
MySQL Information Schema

Abstract

This is the MySQL Information Schema extract from the MySQL 8.0 Reference Manual.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2024-07-03 (revision: 78965)

http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. v
1 INFORMATION_SCHEMA Tables .. 1
2 Introduction ... 3
3 INFORMATION_SCHEMA Table Reference .. 7
4 INFORMATION_SCHEMA General Tables .. 13

4.1 INFORMATION_SCHEMA General Table Reference .. 14
4.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table 16
4.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table .. 17
4.4 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 17
4.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table 18
4.6 The INFORMATION_SCHEMA COLLATIONS Table .. 18
4.7 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY
Table .. 19
4.8 The INFORMATION_SCHEMA COLUMNS Table ... 19
4.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table 22
4.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table 22
4.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table 23
4.12 The INFORMATION_SCHEMA ENABLED_ROLES Table ... 24
4.13 The INFORMATION_SCHEMA ENGINES Table ... 24
4.14 The INFORMATION_SCHEMA EVENTS Table .. 25
4.15 The INFORMATION_SCHEMA FILES Table .. 28
4.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table 36
4.17 The INFORMATION_SCHEMA KEYWORDS Table .. 37
4.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 38
4.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table ... 39
4.20 The INFORMATION_SCHEMA PARAMETERS Table ... 39
4.21 The INFORMATION_SCHEMA PARTITIONS Table .. 41
4.22 The INFORMATION_SCHEMA PLUGINS Table ... 44
4.23 The INFORMATION_SCHEMA PROCESSLIST Table .. 45
4.24 The INFORMATION_SCHEMA PROFILING Table .. 46
4.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 48
4.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table 48
4.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table 49
4.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table 50
4.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table 51
4.30 The INFORMATION_SCHEMA ROUTINES Table ... 51
4.31 The INFORMATION_SCHEMA SCHEMATA Table ... 54
4.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table 55
4.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table 55
4.34 The INFORMATION_SCHEMA STATISTICS Table .. 56
4.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table 58
4.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table 59
4.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table 61
4.38 The INFORMATION_SCHEMA TABLES Table ... 61
4.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table 65
4.40 The INFORMATION_SCHEMA TABLESPACES Table .. 65
4.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table 65
4.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table 66
4.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table 66
4.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. 67
4.45 The INFORMATION_SCHEMA TRIGGERS Table .. 68
4.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table .. 70
4.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 71
4.48 The INFORMATION_SCHEMA VIEWS Table ... 71
4.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table 73

iii

MySQL Information Schema

4.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table .. 73
5 INFORMATION_SCHEMA InnoDB Tables .. 75

5.1 INFORMATION_SCHEMA InnoDB Table Reference ... 75
5.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table 77
5.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 80
5.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 84
5.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table 87
5.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 87
5.7 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET
Tables .. 89
5.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 90
5.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table .. 92
5.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table ... 93
5.11 The INFORMATION_SCHEMA INNODB_FIELDS Table ... 94
5.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table .. 94
5.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table 95
5.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 96
5.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table .. 96
5.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 97
5.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table 98
5.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 99
5.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 101
5.20 The INFORMATION_SCHEMA INNODB_INDEXES Table ... 102
5.21 The INFORMATION_SCHEMA INNODB_METRICS Table .. 103
5.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table 105
5.23 The INFORMATION_SCHEMA INNODB_TABLES Table .. 106
5.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table 108
5.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table 110
5.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View 111
5.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 112
5.28 The INFORMATION_SCHEMA INNODB_TRX Table .. 113
5.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table ... 116

6 INFORMATION_SCHEMA Thread Pool Tables ... 119
6.1 INFORMATION_SCHEMA Thread Pool Table Reference .. 119
6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 120
6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 120
6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table .. 120

7 INFORMATION_SCHEMA Connection-Control Tables ... 123
7.1 INFORMATION_SCHEMA Connection-Control Table Reference 123
7.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table ... 123

8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables .. 125
8.1 INFORMATION_SCHEMA Firewall Table Reference ... 125
8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 125
8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 125

9 Extensions to SHOW Statements ... 127
10 MySQL 8.0 FAQ: INFORMATION_SCHEMA ... 129

iv

Preface and Legal Notices
This is the MySQL Information Schema extract from the MySQL 8.0 Reference Manual.

Licensing information—MySQL 8.0. This product may include third-party software, used under
license. If you are using a Commercial release of MySQL 8.0, see the MySQL 8.0 Commercial Release
License Information User Manual for licensing information, including licensing information relating to
third-party software that may be included in this Commercial release. If you are using a Community
release of MySQL 8.0, see the MySQL 8.0 Community Release License Information User Manual
for licensing information, including licensing information relating to third-party software that may be
included in this Community release.

Legal Notices
Copyright © 1997, 2024, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in
the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services
are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

v

https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-com-en.pdf
https://downloads.mysql.com/docs/licenses/mysqld-8.0-gpl-en.pdf

Documentation Accessibility

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible
for and expressly disclaim all warranties of any kind with respect to third-party content, products,
and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion
to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/
topic/lookup?ctx=acc&id=trs if you are hearing impaired.

vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 INFORMATION_SCHEMA Tables
INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

1

2

Chapter 2 Introduction
INFORMATION_SCHEMA provides access to database metadata, information about the MySQL server
such as the name of a database or table, the data type of a column, or access privileges. Other terms
that are sometimes used for this information are data dictionary and system catalog.

• INFORMATION_SCHEMA Usage Notes

• Character Set Considerations

• INFORMATION_SCHEMA as Alternative to SHOW Statements

• INFORMATION_SCHEMA and Privileges

• Performance Considerations

• Standards Considerations

• Conventions in the INFORMATION_SCHEMA Reference Sections

• Related Information

INFORMATION_SCHEMA Usage Notes

INFORMATION_SCHEMA is a database within each MySQL instance, the place that stores information
about all the other databases that the MySQL server maintains. The INFORMATION_SCHEMA database
contains several read-only tables. They are actually views, not base tables, so there are no files
associated with them, and you cannot set triggers on them. Also, there is no database directory with
that name.

Although you can select INFORMATION_SCHEMA as the default database with a USE statement, you
can only read the contents of tables, not perform INSERT, UPDATE, or DELETE operations on them.

Here is an example of a statement that retrieves information from INFORMATION_SCHEMA:

mysql> SELECT table_name, table_type, engine
 FROM information_schema.tables
 WHERE table_schema = 'db5'
 ORDER BY table_name;
+------------+------------+--------+
| table_name | table_type | engine |
+------------+------------+--------+
fk	BASE TABLE	InnoDB
fk2	BASE TABLE	InnoDB
goto	BASE TABLE	MyISAM
into	BASE TABLE	MyISAM
k	BASE TABLE	MyISAM
kurs	BASE TABLE	MyISAM
loop	BASE TABLE	MyISAM
pk	BASE TABLE	InnoDB
t	BASE TABLE	MyISAM
t2	BASE TABLE	MyISAM
t3	BASE TABLE	MyISAM
t7	BASE TABLE	MyISAM
tables	BASE TABLE	MyISAM
v	VIEW	NULL
v2	VIEW	NULL
v3	VIEW	NULL
v56	VIEW	NULL
+------------+------------+--------+
17 rows in set (0.01 sec)

Explanation: The statement requests a list of all the tables in database db5, showing just three pieces
of information: the name of the table, its type, and its storage engine.

3

https://dev.mysql.com/doc/refman/8.0/en/use.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

Character Set Considerations

Beginning with MySQL 8.0.30, information about generated invisible primary keys is visible
by default in all INFORMATION_SCHEMA tables describing table columns, keys, or both,
such as the COLUMNS and STATISTICS tables. If you wish to make such information
hidden from queries that select from these tables, you can do so by setting the value of the
show_gipk_in_create_table_and_information_schema server system variable to OFF. For
more information, see Generated Invisible Primary Keys.

Character Set Considerations
The definition for character columns (for example, TABLES.TABLE_NAME) is generally VARCHAR(N)
CHARACTER SET utf8mb3 where N is at least 64. MySQL uses the default collation for this character
set (utf8mb3_general_ci) for all searches, sorts, comparisons, and other string operations on such
columns.

Because some MySQL objects are represented as files, searches in INFORMATION_SCHEMA string
columns can be affected by file system case sensitivity. For more information, see Using Collation in
INFORMATION_SCHEMA Searches.

INFORMATION_SCHEMA as Alternative to SHOW Statements
The SELECT ... FROM INFORMATION_SCHEMA statement is intended as a more consistent way
to provide access to the information provided by the various SHOW statements that MySQL supports
(SHOW DATABASES, SHOW TABLES, and so forth). Using SELECT has these advantages, compared to
SHOW:

• It conforms to Codd's rules, because all access is done on tables.

• You can use the familiar syntax of the SELECT statement, and only need to learn some table and
column names.

• The implementor need not worry about adding keywords.

• You can filter, sort, concatenate, and transform the results from INFORMATION_SCHEMA queries into
whatever format your application needs, such as a data structure or a text representation to parse.

• This technique is more interoperable with other database systems. For example, Oracle Database
users are familiar with querying tables in the Oracle data dictionary.

Because SHOW is familiar and widely used, the SHOW statements remain as an alternative. In fact, along
with the implementation of INFORMATION_SCHEMA, there are enhancements to SHOW as described in
Chapter 9, Extensions to SHOW Statements.

INFORMATION_SCHEMA and Privileges
For most INFORMATION_SCHEMA tables, each MySQL user has the right to access them, but
can see only the rows in the tables that correspond to objects for which the user has the proper
access privileges. In some cases (for example, the ROUTINE_DEFINITION column in the
INFORMATION_SCHEMA ROUTINES table), users who have insufficient privileges see NULL. Some
tables have different privilege requirements; for these, the requirements are mentioned in the
applicable table descriptions. For example, InnoDB tables (tables with names that begin with
INNODB_) require the PROCESS privilege.

The same privileges apply to selecting information from INFORMATION_SCHEMA and viewing the same
information through SHOW statements. In either case, you must have some privilege on an object to see
information about it.

Performance Considerations
INFORMATION_SCHEMA queries that search for information from more than one database might take
a long time and impact performance. To check the efficiency of a query, you can use EXPLAIN. For

4

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_show_gipk_in_create_table_and_information_schema
https://dev.mysql.com/doc/refman/8.0/en/create-table-gipks.html
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

Standards Considerations

information about using EXPLAIN output to tune INFORMATION_SCHEMA queries, see Optimizing
INFORMATION_SCHEMA Queries.

Standards Considerations

The implementation for the INFORMATION_SCHEMA table structures in MySQL follows the ANSI/ISO
SQL:2003 standard Part 11 Schemata. Our intent is approximate compliance with SQL:2003 core
feature F021 Basic information schema.

Users of SQL Server 2000 (which also follows the standard) may notice a strong similarity.
However, MySQL has omitted many columns that are not relevant for our implementation, and
added columns that are MySQL-specific. One such added column is the ENGINE column in the
INFORMATION_SCHEMA TABLES table.

Although other DBMSs use a variety of names, like syscat or system, the standard name is
INFORMATION_SCHEMA.

To avoid using any name that is reserved in the standard or in DB2, SQL Server, or Oracle, we
changed the names of some columns marked “MySQL extension”. (For example, we changed
COLLATION to TABLE_COLLATION in the TABLES table.) See the list of reserved words near the
end of this article: https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-
disarticles/gulutzan5.

Conventions in the INFORMATION_SCHEMA Reference Sections

The following sections describe each of the tables and columns in INFORMATION_SCHEMA. For each
column, there are three pieces of information:

• “INFORMATION_SCHEMA Name” indicates the name for the column in the INFORMATION_SCHEMA
table. This corresponds to the standard SQL name unless the “Remarks” field says “MySQL
extension.”

• “SHOW Name” indicates the equivalent field name in the closest SHOW statement, if there is one.

• “Remarks” provides additional information where applicable. If this field is NULL, it means that the
value of the column is always NULL. If this field says “MySQL extension,” the column is a MySQL
extension to standard SQL.

Many sections indicate what SHOW statement is equivalent to a SELECT that retrieves information from
INFORMATION_SCHEMA. For SHOW statements that display information for the default database if you
omit a FROM db_name clause, you can often select information for the default database by adding an
AND TABLE_SCHEMA = SCHEMA() condition to the WHERE clause of a query that retrieves information
from an INFORMATION_SCHEMA table.

Related Information

These sections discuss additional INFORMATION_SCHEMA-related topics:

• information about INFORMATION_SCHEMA tables specific to the InnoDB storage engine: Chapter 5,
INFORMATION_SCHEMA InnoDB Tables

• information about INFORMATION_SCHEMA tables specific to the thread pool plugin: Chapter 6,
INFORMATION_SCHEMA Thread Pool Tables

• information about INFORMATION_SCHEMA tables specific to the CONNECTION_CONTROL plugin:
Chapter 7, INFORMATION_SCHEMA Connection-Control Tables

• Answers to questions that are often asked concerning the INFORMATION_SCHEMA database:
Chapter 10, MySQL 8.0 FAQ: INFORMATION_SCHEMA

5

https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5
https://web.archive.org/web/20070428032454/http://www.dbazine.com/db2/db2-disarticles/gulutzan5
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Related Information

• INFORMATION_SCHEMA queries and the optimizer: Optimizing INFORMATION_SCHEMA Queries

• The effect of collation on INFORMATION_SCHEMA comparisons: Using Collation in
INFORMATION_SCHEMA Searches

6

https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-information-schema.html
https://dev.mysql.com/doc/refman/8.0/en/charset-collation-information-schema.html

Chapter 3 INFORMATION_SCHEMA Table Reference
The following table summarizes all available INFORMATION_SCHEMA tables. For greater detail, see the
individual table descriptions.

