our code.

Tests
Everyone at Google uses tests—the developers have unit-level,
component-level, and end-to-end tests of the systems they
write in order to verify system correctness. SREs have deploy-
ment tests and may call upon other tests to ensure that the
newly rolled-out production system behaves the same way as
it did in a testing environment. Occasionally, tests are simply a
human looking at the graphs and/or logs and confirming that the
expected behavior is indeed occurring. Running a production
service is a compromise between an ideal world of fully test-
able systems and the reality of deadlines, upgrades, and human
failings [7].

When developing code, all of the existing tests must continue
to pass, and if new functional units are introduced, there must
also be tests associated with them. Tests should guarantee that
not only does the code behave well with expected inputs, but also
behaves predictably with unexpected inputs.

When a bug is found, the general rule is that test-driven develop-
ment is favored. That is, someone first crafts a test that triggers
the buggy behavior; then the bug is fixed, verifying that the pre-
viously failing test no longer fails. The notion of “fixing the bug”
may simply mean “the system no longer crashes,” but a better,
more laudable behavior is “appropriately adjusts for the errone-
ous input” (e.g., logging the problem, correcting or rejecting the
data, reporting the problem back to the developers for further
debugging, etc.).

We acknowledge that mistakes happen and that they happen all
the time. When someone makes a mistake that adversely affects
production, it becomes their responsibility to lead the postmor-
tem analysis to help prevent future occurrences. Sometimes, a
fix can be made that checks for mistakes before they happen,
and at other times, changes to the underlying assumptions or
processes are put into effect. For example, it was assumed that
adding a column to a certain database would be harmless. A
postmortem discovered that a rollback of software also required
a rollback of that database, which lost the data in the new com-
pliance-required column. This resulted in a change in procedure,
where schema changes were made visible in the release prior to
the one in which the code changes are visible, making rollbacks
separable.

Monitoring
At Google, we extensively monitor our services. Using monitor-
ing data, we continually strive to make our services better and to
notice, through alerting, when things go wrong.

The most effective alerting looks for symptoms (and not their
causes), allowing the human in the loop to diagnose the problem
based on symptoms. While extensive monitoring provides great
insights into the interrelation of various components of the
system, ultimately all alerting should be performed in defense of
a service level agreement (SLA), instead of trying to predict what
may cause a service level failure [1]. Real world failures have a
way of setting their own terms and conditions, and by setting
(and monitoring) appropriate SLAs, it is possible to notify on
“failure to meet expectations.” After SLA-based alerting has
been triggered, extensive monitoring enables drill-down and
detailed root-cause analysis.

When this style of monitoring and alerting is in place, then not
only is it possible to alert under extraordinary circumstances
(e.g., surges in activity or failure of a remote system), but it is also
possible to alert quickly when a new version of the software is
unable to meet the demands of ordinary circumstance. Thus, an
automated rollout procedure can easily incorporate monitoring
signals to determine whether a rollout is good or whether the
system should be rolled back to a previous version.

28    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

Updates and Rollbacks
Rolling out a new version of software is often coordinated
under the supervision of a pushmaster, and may involve updat-
ing a single job, a single datacenter, or an entire service. Where
possible, canaries are used to test proper functioning of revised
software. Named for the proverbial canary in a coal mine, the
canary instances are brought up before the main job is updated,
in one last pre-rollout test of the software. The canary typically
receives only a small fraction (perhaps 1% or 0.1%) of production
traffic; if it fails or otherwise misbehaves, it can be quickly shut
off, leaving the rest of the code as-yet not updated, and returning
the service to normal operation for all users. Canarying can also
be done in stages, per job, by orders of magnitude, by datacenter,
or by geographic region served.

Services handle updates in a few different ways. Disparate code
changes must be integrated into “builds” (where the binaries
are created from various sources and libraries), and the timing
of the release of these builds is often planned well in advance. A
production binary not only comprises the directly edited code
of the team, but also those libraries released by teams that run
supporting services utilized by the service. Many .jar/.so files
are statically associated into a binary package, and there is no
universally followed release cycle; each team produces new ver-
sions on their own timetable. Therefore, whenever a new binary
is built for release, the changes that comprise it may come from
far and wide.

Configuration changes are also considered rollouts. These may
be in the form of runtime flags specified on the command line,
or in configuration files read on startup; both require a job to be
restarted to take effect. There may also be database updates or
changes that impact the behavior of a system without restart-
ing it. Configuration changes have the same potential to induce
failure, but they also benefit from the same types of automation.

