Android'de ML Kit ile barkod tarama

Barkodları tanımak ve kodunu çözmek için ML Kit'i kullanabilirsiniz.

Öne ÇıkarınGruplandırılmamışGruplandırılanlar
UygulamaModel, Google Play Hizmetleri aracılığıyla dinamik olarak indirilir.Model, derleme sırasında statik olarak uygulamanıza bağlıdır.
Uygulama boyutuYaklaşık 200 KB boyut artışı.Yaklaşık 2,4 MB boyut artışı.
Başlatma süresiİlk kullanımdan önce modelin indirilmesini beklemeniz gerekebilir.Model hemen kullanılabilir.

Deneyin

Başlamadan önce

  1. Proje düzeyindeki build.gradle dosyanıza, hem buildscript hem de allprojects bölümlerinize Google'ın Maven deposunu dahil ettiğinizden emin olun.

  2. ML Kit Android kitaplıklarının bağımlılıklarını, modülünüzün uygulama düzeyindeki gradle dosyasına ekleyin. Bu dosya genellikle app/build.gradle olur. İhtiyaçlarınıza göre aşağıdaki bağımlılıklardan birini seçin:

    Modeli uygulamanızla gruplandırmak için:

    dependencies {
      // ...
      // Use this dependency to bundle the model with your app
      implementation 'com.google.mlkit:barcode-scanning:17.2.0'
    }
    

    Modeli Google Play Hizmetleri'nde kullanmak için:

    dependencies {
      // ...
      // Use this dependency to use the dynamically downloaded model in Google Play Services
      implementation 'com.google.android.gms:play-services-mlkit-barcode-scanning:18.3.0'
    }
    
  3. Modeli Google Play Hizmetleri'nde kullanmayı seçerseniz uygulamanızı, uygulamanız Play Store'dan yüklendikten sonra modeli cihaza otomatik olarak indirecek şekilde yapılandırabilirsiniz. Bunu yapmak için uygulamanızın AndroidManifest.xml dosyasına aşağıdaki beyanı ekleyin:

    <application ...>
          ...
          <meta-data
              android:name="com.google.mlkit.vision.DEPENDENCIES"
              android:value="barcode" >
          <!-- To use multiple models: android:value="barcode,model2,model3" -->
    </application>
    

    Ayrıca, model kullanılabilirliğini açıkça kontrol edebilir ve Google Play Hizmetleri ModuleUploadClient API üzerinden indirme isteğinde bulunabilirsiniz.

    Yükleme zamanı modellerinin indirilmesini etkinleştirmezseniz veya açık indirme isteğinde bulunmazsanız model, tarayıcıyı ilk çalıştırdığınızda indirilir. İndirme işlemi tamamlanmadan önce yaptığınız istekler sonuç vermez.

Giriş resmi kuralları

  • ML Kit'in barkodları doğru bir şekilde okuyabilmesi için giriş resimleri, yeterli piksel verisiyle temsil edilen barkodlar içermelidir.

    Birçok barkod, değişken boyutlu yükü desteklediğinden belirli piksel verisi gereksinimleri hem barkodun türüne hem de barkodda kodlanan veri miktarına bağlıdır. Genel olarak, barkodun en küçük anlamlı biriminin en az 2 piksel genişliğinde, 2 boyutlu kodlar için 2 piksel yüksekliğinde olması gerekir.

    Örneğin, EAN-13 barkodları 1, 2, 3 veya 4 birim genişliğindeki çubuklar ve boşluklardan oluşur. Dolayısıyla EAN-13 barkod resminde ideal olarak en az 2, 4, 6 ve 8 piksel genişliğinde çubuklar ve boşluklar bulunur. EAN-13 barkodu toplamda 95 birim genişliğinde olduğundan barkod en az 190 piksel genişliğinde olmalıdır.

    PDF417 gibi yoğun biçimler, ML Kit'in güvenilir bir şekilde okuyabilmesi için daha büyük piksel boyutlarına ihtiyaç duyar. Örneğin bir PDF417 kodu, tek bir satırda en fazla 34 17 birim genişliğinde "kelime" içerebilir. Bu boyut, ideal olarak en az 1.156 piksel genişliğinde olur.

  • Kötü bir resim odağı, tarama doğruluğunu etkileyebilir. Uygulamanız kabul edilebilir sonuçlar almıyorsa kullanıcıdan görüntüyü yeniden çekmesini isteyin.