Table 3.1 INFORMATION_SCHEMA Tables

Table Name Description Introduced Deprecated

ADMINISTRABLE_ROLE_AUTHORIZATIONSGrantable users or roles
for current user or role

8.0.19

APPLICABLE_ROLES Applicable roles for
current user

8.0.19

CHARACTER_SETS Available character sets

CHECK_CONSTRAINTS Table and column
CHECK constraints

8.0.16

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable
to each collation

COLLATIONS Collations for each
character set

COLUMN_PRIVILEGES Privileges defined on
columns

COLUMN_STATISTICS Histogram statistics for
column values

COLUMNS Columns in each table

COLUMNS_EXTENSIONS Column attributes for
primary and secondary
storage engines

8.0.21

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of
consecutive failed
connection attempts per
account

ENABLED_ROLES Roles enabled within
current session

8.0.19

ENGINES Storage engine
properties

EVENTS Event Manager events

FILES Files that store
tablespace data

INNODB_BUFFER_PAGE Pages in InnoDB buffer
pool

INNODB_BUFFER_PAGE_LRULRU ordering of pages
in InnoDB buffer pool

INNODB_BUFFER_POOL_STATSInnoDB buffer pool
statistics

INNODB_CACHED_INDEXESNumber of index pages
cached per index in
InnoDB buffer pool

INNODB_CMP Status for operations
related to compressed
InnoDB tables

7

Table Name Description Introduced Deprecated

INNODB_CMP_PER_INDEXStatus for operations
related to compressed
InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations
related to compressed
InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations
related to compressed
InnoDB tables

INNODB_CMPMEM Status for compressed
pages within InnoDB
buffer pool

INNODB_CMPMEM_RESETStatus for compressed
pages within InnoDB
buffer pool

INNODB_COLUMNS Columns in each
InnoDB table

INNODB_DATAFILES Data file path
information for InnoDB
file-per-table and
general tablespaces

INNODB_FIELDS Key columns of InnoDB
indexes

INNODB_FOREIGN InnoDB foreign-key
metadata

INNODB_FOREIGN_COLSInnoDB foreign-
key column status
information

INNODB_FT_BEING_DELETEDSnapshot of
INNODB_FT_DELETED
table

INNODB_FT_CONFIG Metadata for InnoDB
table FULLTEXT
index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords
for InnoDB FULLTEXT
indexes

INNODB_FT_DELETED Rows deleted
from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHEToken information for
newly inserted rows
in InnoDB FULLTEXT
index

INNODB_FT_INDEX_TABLEInverted index
information for
processing text

8

Table Name Description Introduced Deprecated
searches against
InnoDB table
FULLTEXT index

INNODB_INDEXES InnoDB index metadata

INNODB_METRICS InnoDB performance
information

INNODB_SESSION_TEMP_TABLESPACESSession temporary-
tablespace metadata

8.0.13

INNODB_TABLES InnoDB table metadata

INNODB_TABLESPACES InnoDB file-per-table,
general, and undo
tablespace metadata

INNODB_TABLESPACES_BRIEFBrief file-per-table,
general, undo, and
system tablespace
metadata

INNODB_TABLESTATS InnoDB table low-level
status information

INNODB_TEMP_TABLE_INFOInformation about active
user-created InnoDB
temporary tables

INNODB_TRX Active InnoDB
transaction information

INNODB_VIRTUAL InnoDB virtual
generated column
metadata

KEY_COLUMN_USAGE Which key columns
have constraints

KEYWORDS MySQL keywords

MYSQL_FIREWALL_USERSFirewall in-memory data
for account profiles

8.0.26

MYSQL_FIREWALL_WHITELISTFirewall in-memory
data for account profile
allowlists

8.0.26

ndb_transid_mysql_connection_mapNDB transaction
information

OPTIMIZER_TRACE Information produced by
optimizer trace activity

PARAMETERS Stored routine
parameters and stored
function return values

PARTITIONS Table partition
information

PLUGINS Plugin information

PROCESSLIST Information about
currently executing
threads

9

Table Name Description Introduced Deprecated

PROFILING Statement profiling
information

REFERENTIAL_CONSTRAINTSForeign key information

RESOURCE_GROUPS Resource group
information

ROLE_COLUMN_GRANTS Column privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_ROUTINE_GRANTSRoutine privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_TABLE_GRANTS Table privileges for roles
available to or granted
by currently enabled
roles

8.0.19

ROUTINES Stored routine
information

SCHEMA_PRIVILEGES Privileges defined on
schemas

SCHEMATA Schema information

SCHEMATA_EXTENSIONSSchema options 8.0.22

ST_GEOMETRY_COLUMNSColumns in each table
that store spatial data

ST_SPATIAL_REFERENCE_SYSTEMSAvailable spatial
reference systems

ST_UNITS_OF_MEASUREAcceptable units for
ST_Distance()

8.0.14

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have
constraints

TABLE_CONSTRAINTS_EXTENSIONSTable constraint
attributes for primary
and secondary storage
engines

8.0.21

TABLE_PRIVILEGES Privileges defined on
tables

TABLES Table information

TABLES_EXTENSIONS Table attributes for
primary and secondary
storage engines

8.0.21

TABLESPACES Tablespace information 8.0.22

TABLESPACES_EXTENSIONSTablespace attributes
for primary storage
engines

8.0.21

TP_THREAD_GROUP_STATEThread pool thread
group states

10

Table Name Description Introduced Deprecated

TP_THREAD_GROUP_STATSThread pool thread
group statistics

TP_THREAD_STATE Thread pool thread
information

TRIGGERS Trigger information

USER_ATTRIBUTES User comments and
attributes

8.0.21

USER_PRIVILEGES Privileges defined
globally per user

VIEW_ROUTINE_USAGE Stored functions used in
views

8.0.13

VIEW_TABLE_USAGE Tables and views used
in views

8.0.13

VIEWS View information

11

12

Chapter 4 INFORMATION_SCHEMA General Tables

Table of Contents
4.1 INFORMATION_SCHEMA General Table Reference .. 14
4.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table 16
4.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table .. 17
4.4 The INFORMATION_SCHEMA CHARACTER_SETS Table .. 17
4.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table .. 18
4.6 The INFORMATION_SCHEMA COLLATIONS Table .. 18
4.7 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table 19
4.8 The INFORMATION_SCHEMA COLUMNS Table ... 19
4.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table .. 22
4.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table .. 22
4.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table .. 23
4.12 The INFORMATION_SCHEMA ENABLED_ROLES Table ... 24
4.13 The INFORMATION_SCHEMA ENGINES Table ... 24
4.14 The INFORMATION_SCHEMA EVENTS Table .. 25
4.15 The INFORMATION_SCHEMA FILES Table .. 28
4.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table ... 36
4.17 The INFORMATION_SCHEMA KEYWORDS Table .. 37
4.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table 38
4.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table ... 39
4.20 The INFORMATION_SCHEMA PARAMETERS Table ... 39
4.21 The INFORMATION_SCHEMA PARTITIONS Table .. 41
4.22 The INFORMATION_SCHEMA PLUGINS Table ... 44
4.23 The INFORMATION_SCHEMA PROCESSLIST Table .. 45
4.24 The INFORMATION_SCHEMA PROFILING Table .. 46
4.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table 48
4.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table ... 48
4.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table ... 49
4.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table .. 50
4.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table ... 51
4.30 The INFORMATION_SCHEMA ROUTINES Table .. 51
4.31 The INFORMATION_SCHEMA SCHEMATA Table ... 54
4.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table .. 55
4.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table .. 55
4.34 The INFORMATION_SCHEMA STATISTICS Table .. 56
4.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table 58
4.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table 59
4.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table ... 61
4.38 The INFORMATION_SCHEMA TABLES Table ... 61
4.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table .. 65
4.40 The INFORMATION_SCHEMA TABLESPACES Table .. 65
4.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table 65
4.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table .. 66
4.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table 66
4.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table .. 67
4.45 The INFORMATION_SCHEMA TRIGGERS Table .. 68
4.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table .. 70
4.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table ... 71
4.48 The INFORMATION_SCHEMA VIEWS Table ... 71
4.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table ... 73
4.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table ... 73

13

INFORMATION_SCHEMA General Table Reference

The following sections describe what may be denoted as the “general” set of INFORMATION_SCHEMA
tables. These are the tables not associated with particular storage engines, components, or plugins.

4.1 INFORMATION_SCHEMA General Table Reference

The following table summarizes INFORMATION_SCHEMA general tables. For greater detail, see the
individual table descriptions.

Table 4.1 INFORMATION_SCHEMA General Tables

Table Name Description Introduced Deprecated

ADMINISTRABLE_ROLE_AUTHORIZATIONSGrantable users or roles
for current user or role

8.0.19

APPLICABLE_ROLES Applicable roles for
current user

8.0.19

CHARACTER_SETS Available character sets

CHECK_CONSTRAINTS Table and column
CHECK constraints

8.0.16

COLLATION_CHARACTER_SET_APPLICABILITYCharacter set applicable
to each collation

COLLATIONS Collations for each
character set

COLUMN_PRIVILEGES Privileges defined on
columns

COLUMN_STATISTICS Histogram statistics for
column values

COLUMNS Columns in each table

COLUMNS_EXTENSIONS Column attributes for
primary and secondary
storage engines

8.0.21

ENABLED_ROLES Roles enabled within
current session

8.0.19

ENGINES Storage engine
properties

EVENTS Event Manager events

FILES Files that store
tablespace data

KEY_COLUMN_USAGE Which key columns
have constraints

KEYWORDS MySQL keywords

ndb_transid_mysql_connection_mapNDB transaction
information

OPTIMIZER_TRACE Information produced by
optimizer trace activity

PARAMETERS Stored routine
parameters and stored
function return values

PARTITIONS Table partition
information

PLUGINS Plugin information

14

INFORMATION_SCHEMA General Table Reference

Table Name Description Introduced Deprecated

PROCESSLIST Information about
currently executing
threads

PROFILING Statement profiling
information

REFERENTIAL_CONSTRAINTSForeign key information

RESOURCE_GROUPS Resource group
information

ROLE_COLUMN_GRANTS Column privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_ROUTINE_GRANTSRoutine privileges for
roles available to or
granted by currently
enabled roles

8.0.19

ROLE_TABLE_GRANTS Table privileges for roles
available to or granted
by currently enabled
roles

8.0.19

ROUTINES Stored routine
information

SCHEMA_PRIVILEGES Privileges defined on
schemas

SCHEMATA Schema information

SCHEMATA_EXTENSIONSSchema options 8.0.22

ST_GEOMETRY_COLUMNSColumns in each table
that store spatial data

ST_SPATIAL_REFERENCE_SYSTEMSAvailable spatial
reference systems

ST_UNITS_OF_MEASUREAcceptable units for
ST_Distance()

8.0.14

STATISTICS Table index statistics

TABLE_CONSTRAINTS Which tables have
constraints

TABLE_CONSTRAINTS_EXTENSIONSTable constraint
attributes for primary
and secondary storage
engines

8.0.21

TABLE_PRIVILEGES Privileges defined on
tables

TABLES Table information

TABLES_EXTENSIONS Table attributes for
primary and secondary
storage engines

8.0.21

TABLESPACES Tablespace information 8.0.22

15

The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table

Table Name Description Introduced Deprecated

TABLESPACES_EXTENSIONSTablespace attributes
for primary storage
engines

8.0.21

TRIGGERS Trigger information

USER_ATTRIBUTES User comments and
attributes

8.0.21

USER_PRIVILEGES Privileges defined
globally per user

VIEW_ROUTINE_USAGE Stored functions used in
views

8.0.13

VIEW_TABLE_USAGE Tables and views used
in views

8.0.13

VIEWS View information

4.2 The INFORMATION_SCHEMA
ADMINISTRABLE_ROLE_AUTHORIZATIONS Table

The ADMINISTRABLE_ROLE_AUTHORIZATIONS table (available as of MySQL 8.0.19) provides
information about which roles applicable for the current user or role can be granted to other users or
roles.

The ADMINISTRABLE_ROLE_AUTHORIZATIONS table has these columns:

• USER

The user name part of the current user account.

• HOST

The host name part of the current user account.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

The host name part of the granted role.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

16

The INFORMATION_SCHEMA APPLICABLE_ROLES Table

YES or NO, depending on whether the role is mandatory.

4.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table

The APPLICABLE_ROLES table (available as of MySQL 8.0.19) provides information about the roles
that are applicable for the current user.

The APPLICABLE_ROLES table has these columns:

• USER

The user name part of the current user account.

• HOST

The host name part of the current user account.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

The host name part of the granted role.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

YES or NO, depending on whether the role is mandatory.

4.4 The INFORMATION_SCHEMA CHARACTER_SETS Table

The CHARACTER_SETS table provides information about available character sets.

The CHARACTER_SETS table has these columns:

• CHARACTER_SET_NAME

The character set name.

• DEFAULT_COLLATE_NAME

The default collation for the character set.

• DESCRIPTION

17

Notes

A description of the character set.

• MAXLEN

The maximum number of bytes required to store one character.

Notes

Character set information is also available from the SHOW CHARACTER SET statement. See SHOW
CHARACTER SET Statement. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.CHARACTER_SETS
 [WHERE CHARACTER_SET_NAME LIKE 'wild']
SHOW CHARACTER SET
 [LIKE 'wild']

4.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table
As of MySQL 8.0.16, CREATE TABLE permits the core features of table and column CHECK constraints,
and the CHECK_CONSTRAINTS table provides information about these constraints.