Safely Introducing Changes
Consider how you would add a new feature to a service. One
common practice incorporates the following steps:

1.	 Create a new runtime configuration directive for a new feature,
with the default value set to “disabled.” Write the code that uses
the new feature, and guard that code with the new directive (so
that the new code is present but is disabled by default).

2.	 Release the new binaries with no references to the new
directive in any configuration file. The feature should remain
inactive, and failed rollout requires a rollback to the previous
version of the binaries.

3.	 Update the configuration files to include the presence of the
new directive (but explicitly specify that it is disabled), and
restart the current system. The feature should continue to

remain inactive, and a failed rollout simply requires a rollback
to the previous version of the configuration files.

4.	 Update the system configuration files to enable the new direc-
tive in the canary jobs only, and restart the current version of
the binaries in the canaries. A failed rollout simply requires
turning off the canaries and later rolling back to the previous
version of the configuration files.

5.	 Update the remainder of the jobs with the directive enabled.
Failures are less likely at this stage since the canaries have not
died or caused problems, but failure simply requires a rollback
to the previous version of the configuration files. At this point,
the new feature is enabled.

6.	 In a subsequent release, alter the code so that the directive
is now enabled by default. Because the directive is currently
enabled in the configuration file, changing the default flag value
to match the specified configuration value should have no ef-
fect on behavior, so rolling out this change is usually deferred
to occur along with a collection of other changes. However, a
failed rollout requires a rollback to the previous version of the
binaries.

7.	 Update the system configuration files to make no further refer-
ence to the directive—it is “live” by default. A failed rollout
simply requires a rollback to the previous version of the con-
figuration files.

8.	 Edit all conditional execution of code to always execute, since
that is now the implicit behavior. A failed rollout requires a
rollback to the previous version of the binaries.

9.	 Delete the now-unused definition of the directive in the code. A
failed rollout at this stage is almost certainly due to a configura-
tion file error, because the directive itself should not have been
used since step 7—so a binary rollback is probably not needed.

Requiring nine steps to fully add a new feature may seem like
overkill, but it ensures the safe release of new code. Addition-
ally, the steps involved can take place over many months and
many disparate releases. Complicating this process is the fact
there may be dozens of such changes occurring in parallel, some
simultaneously in-flight but starting and ending at widely differ-
ent times. Automating as much of the rollout process as possible
can help mitigate the overhead of keeping track of changes.

Types of Configuration Changes
We consider two kinds of configuration changes:

1.	 Changes to configuration directives that require job restart.

2.	 Changes to configuration directives that are automatically
picked up by jobs.

There are advantages and disadvantages to both. When job-
restart is required, one type of job can be updated with the
configuration directive, regardless of which other jobs have the

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  29

SYSADMIN
Making “Push on Green” a Reality

directives available to them. This yields fine-grained control, but
also requires that all restarts be tightly coordinated, so that an
unrelated job restart does not pick up unintended configuration
changes.

When jobs automatically pick up changes, configuration changes
are more global in scope. While this has the advantage of easily
automating changes on a large scale, it also means that greater
care must be taken in hierarchically specified configuration-
files to ensure that only the intended jobs are changed. In a real-
world system with thousands of options across hundreds of jobs,
it is easy for the hierarchy to break down or become unmanage-
able, riddled with special cases.

In both cases, great care must be taken to restrict the inadver-
tent propagation of unintended changes. Simplicity and flex-
ibility are at odds using either scheme, while reliability and
configurability are the goal of both.

Towards Push on Green
Much of the danger in releasing new code can be mitigated, but
the process still has a large amount of mechanical human over-
sight, and the purpose of the Push on Green project is to mini-
mize as much of this toil as possible.

Historical State of the Practice
We begin by examining a “sample service” at Google. The rollout
process starts with a push request being filed against the cur-
rent on-call, detailing the parameters of the rollout (the version
number, people involved, and whether the push is for canary,
production, or some other environment).

Previously, this service had a largely manual rollout process,
comprising a collection of scripts that were manually invoked
following a rollout run-book. The first step towards Push on
Green was to replace this with a more automated process that
effectively performed the same steps.

For the production jobs, the following steps are executed for
binary pushes or command-line flag changes. The automated
rollout procedure updates the push request at each step.

1.	 Silence alerts that will be known to fire during a rollout (for
example, warnings about “mixed versions in production”).