  • Tipik uygulamalarda, barkodların kameradan daha uzak bir mesafeden taranabilmesi için 1280x720 veya 1920x1080 gibi daha yüksek çözünürlüklü bir görüntü sağlamanız önerilir.

    Bununla birlikte, gecikmenin çok önemli olduğu uygulamalarda, resimleri daha düşük çözünürlükte yakalayarak performansı artırabilirsiniz. Bunun için barkodun giriş görüntüsünün büyük bir kısmını oluşturması gerekir. Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları konusunu da inceleyin.

1. Barkod tarayıcıyı yapılandırın

Hangi barkod biçimlerini okumayı beklediğinizi biliyorsanız barkod dedektörünü yalnızca bu biçimleri algılayacak şekilde yapılandırarak hızını artırabilirsiniz.

Örneğin, yalnızca Aztek kodunu ve QR kodlarını algılamak için aşağıdaki örnekte gösterildiği gibi bir BarcodeScannerOptions nesnesi oluşturun:

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(
                Barcode.FORMAT_QR_CODE,
                Barcode.FORMAT_AZTEC)
        .build();

Aşağıdaki biçimler desteklenir:

  • Kod 128 (FORMAT_CODE_128)
  • Kod 39 (FORMAT_CODE_39)
  • Kod 93 (FORMAT_CODE_93)
  • Kodabar (FORMAT_CODABAR)
  • EAN-13 (FORMAT_EAN_13)
  • EAN-8 (FORMAT_EAN_8)
  • ITF (FORMAT_ITF)
  • UPC-A (FORMAT_UPC_A)
  • UPC-E (FORMAT_UPC_E)
  • QR Kodu (FORMAT_QR_CODE)
  • PDF417 (FORMAT_PDF417)
  • Aztek (FORMAT_AZTEC)
  • Veri Matrisi (FORMAT_DATA_MATRIX)

Pakete dahil olan 17.1.0 model ve gruplandırılmamış model 18.2.0'dan itibaren, kodu çözülenemeseler bile tüm potansiyel barkodları döndürmek için enableAllPotentialBarcodes() öğesini de çağırabilirsiniz. Bu, daha fazla algılama sağlamak için kullanılabilir. Örneğin, döndürülen sınırlayıcı kutudaki barkodun daha net bir görüntüsünü almak için kamerayı yakınlaştırarak.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .enableAllPotentialBarcodes() // Optional
        .build();

Further on, starting from bundled library 17.2.0 and unbundled library 18.3.0, a new feature called auto-zoom has been introduced to further enhance the barcode scanning experience. With this feature enabled, the app is notified when all barcodes within the view are too distant for decoding. As a result, the app can effortlessly adjust the camera's zoom ratio to the recommended setting provided by the library, ensuring optimal focus and readability. This feature will significantly enhance the accuracy and success rate of barcode scanning, making it easier for apps to capture information precisely.

To enable auto-zooming and customize the experience, you can utilize the setZoomSuggestionOptions() method along with your own ZoomCallback handler and desired maximum zoom ratio, as demonstrated in the code below.

Kotlin

val options = BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build()

Java

BarcodeScannerOptions options =
        new BarcodeScannerOptions.Builder()
        .setBarcodeFormats(...)
        .setZoomSuggestionOptions(
            new ZoomSuggestionOptions.Builder(zoomCallback)
                .setMaxSupportedZoomRatio(maxSupportedZoomRatio)
                .build()) // Optional
        .build();

zoomCallback is required to be provided to handle whenever the library suggests a zoom should be performed and this callback will always be called on the main thread.

The following code snippet shows an example of defining a simple callback.

Kotlin

fun setZoom(ZoomRatio: Float): Boolean {
    if (camera.isClosed()) return false
    camera.getCameraControl().setZoomRatio(zoomRatio)
    return true
}

Java

boolean setZoom(float zoomRatio) {
    if (camera.isClosed()) {
        return false;
    }
    camera.getCameraControl().setZoomRatio(zoomRatio);
    return true;
}

maxSupportedZoomRatio is related to the camera hardware, and different camera libraries have different ways to fetch it (see the javadoc of the setter method). In case this is not provided, an unbounded zoom ratio might be produced by the library which might not be supported. Refer to the setMaxSupportedZoomRatio() method introduction to see how to get the max supported zoom ratio with different Camera libraries.