The CHECK_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• CHECK_CLAUSE

The expression that specifies the constraint condition.

4.6 The INFORMATION_SCHEMA COLLATIONS Table
The COLLATIONS table provides information about collations for each character set.

The COLLATIONS table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

• ID

The collation ID.

• IS_DEFAULT

Whether the collation is the default for its character set.

• IS_COMPILED

18

https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html

Notes

Whether the character set is compiled into the server.

• SORTLEN

This is related to the amount of memory required to sort strings expressed in the character set.

• PAD_ATTRIBUTE

The collation pad attribute, either NO PAD or PAD SPACE. This attribute affects whether trailing
spaces are significant in string comparisons; see Trailing Space Handling in Comparisons.

Notes

Collation information is also available from the SHOW COLLATION statement. See SHOW COLLATION
Statement. The following statements are equivalent:

SELECT COLLATION_NAME FROM INFORMATION_SCHEMA.COLLATIONS
 [WHERE COLLATION_NAME LIKE 'wild']
SHOW COLLATION
 [LIKE 'wild']

4.7 The INFORMATION_SCHEMA
COLLATION_CHARACTER_SET_APPLICABILITY Table

The COLLATION_CHARACTER_SET_APPLICABILITY table indicates what character set is applicable
for what collation.

The COLLATION_CHARACTER_SET_APPLICABILITY table has these columns:

• COLLATION_NAME

The collation name.

• CHARACTER_SET_NAME

The name of the character set with which the collation is associated.

Notes

The COLLATION_CHARACTER_SET_APPLICABILITY columns are equivalent to the first two columns
displayed by the SHOW COLLATION statement.

4.8 The INFORMATION_SCHEMA COLUMNS Table

The COLUMNS table provides information about columns in tables. The related
ST_GEOMETRY_COLUMNS table provides information about table columns that store spatial data. See
Section 4.35, “The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table”.

The COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

19

https://dev.mysql.com/doc/refman/8.0/en/charset-binary-collations.html#charset-binary-collations-trailing-space-comparisons
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html

The INFORMATION_SCHEMA COLUMNS Table

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• ORDINAL_POSITION

The position of the column within the table. ORDINAL_POSITION is necessary because you might
want to say ORDER BY ORDINAL_POSITION. Unlike SHOW COLUMNS, SELECT from the COLUMNS
table does not have automatic ordering.

• COLUMN_DEFAULT

The default value for the column. This is NULL if the column has an explicit default of NULL, or if the
column definition includes no DEFAULT clause.

• IS_NULLABLE

The column nullability. The value is YES if NULL values can be stored in the column, NO if not.

• DATA_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string columns, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string columns, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric columns, the numeric precision.

• NUMERIC_SCALE

For numeric columns, the numeric scale.

• DATETIME_PRECISION

For temporal columns, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string columns, the character set name.

• COLLATION_NAME

For character string columns, the collation name.

• COLUMN_TYPE

The column data type.

The DATA_TYPE value is the type name only with no other information. The COLUMN_TYPE value
contains the type name and possibly other information such as the precision or length.

• COLUMN_KEY

20

https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Notes

Whether the column is indexed:

• If COLUMN_KEY is empty, the column either is not indexed or is indexed only as a secondary
column in a multiple-column, nonunique index.

• If COLUMN_KEY is PRI, the column is a PRIMARY KEY or is one of the columns in a multiple-
column PRIMARY KEY.

• If COLUMN_KEY is UNI, the column is the first column of a UNIQUE index. (A UNIQUE index permits
multiple NULL values, but you can tell whether the column permits NULL by checking the Null
column.)

• If COLUMN_KEY is MUL, the column is the first column of a nonunique index in which multiple
occurrences of a given value are permitted within the column.

If more than one of the COLUMN_KEY values applies to a given column of a table, COLUMN_KEY
displays the one with the highest priority, in the order PRI, UNI, MUL.

A UNIQUE index may be displayed as PRI if it cannot contain NULL values and there is no PRIMARY
KEY in the table. A UNIQUE index may display as MUL if several columns form a composite UNIQUE
index; although the combination of the columns is unique, each column can still hold multiple
occurrences of a given value.

• EXTRA

Any additional information that is available about a given column. The value is nonempty in these
cases:

• auto_increment for columns that have the AUTO_INCREMENT attribute.

• on update CURRENT_TIMESTAMP for TIMESTAMP or DATETIME columns that have the ON
UPDATE CURRENT_TIMESTAMP attribute.

• STORED GENERATED or VIRTUAL GENERATED for generated columns.

• DEFAULT_GENERATED for columns that have an expression default value.

• PRIVILEGES

The privileges you have for the column.

• COLUMN_COMMENT

Any comment included in the column definition.

• GENERATION_EXPRESSION

For generated columns, displays the expression used to compute column values. Empty for
nongenerated columns. For information about generated columns, see CREATE TABLE and
Generated Columns.

• SRS_ID

This value applies to spatial columns. It contains the column SRID value that indicates the spatial
reference system for values stored in the column. See Spatial Data Types, and Spatial Reference
System Support. The value is NULL for nonspatial columns and spatial columns with no SRID
attribute.

Notes

• In SHOW COLUMNS, the Type display includes values from several different COLUMNS columns.

21

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/8.0/en/create-table-generated-columns.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-type-overview.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-reference-systems.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-reference-systems.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table

• CHARACTER_OCTET_LENGTH should be the same as CHARACTER_MAXIMUM_LENGTH, except for
multibyte character sets.

• CHARACTER_SET_NAME can be derived from COLLATION_NAME. For example, if you say
SHOW FULL COLUMNS FROM t, and you see in the COLLATION_NAME column a value of
utf8mb4_swedish_ci, the character set is what appears before the first underscore: utf8mb4.

Column information is also available from the SHOW COLUMNS statement. See SHOW COLUMNS
Statement. The following statements are nearly equivalent:

SELECT COLUMN_NAME, DATA_TYPE, IS_NULLABLE, COLUMN_DEFAULT
 FROM INFORMATION_SCHEMA.COLUMNS
 WHERE table_name = 'tbl_name'
 [AND table_schema = 'db_name']
 [AND column_name LIKE 'wild']
SHOW COLUMNS
 FROM tbl_name
 [FROM db_name]
 [LIKE 'wild']

In MySQL 8.0.30 and later, information about generated invisible primary key columns
is visible in this table by default. You can cause such information to be hidden by setting
show_gipk_in_create_table_and_information_schema = OFF. For more information, see
Generated Invisible Primary Keys.

4.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table
The COLUMNS_EXTENSIONS table (available as of MySQL 8.0.21) provides information about column
attributes defined for primary and secondary storage engines.

Note

The COLUMNS_EXTENSIONS table is reserved for future use.

The COLUMNS_EXTENSIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• COLUMN_NAME

The name of the column.

• ENGINE_ATTRIBUTE

Column attributes defined for the primary storage engine. Reserved for future use.

• SECONDARY_ENGINE_ATTRIBUTE

Column attributes defined for the secondary storage engine. Reserved for future use.

4.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
The COLUMN_PRIVILEGES table provides information about column privileges. It takes its values from
the mysql.columns_priv system table.

22

https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_show_gipk_in_create_table_and_information_schema
https://dev.mysql.com/doc/refman/8.0/en/create-table-gipks.html

Notes

The COLUMN_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the column level; see
GRANT Statement. Each row lists a single privilege, so there is one row per column privilege held by
the grantee.

In the output from SHOW FULL COLUMNS, the privileges are all in one column and in lowercase, for
example, select,insert,update,references. In COLUMN_PRIVILEGES, there is one privilege
per row, in uppercase.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• COLUMN_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.COLUMN_PRIVILEGES
SHOW GRANTS ...

4.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table
The COLUMN_STATISTICS table provides access to histogram statistics for column values.

For information about histogram statistics, see Optimizer Statistics, and ANALYZE TABLE Statement.

You can see information only for columns for which you have some privilege.

The COLUMN_STATISTICS table has these columns:

• SCHEMA_NAME

The names of the schema for which the statistics apply.

• TABLE_NAME

The names of the column for which the statistics apply.

23

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/optimizer-statistics.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html

The INFORMATION_SCHEMA ENABLED_ROLES Table

• COLUMN_NAME

The names of the column for which the statistics apply.

• HISTOGRAM

A JSON object describing the column statistics, stored as a histogram.

4.12 The INFORMATION_SCHEMA ENABLED_ROLES Table
The ENABLED_ROLES table (available as of MySQL 8.0.19) provides information about the roles that
are enabled within the current session.

The ENABLED_ROLES table has these columns:

• ROLE_NAME

The user name part of the granted role.

• ROLE_HOST

The host name part of the granted role.

• IS_DEFAULT

YES or NO, depending on whether the role is a default role.

• IS_MANDATORY

YES or NO, depending on whether the role is mandatory.

4.13 The INFORMATION_SCHEMA ENGINES Table
The ENGINES table provides information about storage engines. This is particularly useful for checking
whether a storage engine is supported, or to see what the default engine is.

The ENGINES table has these columns:

• ENGINE

The name of the storage engine.

• SUPPORT

The server's level of support for the storage engine, as shown in the following table.

Value Meaning

YES The engine is supported and is active

DEFAULT Like YES, plus this is the default engine

NO The engine is not supported

DISABLED The engine is supported but has been disabled

A value of NO means that the server was compiled without support for the engine, so it cannot be
enabled at runtime.

A value of DISABLED occurs either because the server was started with an option that disables the
engine, or because not all options required to enable it were given. In the latter case, the error log
should contain a reason indicating why the option is disabled. See The Error Log.

You might also see DISABLED for a storage engine if the server was compiled to support it, but was
started with a --skip-engine_name option. For the NDB storage engine, DISABLED means the

24

https://dev.mysql.com/doc/refman/8.0/en/json.html
https://dev.mysql.com/doc/refman/8.0/en/error-log.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Notes

server was compiled with support for NDB Cluster, but was not started with the --ndbcluster
option.

All MySQL servers support MyISAM tables. It is not possible to disable MyISAM.

• COMMENT

A brief description of the storage engine.

• TRANSACTIONS

Whether the storage engine supports transactions.

• XA

Whether the storage engine supports XA transactions.

• SAVEPOINTS

Whether the storage engine supports savepoints.

Notes

• ENGINES is a nonstandard INFORMATION_SCHEMA table.

Storage engine information is also available from the SHOW ENGINES statement. See SHOW
ENGINES Statement. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.ENGINES
SHOW ENGINES

4.14 The INFORMATION_SCHEMA EVENTS Table
The EVENTS table provides information about Event Manager events, which are discussed in Using the
Event Scheduler.

The EVENTS table has these columns:

• EVENT_CATALOG

The name of the catalog to which the event belongs. This value is always def.

• EVENT_SCHEMA

The name of the schema (database) to which the event belongs.

• EVENT_NAME

The name of the event.

• DEFINER

The account named in the DEFINER clause (often the user who created the event), in
'user_name'@'host_name' format.

• TIME_ZONE

The event time zone, which is the time zone used for scheduling the event and that is in effect within
the event as it executes. The default value is SYSTEM.

• EVENT_BODY

The language used for the statements in the event's DO clause. The value is always SQL.

• EVENT_DEFINITION

25

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#option_mysqld_ndbcluster
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/show-engines.html
https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/do.html

The INFORMATION_SCHEMA EVENTS Table

The text of the SQL statement making up the event's DO clause; in other words, the statement
executed by this event.

• EVENT_TYPE

The event repetition type, either ONE TIME (transient) or RECURRING (repeating).

• EXECUTE_AT

For a one-time event, this is the DATETIME value specified in the AT clause of the CREATE EVENT
statement used to create the event, or of the last ALTER EVENT statement that modified the
event. The value shown in this column reflects the addition or subtraction of any INTERVAL value
included in the event's AT clause. For example, if an event is created using ON SCHEDULE AT
CURRENT_TIMESTAMP + '1:6' DAY_HOUR, and the event was created at 2018-02-09 14:05:30,
the value shown in this column would be '2018-02-10 20:05:30'. If the event's timing is
determined by an EVERY clause instead of an AT clause (that is, if the event is recurring), the value
of this column is NULL.

• INTERVAL_VALUE

For a recurring event, the number of intervals to wait between event executions. For a transient
event, the value is always NULL.

• INTERVAL_FIELD

The time units used for the interval which a recurring event waits before repeating. For a transient
event, the value is always NULL.

• SQL_MODE

The SQL mode in effect when the event was created or altered, and under which the event executes.
For the permitted values, see Server SQL Modes.

• STARTS

The start date and time for a recurring event. This is displayed as a DATETIME value, and is NULL
if no start date and time are defined for the event. For a transient event, this column is always
NULL. For a recurring event whose definition includes a STARTS clause, this column contains
the corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used. If there is no STARTS clause affecting the timing of the event, this column is NULL

• ENDS

For a recurring event whose definition includes a ENDS clause, this column contains the
corresponding DATETIME value. As with the EXECUTE_AT column, this value resolves any
expressions used. If there is no ENDS clause affecting the timing of the event, this column is NULL.

• STATUS

The event status. One of ENABLED, DISABLED, or SLAVESIDE_DISABLED. SLAVESIDE_DISABLED
indicates that the creation of the event occurred on another MySQL server acting as a replication
source and replicated to the current MySQL server which is acting as a replica, but the event is not
presently being executed on the replica. For more information, see Replication of Invoked Features.
information.

• ON_COMPLETION

One of the two values PRESERVE or NOT PRESERVE.