2.	 Push the new binaries or configuration changes to the canary
jobs in a datacenter currently serving traffic.

3.	 Run the smoke tests, probers, and verify rollout health.

a. 	 If the tests fail, notify the on-call, who may initiate a
canary rollback or bring down the canaries.

b.	 Some health-check failure conditions are the result of an
accumulation of errors, so some services require that tests
can only pass after a sufficient amount of time is allowed
for the binary to “soak.”

4.	 Push the binaries to the remainder of the jobs in that
datacenter.

5.	 Unsilence the previously silenced alerts.

6.	 Rerun smoke tests (step 3); if the tests pass, repeat steps 2–5
for each of the other datacenters.

This process still entails a lot of manual work. A push request
must be filed for each rollout, and the binaries for each of the jobs
must be built. The binary packages must be tagged, annotated, or
accounted for in some way (so that the rollout pushes the correct
binaries), and there are assorted handoffs between the release
engineer, test engineers, and Site Reliability Engineers that
limit the number of rollouts per day to only one or two. Although
alerting in case of problems is largely automated, the entire push
process must still be baby-sat to ensure correct functioning.

State of the Art—Recent Developments
Once the rollout process was made to be a largely push-button
operation, steps were taken to make it more automated with even
fewer buttons to push. These steps included:

RECURRING ROLLOUTS FOR INFRASTRUCTURE JOBS
Our services consist of jobs that are specific to the operation
of the service and jobs and software packages that are main-
tained by other teams but that we configure for our service. For
example, the monitoring and alerting jobs are standardized jobs
that are custom-configured. The monitoring teams update the
binaries that are available to use, but it is the responsibility of
each service to periodically restart their jobs with new binaries
at a time that is safe for the service involved.

Our recurring rollout updates those jobs maintained by other
teams on a daily basis, keeping them current, even when there
are service-specific production freezes. This recurring rollout
was the first step to Push on Green automation.

ROLLOUT LOCKING
Some rollout steps have the potential to interfere with other
rollouts. For example, if we are doing a production rollout, we do
not want to simultaneously do an infrastructure rollout, so that
we know which rollout to blame in case of a problem. With inter-
rollout locking, we can also provide an inter-rollout delay, so that
the effects of each rollout are clearly delineated from each other.

ROLLOUT REDUNDANCY
Reliability of the rollout system is just as important as reliabil-
ity of the system being supported. A rollout that fails part way
through due to a failure in the rollout automation can leave a pro-
duction service in an unstable and unknown state. As such, the
rollout systems should run in a replicated production configura-
tion to guard against failure.

30    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

TIME RESTRICTIONS
We have on-call teams spanning multiple continents and sepa-
rated by anywhere between five and ten time zones. The next
step towards Push on Green was to provide a rollout schedule
that took into account waking hours, weekends, and holidays
(with different cultural norms). The software that recognizes
these holidays was made to be easily configurable so other
teams could reuse it for similar automation that includes other
countries.

ROLLOUT MONITORING
The on-call must often consult a collection of logs to determine
when a rollout started and ended, and attempt to correlate that
data with problems that are reflected in latency and availability
graphs.

Push on Green avoids manual searches of disparate sources
of information, so another automation component was creat-
ing variables in the rollout system that could be queried by the
monitoring and alerting system. This has enabled us to overlay a
graph that visually displays the start and end of rollout compo-
nents on top of the latency and availability graphs, so it is easy to
see whether an inflection point in a graph exactly corresponds to
a rollout.

AUTOMATIC ROLLOUT OF CONFIGURATION CHANGES
Adding a new configuration option requires nine discrete steps,
and half of these are manual processes. The next step in automa-
tion is to have a single recurring rollout simply look for changes
in the revision control system which match two specific criteria:

◆◆ Affect a specific set of files

◆◆ Have approvals from the right people

The rollout then automatically creates and annotates a new push
request, and processes the rollout steps. When this is combined
with rollout locking and time restrictions, we have an automatic
Push-On-Green system (according to our third definition in
“What is Push on Green”), dramatically reducing engineer toil.
This cautious first step does not eliminate the human compo-
nent of arbitration but, instead, removes much of the checklist
labor that needs to be done.

State of the Art—Future Plans
Some of what follows is work in progress, and some of it is still
in the planning stages, but all of it logically follows the work that
has been accomplished so far in that it advances the automation
of our rollout processes.

◆◆ Rollback-feasibility rollout step: use the testing environment
to roll out a new binary, then roll it back after some traffic has
been routed to the new jobs. If the smoke and regression tests
still confirm job health, then the rollout can safely proceed in
production jobs.