When auto-zooming is enabled and no barcodes are successfully decoded within the view, BarcodeScanner triggers your zoomCallback with the requested zoomRatio. If the callback correctly adjusts the camera to this zoomRatio, it is highly probable that the most centered potential barcode will be decoded and returned.

A barcode may remain undecodable even after a successful zoom-in. In such cases, BarcodeScanner may either invoke the callback for another round of zoom-in until the maxSupportedZoomRatio is reached, or provide an empty list (or a list containing potential barcodes that were not decoded, if enableAllPotentialBarcodes() was called) to the OnSuccessListener (which will be defined in step 4. Process the image).

2. Prepare the input image

To recognize barcodes in an image, create an InputImage object from either a Bitmap, media.Image, ByteBuffer, byte array, or a file on the device. Then, pass the InputImage object to the BarcodeScanner's process method.

You can create an InputImage object from different sources, each is explained below.

Using a media.Image

To create an InputImage object from a media.Image object, such as when you capture an image from a device's camera, pass the media.Image object and the image's rotation to InputImage.fromMediaImage().

If you use the CameraX library, the OnImageCapturedListener and ImageAnalysis.Analyzer classes calculate the rotation value for you.

Kotlin

private class YourImageAnalyzer : ImageAnalysis.Analyzer {

    override fun analyze(imageProxy: ImageProxy) {
        val mediaImage = imageProxy.image
        if (mediaImage != null) {
            val image = InputImage.fromMediaImage(mediaImage, imageProxy.imageInfo.rotationDegrees)
            // Pass image to an ML Kit Vision API
            // ...
        }
    }
}

Java

private class YourAnalyzer implements ImageAnalysis.Analyzer {

    @Override
    public void analyze(ImageProxy imageProxy) {
        Image mediaImage = imageProxy.getImage();
        if (mediaImage != null) {
          InputImage image =
                InputImage.fromMediaImage(mediaImage, imageProxy.getImageInfo().getRotationDegrees());
          // Pass image to an ML Kit Vision API
          // ...
        }
    }
}

Resmin dönüş derecesini gösteren bir kamera kitaplığı kullanmıyorsanız cihazın dönüş derecesinden ve cihazdaki kamera sensörünün yönünden hesaplayabilirsiniz:

Kotlin

private val ORIENTATIONS = SparseIntArray()

init {
    ORIENTATIONS.append(Surface.ROTATION_0, 0)
    ORIENTATIONS.append(Surface.ROTATION_90, 90)
    ORIENTATIONS.append(Surface.ROTATION_180, 180)
    ORIENTATIONS.append(Surface.ROTATION_270, 270)
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
@Throws(CameraAccessException::class)
private fun getRotationCompensation(cameraId: String, activity: Activity, isFrontFacing: Boolean): Int {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    val deviceRotation = activity.windowManager.defaultDisplay.rotation
    var rotationCompensation = ORIENTATIONS.get(deviceRotation)

    // Get the device's sensor orientation.
    val cameraManager = activity.getSystemService(CAMERA_SERVICE) as CameraManager
    val sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION)!!

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360
    }
    return rotationCompensation
}

Java

private static final SparseIntArray ORIENTATIONS = new SparseIntArray();
static {
    ORIENTATIONS.append(Surface.ROTATION_0, 0);
    ORIENTATIONS.append(Surface.ROTATION_90, 90);
    ORIENTATIONS.append(Surface.ROTATION_180, 180);
    ORIENTATIONS.append(Surface.ROTATION_270, 270);
}

/**
 * Get the angle by which an image must be rotated given the device's current
 * orientation.
 */
@RequiresApi(api = Build.VERSION_CODES.LOLLIPOP)
private int getRotationCompensation(String cameraId, Activity activity, boolean isFrontFacing)
        throws CameraAccessException {
    // Get the device's current rotation relative to its "native" orientation.
    // Then, from the ORIENTATIONS table, look up the angle the image must be
    // rotated to compensate for the device's rotation.
    int deviceRotation = activity.getWindowManager().getDefaultDisplay().getRotation();
    int rotationCompensation = ORIENTATIONS.get(deviceRotation);