• CREATED

The date and time when the event was created. This is a TIMESTAMP value.

26

https://dev.mysql.com/doc/refman/8.0/en/do.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/create-event.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-invoked.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Notes

• LAST_ALTERED

The date and time when the event was last modified. This is a TIMESTAMP value. If the event has
not been modified since its creation, this value is the same as the CREATED value.

• LAST_EXECUTED

The date and time when the event last executed. This is a DATETIME value. If the event has never
executed, this column is NULL.

LAST_EXECUTED indicates when the event started. As a result, the ENDS column is never less than
LAST_EXECUTED.

• EVENT_COMMENT

The text of the comment, if the event has one. If not, this value is empty.

• ORIGINATOR

The server ID of the MySQL server on which the event was created; used in replication. This value
may be updated by ALTER EVENT to the server ID of the server on which that statement occurs, if
executed on a replication source. The default value is 0.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the event was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the event was created.

• DATABASE_COLLATION

The collation of the database with which the event is associated.

Notes

• EVENTS is a nonstandard INFORMATION_SCHEMA table.

• Times in the EVENTS table are displayed using the event time zone, the current session time zone,
or UTC, as described in Event Metadata.

• For more information about SLAVESIDE_DISABLED and the ORIGINATOR column, see Replication
of Invoked Features.

Example

Suppose that the user 'jon'@'ghidora' creates an event named e_daily, and then modifies it a
few minutes later using an ALTER EVENT statement, as shown here:

DELIMITER |
CREATE EVENT e_daily
 ON SCHEDULE
 EVERY 1 DAY
 COMMENT 'Saves total number of sessions then clears the table each day'
 DO
 BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END |
DELIMITER ;
ALTER EVENT e_daily
 ENABLE;

27

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/events-metadata.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-invoked.html
https://dev.mysql.com/doc/refman/8.0/en/replication-features-invoked.html
https://dev.mysql.com/doc/refman/8.0/en/alter-event.html

The INFORMATION_SCHEMA FILES Table

(Note that comments can span multiple lines.)

This user can then run the following SELECT statement, and obtain the output shown:

mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 WHERE EVENT_NAME = 'e_daily'
 AND EVENT_SCHEMA = 'myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: def
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_daily
 DEFINER: jon@ghidora
 TIME_ZONE: SYSTEM
 EVENT_BODY: SQL
 EVENT_DEFINITION: BEGIN
 INSERT INTO site_activity.totals (time, total)
 SELECT CURRENT_TIMESTAMP, COUNT(*)
 FROM site_activity.sessions;
 DELETE FROM site_activity.sessions;
 END
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 1
 INTERVAL_FIELD: DAY
 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,
 NO_ENGINE_SUBSTITUTION
 STARTS: 2018-08-08 11:06:34
 ENDS: NULL
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2018-08-08 11:06:34
 LAST_ALTERED: 2018-08-08 11:06:34
 LAST_EXECUTED: 2018-08-08 16:06:34
 EVENT_COMMENT: Saves total number of sessions then clears the
 table each day
 ORIGINATOR: 1
CHARACTER_SET_CLIENT: utf8mb4
COLLATION_CONNECTION: utf8mb4_0900_ai_ci
 DATABASE_COLLATION: utf8mb4_0900_ai_ci

Event information is also available from the SHOW EVENTS statement. See SHOW EVENTS Statement.
The following statements are equivalent:

SELECT
 EVENT_SCHEMA, EVENT_NAME, DEFINER, TIME_ZONE, EVENT_TYPE, EXECUTE_AT,
 INTERVAL_VALUE, INTERVAL_FIELD, STARTS, ENDS, STATUS, ORIGINATOR,
 CHARACTER_SET_CLIENT, COLLATION_CONNECTION, DATABASE_COLLATION
 FROM INFORMATION_SCHEMA.EVENTS
 WHERE table_schema = 'db_name'
 [AND column_name LIKE 'wild']
SHOW EVENTS
 [FROM db_name]
 [LIKE 'wild']

4.15 The INFORMATION_SCHEMA FILES Table
The FILES table provides information about the files in which MySQL tablespace data is stored.

The FILES table provides information about InnoDB data files. In NDB Cluster, this table also provides
information about the files in which NDB Cluster Disk Data tables are stored. For additional information
specific to InnoDB, see InnoDB Notes, later in this section; for additional information specific to NDB
Cluster, see NDB Notes.

The FILES table has these columns:

• FILE_ID

For InnoDB: The tablespace ID, also referred to as the space_id or fil_space_t::id.

28

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html
https://dev.mysql.com/doc/refman/8.0/en/show-events.html

The INFORMATION_SCHEMA FILES Table

For NDB: A file identifier. FILE_ID column values are auto-generated.

• FILE_NAME

For InnoDB: The name of the data file. File-per-table and general tablespaces have an .ibd file
name extension. Undo tablespaces are prefixed by undo. The system tablespace is prefixed by
ibdata. The global temporary tablespace is prefixed by ibtmp. The file name includes the file path,
which may be relative to the MySQL data directory (the value of the datadir system variable).

For NDB: The name of an undo log file created by CREATE LOGFILE GROUP or ALTER LOGFILE
GROUP, or of a data file created by CREATE TABLESPACE or ALTER TABLESPACE. In NDB
8.0, the file name is shown with a relative path; for an undo log file, this path is relative to the
directory DataDir/ndb_NodeId_fs/LG; for a data file, it is relative to the directory DataDir/
ndb_NodeId_fs/TS. This means, for example, that the name of a data file created with ALTER
TABLESPACE ts ADD DATAFILE 'data_2.dat' INITIAL SIZE 256M is shown as ./
data_2.dat.

• FILE_TYPE

For InnoDB: The tablespace file type. There are three possible file types for InnoDB files.
TABLESPACE is the file type for any system, general, or file-per-table tablespace file that holds
tables, indexes, or other forms of user data. TEMPORARY is the file type for temporary tablespaces.
UNDO LOG is the file type for undo tablespaces, which hold undo records.

For NDB: One of the values UNDO LOG or DATAFILE. Prior to NDB 8.0.13, TABLESPACE was also a
possible value.

• TABLESPACE_NAME

The name of the tablespace with which the file is associated.

For InnoDB: General tablespace names are as specified when created. File-per-table
tablespace names are shown in the following format: schema_name/table_name. The
InnoDB system tablespace name is innodb_system. The global temporary tablespace
name is innodb_temporary. Default undo tablespace names are innodb_undo_001 and
innodb_undo_002. User-created undo tablespace names are as specified when created.

• TABLE_CATALOG

This value is always empty.

• TABLE_SCHEMA

This is always NULL.

• TABLE_NAME

This is always NULL.

• LOGFILE_GROUP_NAME

For InnoDB: This is always NULL.

For NDB: The name of the log file group to which the log file or data file belongs.

• LOGFILE_GROUP_NUMBER

For InnoDB: This is always NULL.

For NDB: For a Disk Data undo log file, the auto-generated ID number of the log file group
to which the log file belongs. This is the same as the value shown for the id column in the

29

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_datadir
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodeid
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-datadir
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbd-definition.html#ndbparam-ndbd-nodeid

The INFORMATION_SCHEMA FILES Table

ndbinfo.dict_obj_info table and the log_id column in the ndbinfo.logspaces and
ndbinfo.logspaces tables for this undo log file.

• ENGINE

For InnoDB: This value is always InnoDB.

For NDB: This value is always ndbcluster.

• FULLTEXT_KEYS

This is always NULL.

• DELETED_ROWS

This is always NULL.

• UPDATE_COUNT

This is always NULL.

• FREE_EXTENTS

For InnoDB: The number of fully free extents in the current data file.

For NDB: The number of extents which have not yet been used by the file.

• TOTAL_EXTENTS

For InnoDB: The number of full extents used in the current data file. Any partial extent at the end of
the file is not counted.

For NDB: The total number of extents allocated to the file.

• EXTENT_SIZE

For InnoDB: Extent size is 1048576 (1MB) for files with a 4KB, 8KB, or 16KB page size. Extent
size is 2097152 bytes (2MB) for files with a 32KB page size, and 4194304 (4MB) for files with
a 64KB page size. FILES does not report InnoDB page size. Page size is defined by the
innodb_page_size system variable. Extent size information can also be retrieved from the
INNODB_TABLESPACES table where FILES.FILE_ID = INNODB_TABLESPACES.SPACE.

For NDB: The size of an extent for the file in bytes.

• INITIAL_SIZE

For InnoDB: The initial size of the file in bytes.

For NDB: The size of the file in bytes. This is the same value that was used in the INITIAL_SIZE
clause of the CREATE LOGFILE GROUP, ALTER LOGFILE GROUP, CREATE TABLESPACE, or
ALTER TABLESPACE statement used to create the file.

• MAXIMUM_SIZE

For InnoDB: The maximum number of bytes permitted in the file. The value is NULL for all data
files except for predefined system tablespace data files. Maximum system tablespace file size is
defined by innodb_data_file_path. Maximum global temporary tablespace file size is defined
by innodb_temp_data_file_path. A NULL value for a predefined system tablespace data file
indicates that a file size limit was not defined explicitly.

For NDB: This value is always the same as the INITIAL_SIZE value.

• AUTOEXTEND_SIZE

30

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-dict-obj-info.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-logspaces.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-logspaces.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_page_size
https://dev.mysql.com/doc/refman/8.0/en/create-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/alter-logfile-group.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_data_file_path
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_temp_data_file_path

The INFORMATION_SCHEMA FILES Table

The auto-extend size of the tablespace. For NDB, AUTOEXTEND_SIZE is always NULL.

• CREATION_TIME

This is always NULL.

• LAST_UPDATE_TIME

This is always NULL.

• LAST_ACCESS_TIME

This is always NULL.

• RECOVER_TIME

This is always NULL.

• TRANSACTION_COUNTER

This is always NULL.

• VERSION

For InnoDB: This is always NULL.

For NDB: The version number of the file.

• ROW_FORMAT

For InnoDB: This is always NULL.

For NDB: One of FIXED or DYNAMIC.

• TABLE_ROWS

This is always NULL.

• AVG_ROW_LENGTH

This is always NULL.

• DATA_LENGTH

This is always NULL.

• MAX_DATA_LENGTH

This is always NULL.

• INDEX_LENGTH

This is always NULL.

• DATA_FREE

For InnoDB: The total amount of free space (in bytes) for the entire tablespace. Predefined system
tablespaces, which include the system tablespace and temporary table tablespaces, may have one
or more data files.

For NDB: This is always NULL.

• CREATE_TIME

31

The INFORMATION_SCHEMA FILES Table

This is always NULL.

• UPDATE_TIME

This is always NULL.

• CHECK_TIME

This is always NULL.

• CHECKSUM

This is always NULL.

• STATUS

For InnoDB: This value is NORMAL by default. InnoDB file-per-table tablespaces may report
IMPORTING, which indicates that the tablespace is not yet available.

For NDB: For NDB Cluster Disk Data files, this value is always NORMAL.

• EXTRA

For InnoDB: This is always NULL.

For NDB: (NDB 8.0.15 and later) For undo log files, this column shows the undo log buffer size; for
data files, it is always NULL. A more detailed explanation is provided in the next few paragraphs.

NDBCLUSTER stores a copy of each data file and each undo log file on each data node in the cluster.
In NDB 8.0.13 and later, the FILES table contains only one row for each such file. Suppose that you
run the following two statements on an NDB Cluster with four data nodes:

CREATE LOGFILE GROUP mygroup
 ADD UNDOFILE 'new_undo.dat'
 INITIAL_SIZE 2G
 ENGINE NDBCLUSTER;
CREATE TABLESPACE myts
 ADD DATAFILE 'data_1.dat'
 USE LOGFILE GROUP mygroup
 INITIAL_SIZE 256M
 ENGINE NDBCLUSTER;

After running these two statements successfully, you should see a result similar to the one shown
here for this query against the FILES table:

mysql> SELECT LOGFILE_GROUP_NAME, FILE_TYPE, EXTRA
 -> FROM INFORMATION_SCHEMA.FILES
 -> WHERE ENGINE = 'ndbcluster';
+--------------------+-----------+--------------------------+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+--------------------------+
| mygroup | UNDO LOG | UNDO_BUFFER_SIZE=8388608 |
| mygroup | DATAFILE | NULL |
+--------------------+-----------+--------------------------+

The undo log buffer size information was inadvertently removed in NDB 8.0.13, but was restored in
NDB 8.0.15. (Bug #92796, Bug #28800252)

Prior to NDB 8.0.13, the FILES table contained a row for each of these files on each data node the
file belonged to, as well as the size of its undo buffer. In these versions, the result of the same query
contains one row per data node, as shown here:

+--------------------+-----------+---+
| LOGFILE_GROUP_NAME | FILE_TYPE | EXTRA |
+--------------------+-----------+---+

32

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Notes

mygroup	UNDO LOG	CLUSTER_NODE=5;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=6;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=7;UNDO_BUFFER_SIZE=8388608
mygroup	UNDO LOG	CLUSTER_NODE=8;UNDO_BUFFER_SIZE=8388608
mygroup	DATAFILE	CLUSTER_NODE=5
mygroup	DATAFILE	CLUSTER_NODE=6
mygroup	DATAFILE	CLUSTER_NODE=7
mygroup	DATAFILE	CLUSTER_NODE=8
+--------------------+-----------+---+

Notes

• FILES is a nonstandard INFORMATION_SCHEMA table.

• As of MySQL 8.0.21, you must have the PROCESS privilege to query this table.

InnoDB Notes

The following notes apply to InnoDB data files.

