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Abstract 
Autonomous Underwater Vehicles (AUVs) are used across a wide range of mission scenarios and from an 
increasingly diverse set of operators. Use of AUVs for shallow water (less than 200 meters) mapping applications is 
of increasing interest. However, an update of the total propagated uncertainty TPU model is required to properly 
attribute bathymetry data acquired from an AUV platform compared with surface platform acquired data. An 
overview of the parameters that should be considered for data acquired from an AUV platform is discussed. Data 
acquired in August 2014 using NOAA’s Remote Environmental Measuring UnitS (REMUS) 600 AUV in the 
vicinity of Portsmouth, NH were processed and analyzed through Leidos’ Survey Analysis and Area Based EditoR 
(SABER) software. Variability in depth and position of seafloor features observed multiple times from repeat passes 
of the AUV, and junctioning of the AUV acquired bathymetry with bathymetry acquired from a surface platform are 
used to evaluate the TPU model and to characterize the AUV acquired data.   
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Introduction 
AUV Hydrographic Bootcamp is a weeklong event co-hosted by the University of New 
Hampshire (UNH) and the University of Delaware to provide an engineering and development 
forum for furthering the state of the art of hydrographic survey from autonomous underwater 
vehicles (AUVs). The event provides engineers, software developers, AUV operators and 
hydrographers an opportunity to scrutinize every detail regarding survey operations and 
hydrographic data processing.  

AUV Hydrographic Bootcamp 2014 was held this past August at the University of New 
Hampshire marine facility in New Castle, NH. The event included participants from Black Laser 
Learning, CARIS, DOF Subsea, Hypack, Hydroid, Kongsberg, Leidos, QPS, University of 
Delaware, University of Rhode Island, the Monterey Bay Area Research Institute, the U.S. Naval 
Academy, the Naval Oceanographic Office, and NOAA’s Offices of Coast Survey and of 
Exploration and Research. NOAA’s REMUS 600 AUV with EM3002 multibeam echosounder 
(MBES) was operated on three days during the event, allowing participants to plan and execute 
missions and to collect operational and hydrographic data, affording the ability to establish and 
test operational models and data processing workflows. These in turn allowed the group to 
understand operation of the systems, see problems not uncommon to mapping from surface 
platforms, scrutinize old methods and explore new ones.  Much of this effort has been aimed at 
better understanding and testing uncertainty models for AUV acquired bathymetry. 

To illustrate, data collected during AUV Bootcamp 2014 is presented here along with a method 
for generation of Total Propagated Uncertainty (TPU) from the AUV. One of the AUV datasets 
is junctioned with a reference bathymetry surface, previously acquired from a surface platform, 
and thereby providing an opportunity to quantitatively assess the AUV TPU model.  

The AUV navigation data was processed in real-time onboard the vehicle using the Kongsberg 
NavP integrated navigation system, and was post-processed using the Kongsberg NavLab tools. 
Workshop participants worked with the navigation data and the EM3002 data using a wide 
variety of software packages including CARIS HIPS and SIPS®1, Coastal Oceanographics 
HyPack™2, MBSYSTEM, and Leidos’ SABER. The TPU model results presented here and the 
quantitative dataset comparisons were produced using the Leidos SABER software package.  

TPU Model 
Total Propagated Uncertainty (TPU) Modeling for AUVs, as described here, is fundamentally 
similar to the Hare-Godin-Mayer model [1] [2] made popular in TPU libraries, and providing 
uncertainty attribution required for the Combined Uncertainty Bathymetric Estimator [3] 
(CUBE). The TPU model provides an estimate of the total horizontal uncertainty (THU) and the 
total vertical uncertainty (TVU) for every seafloor depth value. The individual component 
uncertainties for each parameter contributing to the calculation of seafloor depth at a specific 
location are separately measured or estimated and propagated using the law of propagation of 
variances to produce the total horizontal and total vertical uncertainty estimates. For simplicity, 
the model assumes uncorrelated component uncertainties. The TPU values are used to 
characterize the quality of the data to assist in decision making about the suitability of the data 
                                                            
1 SIPS is a registered trademark of Universal Systems Ltd in the United States and/or other countries. 
2 HYPACK is a trademark of Hypack, Inc. (formerly Coastal Oceanographics, Inc. in the United States and/or other 
countries. 
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for its intended purpose. The TPU values are also used as input to various processing 
technologies such as CUBE [3].    