◆◆ Continuous delivery: automatically create push requests for
versioned builds that pass the required tests, taking the “push
early, push often” philosophy to its logical extreme. We can then
use the monitoring data in the staging environment to ascer-
tain which builds we believe are safe to push to production.

◆◆ Rollout quotas: we may want to limit the number of rollouts
per day, or limit the number of rollouts that a single user can
initiate, etc.

◆◆ Pushing Green-on-Green: perform a correlative analysis of a
collection of indicators to determine overall system health be-
fore performing a new push. The system may not be out of SLA,
but it might be dangerously close to the edge. Unless a service is
currently green, it is a bad idea to automatically perform a new
rollout.

We Still Need Manual Overrides!
Regardless of how much we want to automate everything, some
processes will stay manual for now:

◆◆ We will always need the ability to do a manually induced
rollback.

◆◆ Some tests are flaky. It may be the case that a build is not green
due to a flaky test or that the system is healthy but the tests say
otherwise. We need to be able to manually override the require-
ment for “green”; sometimes we believe that the problem being
reported does not exist, or the problem exists but the rollout
will fix it.

◆◆ Every automated system needs a big red button to halt execution.
If we have the required means of switching off automatic roll-
outs, then we still need a way to do manual rollouts of any kind.

Real Numbers, Real Improvement
Since introduction of Push on Green, the on-calls in our service
have experienced the improvements seen in Table 1.

We have increased the number of rollouts by an order of magni-
tude in two years, while at the same time saving almost a whole
SRE FTE (and freeing the developers from much of their involve-
ment in rollouts). Once our rollout system begins automatically
detecting green conditions, we expect that the number of rollouts
will increase even more, and the level of engineer engagement
will continue to decrease.

Towards Push on Green: Recommendations
The fundamental components of an automated rollout system
are as follows:

Monitoring and Alerting
If you don’t know how your system is behaving in a measurable
way, you only have assumptions to deal with. While naked-eye
observation can tell you the gross symptoms (“the page loads

www.usenix.org	   O C TO B ER 20 14  VO L . 3 9, N O. 5  31

SYSADMIN
Making “Push on Green” a Reality

slowly” or “that looks better”), you need automated monitor-
ing at a fine-grained component level to give you insights as to
why problems are happening or whether changes have had the
desired effect.

◆◆ Monitoring needs to be performed on production systems, and
monitoring is different from profiling. Profiling helps you find
hotspots in your code with canned data; monitoring tracks the
responsiveness of a running system with live data.

◆◆ Monitoring needs to be combined with alerting so that ex-
ceptional conditions are rapidly brought to the attention of
production staff. Although it is possible to eyeball a collection
of graphs [4], a well-monitored system has far more variables
than any human can reasonably scan by eye (in a Google pro-
duction service, it is not unusual to monitor millions of condi-
tions with tens of thousands of alerting rules).

◆◆ The state of monitored variables and resulting alerts must be
available in a form that allows programmatic queries, so that
external systems can determine the current and previous state.
Both these data points are needed to make determinations as to
whether things have improved or degraded.

◆◆ If at all possible, separately monitor canary versions of jobs
and their non-canary production counterparts. If all other
things are equal (traffic, load, data sets, etc.), then it is possible
to assess the health and quality of a canary job relative to the
previous version of production.

Builds and Versions
A repeatable mechanism for building new binary releases must
be part of the overall release cycle. Static builds ensure that what
you build and test today is exactly the same as what you push
next week. While different components may have different build
procedures, they all must be regularized into some standard
format.

◆◆ Versions must be tracked, preferably in a way that makes it
easy for both the developers and release engineers to correlate
a given build with a specific production service. Rather than

sequential version numbers (like v3.0.7.2a), we recommend ver-
sions that incorporate the date and some other distinguishing
nomenclature (such as tool_20140402-rc3) so that a human
can readily correlate versions.

◆◆ Versions should be tagged, annotated, or otherwise consis-
tently accounted for. This means that rather than “push version
X to production,” you should “mark version X with the produc-
tion tag” and then “push the current production version.” This
allows for separation of responsibilities (developers build
releases, release engineers tag them, and production engineers
update the jobs) while still maintaining a coherent view of the
service.

◆◆ Builds should be tested at a number of levels, from unit tests
through to end-to-end tests and live production tests. Finding
problems earlier in the process helps eliminate them faster.

Scripted and Parameterized Rollouts and Rollbacks
A systematized and regularized rollout procedure must exist. If
automated steps are interspersed with manual steps, there must
also be checks to ensure that all of the manual steps have been
properly performed.