• Information reported by FILES is obtained from the InnoDB in-memory cache for open files,
whereas INNODB_DATAFILES gets its data from the InnoDB SYS_DATAFILES internal data
dictionary table.

• The information provided by FILES includes global temporary tablespace information which is not
available in the InnoDB SYS_DATAFILES internal data dictionary table, and is therefore not included
in INNODB_DATAFILES.

• Undo tablespace information is shown in FILES when separate undo tablespaces are present, as
they are by default in MySQL 8.0.

• The following query returns all FILES table information relating to InnoDB tablespaces.

SELECT
 FILE_ID, FILE_NAME, FILE_TYPE, TABLESPACE_NAME, FREE_EXTENTS,
 TOTAL_EXTENTS, EXTENT_SIZE, INITIAL_SIZE, MAXIMUM_SIZE,
 AUTOEXTEND_SIZE, DATA_FREE, STATUS
FROM INFORMATION_SCHEMA.FILES
WHERE ENGINE='InnoDB'\G

NDB Notes

• The FILES table provides information about Disk Data files only; you cannot use it for determining
disk space allocation or availability for individual NDB tables. However, it is possible to see how much
space is allocated for each NDB table having data stored on disk—as well as how much remains
available for storage of data on disk for that table—using ndb_desc.

• Beginning with NDB 8.0.29 much of the information in the FILES table can also be found in the
ndbinfo.files table.

• The CREATION_TIME, LAST_UPDATE_TIME, and LAST_ACCESSED values are as reported by the
operating system, and are not supplied by the NDB storage engine. Where no value is provided by
the operating system, these columns display NULL.

• The difference between the TOTAL EXTENTS and FREE_EXTENTS columns is the number of extents
currently in use by the file:

SELECT TOTAL_EXTENTS - FREE_EXTENTS AS extents_used
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = './myfile.dat';

To approximate the amount of disk space in use by the file, multiply that difference by the value of
the EXTENT_SIZE column, which gives the size of an extent for the file in bytes:

SELECT (TOTAL_EXTENTS - FREE_EXTENTS) * EXTENT_SIZE AS bytes_used
 FROM INFORMATION_SCHEMA.FILES

33

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-files.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

NDB Notes

 WHERE FILE_NAME = './myfile.dat';

Similarly, you can estimate the amount of space that remains available in a given file by multiplying
FREE_EXTENTS by EXTENT_SIZE:

SELECT FREE_EXTENTS * EXTENT_SIZE AS bytes_free
 FROM INFORMATION_SCHEMA.FILES
 WHERE FILE_NAME = './myfile.dat';

Important

The byte values produced by the preceding queries are approximations only,
and their precision is inversely proportional to the value of EXTENT_SIZE.
That is, the larger EXTENT_SIZE becomes, the less accurate the
approximations are.

It is also important to remember that once an extent is used, it cannot be freed again without
dropping the data file of which it is a part. This means that deletes from a Disk Data table do not
release disk space.

The extent size can be set in a CREATE TABLESPACE statement. For more information, see
CREATE TABLESPACE Statement.

• Prior to NDB 8.0.13, an additional row was present in the FILES table following the creation
of a logfile group, having NULL in the FILE_NAME column. In NDB 8.0.13 and later, this row
— which did not correspond to any file—is no longer shown, and it is necessary to query the
ndbinfo.logspaces table to obtain undo log file usage information. See the description of this
table as well as NDB Cluster Disk Data Objects, for more information.

The remainder of the discussion in this item applies only to NDB 8.0.12 and earlier. For the row
having NULL in the FILE_NAME column, the value of the FILE_ID column is always 0, that of the
FILE_TYPE column is always UNDO LOG, and that of the STATUS column is always NORMAL. The
value of the ENGINE column is always ndbcluster.

The FREE_EXTENTS column in this row shows the total number of free extents available to
all undo files belonging to a given log file group whose name and number are shown in the
LOGFILE_GROUP_NAME and LOGFILE_GROUP_NUMBER columns, respectively.

Suppose there are no existing log file groups on your NDB Cluster, and you create one using the
following statement:

mysql> CREATE LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile.dat'
 INITIAL_SIZE = 16M
 UNDO_BUFFER_SIZE = 1M
 ENGINE = NDB;

You can now see this NULL row when you query the FILES table:

mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+--------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+--------------+---------+---------+------+----------+
| undofile.dat | NULL | 4194304 | 4 | 16777216 |
| NULL | 4184068 | NULL | 4 | NULL |

34

https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-logspaces.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-disk-data-objects.html

NDB Notes

+--------------+---------+---------+------+----------+

The total number of free extents available for undo logging is always somewhat less than the sum of
the TOTAL_EXTENTS column values for all undo files in the log file group due to overhead required
for maintaining the undo files. This can be seen by adding a second undo file to the log file group,
then repeating the previous query against the FILES table:

mysql> ALTER LOGFILE GROUP lg1
 ADD UNDOFILE 'undofile02.dat'
 INITIAL_SIZE = 4M
 ENGINE = NDB;
mysql> SELECT DISTINCT
 FILE_NAME AS File,
 FREE_EXTENTS AS Free,
 TOTAL_EXTENTS AS Total,
 EXTENT_SIZE AS Size,
 INITIAL_SIZE AS Initial
 FROM INFORMATION_SCHEMA.FILES;
+----------------+---------+---------+------+----------+
| File | Free | Total | Size | Initial |
+----------------+---------+---------+------+----------+
undofile.dat	NULL	4194304	4	16777216
undofile02.dat	NULL	1048576	4	4194304
NULL	5223944	NULL	4	NULL
+----------------+---------+---------+------+----------+

The amount of free space in bytes which is available for undo logging by Disk Data tables using this
log file group can be approximated by multiplying the number of free extents by the initial size:

mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+
| 5223944 | 20895776 |
+--------------+------------+

If you create an NDB Cluster Disk Data table and then insert some rows into it, you can see
approximately how much space remains for undo logging afterward, for example:

mysql> CREATE TABLESPACE ts1
 ADD DATAFILE 'data1.dat'
 USE LOGFILE GROUP lg1
 INITIAL_SIZE 512M
 ENGINE = NDB;
mysql> CREATE TABLE dd (
 c1 INT NOT NULL PRIMARY KEY,
 c2 INT,
 c3 DATE
)
 TABLESPACE ts1 STORAGE DISK
 ENGINE = NDB;
mysql> INSERT INTO dd VALUES
 (NULL, 1234567890, '2007-02-02'),
 (NULL, 1126789005, '2007-02-03'),
 (NULL, 1357924680, '2007-02-04'),
 (NULL, 1642097531, '2007-02-05');
mysql> SELECT
 FREE_EXTENTS AS 'Free Extents',
 FREE_EXTENTS * EXTENT_SIZE AS 'Free Bytes'
 FROM INFORMATION_SCHEMA.FILES
 WHERE LOGFILE_GROUP_NAME = 'lg1'
 AND FILE_NAME IS NULL;
+--------------+------------+
| Free Extents | Free Bytes |
+--------------+------------+

35

The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table

| 5207565 | 20830260 |
+--------------+------------+

• Prior to NDB 8.0.13, an additional row was present in the FILES table for each NDB Cluster Disk
Data tablespace. Because it did not correspond to an actual file, it was removed in NDB 8.0.13.
This row had NULL for the value of the FILE_NAME column, the value of the FILE_ID column was
always 0, that of the FILE_TYPE column was always TABLESPACE, that of the STATUS column was
always NORMAL, and the value of the ENGINE column is always NDBCLUSTER.

In NDB 8.0.13 and later, you can obtain information about Disk Data tablespaces using the
ndb_desc utility. For more information, see NDB Cluster Disk Data Objects, as well as the
description of ndb_desc.

• For additional information, and examples of creating, dropping, and obtaining information about NDB
Cluster Disk Data objects, see NDB Cluster Disk Data Tables.

4.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
The KEY_COLUMN_USAGE table describes which key columns have constraints. This table provides no
information about functional key parts because they are expressions and the table provides information
only about columns.

The KEY_COLUMN_USAGE table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table that has the constraint.

• COLUMN_NAME

The name of the column that has the constraint.

If the constraint is a foreign key, then this is the column of the foreign key, not the column that the
foreign key references.

• ORDINAL_POSITION

The column's position within the constraint, not the column's position within the table. Column
positions are numbered beginning with 1.

• POSITION_IN_UNIQUE_CONSTRAINT

NULL for unique and primary-key constraints. For foreign-key constraints, this column is the ordinal
position in key of the table that is being referenced.

36

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-disk-data-objects.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-disk-data.html

The INFORMATION_SCHEMA KEYWORDS Table

• REFERENCED_TABLE_SCHEMA

The name of the schema referenced by the constraint.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

• REFERENCED_COLUMN_NAME

The name of the column referenced by the constraint.

Suppose that there are two tables name t1 and t3 that have the following definitions:

CREATE TABLE t1
(
 s1 INT,
 s2 INT,
 s3 INT,
 PRIMARY KEY(s3)
) ENGINE=InnoDB;
CREATE TABLE t3
(
 s1 INT,
 s2 INT,
 s3 INT,
 KEY(s1),
 CONSTRAINT CO FOREIGN KEY (s2) REFERENCES t1(s3)
) ENGINE=InnoDB;

For those two tables, the KEY_COLUMN_USAGE table has two rows:

• One row with CONSTRAINT_NAME = 'PRIMARY', TABLE_NAME = 't1', COLUMN_NAME = 's3',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = NULL.

For NDB: This value is always NULL.

• One row with CONSTRAINT_NAME = 'CO', TABLE_NAME = 't3', COLUMN_NAME = 's2',
ORDINAL_POSITION = 1, POSITION_IN_UNIQUE_CONSTRAINT = 1.

4.17 The INFORMATION_SCHEMA KEYWORDS Table
The KEYWORDS table lists the words considered keywords by MySQL and, for each one, indicates
whether it is reserved. Reserved keywords may require special treatment in some contexts, such as
special quoting when used as identifiers (see Keywords and Reserved Words). This table provides
applications a runtime source of MySQL keyword information.

Prior to MySQL 8.0.13, selecting from the KEYWORDS table with no default database selected produced
an error. (Bug #90160, Bug #27729859)

The KEYWORDS table has these columns:

• WORD

The keyword.

• RESERVED

An integer indicating whether the keyword is reserved (1) or nonreserved (0).

These queries lists all keywords, all reserved keywords, and all nonreserved keywords, respectively:

SELECT * FROM INFORMATION_SCHEMA.KEYWORDS;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED = 1;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED = 0;

The latter two queries are equivalent to:

37

https://dev.mysql.com/doc/refman/8.0/en/keywords.html

The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table

SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE RESERVED;
SELECT WORD FROM INFORMATION_SCHEMA.KEYWORDS WHERE NOT RESERVED;

If you build MySQL from source, the build process generates a keyword_list.h header file
containing an array of keywords and their reserved status. This file can be found in the sql directory
under the build directory. This file may be useful for applications that require a static source for the
keyword list.

4.18 The INFORMATION_SCHEMA
ndb_transid_mysql_connection_map Table

The ndb_transid_mysql_connection_map table provides a mapping between NDB transactions,
NDB transaction coordinators, and MySQL Servers attached to an NDB Cluster as API nodes. This
information is used when populating the server_operations and server_transactions tables
of the ndbinfo NDB Cluster information database.

INFORMATION_SCHEMA Name SHOW Name Remarks

mysql_connection_id MySQL Server connection ID

node_id Transaction coordinator node ID

ndb_transid NDB transaction ID

The mysql_connection_id is the same as the connection or session ID shown in the output of
SHOW PROCESSLIST.

There are no SHOW statements associated with this table.

This is a nonstandard table, specific to NDB Cluster. It is implemented as an INFORMATION_SCHEMA
plugin; you can verify that it is supported by checking the output of SHOW PLUGINS. If
ndb_transid_mysql_connection_map support is enabled, the output from this statement includes
a plugin having this name, of type INFORMATION SCHEMA, and having status ACTIVE, as shown here
(using emphasized text):

mysql> SHOW PLUGINS;
+----------------------------------+--------+--------------------+---------+---------+
| Name | Status | Type | Library | License |
+----------------------------------+--------+--------------------+---------+---------+
binlog	ACTIVE	STORAGE ENGINE	NULL	GPL
mysql_native_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha256_password	ACTIVE	AUTHENTICATION	NULL	GPL
caching_sha2_password	ACTIVE	AUTHENTICATION	NULL	GPL
sha2_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
daemon_keyring_proxy_plugin	ACTIVE	DAEMON	NULL	GPL
CSV	ACTIVE	STORAGE ENGINE	NULL	GPL
MEMORY	ACTIVE	STORAGE ENGINE	NULL	GPL
InnoDB	ACTIVE	STORAGE ENGINE	NULL	GPL
INNODB_TRX	ACTIVE	INFORMATION SCHEMA	NULL	GPL
INNODB_CMP	ACTIVE	INFORMATION SCHEMA	NULL	GPL
...				
INNODB_SESSION_TEMP_TABLESPACES	ACTIVE	INFORMATION SCHEMA	NULL	GPL
MyISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
MRG_MYISAM	ACTIVE	STORAGE ENGINE	NULL	GPL
PERFORMANCE_SCHEMA	ACTIVE	STORAGE ENGINE	NULL	GPL
TempTable	ACTIVE	STORAGE ENGINE	NULL	GPL
ARCHIVE	ACTIVE	STORAGE ENGINE	NULL	GPL
BLACKHOLE	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbcluster	ACTIVE	STORAGE ENGINE	NULL	GPL
ndbinfo	ACTIVE	STORAGE ENGINE	NULL	GPL
ndb_transid_mysql_connection_map	ACTIVE	INFORMATION SCHEMA	NULL	GPL
ngram	ACTIVE	FTPARSER	NULL	GPL
mysqlx_cache_cleaner	ACTIVE	AUDIT	NULL	GPL
mysqlx	ACTIVE	DAEMON	NULL	GPL
+----------------------------------+--------+--------------------+---------+---------+
47 rows in set (0.01 sec)

38

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-server-operations.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo-server-transactions.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-ndbinfo.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html

The INFORMATION_SCHEMA OPTIMIZER_TRACE Table

The plugin is enabled by default. You can disable it (or force the server not to run unless the plugin
starts) by starting the server with the --ndb-transid-mysql-connection-map option. If the plugin
is disabled, the status is shown by SHOW PLUGINS as DISABLED. The plugin cannot be enabled or
disabled at runtime.