Horizontal Uncertainty 
AUV systems operate submerged for extended duration, pushing the limits of today’s energy 
storage technologies. Absolute position fixing using Global Navigation Satellite Systems 
(GNSS) is limited to when the vehicle is on the surface. When submerged, AUVs use an inertial 
measurement unit (IMU) as one component of their position, navigation, and time (PNT) 
solutions. The IMU provides angular rate and acceleration measurements. These angular rate and 
acceleration measurements are integrated with position measurements and with velocity 
measurements to achieve suitable position uncertainty. The drift rates from IMU measurements 
alone would be too large to provide sufficient positioning. However, the short-term stability of 
the IMU data provides invaluable information necessary to overcome positioning issues with a 
short timescale such as when the true AUV velocity components are not at steady state for 
example, to eliminate the unwanted effects of surface waves on the vertical navigation solution. 
A pressure sensor provides a measure of the vertical location of the AUV in the water column. A 
Doppler Velocity Log (DVL) provides velocity measurements relative to the seafloor (and 
sometimes water column [4]) as components of fore-aft, athwart, and downward vehicle speed. 
When combined with true heading, the DVL measurements provide an absolute velocity 
reference which can be used to constrain the effect of the inertial drift rates. AUV operations 
may require continuous absolute position input such as is available from an acoustic ranging 
system in order to meet data product positioning requirements.  

Integration of these disparate, asynchronous measurements requires a sophisticated and robust 
integrated navigation system (INS) in order to meet the PNT requirements for subsea mapping 
operations.  The INS must be capable of accurate time-stamping, integrate positioning sensors 
with sufficient and known measurement accuracy, affectively model the actual sensor 
performance, include a robust navigation kernel based on the equations of motion, and provide 
truly representative estimates of uncertainty with the PNT solution. The performance 
characteristics of the INS are essential to meeting mission requirements. 

As operated for the 2014 AUV Bootcamp, the NOAA REMUS 600 system relied on surface 
GNSS fixes, as an underwater acoustic positioning capability was not part of the operations plan. 
For this scenario, THU is dominated by the component uncertainty contribution from the 
GNSS/IMU/DVL-based INS navigation solution. The AUV obtains GNSS solutions on the 
surface at the start of the mission. The AUV real-time navigation solution uncertainty can be 
modelled starting with the uncertainty of the surface GNSS fixes, and then allowing the 
horizontal uncertainty to increase as a function of the expected INS performance using bottom 
lock DVL velocity measurements integrated with inertial measurements. A simple model can 
then be developed using 0.6 meters distance root mean square (DMRS) for horizontal differential 
GNSS solution uncertainty, a speed of 3.5 knots in water depths where bottom lock is achieved 
from the surface to operating depth, expected INS performance of 0.1 % of distance travelled, 
and assuming the AUV is running in a straight line. [5] The result is shown in Figure 1, where 
the horizontal position uncertainty is treated as having a circular distribution, and is scaled to 
95% confidence level (CL) to allow for comparison with the International Hydrographic 
Organization (IHO) order 1 guidelines for horizontal uncertainty. 
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In the REMUS 600, the Kongsberg NavP system provides a robust Kalman Filter (KF) based 
subsea navigation solution that integrates the available positioning measurements and produces 
an uncertainty attributed position, velocity, and orientation state vector. NavP characterizes the 
overall measurement performance of each sensor (the Novatel GNSS receiver, the RD 
Instruments 600 kHz DVL, the Honeywell IMU, the ParoScientific pressure sensor, and acoustic 
ranging systems) through the KF algorithm. Post processing using the Kongsberg NavLab 
package has the ability to further reduce navigation uncertainty, using a forward and backward 
multi-pass approach and a Rauch-Tung-Striebel smoother [5]. The mechanics of the 
implementation of the NavP and NavLab are described in [6]. 

The horizontal uncertainty predicted by NavP and NavLab is based on estimated uncertainties in 
the measurements of position, velocity, acceleration, and rotation rate made by the onboard 
sensors. For robustness, the component uncertainty values used by NavP and NavLab are 
conservative and largely hidden from AUV operators as their tuning can create unwanted 
navigation artifacts. The error state KF provides estimates of sensor errors where these are 
observable such as during vehicle dynamics and these can be used in the navigation solution. 
Nonetheless, it is incumbent for AUV operators and hydrographers to scrutinize the uncertainty 
attribution provided to NavP and NavLab in collaboration with the manufacturer to ensure the 
values reflect the achieved sensor performance and make sense in the context of the mission. 