    // Get the device's sensor orientation.
    CameraManager cameraManager = (CameraManager) activity.getSystemService(CAMERA_SERVICE);
    int sensorOrientation = cameraManager
            .getCameraCharacteristics(cameraId)
            .get(CameraCharacteristics.SENSOR_ORIENTATION);

    if (isFrontFacing) {
        rotationCompensation = (sensorOrientation + rotationCompensation) % 360;
    } else { // back-facing
        rotationCompensation = (sensorOrientation - rotationCompensation + 360) % 360;
    }
    return rotationCompensation;
}

Ardından media.Image nesnesini ve döndürme derecesi değerini InputImage.fromMediaImage() öğesine geçirin:

Kotlin

val image = InputImage.fromMediaImage(mediaImage, rotation)

Java

InputImage image = InputImage.fromMediaImage(mediaImage, rotation);

Dosya URI'si kullanarak

Dosya URI'sinden bir InputImage nesnesi oluşturmak için uygulama bağlamını ve dosya URI'sini InputImage.fromFilePath() öğesine iletin. Bu, kullanıcıdan galeri uygulamasından resim seçmesini istemek için ACTION_GET_CONTENT niyeti kullandığınızda yararlı olur.

Kotlin

val image: InputImage
try {
    image = InputImage.fromFilePath(context, uri)
} catch (e: IOException) {
    e.printStackTrace()
}

Java

InputImage image;
try {
    image = InputImage.fromFilePath(context, uri);
} catch (IOException e) {
    e.printStackTrace();
}

ByteBuffer veya ByteArray kullanarak

ByteBuffer veya ByteArray öğesinden InputImage nesnesi oluşturmak için önce media.Image girişi için daha önce açıklandığı gibi resim döndürme derecesini hesaplayın. Ardından, resmin yüksekliği, genişliği, renk kodlama biçimi ve döndürme derecesiyle birlikte arabellek veya diziyle InputImage nesnesini oluşturun:

Kotlin

val image = InputImage.fromByteBuffer(
        byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)
// Or:
val image = InputImage.fromByteArray(
        byteArray,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
)

Java

InputImage image = InputImage.fromByteBuffer(byteBuffer,
        /* image width */ 480,
        /* image height */ 360,
        rotationDegrees,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);
// Or:
InputImage image = InputImage.fromByteArray(
        byteArray,
        /* image width */480,
        /* image height */360,
        rotation,
        InputImage.IMAGE_FORMAT_NV21 // or IMAGE_FORMAT_YV12
);

Bitmap kullanarak

Bitmap nesnesinden InputImage nesnesi oluşturmak için aşağıdaki bildirimi yapın:

Kotlin

val image = InputImage.fromBitmap(bitmap, 0)

Java

InputImage image = InputImage.fromBitmap(bitmap, rotationDegree);

Resim, döndürme dereceleriyle birlikte bir Bitmap nesnesiyle temsil edilir.

3. BarcodeScanner'ın bir örneğini alın

Kotlin

val scanner = BarcodeScanning.getClient()
// Or, to specify the formats to recognize:
// val scanner = BarcodeScanning.getClient(options)

Java

BarcodeScanner scanner = BarcodeScanning.getClient();
// Or, to specify the formats to recognize:
// BarcodeScanner scanner = BarcodeScanning.getClient(options);

4. Resmi işleyin

Resmi process yöntemine geçirin:

Kotlin

val result = scanner.process(image)
        .addOnSuccessListener { barcodes ->
            // Task completed successfully
            // ...
        }
        .addOnFailureListener {
            // Task failed with an exception
            // ...
        }

Java

Task<List<Barcode>> result = scanner.process(image)
        .addOnSuccessListener(new OnSuccessListener<List<Barcode>>() {
            @Override
            public void onSuccess(List<Barcode> barcodes) {
                // Task completed successfully
                // ...
            }
        })
        .addOnFailureListener(new OnFailureListener() {
            @Override
            public void onFailure(@NonNull Exception e) {
                // Task failed with an exception
                // ...
            }
        });

5. Barkodlardan bilgi al

Barkod tanıma işlemi başarılı olursa Barcode nesnelerinden oluşan bir liste başarılı işleyiciye iletilir. Her Barcode nesnesi, resimde algılanan bir barkodu temsil eder. Her bir barkod için sınırlayıcı koordinatlarının yanı sıra barkodla kodlanan ham verilerden de giriş görüntüsünden yararlanabilirsiniz. Ayrıca, barkod tarayıcı barkod tarafından kodlanan veri türünü belirleyebilirse ayrıştırılmış veri içeren bir nesne alabilirsiniz.