◆◆ As many steps in the rollout process as possible should be fully
automated. If customizations need to be done on a per-rollout
basis, these should be specified in a configuration file so that
nothing is left to the memory of the person starting the rollout.
This is especially important when rolling back to some previ-
ous version.

◆◆ Rollouts steps (and thus the entire rollout) should be idempo-
tent. A rollout should not suffer from any step being performed
twice. If a rollout fails, rerunning the rollout should either fail
in the same way or cure the problem.

◆◆ A rollback should be the same as a rollout to a previous version.
This is more of an ideal goal than a practical reality—there will
always be some special case where a schema change cannot be
rolled back. However, the more regular the rollout process, the
less likely this will happen, and the more likely it is that devel-
opers will avoid changes that cannot be rolled back.

Process Automation and Tracking
Once the basic infrastructure is in place for scripted rollouts,
you can contemplate automatically detecting and rolling out new
versions.

◆◆ Once the process of versioning has been regularized, you can
query the build system to determine when a new version is
available, and roll it out when the appropriate preconditions
have been met (i.e., build and tests are green, the version num-
ber is incrementally larger, production is green, etc.).

◆◆ When a new version is rolled out, the monitoring and alerting
should be queried at various stages in the rollout to ascertain

Original
(manual)

rollouts 2012
Mechanized

rollouts 2013

Semi-
automated

rollouts 2014

Rollouts/
month

12–20 60 160

Time
saved for
on-call/
month

0 hours
(baseline)

20 hours 50–60 hours

Table 1: Rollouts have increased by an order of magnitude over two years,
while time spent on them has decreased.

32    O C TO B ER 20 14  VO L . 3 9, N O. 5 	 www.usenix.org

SYSADMIN
Making “Push on Green” a Reality

whether there are any problems. If any anomalous behavior is
detected, the rollout should be paused at whatever state it is
in until a determination of overall rollout health can be made
(since rollouts should be idempotent, it is also valid to abort the
rollout, with the expectation that it can be restarted later).

◆◆ An anomaly in your monitored data may be the responsibility of
your just-pushed system, but it may also be the result of some
dependent system having been coincidentally just pushed.
Coordinating rollouts with dependent teams can avoid this
problem.

Conclusions
Building our Push on Green rollout system has been an evolu-
tionary process. It has worked well because of the great degree of
caution that we have exercised in incrementally adding func-
tionality and automation. Although we are all in favor of having
computers do our jobs for us, we are also averse to the disasters
that mindless automation can bring.

We are only one of many teams at Google who are automating
their rollout process. The needs of the project and the con-
straints of the production environments influence how each
of these teams perform their jobs. However, regardless of the
particulars, each group has addressed the same concerns and
exercised the same degree of caution in handing over the reins
to an automated system. With apologies to Euripides, “The mills
of process automation grind exceedingly slow, but grind exceed-
ingly fine…” Anyone can do it—just be prepared for a long haul.

References
[1] Alain Andrieux, Karl Czajkowski, Asit Dan et al., “Web
Services Agreement Specification (WS-Agreement),” Sep-
tember 2005: http://www.ogf.org/documents/GFD.107.pdf.

[2] J. R. Erenkrantz, “Release Management within Open
Source Projects,” in Proceedings of the 3rd Workshop on Open
Source Software Engineering, Portland, Oregon, May 2003.

[3] J. Humble, C. Read, D. North, “The Deployment Produc-
tion Line,” in Proceedings of the IEEE Agile Conference, July
2006.

[4] D. V. Klein, “A Forensic Analysis of a Distributed Two-
Stage Web-Based Spam Attack,” in Proceedings of the 20th
Large Installation System Administration Conference,
December 2006.

[5] D. R. Wallace and R. U. Fujii, “Software Verification and
Validation: An Overview,” IEEE Software, vol. 6, no. 3 (May
1989), pp. 10, 17.

[6] H. K. Wright, “Release Engineering Processes, Their
Faults and Failures,” (Section 7.2.2.2) PhD Thesis, Univer-
sity of Texas at Austin, 2012.

[7] H. K. Wright and D. E. Perry, “Release Engineering Prac-
tices and Pitfalls,” in Proceedings of the 34th International
Conference on Software Engineering (ICSE ‘12) (IEEE, 2012),
pp. 1281-1284.

[8] H. K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan,
“Large-Scale Automated Refactoring Using ClangMR,” in
Proceedings of the 29th International Conference on Software
Maintenance (IEEE, 2013), pp. 548–551.