Although the names of this table and its columns are displayed using lowercase, you can use
uppercase or lowercase when referring to them in SQL statements.

For this table to be created, the MySQL Server must be a binary supplied with the NDB Cluster
distribution, or one built from the NDB Cluster sources with NDB storage engine support enabled. It is
not available in the standard MySQL 8.0 Server.

4.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
The OPTIMIZER_TRACE table provides information produced by the optimizer tracing capability for
traced statements. To enable tracking, use the optimizer_trace system variable. For details, see
MySQL Internals: Tracing the Optimizer.

The OPTIMIZER_TRACE table has these columns:

• QUERY

The text of the traced statement.

• TRACE

The trace, in JSON format.

• MISSING_BYTES_BEYOND_MAX_MEM_SIZE

Each remembered trace is a string that is extended as optimization progresses and appends data
to it. The optimizer_trace_max_mem_size variable sets a limit on the total amount of memory
used by all currently remembered traces. If this limit is reached, the current trace is not extended
(and thus is incomplete), and the MISSING_BYTES_BEYOND_MAX_MEM_SIZE column shows the
number of bytes missing from the trace.

• INSUFFICIENT_PRIVILEGES

If a traced query uses views or stored routines that have SQL SECURITY with a value of DEFINER,
it may be that a user other than the definer is denied from seeing the trace of the query. In that case,
the trace is shown as empty and INSUFFICIENT_PRIVILEGES has a value of 1. Otherwise, the
value is 0.

4.20 The INFORMATION_SCHEMA PARAMETERS Table
The PARAMETERS table provides information about parameters for stored routines (stored procedures
and stored functions), and about return values for stored functions. The PARAMETERS table does not
include built-in (native) functions or loadable functions.

The PARAMETERS table has these columns:

• SPECIFIC_CATALOG

The name of the catalog to which the routine containing the parameter belongs. This value is always
def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine containing the parameter belongs.

• SPECIFIC_NAME

The name of the routine containing the parameter.

39

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster-options-variables.html#option_mysqld_ndb-transid-mysql-connection-map
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_trace
https://dev.mysql.com/doc/internals/en/optimizer-tracing.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_optimizer_trace_max_mem_size

The INFORMATION_SCHEMA PARAMETERS Table

• ORDINAL_POSITION

For successive parameters of a stored procedure or function, the ORDINAL_POSITION values are
1, 2, 3, and so forth. For a stored function, there is also a row that applies to the function return value
(as described by the RETURNS clause). The return value is not a true parameter, so the row that
describes it has these unique characteristics:

• The ORDINAL_POSITION value is 0.

• The PARAMETER_NAME and PARAMETER_MODE values are NULL because the return value has no
name and the mode does not apply.

• PARAMETER_MODE

The mode of the parameter. This value is one of IN, OUT, or INOUT. For a stored function return
value, this value is NULL.

• PARAMETER_NAME

The name of the parameter. For a stored function return value, this value is NULL.

• DATA_TYPE

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For string parameters, the maximum length in characters.

• CHARACTER_OCTET_LENGTH

For string parameters, the maximum length in bytes.

• NUMERIC_PRECISION

For numeric parameters, the numeric precision.

• NUMERIC_SCALE

For numeric parameters, the numeric scale.

• DATETIME_PRECISION

For temporal parameters, the fractional seconds precision.

• CHARACTER_SET_NAME

For character string parameters, the character set name.

• COLLATION_NAME

For character string parameters, the collation name.

• DTD_IDENTIFIER

The parameter data type.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_TYPE

40

The INFORMATION_SCHEMA PARTITIONS Table

PROCEDURE for stored procedures, FUNCTION for stored functions.

4.21 The INFORMATION_SCHEMA PARTITIONS Table
The PARTITIONS table provides information about table partitions. Each row in this table corresponds
to an individual partition or subpartition of a partitioned table. For more information about partitioning
tables, see Partitioning.

The PARTITIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table containing the partition.

• PARTITION_NAME

The name of the partition.

• SUBPARTITION_NAME

If the PARTITIONS table row represents a subpartition, the name of subpartition; otherwise NULL.

For NDB: This value is always NULL.

• PARTITION_ORDINAL_POSITION

All partitions are indexed in the same order as they are defined, with 1 being the number assigned
to the first partition. The indexing can change as partitions are added, dropped, and reorganized; the
number shown is this column reflects the current order, taking into account any indexing changes.

• SUBPARTITION_ORDINAL_POSITION

Subpartitions within a given partition are also indexed and reindexed in the same manner as
partitions are indexed within a table.

• PARTITION_METHOD

One of the values RANGE, LIST, HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the
available partitioning types as discussed in Partitioning Types.

• SUBPARTITION_METHOD

One of the values HASH, LINEAR HASH, KEY, or LINEAR KEY; that is, one of the available
subpartitioning types as discussed in Subpartitioning.

• PARTITION_EXPRESSION

The expression for the partitioning function used in the CREATE TABLE or ALTER TABLE statement
that created the table's current partitioning scheme.

For example, consider a partitioned table created in the test database using this statement:

CREATE TABLE tp (
 c1 INT,

41

https://dev.mysql.com/doc/refman/8.0/en/partitioning.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-types.html
https://dev.mysql.com/doc/refman/8.0/en/partitioning-subpartitions.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

The INFORMATION_SCHEMA PARTITIONS Table

 c2 INT,
 c3 VARCHAR(25)
)
PARTITION BY HASH(c1 + c2)
PARTITIONS 4;

The PARTITION_EXPRESSION column in a PARTITIONS table row for a partition from this table
displays c1 + c2, as shown here:

mysql> SELECT DISTINCT PARTITION_EXPRESSION
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_NAME='tp' AND TABLE_SCHEMA='test';
+----------------------+
| PARTITION_EXPRESSION |
+----------------------+
| c1 + c2 |
+----------------------+

For a table that is not explicitly partitioned, this column is always NULL, regardless of storage engine.

• SUBPARTITION_EXPRESSION

This works in the same fashion for the subpartitioning expression that defines the subpartitioning for
a table as PARTITION_EXPRESSION does for the partitioning expression used to define a table's
partitioning.

If the table has no subpartitions, this column is NULL.

• PARTITION_DESCRIPTION

This column is used for RANGE and LIST partitions. For a RANGE partition, it contains the value set
in the partition's VALUES LESS THAN clause, which can be either an integer or MAXVALUE. For a
LIST partition, this column contains the values defined in the partition's VALUES IN clause, which is
a list of comma-separated integer values.

For partitions whose PARTITION_METHOD is other than RANGE or LIST, this column is always NULL.

• TABLE_ROWS

The number of table rows in the partition.

For partitioned InnoDB tables, the row count given in the TABLE_ROWS column is only an estimated
value used in SQL optimization, and may not always be exact.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• AVG_ROW_LENGTH

The average length of the rows stored in this partition or subpartition, in bytes. This is the same as
DATA_LENGTH divided by TABLE_ROWS.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• DATA_LENGTH

The total length of all rows stored in this partition or subpartition, in bytes; that is, the total number of
bytes stored in the partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• MAX_DATA_LENGTH

The maximum number of bytes that can be stored in this partition or subpartition.

For NDB tables, you can also obtain this information using the ndb_desc utility.

42

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

Notes

• INDEX_LENGTH

The length of the index file for this partition or subpartition, in bytes.

For partitions of NDB tables, whether the tables use implicit or explicit partitioning, the
INDEX_LENGTH column value is always 0. However, you can obtain equivalent information using the
ndb_desc utility.

• DATA_FREE

The number of bytes allocated to the partition or subpartition but not used.

For NDB tables, you can also obtain this information using the ndb_desc utility.

• CREATE_TIME

The time that the partition or subpartition was created.

• UPDATE_TIME

The time that the partition or subpartition was last modified.

• CHECK_TIME

The last time that the table to which this partition or subpartition belongs was checked.

For partitioned InnoDB tables, the value is always NULL.

• CHECKSUM

The checksum value, if any; otherwise NULL.

• PARTITION_COMMENT

The text of the comment, if the partition has one. If not, this value is empty.

The maximum length for a partition comment is defined as 1024 characters, and the display width of
the PARTITION_COMMENT column is also 1024, characters to match this limit.

• NODEGROUP

This is the nodegroup to which the partition belongs. For NDB Cluster tables, this is always
default. For partitioned tables using storage engines other than NDB, the value is also default.
Otherwise, this column is empty.

• TABLESPACE_NAME

The name of the tablespace to which the partition belongs. The value is always DEFAULT, unless the
table uses the NDB storage engine (see the Notes at the end of this section).

Notes

• PARTITIONS is a nonstandard INFORMATION_SCHEMA table.

• A table using any storage engine other than NDB and which is not partitioned has one row in
the PARTITIONS table. However, the values of the PARTITION_NAME, SUBPARTITION_NAME,
PARTITION_ORDINAL_POSITION, SUBPARTITION_ORDINAL_POSITION, PARTITION_METHOD,
SUBPARTITION_METHOD, PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, and
PARTITION_DESCRIPTION columns are all NULL. Also, the PARTITION_COMMENT column in this
case is blank.

• An NDB table which is not explicitly partitioned has one row in the PARTITIONS table for each data
node in the NDB cluster. For each such row:

43

https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html

The INFORMATION_SCHEMA PLUGINS Table

• The SUBPARTITION_NAME, SUBPARTITION_ORDINAL_POSITION, SUBPARTITION_METHOD,
PARTITION_EXPRESSION, SUBPARTITION_EXPRESSION, CREATE_TIME, UPDATE_TIME,
CHECK_TIME, CHECKSUM, and TABLESPACE_NAME columns are all NULL.

• The PARTITION_METHOD is always AUTO.

• The NODEGROUP column is default.

• The PARTITION_COMMENT column is empty.

4.22 The INFORMATION_SCHEMA PLUGINS Table

The PLUGINS table provides information about server plugins.

The PLUGINS table has these columns:

• PLUGIN_NAME

The name used to refer to the plugin in statements such as INSTALL PLUGIN and UNINSTALL
PLUGIN.

• PLUGIN_VERSION

The version from the plugin's general type descriptor.

• PLUGIN_STATUS

The plugin status, one of ACTIVE, INACTIVE, DISABLED, DELETING, or DELETED.

• PLUGIN_TYPE

The type of plugin, such as STORAGE ENGINE, INFORMATION_SCHEMA, or AUTHENTICATION.

• PLUGIN_TYPE_VERSION

The version from the plugin's type-specific descriptor.

• PLUGIN_LIBRARY

The name of the plugin shared library file. This is the name used to refer to the plugin file in
statements such as INSTALL PLUGIN and UNINSTALL PLUGIN. This file is located in the directory
named by the plugin_dir system variable. If the library name is NULL, the plugin is compiled in
and cannot be uninstalled with UNINSTALL PLUGIN.

• PLUGIN_LIBRARY_VERSION

The plugin API interface version.

• PLUGIN_AUTHOR

The plugin author.

• PLUGIN_DESCRIPTION

A short description of the plugin.

• PLUGIN_LICENSE

How the plugin is licensed (for example, GPL).

• LOAD_OPTION

44

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html

Notes

How the plugin was loaded. The value is OFF, ON, FORCE, or FORCE_PLUS_PERMANENT. See
Installing and Uninstalling Plugins.

Notes

• PLUGINS is a nonstandard INFORMATION_SCHEMA table.

• For plugins installed with INSTALL PLUGIN, the PLUGIN_NAME and PLUGIN_LIBRARY values are
also registered in the mysql.plugin table.

• For information about plugin data structures that form the basis of the information in the PLUGINS
table, see The MySQL Plugin API.

Plugin information is also available from the SHOW PLUGINS statement. See SHOW PLUGINS
Statement. These statements are equivalent:

SELECT
 PLUGIN_NAME, PLUGIN_STATUS, PLUGIN_TYPE,
 PLUGIN_LIBRARY, PLUGIN_LICENSE
FROM INFORMATION_SCHEMA.PLUGINS;
SHOW PLUGINS;

4.23 The INFORMATION_SCHEMA PROCESSLIST Table

Important

INFORMATION_SCHEMA.PROCESSLIST is deprecated and subject to
removal in a future MySQL release. As such, the implementation of SHOW
PROCESSLIST which uses this table is also deprecated. It is recommended to
use the Performance Schema implementation of PROCESSLIST instead.

The MySQL process list indicates the operations currently being performed by the set of threads
executing within the server. The PROCESSLIST table is one source of process information. For a
comparison of this table with other sources, see Sources of Process Information.

The PROCESSLIST table has these columns:

• ID

The connection identifier. This is the same value displayed in the Id column of the SHOW
PROCESSLIST statement, displayed in the PROCESSLIST_ID column of the Performance Schema
threads table, and returned by the CONNECTION_ID() function within the thread.