The SABER THU model starts with the time-varying horizontal uncertainty from NavLab, and 
interprets this value as accounting for the horizontal uncertainty of the AUV at each position 
update. The uncertainty in the AUV’s position is then propagated to the sonar, and from the 
sonar to each sounding location. The THU at the sounding location is then a combination of the 
horizontal uncertainty of the AUV position and the other factors that contribute to computing the 
along-track and across-track distances to each sounding. These component uncertainties are 
either measured or estimated for an AUV platform in very much the same way as is done for a 
surface platform. The summation of all contributing components then leads to a THU value for 
each sounding.  

Vertical Uncertainty 
Estimation of the uncertainty in vertical positioning of the AUV requires additional 
consideration. In an attempt to clearly layout the calculations, the following paragraphs first 
describe the conversion from absolute pressure measured aboard the AUV to depth. Recipes are 
also given for implementing these calculations using freely available software implementing 
these algorithms. Finally a methodology for estimation of uncertainty in the vehicle’s depth 
given these calculations is presented.  

For real-time calculations, it is possible to use a “standard ocean” model for water density, or 
optionally to use a climatology model that provides average temperature and salinity for the area 
of operations. Vehicle depths from these real-time calculations are used for navigation and 
control and are also embedded directly in the sonar data during the mission. However to meet the 
uncertainty requirement necessary for hydrographic survey, post-processing of vertical 
positioning is required. 3  The post-processed calculation includes compensation for time-varying 

                                                            
3Merging of post-processed vehicle navigation can be done through many sonar data processing packages. In 
addition, Kongsberg provides tools to replace both the horizontal and vertical vehicle navigation embedded in the 
raw.all files with post-processed values, mitigating the confusion that can come with multiple sources of navigation.  
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Hydrostatic pressure is then converted to depth in real time using the UNESCO 1983 equation 
popularized by an algorithm formalized in UNESCO’s Algorithms for computation of 
fundamental properties of seawater [7] and reproduced in many programming languages. The 
vehicle uses latitude in addition to the hydrostatic pressure measurement and, depending on 
configuration settings, may assume a “standard ocean” (0°C and 35 PSU), or may use 
temperature and salinity from historical climatology. These pressure sensor derived depth values 
are lever-arm corrected and then integrated with inertial and DVL measurements in the NavP KF 
to obtain a filtered depth estimate in real-time. The real-time estimate is used for navigation and 
is recorded within the raw multibeam data files. While the raw multibeam data may be used 
immediately post-mission for initial bathymetry and imagery products, in general, a more careful 
post-processed depth estimate is required with full consideration for atmospheric pressure, 
changing ocean conditions and the uncertainty reduction provided by forward-backward 
smoothing.  

Vertical	Positioning	of	the	AUV	–	Post	Processing	
As part of the NavLab post-processing, absolute pressure measurements made by the pressure 
sensor at the stern of the vehicle are translated to the location of the vehicle navigation reference 
point (co-located with the IMU), and integrated with the inertial measurements in a 
forward/backward process to generate the final smoothed navigation solution. The depth 
component of the position solution is output in meters. NavLab is configurable to produce the 
depth value using one of several options to facilitate straightforward integration with other 
packages. In its simplest form, NavLab uses a fixed water density, fixed gravity value, and 
atmospheric pressure of 1 bar. When reading the NavLab smoothed navigation file, it is then 
straightforward to invert the depth estimate for a smoothed time-series of the pressure. Reverting 
to AUV operating depth expressed in units of pressure pressure allows for correction of time-
varying atmospheric pressure from a separately recorded reference barometer, and allows for a 
pressure to depth calculation using one or more temperature and salinity profiles obtained by the 
AUV or obtained from other platforms. A recent NavLab update also allows for output of a 
smoothed pressure file directly, which could then also be used as the starting point for refinement 
using the atmospheric pressure correction, and refinement of the pressure to depth corrections 
based on the observed Physical Oceanographic parameters. During AUV Bootcamp, physical 
oceanographic profiling was completed both by the AUV and from the watch boat used for AUV 
deployment, recovery and mission monitoring. 