Örneğin:

Kotlin

for (barcode in barcodes) {
    val bounds = barcode.boundingBox
    val corners = barcode.cornerPoints

    val rawValue = barcode.rawValue

    val valueType = barcode.valueType
    // See API reference for complete list of supported types
    when (valueType) {
        Barcode.TYPE_WIFI -> {
            val ssid = barcode.wifi!!.ssid
            val password = barcode.wifi!!.password
            val type = barcode.wifi!!.encryptionType
        }
        Barcode.TYPE_URL -> {
            val title = barcode.url!!.title
            val url = barcode.url!!.url
        }
    }
}

Java

for (Barcode barcode: barcodes) {
    Rect bounds = barcode.getBoundingBox();
    Point[] corners = barcode.getCornerPoints();

    String rawValue = barcode.getRawValue();

    int valueType = barcode.getValueType();
    // See API reference for complete list of supported types
    switch (valueType) {
        case Barcode.TYPE_WIFI:
            String ssid = barcode.getWifi().getSsid();
            String password = barcode.getWifi().getPassword();
            int type = barcode.getWifi().getEncryptionType();
            break;
        case Barcode.TYPE_URL:
            String title = barcode.getUrl().getTitle();
            String url = barcode.getUrl().getUrl();
            break;
    }
}

Gerçek zamanlı performansı iyileştirmeye yönelik ipuçları

Barkodları gerçek zamanlı bir uygulamada taramak istiyorsanız en iyi kare hızlarına ulaşmak için aşağıdaki yönergeleri uygulayın:

  • Kameranın doğal çözünürlüğünde giriş yakalamayın. Bazı cihazlarda, yerel çözünürlükte giriş yakalamak çok büyük (10 megapikselden büyük) görüntüler üretir. Bu durum, doğruluktan hiçbir şekilde ödün vermeden çok düşük gecikmeye neden olur. Bunun yerine, yalnızca barkod algılama için gerekli olan (genellikle 2 megapikselden yüksek olmayan) kameradan boyut isteyin.

    Tarama hızı önemliyse görüntü yakalama çözünürlüğünü daha da düşürebilirsiniz. Ancak yukarıda belirtilen minimum barkod boyutu gereksinimlerini göz önünde bulundurun.

    Bir dizi akışlı video karesinden barkodları tanımaya çalışıyorsanız tanıyıcı, kareden kareye farklı sonuçlar üretebilir. İyi bir sonuç döndürdüğünüzden emin olmak için aynı değere sahip art arda bir seri elde edene kadar beklemeniz gerekir.

    Denetim Toplamı basamağı, ITF ve CODE-39 için desteklenmiyor.

  • Camera veya camera2 API kullanıyorsanız algılayıcıya yapılan çağrıları azaltın. Algılayıcı çalışırken yeni bir video karesi kullanılabilir hale gelirse kareyi bırakın. Örnek için hızlı başlangıç örnek uygulamasındaki VisionProcessorBase sınıfına göz atın.
  • CameraX API'yi kullanıyorsanız karşı basınç stratejisinin varsayılan değerine ( ImageAnalysis.STRATEGY_KEEP_ONLY_LATEST) ayarlandığından emin olun. Bu, aynı anda yalnızca bir resmin analiz için gönderilmesini garanti eder. Analiz aracı meşgulken daha fazla görüntü üretilirse bu görüntüler otomatik olarak bırakılır ve teslim edilmek üzere sıraya alınmaz. Analiz edilen resim ImageProxy.close() çağrısı yapılarak kapatıldıktan sonra, bir sonraki son resim yayınlanır.
  • Algılayıcının çıkışını, giriş görüntüsünün üzerine grafik yerleştirmek için kullanırsanız önce ML Kit'ten sonucu alın, ardından görüntüyü oluşturun ve tek bir adımda bindirme yapın. Bu, her bir giriş karesi için görüntü yüzeyinde yalnızca bir kez oluşturulur. Örnek için hızlı başlangıç örnek uygulamasındaki CameraSourcePreview ve GraphicOverlay sınıflarına göz atın.
  • Camera2 API'yi kullanıyorsanız görüntüleri ImageFormat.YUV_420_888 biçiminde çekin. Eski Kamera API'sini kullanıyorsanız görüntüleri ImageFormat.NV21 biçiminde çekin.