• USER

The MySQL user who issued the statement. A value of system user refers to a nonclient thread
spawned by the server to handle tasks internally, for example, a delayed-row handler thread or an
I/O or SQL thread used on replica hosts. For system user, there is no host specified in the Host
column. unauthenticated user refers to a thread that has become associated with a client
connection but for which authentication of the client user has not yet occurred. event_scheduler
refers to the thread that monitors scheduled events (see Using the Event Scheduler).

Note

A USER value of system user is distinct from the SYSTEM_USER privilege.
The former designates internal threads. The latter distinguishes the system
user and regular user account categories (see Account Categories).

• HOST

45

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/plugin-api.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-processlist-table.html
https://dev.mysql.com/doc/refman/8.0/en/processlist-access.html#processlist-sources
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/event-scheduler.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/account-categories.html

Notes

The host name of the client issuing the statement (except for system user, for which there is no
host). The host name for TCP/IP connections is reported in host_name:client_port format to
make it easier to determine which client is doing what.

• DB

The default database for the thread, or NULL if none has been selected.

• COMMAND

The type of command the thread is executing on behalf of the client, or Sleep if the session is
idle. For descriptions of thread commands, see Examining Server Thread (Process) Information.
The value of this column corresponds to the COM_xxx commands of the client/server protocol and
Com_xxx status variables. See Server Status Variables.

• TIME

The time in seconds that the thread has been in its current state. For a replica SQL thread, the value
is the number of seconds between the timestamp of the last replicated event and the real time of the
replica host. See Replication Threads.

• STATE

An action, event, or state that indicates what the thread is doing. For descriptions of STATE values,
see Examining Server Thread (Process) Information.

Most states correspond to very quick operations. If a thread stays in a given state for many seconds,
there might be a problem that needs to be investigated.

• INFO

The statement the thread is executing, or NULL if it is executing no statement. The statement
might be the one sent to the server, or an innermost statement if the statement executes other
statements. For example, if a CALL statement executes a stored procedure that is executing a
SELECT statement, the INFO value shows the SELECT statement.

Notes

• PROCESSLIST is a nonstandard INFORMATION_SCHEMA table.

• Like the output from the SHOW PROCESSLIST statement, the PROCESSLIST table provides
information about all threads, even those belonging to other users, if you have the PROCESS
privilege. Otherwise (without the PROCESS privilege), nonanonymous users have access to
information about their own threads but not threads for other users, and anonymous users have no
access to thread information.

• If an SQL statement refers to the PROCESSLIST table, MySQL populates the entire table once, when
statement execution begins, so there is read consistency during the statement. There is no read
consistency for a multi-statement transaction.

The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.PROCESSLIST
SHOW FULL PROCESSLIST

4.24 The INFORMATION_SCHEMA PROFILING Table

The PROFILING table provides statement profiling information. Its contents correspond to the
information produced by the SHOW PROFILE and SHOW PROFILES statements (see SHOW PROFILE
Statement). The table is empty unless the profiling session variable is set to 1.

46

https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/replication-threads.html
https://dev.mysql.com/doc/refman/8.0/en/thread-information.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_profiling

Notes

Note

This table is deprecated; expect it to be removed in a future MySQL release.
Use the Performance Schema instead; see Query Profiling Using Performance
Schema.

The PROFILING table has these columns:

• QUERY_ID

A numeric statement identifier.

• SEQ

A sequence number indicating the display order for rows with the same QUERY_ID value.

• STATE

The profiling state to which the row measurements apply.

• DURATION

How long statement execution remained in the given state, in seconds.

• CPU_USER, CPU_SYSTEM

User and system CPU use, in seconds.

• CONTEXT_VOLUNTARY, CONTEXT_INVOLUNTARY

How many voluntary and involuntary context switches occurred.

• BLOCK_OPS_IN, BLOCK_OPS_OUT

The number of block input and output operations.

• MESSAGES_SENT, MESSAGES_RECEIVED

The number of communication messages sent and received.

• PAGE_FAULTS_MAJOR, PAGE_FAULTS_MINOR

The number of major and minor page faults.

• SWAPS

How many swaps occurred.

• SOURCE_FUNCTION, SOURCE_FILE, and SOURCE_LINE

Information indicating where in the source code the profiled state executes.

Notes

• PROFILING is a nonstandard INFORMATION_SCHEMA table.

Profiling information is also available from the SHOW PROFILE and SHOW PROFILES statements. See
SHOW PROFILE Statement. For example, the following queries are equivalent:

SHOW PROFILE FOR QUERY 2;
SELECT STATE, FORMAT(DURATION, 6) AS DURATION
FROM INFORMATION_SCHEMA.PROFILING
WHERE QUERY_ID = 2 ORDER BY SEQ;

47

https://dev.mysql.com/doc/refman/8.0/en/performance-schema.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-query-profiling.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-query-profiling.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html
https://dev.mysql.com/doc/refman/8.0/en/show-profiles.html
https://dev.mysql.com/doc/refman/8.0/en/show-profile.html

The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table

4.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS
Table

The REFERENTIAL_CONSTRAINTS table provides information about foreign keys.

The REFERENTIAL_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• UNIQUE_CONSTRAINT_CATALOG

The name of the catalog containing the unique constraint that the constraint references. This value is
always def.

• UNIQUE_CONSTRAINT_SCHEMA

The name of the schema containing the unique constraint that the constraint references.

• UNIQUE_CONSTRAINT_NAME

The name of the unique constraint that the constraint references.

• MATCH_OPTION

The value of the constraint MATCH attribute. The only valid value at this time is NONE.

• UPDATE_RULE

The value of the constraint ON UPDATE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• DELETE_RULE

The value of the constraint ON DELETE attribute. The possible values are CASCADE, SET NULL, SET
DEFAULT, RESTRICT, NO ACTION.

• TABLE_NAME

The name of the table. This value is the same as in the TABLE_CONSTRAINTS table.

• REFERENCED_TABLE_NAME

The name of the table referenced by the constraint.

4.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table
The RESOURCE_GROUPS table provides access to information about resource groups. For general
discussion of the resource group capability, see Resource Groups.

You can see information only for columns for which you have some privilege.

The RESOURCE_GROUPS table has these columns:

48

https://dev.mysql.com/doc/refman/8.0/en/resource-groups.html

The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table

• RESOURCE_GROUP_NAME

The name of the resource group.

• RESOURCE_GROUP_TYPE

The resource group type, either SYSTEM or USER.

• RESOURCE_GROUP_ENABLED

Whether the resource group is enabled (1) or disabled (0);

• VCPU_IDS

The CPU affinity; that is, the set of virtual CPUs that the resource group can use. The value is a list
of comma-separated CPU numbers or ranges.

• THREAD_PRIORITY

The priority for threads assigned to the resource group. The priority ranges from -20 (highest priority)
to 19 (lowest priority). System resource groups have a priority that ranges from -20 to 0. User
resource groups have a priority that ranges from 0 to 19.

4.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS
Table

The ROLE_COLUMN_GRANTS table (available as of MySQL 8.0.19) provides information about the
column privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_COLUMN_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• TABLE_CATALOG

The name of the catalog to which the role applies. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the role applies.

• TABLE_NAME

The name of the table to which the role applies.

• COLUMN_NAME

The name of the column to which the role applies.

49

The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the column level; see
GRANT Statement. Each row lists a single privilege, so there is one row per column privilege held by
the grantee.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

4.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS
Table

The ROLE_ROUTINE_GRANTS table (available as of MySQL 8.0.19) provides information about the
routine privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_ROUTINE_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• SPECIFIC_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the routine belongs.

• SPECIFIC_NAME

The name of the routine.

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the routine level; see
GRANT Statement. Each row lists a single privilege, so there is one row per column privilege held by
the grantee.

50

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html

The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

4.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table
The ROLE_TABLE_GRANTS table (available as of MySQL 8.0.19) provides information about the table
privileges for roles that are available to or granted by the currently enabled roles.

The ROLE_TABLE_GRANTS table has these columns:

• GRANTOR

The user name part of the account that granted the role.

• GRANTOR_HOST

The host name part of the account that granted the role.

• GRANTEE

The user name part of the account to which the role is granted.

• GRANTEE_HOST

The host name part of the account to which the role is granted.

• TABLE_CATALOG

The name of the catalog to which the role applies. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the role applies.

• TABLE_NAME

The name of the table to which the role applies.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
GRANT Statement. Each row lists a single privilege, so there is one row per column privilege held by
the grantee.

• IS_GRANTABLE

YES or NO, depending on whether the role is grantable to other accounts.

4.30 The INFORMATION_SCHEMA ROUTINES Table
The ROUTINES table provides information about stored routines (stored procedures and stored
functions). The ROUTINES table does not include built-in (native) functions or loadable functions.

The ROUTINES table has these columns:

• SPECIFIC_NAME

The name of the routine.

• ROUTINE_CATALOG

The name of the catalog to which the routine belongs. This value is always def.

51

https://dev.mysql.com/doc/refman/8.0/en/grant.html

The INFORMATION_SCHEMA ROUTINES Table

• ROUTINE_SCHEMA

The name of the schema (database) to which the routine belongs.

• ROUTINE_NAME

The name of the routine.

• ROUTINE_TYPE

PROCEDURE for stored procedures, FUNCTION for stored functions.

• DATA_TYPE

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• CHARACTER_MAXIMUM_LENGTH

For stored function string return values, the maximum length in characters. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_OCTET_LENGTH

For stored function string return values, the maximum length in bytes. If the routine is a stored
procedure, this value is NULL.

• NUMERIC_PRECISION

For stored function numeric return values, the numeric precision. If the routine is a stored procedure,
this value is NULL.

• NUMERIC_SCALE

For stored function numeric return values, the numeric scale. If the routine is a stored procedure, this
value is NULL.

• DATETIME_PRECISION

For stored function temporal return values, the fractional seconds precision. If the routine is a stored
procedure, this value is NULL.

• CHARACTER_SET_NAME

For stored function character string return values, the character set name. If the routine is a stored
procedure, this value is NULL.

• COLLATION_NAME

For stored function character string return values, the collation name. If the routine is a stored
procedure, this value is NULL.

• DTD_IDENTIFIER

If the routine is a stored function, the return value data type. If the routine is a stored procedure, this
value is empty.

The DATA_TYPE value is the type name only with no other information. The DTD_IDENTIFIER value
contains the type name and possibly other information such as the precision or length.

• ROUTINE_BODY

52

The INFORMATION_SCHEMA ROUTINES Table

The language used for the routine definition. This value is always SQL.

• ROUTINE_DEFINITION

The text of the SQL statement executed by the routine.

• EXTERNAL_NAME

This value is always NULL.

• EXTERNAL_LANGUAGE

The language of the stored routine. The value is read from the external_language column of the
mysql.routines data dictionary table.

• PARAMETER_STYLE

This value is always SQL.

• IS_DETERMINISTIC

YES or NO, depending on whether the routine is defined with the DETERMINISTIC characteristic.

• SQL_DATA_ACCESS

The data access characteristic for the routine. The value is one of CONTAINS SQL, NO SQL, READS
SQL DATA, or MODIFIES SQL DATA.

• SQL_PATH

This value is always NULL.

• SECURITY_TYPE

The routine SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CREATED

The date and time when the routine was created. This is a TIMESTAMP value.

• LAST_ALTERED

The date and time when the routine was last modified. This is a TIMESTAMP value. If the routine has
not been modified since its creation, this value is the same as the CREATED value.

• SQL_MODE

The SQL mode in effect when the routine was created or altered, and under which the routine
executes. For the permitted values, see Server SQL Modes.

• ROUTINE_COMMENT

The text of the comment, if the routine has one. If not, this value is empty.

• DEFINER

The account named in the DEFINER clause (often the user who created the routine), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the routine was created.

• COLLATION_CONNECTION

53

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client

Notes

The session value of the collation_connection system variable when the routine was created.

• DATABASE_COLLATION

The collation of the database with which the routine is associated.

Notes

• To see information about a routine, you must be the user named as the routine DEFINER, have
the SHOW_ROUTINE privilege, have the SELECT privilege at the global level, or have the CREATE
ROUTINE, ALTER ROUTINE, or EXECUTE privilege granted at a scope that includes the routine. The
ROUTINE_DEFINITION column is NULL if you have only CREATE ROUTINE, ALTER ROUTINE, or
EXECUTE.

• Information about stored function return values is also available in the PARAMETERS table. The return
value row for a stored function can be identified as the row that has an ORDINAL_POSITION value
of 0.

4.31 The INFORMATION_SCHEMA SCHEMATA Table
A schema is a database, so the SCHEMATA table provides information about databases.

The SCHEMATA table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• DEFAULT_CHARACTER_SET_NAME

The schema default character set.

• DEFAULT_COLLATION_NAME

The schema default collation.

• SQL_PATH

This value is always NULL.

• DEFAULT_ENCRYPTION

The schema default encryption. This column was added in MySQL 8.0.16.

Schema names are also available from the SHOW DATABASES statement. See SHOW DATABASES
Statement. The following statements are equivalent:

SELECT SCHEMA_NAME AS `Database`
 FROM INFORMATION_SCHEMA.SCHEMATA
 [WHERE SCHEMA_NAME LIKE 'wild']
SHOW DATABASES
 [LIKE 'wild']

You see only those databases for which you have some kind of privilege, unless you have the global
SHOW DATABASES privilege.