Conversion from the smoothed pressure to depth is accomplished in SABER using equation (25) 
on page 26 of UNESCO’s Algorithms for computation of fundamental properties of seawater [7]. 
This is the classic UNESCO 1983 algorithm for pressure conversion to depth in the ocean, where 
the integration of the specific volume anomaly is included to account for the variability in water 
density as a function of the observed temperature and salinity profile over the AUV. The 
Thermodynamic Equation of State of Seawater (TEOS) [9] implements a more precise, set of 
calculations than defined by the UNESCO 1983 publication. The Gibbs SeaWater (GSW) 
Oceanographic Toolbox of TEOS-10 [9] provides a software library that can be used to support 
calculation of many oceanographic parameters, including a solution for pressure to depth 
conversions. While the GSW implementation is more precise than the UNESCO 1983-based 
calculations, the UNESO 1983 approach is sufficiently accurate for hydrography and bathymetry 
products as long as integration of the specific volume anomaly is included. Details of the steps 
required are specified in the Appendix.  
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For AUV platforms, the vertical location of the AUV is fully defined by the depth component of 
position; therefore, heave is not a consideration and the uncertainty contribution from heave is 
excluded from contributing to the AUV TVU. It is of course still necessary to use rigid-body 
rotations to account for lever arm (X,Y,Z) offsets to each sensor and using the AUV orientation. 
Surface waves and swell can present an operational challenge in that both the pressure variation 
from the surface wave and the orbital velocity field generated by surface waves impact the AUV 
during the mission. Proper integration in the Kongsberg KF allows the vertical location of the 
AUV to be accurately estimated even when operating in areas with surface waves and swell. 
Additional information is provided on this topic in Hagen and Bjørn’s Vertical Position 
Estimation For Underwater Vehicles [8].  Nonetheless, an uncertainty estimate for residual 
effects of surface waves has been allowed as an entry in the uncertainty model. The static draft, 
loading draft, and dynamic draft parameters typical for surface ship platforms are excluded from 
contributing to the AUV-based TVU. 

Vertical	Position	Uncertainty	
Estimation of the uncertainty in the depth of the vehicle requires consideration of the uncertainty 
in each contributing factor: absolute pressure measured aboard the vehicle and atmospheric 
pressure measured at the surface during the survey, uncertainty in the vertical profile of 
temperature and salinity used in calculation of the specific volume anomaly described above, 
uncertainty in the local gravity vector, and finally uncertainty in the inertial accelerations and 
gyro measurement with which the pressure-derived depths are blended in the KF solution. These 
components are summed as variances as shown in Equation 1. 

 

ುೀೄ಺೅಺ೀಿ	ௗಲೆೇߪ ൌ ටߪௗಲೆೇ	ುೃಶೄೄ.
ଶ ൅ ௗ಺ಿಶೃ೅಺ಲಽߪ

ଶ ൅ ಲೃಾೄ	ಽಶೇಶೃ		ௗಿಲೇ.ߪ
ଶ ൅ ௗಲ೅೅಺೅ೆವಶߪ

ଶ ൅	… 

.ௗಳಲೃ.ುೃಶೄೄߪ
ଶ ൅ 	ௗೈಲ೅ಶೃ಴ೀಽೆಾಿߪ

ଶ ൅	ߪௗಸೃಲೇ.
ଶതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത    (1) 

Similar to methods used for horizontal positioning uncertainty, the SABER TVU model uses 
NavLab’s estimate of vertical uncertainty. The KF solution produced by NavLab results from a 
blend of the manufacturer’s specification for uncertainty for the vehicle’s pressure sensor, along 
with that of the inertial and gyro measurements. The time-varying estimate of AUV depth 
uncertainty output from NavLab accounts for uncorrected biases and random uncertainty in the 
pressure measurement (ߪௗಲೆೇ	ುೃಶೄೄ.

ଶ ሻ, the uncertainties of the IMU data (ߪௗ಺ಿಶೃ೅಺ಲಽ
ଶ ሻ, the lever 

arms locating each navigation sensor, the lever arm uncertainties, and the attitude uncertainties 
ௗಲ೅೅಺೅ೆವಶߪ)

ଶ ሻ.  The NavLab depth uncertainty value thereby accounts for the first four 
components in Equation 1. 

Uncertainty in the watercolumn temperature and salinity come from two sources, namely, the 
sensors’ inherent accuracy, and the aliased environmental variability that occurs in the water 
column both spatially and temporally. The vertical profile data may come from conductivity 
temperature and depth CTD casts made during the survey or from sensors on board the AUV 
itself. In the latter case, vertical profiles of temperature and salinity may be extracted from any 
depth excursion made by the vehicle. At a minimum, generally two such sets of profiles can be 
extracted, one from the initial dive and a second from the final return to surface. The difference 
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in the temperature and salinity measurements at each depth interval between successive pairs of 
CTD casts serves as a rough measure of the spatial and temporal variability of the environment.  

Environmental variability is generally larger than sensor accuracy and as such the uncertainty of 
the vertical temperature and salinity data is modeled having an uncertainty corresponding to 
instrument accuracy at the time the profile measurements are made, growing linearly in time 
until the next profile is measured, reaching a maximum uncertainty level corresponding to the 
absolute difference between the original profile and the subsequent one. In this way the modeled 
uncertainty in temperature and salinity at each depth in the profile is saw-toothed over time, 
growing to match observed changes in the data and resetting to instrument uncertainty at the time 
of each profile measurement. Inherent in this model are many assumptions, including that 
sufficient samples of the water column have been taken, and that the dynamics experienced by 
the vehicle changes linearly with time between samples.  

The errors described here are systematic biases rather than stochastic measurement error. As 
such, rather than propagating the uncertainty of the temperature and salinity profiles through the 
pressure-to-depth calculation through a Monte Carlo simulation, as one might do if the errors 
were random, the uncertainty is more appropriately estimated by bounding the maximum bias in 
depth of the AUV that would result given the modeled biases in each profile. To do so 
theoretical, minimum and maximum temperature profiles are generated as the measured 
temperature minus or plus 1-sigma error, respectively. Similar profiles can be created for 
salinity. These can then be combined to produce a minimum and maximum error bound for each 
depth by inserting these maximum-bias profiles into the pressure-to-depth calculation described 
above. When doing so one must choose the minimum temperature and maximum salinity profiles 
to produce a maximum positive depth error and the maximum temperature and minimum salinity 
profiles to produce a maximum negative depth error. In this way positive and negative depth 
error bounds due to uncertainty in the vertical temperature and salinity profiles are produced as a 
function of depth of the vehicle and provide a lookup table into which the AUV’s depth time 
series may be interpolated for the temperature and salinity vertical profile uncertainty 
contribution. This may then be combined with uncertainty from other sources in a root-square 
sum to obtain the full depth uncertainty estimate shown in Equation 1.  

Uncertainty in the pressure-to-depth conversion due to the local gravity anomaly was estimated 
by comparing depth calculations made using both the UNESCO gravity model and actual marine 
gravity measurements obtained from the National Geophysical Data Center (NGDC).  In the 
vicinity of subduction zones around the major trench systems, the effect of gravity anomalies 
was estimated to be as large as 0.02 meters. However, for the Bootcamp area of operations, the 
effect of gravity anomalies is estimated to be insignificant. 

Uncertainty in the depths of each sounding is a combination of vertical uncertainty in the AUV 
position, uncertainty due to lever arms to the MBES arrays, vehicle attitude, sound speed at the 
MBES transducer array, sound velocity profile (SVP), and in the MBES bottom detect as shown 
in Equation 2. See Hare’s Depth and Position Error Budgets for Multi-Beam Echosounding [1] 
for details. 

ௗ೟೚೟ೌ೗ߪ ൌ ටߪௗಲೆೇ	ುೀೄ಺೅಺ೀಿ
ଶ ൅ ಲೃಾೄ	ಽಶೇಶೃ	ௗಾಳಶೄߪ

ଶ ൅ ௗಲ೅೅಺೅ೆವಶߪ
ଶ ൅ .೅ೃಲಿೄ	ௗೄೄߪ

ଶ ൅ ௗೄೇುߪ
ଶ ൅ ௗಾಳಶೄߪ

ଶ  

 (2) 
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Table 1 provides component uncertainties for the parameters contributing to the AUV 
uncertainty model and described in the above text. These parameter values define the TPU model 
inputs corresponding to the results presented in the next subsequent sections. The cells shaded in 
grey in Table 1 are the component uncertainty values that comprise the NavLab measurement 
uncertainty model. These values are listed here for reference, but have been included already in 
the horizontal and vertical AUV position uncertainty provided by NavLab. 

 

Component Manufacturer Model 
Operational 

Mode
Uncertainty 

Estimate
Confidence 

Interval
Notes 

Pressure sensor Paroscientific 9000 N/A 0.07 meters RMS 

Uncertainty is 0.01 % of 
full scale (1000 PSI) , 
689.475 decibar, or 

approximately 689.475 m 

CTD sensor Neil Brown G-CTD Conductivity 0.01 mS/cm RMS 

Temperature 0.001°C RMS 

CTD sensor YSI CastAway
   

Deployed from launch and 
recovery boat. 

Temperature 0.05°C RMS 

Pressure 0.25% of FS RMS FS = 100 decibar 

   
Salinity 

(Derived) 
0.1 (PSS-78) RMS 

 

   
Sound Speed 

(Derived) 
0.15 m/s RMS 

 

GNSS receiver NovAtel OEMV-3
Single Point 

L1 
1.5m DRMS 

 

   
Single Point 

L1/L2 
1.2m DRMS 

 

   
SBAS 0.6m DRMS 

Satellite Based 
Augmentation Service 

(SBAS)  

NavP, NavLab 
(Used with 
Honeywell 

HG9900 IMU) 

Kongsberg 
     

roll 0.005° 1-sigma 

pitch 0.005° 1-sigma 

   
heading 

0.02° * 
sec(lat) 

1-sigma 
 

Atmospheric 
pressure sensor 

Unknown Unknown N/A 1 mbar 
 

Atmospheric pressure was 
taken from any of several 

public sources. 
Measurement accuracy was 

estimated from typical 
barometric sensor 



10 
 

Component Manufacturer Model 
Operational 

Mode
Uncertainty 

Estimate
Confidence 

Interval
Notes 

specifications for research 
grade weather stations. 

Tide zoning NA NA NA 0.1 meters RMS  

Tide 
measurement 

Unknown Unknown NA 0.01 meters RMS  

Lever Arm 
Offsets 

NA NA NA 0.01 meters RMS  

Roll Bias NA NA NA 0.01° RMS  

Pitch Bias NA NA NA 0.1° RMS  

Heading Bias NA NA NA 0.1° RMS  

Gravity 
anomaly 

NA NA NA 0.00 meters RMS  

Navigation 
latency Bias 

NA NA NA 0.0 sec. RMS  

Navigation 
latency 

uncertainty 
NA NA NA 0.001 RMS  

Attitude latency 
Bias 

NA NA NA 0.0 sec. RMS  

Attitude latency 
uncertainty 

NA NA NA 0.001 RMS  

Sonar latency 
Bias 

NA NA NA 0.0 RMS  

EM3002 
latency Bias 

NA NA NA 0.001sec. RMS  

Wave height 
removal 

NA NA NA 0.01 m RMS  

Transducer face 
sound speed 
uncertainty 

NA NA NA 0.25 m/s RMS  

SVP 
measurement 
uncertainty 

NA NA NA 0.75 m/s RMS  

Spatial and 
temporal T, S 

variability 
NA NA NA Varies RMS 

Determined by comparison 
of SVPs through the 

mission 

Table 1 Component uncertainty contributions. 

Reference Bathymetry Surface 
A reference bathymetry dataset was provided by UNH’s Center for Coastal and Ocean Mapping 
(CCOM). Sounding data were acquired approximately three months prior to AUV Bootcamp in 
May 2014 using an Edgetech 6205 multiphase echo sounder (MPES). Horizontal and vertical 
control for this survey was provided by post-processed kinematic (PPK) GNSS solutions 
generated using Applanix POSPac software. The Ellipsoid to Mean-Lower-Low-Water (MLLW) 
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profile below the AUV is adequately sampled, and all other horizontal uncertainty contributions 
are well controlled, it is then feasible for the majority of the EM3002 soundings from this sample 
dataset to have THU values within the allowable limit for order 1 guidelines. 

The ramp-up in horizontal uncertainty near the start of the mission has a slope noticeably steeper 
than estimated by the simple model presented in Figure 1. Indeed, positional errors as measured 
by post-mission fixes and in-mission acquisition of repeat-measurement survey targets often 
indicate that NavLab overestimates the AUV position uncertainty. If the position uncertainty 
values output from NavLab are overly conservative, this could result in less than optimal survey 
efficiently by elimination of data that exceed the allowable THU. While it may be safer to be 
conservative than aggressive, future work is planned to better understand the uncertainty 
estimates output from NavLab and to work towards ensuring that these are a truly representative 
characterization of the position solution. For the present work however, THU assessment is 
based on the NavLab reported values. 

In SABER, the EM3002 raw.all files are converted to generic sensor format (GSF), and the 
NavLab results are merged into the bathymetry files. During this process, the AUV position 
(latitude, longitude, depth), heading, roll, pitch and time-varying navigation uncertainty values 
are updated in the GSF files. As described above, the NavLab depth solution is converted to 
pressure to allow for removal of the time-varying atmospheric pressure, and to allow for use of 
the in-situ sampled temperature and salinity profiles in the conversion to establish the AUV 
operating depth in meters. Given that the navigation and orientation data have been updated with 
the NavLab position solution, and given that the EM3002 was operated with a default SVP 
during acquisition, it is necessary to do a full swath recalculation of the platform relative across-
track, along-track, and depth below the AUV. The full swath recalculation starts from the raw 
sonar travel-time measurements, and uses the full time series attitude data, position data, lever 
arm offsets, installation offsets, patch test results and the SVP for the refraction calculations. For 
the results presented here, the full swath recalculation is done using the processing algorithm in 
SABER. The AUV bathymetry data presented here were generated using SVP cast 2, the profile 
shown in blue in Figure 4, for both the pressure to depth conversion process and for the 
refraction calculations. The bathymetric value for each sounding is a combination of the EM3002 
altitude value and the final AUV depth. Water level corrections were applied using the verified 
tides from NOAA gauge 8423898 located at Fort Point, New Hampshire. Given proximity to 
Fort Pt. the survey area was treated as being in the same tide zone as the gauge itself, so the 
observed water levels were applied directly, without applying any zone mapping parameters.   

The TPU model was then run on the GSF files to compute the THU and the TVU estimates for 
each sounding. This approach starts from the horizontal position uncertainty provided by 
NavLab and then combines all additional horizontal uncertainty estimates to arrive at a THU for 
each sounding in the GSF file. The current approach in SABER assumes equal distribution 
between latitude uncertainty and longitude uncertainty, improving this assumption for AUV-
acquired data is planned for a future version. Similarly, the vertical position uncertainty provided 
by NavLab is combined with all other uncertainty components that contribute to the vertical 
uncertainty.  

A 0.5 meter node spacing CUBE bathymetric model was then generated.  The number of 
soundings contributing to each selected hypothesis ranges from approximately 25 observations 
for areas of single coverage to approximately 50 for areas of overlapping coverage. While there 
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uncertainty grow too large. Alternatives to GNSS position fixing are possible using acoustic 
ranging systems, e.g., single beacon navigation [14]. When such capabilities are included in the 
mission configuration, it is possible for the AUV to remain submerged for its entire energy 
capacity. 

Great value is realized in post-processing navigation through a Kalman smoother type operation. 
For many missions, such an operation will significantly increase the time the AUV may remain 
submerged without exceeding positional uncertainty limits. To implement post-processing of this 
type requires an inertial system capable of logging all measurements at the full data rate and 
careful scrutiny of measurement uncertainty models for each subsystem.  

As demonstrated here, achieving IHO order 1 compliant hydrographic data products is 
achievable with careful planning of AUV operations and post-processing of AUV navigation and 
bathymetry data. The TPU model presented here is consistent with industry standard models for 
surface ship acquired datasets, and includes the considerations unique to seafloor mapping using 
an AUV.  
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Appendix,	Pressure	conversion	to	depth	in	the	ocean	
The classical structure of the pressure-to-depth calculation equates the geopotential due to the 
earth’s gravitational pull as a function of depth with that due to the pressure exerted by a mass of 
water. The effect of the mass of water is split into the effect of water at standard ocean 
conditions and that due to the specific volume anomaly, which itself is called the geopotential 
anomaly. The task at hand is to calculate the geopotential anomaly, which requires integration of 
the specific volume anomaly vertically through the water column from the surface to the pressure 
of interest, in which the specific volume anomaly is calculated from salinity and temperature 
measurements made vertically down through the water column. These measurements may be 
obtained from conductivity, temperature and depth (pressure) (CTD) casts obtained during the 
survey or by a synthetic vertical profile of measurements obtained from the vehicle itself during 
its dive and return from survey depth.  [Both methods were used over the course of AUV 
Hydrographic Bootcamp with negligible difference, although missions were generally limited to 
under 3 hours in a relatively stable environment.] The calculation itself is facilitated by 
algorithms specified in [Fofonoff and Saunders] (UNESCO 1983) or [TEOS-10] (UNESCO 
2010), and function calls to software libraries implementing these algorithms.  

 

Specifically, the conversion from pressure-to-depth using Fofonoff algorithms (UNESCO 1983) 
is given by the following recipe: 

1) Calculate the depth of the AUV, Zo(t), due from pressure measurements assuming 
“standard” ocean conditions, where P(t) is the hydrostatic pressure measured by the 
vehicle during the survey and LAT is the nominal latitude.   
 
Zo(t) = SW_DPTH(P(t),LAT)); 
 

2) Calculate the “geopotential anomaly”, GA, at each measured pressure, P, in the CTD 
cast, due to deviations from “standard” ocean conditions. This term is calculated using 
the “GPAN()” function provided in [REF] from the CTD cast data ,where S is salinity in 
PSU, T is temperature in degrees Celsius, and P are the pressures at which the salinity 
and temperature measurements were made in decibar.  
 
GA = GPAN(S,T,P); 
 

1) Interpolate the geopotential anomaly calculated above to the hydrostatic pressure time 
series, P(t), recorded during the survey. 
 
GA(t) = interp1( P, GA, P(t)); 
 

3) Add the effect of the standard ocean and the effect of geopotential anomaly. 
 
Z(t) = Zo(t) + GA(t) / 9.8; 
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Using the newer Thermodynamic Equation of State of Seawater (UNESCO 2010), one may use 
the following recipe: 

2) Given a CTD cast at (LON,LAT), in which salinity, S, is measured in PSU and 
Temperature, T, is measured in degrees Celsius at depths having pressures, P, first 
convert these measurements to “Absolute Salinity” and “Conservative Temperature”. 
 
SA = gsw_SA_from_SP( S, P, LON,LAT); 
CT = gsw_CT_from_T( SA, T, P); 
 

3)  Calculate the “geopotential anomaly” due to deviations from “standard” ocean 
conditions for the pressures of each CTD measurement. Note that within the TEOS10 
library, geopotential anomaly is referred to as the “Geostrophic Dynamic Height” or 
alternatively the “dynamic height anomaly”. 
 
GA = gsw_geo_strf_dyn_height( SA, CT, P, 0); 
 

4) Interpolate the geopotential anomaly calculated above to the hydrostatic pressure time 
series, P(t), recorded during the survey. 
 
GA(t) = interp( P, GA, P(t)); 
 

5) Calculate the final depth, including the effect from the standard ocean and variations 
from it. This is done with a single function call, passing both the pressure time series, 
P(t), latitude, LAT, and the geopotential anomaly, GA(t).  
 
Z = gsw_z_from_p( P(t), LAT, GA(t) ); 

 

 

 

Conversion from Pressure to Depth 

Consider the following equation for hydrostatic pressure ܲ, due to a liquid of uniform density, ߩ, under a 
constant force of gravity with acceleration, ݃, at a depth, ݖ. 

ܲ ൌ  ݖ݃ߩ

Reorganization the equation it can be expressed as a balance of geopotentials, where 
ଵ

ఘ
ൌ ܸ, is the specific 

volume anomaly.  

ݖ݃ ൌ
ܲ
ߩ

 

ݖ݃ ൌ ܸܲ 



23 
 

Thus far the force of gravity has been considered constant with depth and the specific volume anomaly 
constant with pressure. However they are not and as such the geopotential balance can be expressed in 
integral form as shown below.  

න ݃ሺݖሻ	݀ݖ
௭

଴
ൌ න ܸሺܲሻ	݀ܲ

௉

଴
 

The LHS is approximated such that gravity is given as a latitude dependent term plus linear variation of 
gravity with depth. The RHS is broken into calculation of the geopotential due to conditions of a standard 
ocean and that due to conditions that vary from that of a standard ocean (the “geopotential anomaly”), 
where ܵ is Salinity and ܶ is temperature.  

൤݃ሾ߶ሿ ൅
1
2
൨ݖߛ ݖ ൌ න ܸሺ35	ܷܲܵ, ,ܥ	0 ܲሻ	݀ܲ

௉

଴
൅	න ሾܸሺܵ, ܶ, ܲሻ െ ܸሺ35, 0, ܲሻሿ	݀ܲ

௉

଴
 

 

When the two RHS integrals have been evaluated, the resulting equation may be solved for depth as a 
function of pressure. UNESCO 1983 and UNESCO 2010 take slightly different approaches with 
generally negligible differences. Specifically, UNESCO 1983 replaces the integral of the specific volume 
under standard ocean conditions with a 4th degree polynomial numerical approximation, and further 
approximates depth within the brackets on the LHS by pressure in decibar. UNESCO 2010 evaluates the 
integral of the specific volume anomaly using the Gibbs function equation of state, and evaluates the 
resulting second-order equation in depth using the quadratic equation solution.  
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