Caution

Because any static global privilege is considered a privilege for all databases,
any static global privilege enables a user to see all database names with SHOW

54

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_alter-routine
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_execute
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html

Notes

DATABASES or by examining the SCHEMATA table of INFORMATION_SCHEMA,
except databases that have been restricted at the database level by partial
revokes.

Notes

• The SCHEMATA_EXTENSIONS table augments the SCHEMATA table with information about schema
options.

4.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS
Table

The SCHEMATA_EXTENSIONS table (available as of MySQL 8.0.22) augments the SCHEMATA table
with information about schema options.

The SCHEMATA_EXTENSIONS table has these columns:

• CATALOG_NAME

The name of the catalog to which the schema belongs. This value is always def.

• SCHEMA_NAME

The name of the schema.

• OPTIONS

The options for the schema. If the schema is read only, the value contains READ ONLY=1. If the
schema is not read only, no READ ONLY option appears.

Example
mysql> ALTER SCHEMA mydb READ ONLY = 1;
mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA_EXTENSIONS
 WHERE SCHEMA_NAME = 'mydb';
+--------------+-------------+-------------+
| CATALOG_NAME | SCHEMA_NAME | OPTIONS |
+--------------+-------------+-------------+
| def | mydb | READ ONLY=1 |
+--------------+-------------+-------------+
mysql> ALTER SCHEMA mydb READ ONLY = 0;
mysql> SELECT * FROM INFORMATION_SCHEMA.SCHEMATA_EXTENSIONS
 WHERE SCHEMA_NAME = 'mydb';
+--------------+-------------+---------+
| CATALOG_NAME | SCHEMA_NAME | OPTIONS |
+--------------+-------------+---------+
| def | mydb | |
+--------------+-------------+---------+

Notes

• SCHEMATA_EXTENSIONS is a nonstandard INFORMATION_SCHEMA table.

4.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
The SCHEMA_PRIVILEGES table provides information about schema (database) privileges. It takes its
values from the mysql.db system table.

The SCHEMA_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

55

https://dev.mysql.com/doc/refman/8.0/en/show-databases.html

Notes

• TABLE_CATALOG

The name of the catalog to which the schema belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the schema level; see
GRANT Statement. Each row lists a single privilege, so there is one row per schema privilege held
by the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• SCHEMA_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.SCHEMA_PRIVILEGES
SHOW GRANTS ...

4.34 The INFORMATION_SCHEMA STATISTICS Table

The STATISTICS table provides information about table indexes.

Columns in STATISTICS that represent table statistics hold cached values. The
information_schema_stats_expiry system variable defines the period of time before
cached table statistics expire. The default is 86400 seconds (24 hours). If there are no
cached statistics or statistics have expired, statistics are retrieved from storage engines when
querying table statistics columns. To update cached values at any time for a given table,
use ANALYZE TABLE. To always retrieve the latest statistics directly from storage engines,
set information_schema_stats_expiry=0. For more information, see Optimizing
INFORMATION_SCHEMA Queries.

Note

If the innodb_read_only system variable is enabled, ANALYZE TABLE
may fail because it cannot update statistics tables in the data dictionary,
which use InnoDB. For ANALYZE TABLE operations that update the key
distribution, failure may occur even if the operation updates the table itself (for
example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

The STATISTICS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the index belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table containing the index belongs.

• TABLE_NAME

56

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_read_only
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry

The INFORMATION_SCHEMA STATISTICS Table

The name of the table containing the index.

• NON_UNIQUE

0 if the index cannot contain duplicates, 1 if it can.

• INDEX_SCHEMA

The name of the schema (database) to which the index belongs.

• INDEX_NAME

The name of the index. If the index is the primary key, the name is always PRIMARY.

• SEQ_IN_INDEX

The column sequence number in the index, starting with 1.

• COLUMN_NAME

The column name. See also the description for the EXPRESSION column.

• COLLATION

How the column is sorted in the index. This can have values A (ascending), D (descending), or NULL
(not sorted).

• CARDINALITY

An estimate of the number of unique values in the index. To update this number, run ANALYZE
TABLE or (for MyISAM tables) myisamchk -a.

CARDINALITY is counted based on statistics stored as integers, so the value is not necessarily
exact even for small tables. The higher the cardinality, the greater the chance that MySQL uses the
index when doing joins.

• SUB_PART

The index prefix. That is, the number of indexed characters if the column is only partly indexed, NULL
if the entire column is indexed.

Note

Prefix limits are measured in bytes. However, prefix lengths for index
specifications in CREATE TABLE, ALTER TABLE, and CREATE INDEX
statements are interpreted as number of characters for nonbinary string types
(CHAR, VARCHAR, TEXT) and number of bytes for binary string types (BINARY,
VARBINARY, BLOB). Take this into account when specifying a prefix length for
a nonbinary string column that uses a multibyte character set.

For additional information about index prefixes, see Column Indexes, and CREATE INDEX
Statement.

• PACKED

Indicates how the key is packed. NULL if it is not.

• NULLABLE

Contains YES if the column may contain NULL values and '' if not.

• INDEX_TYPE

57

https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/column-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html

Notes

The index method used (BTREE, FULLTEXT, HASH, RTREE).

• COMMENT

Information about the index not described in its own column, such as disabled if the index is
disabled.

• INDEX_COMMENT

Any comment provided for the index with a COMMENT attribute when the index was created.

• IS_VISIBLE

Whether the index is visible to the optimizer. See Invisible Indexes.

• EXPRESSION

MySQL 8.0.13 and higher supports functional key parts (see Functional Key Parts), which affects
both the COLUMN_NAME and EXPRESSION columns:

• For a nonfunctional key part, COLUMN_NAME indicates the column indexed by the key part and
EXPRESSION is NULL.

• For a functional key part, COLUMN_NAME column is NULL and EXPRESSION indicates the
expression for the key part.

Notes

• There is no standard INFORMATION_SCHEMA table for indexes. The MySQL column list is similar
to what SQL Server 2000 returns for sp_statistics, except that QUALIFIER and OWNER are
replaced with CATALOG and SCHEMA, respectively.

Information about table indexes is also available from the SHOW INDEX statement. See SHOW INDEX
Statement. The following statements are equivalent:

SELECT * FROM INFORMATION_SCHEMA.STATISTICS
 WHERE table_name = 'tbl_name'
 AND table_schema = 'db_name'
SHOW INDEX
 FROM tbl_name
 FROM db_name

In MySQL 8.0.30 and later, information about generated invisible primary key columns
is visible in this table by default. You can cause such information to be hidden by setting
show_gipk_in_create_table_and_information_schema = OFF. For more information, see
Generated Invisible Primary Keys.

4.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS
Table

The ST_GEOMETRY_COLUMNS table provides information about table columns that store spatial data.
This table is based on the SQL/MM (ISO/IEC 13249-3) standard, with extensions as noted. MySQL
implements ST_GEOMETRY_COLUMNS as a view on the INFORMATION_SCHEMA COLUMNS table.

The ST_GEOMETRY_COLUMNS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table containing the column belongs. This value is always def.

• TABLE_SCHEMA

58

https://dev.mysql.com/doc/refman/8.0/en/invisible-indexes.html
https://dev.mysql.com/doc/refman/8.0/en/create-index.html#create-index-functional-key-parts
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_show_gipk_in_create_table_and_information_schema
https://dev.mysql.com/doc/refman/8.0/en/create-table-gipks.html

The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table

The name of the schema (database) to which the table containing the column belongs.

• TABLE_NAME

The name of the table containing the column.

• COLUMN_NAME

The name of the column.

• SRS_NAME

The spatial reference system (SRS) name.

• SRS_ID

The spatial reference system ID (SRID).

• GEOMETRY_TYPE_NAME

The column data type. Permitted values are: geometry, point, linestring, polygon,
multipoint, multilinestring, multipolygon, geometrycollection. This column is a
MySQL extension to the standard.

4.36 The INFORMATION_SCHEMA
ST_SPATIAL_REFERENCE_SYSTEMS Table

The ST_SPATIAL_REFERENCE_SYSTEMS table provides information about available spatial reference
systems (SRSs) for spatial data. This table is based on the SQL/MM (ISO/IEC 13249-3) standard.

Entries in the ST_SPATIAL_REFERENCE_SYSTEMS table are based on the European Petroleum
Survey Group (EPSG) data set, except for SRID 0, which corresponds to a special SRS used in
MySQL that represents an infinite flat Cartesian plane with no units assigned to its axes. For additional
information about SRSs, see Spatial Reference System Support.

The ST_SPATIAL_REFERENCE_SYSTEMS table has these columns:

• SRS_NAME

The spatial reference system name. This value is unique.

• SRS_ID

The spatial reference system numeric ID. This value is unique.

SRS_ID values represent the same kind of values as the SRID of geometry values or passed as the
SRID argument to spatial functions. SRID 0 (the unitless Cartesian plane) is special. It is always a
legal spatial reference system ID and can be used in any computations on spatial data that depend
on SRID values.

• ORGANIZATION

The name of the organization that defined the coordinate system on which the spatial reference
system is based.

• ORGANIZATION_COORDSYS_ID

The numeric ID given to the spatial reference system by the organization that defined it.

• DEFINITION

59

http://epsg.org
http://epsg.org
https://dev.mysql.com/doc/refman/8.0/en/spatial-reference-systems.html

Notes

The spatial reference system definition. DEFINITION values are WKT values, represented as
specified in the Open Geospatial Consortium document OGC 12-063r5.

SRS definition parsing occurs on demand when definitions are needed by GIS functions. Parsed
definitions are stored in the data dictionary cache to enable reuse and avoid incurring parsing
overhead for every statement that needs SRS information.

• DESCRIPTION

The spatial reference system description.

Notes

• The SRS_NAME, ORGANIZATION, ORGANIZATION_COORDSYS_ID, and DESCRIPTION columns
contain information that may be of interest to users, but they are not used by MySQL.

Example
mysql> SELECT * FROM ST_SPATIAL_REFERENCE_SYSTEMS
 WHERE SRS_ID = 4326\G
*************************** 1. row ***************************
 SRS_NAME: WGS 84
 SRS_ID: 4326
 ORGANIZATION: EPSG
ORGANIZATION_COORDSYS_ID: 4326
 DEFINITION: GEOGCS["WGS 84",DATUM["World Geodetic System 1984",
 SPHEROID["WGS 84",6378137,298.257223563,
 AUTHORITY["EPSG","7030"]],AUTHORITY["EPSG","6326"]],
 PRIMEM["Greenwich",0,AUTHORITY["EPSG","8901"]],
 UNIT["degree",0.017453292519943278,
 AUTHORITY["EPSG","9122"]],
 AXIS["Lat",NORTH],AXIS["Long",EAST],
 AUTHORITY["EPSG","4326"]]
 DESCRIPTION:

This entry describes the SRS used for GPS systems. It has a name (SRS_NAME) of WGS 84 and an ID
(SRS_ID) of 4326, which is the ID used by the European Petroleum Survey Group (EPSG).

The DEFINITION values for projected and geographic SRSs begin with PROJCS and GEOGCS,
respectively. The definition for SRID 0 is special and has an empty DEFINITION value. The following
query determines how many entries in the ST_SPATIAL_REFERENCE_SYSTEMS table correspond to
projected, geographic, and other SRSs, based on DEFINITION values:

mysql> SELECT
 COUNT(*),
 CASE LEFT(DEFINITION, 6)
 WHEN 'PROJCS' THEN 'Projected'
 WHEN 'GEOGCS' THEN 'Geographic'
 ELSE 'Other'
 END AS SRS_TYPE
 FROM INFORMATION_SCHEMA.ST_SPATIAL_REFERENCE_SYSTEMS
 GROUP BY SRS_TYPE;
+----------+------------+
| COUNT(*) | SRS_TYPE |
+----------+------------+
1	Other
4668	Projected
483	Geographic
+----------+------------+

To enable manipulation of SRS entries stored in the data dictionary, MySQL provides these SQL
statements:

• CREATE SPATIAL REFERENCE SYSTEM: See CREATE SPATIAL REFERENCE SYSTEM
Statement. The description for this statement includes additional information about SRS
components.

60

http://www.opengeospatial.org
http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
http://epsg.org
https://dev.mysql.com/doc/refman/8.0/en/create-spatial-reference-system.html
https://dev.mysql.com/doc/refman/8.0/en/create-spatial-reference-system.html
https://dev.mysql.com/doc/refman/8.0/en/create-spatial-reference-system.html

The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table

• DROP SPATIAL REFERENCE SYSTEM: See DROP SPATIAL REFERENCE SYSTEM Statement.

4.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE
Table

The ST_UNITS_OF_MEASURE table (available as of MySQL 8.0.14) provides information about
acceptable units for the ST_Distance() function.

The ST_UNITS_OF_MEASURE table has these columns:

• UNIT_NAME

The name of the unit.

• UNIT_TYPE

The unit type (for example, LINEAR).

• CONVERSION_FACTOR

A conversion factor used for internal calculations.

• DESCRIPTION

A description of the unit.

4.38 The INFORMATION_SCHEMA TABLES Table

The TABLES table provides information about tables in databases.

Columns in TABLES that represent table statistics hold cached values. The
information_schema_stats_expiry system variable defines the period of time before cached
table statistics expire. The default is 86400 seconds (24 hours). If there are no cached statistics or
statistics have expired, statistics are retrieved from storage engines when querying table statistics
columns. To update cached values at any time for a given table, use ANALYZE TABLE. To always
retrieve the latest statistics directly from storage engines, set information_schema_stats_expiry
to 0. For more information, see Optimizing INFORMATION_SCHEMA Queries.

Note

If the innodb_read_only system variable is enabled, ANALYZE TABLE
may fail because it cannot update statistics tables in the data dictionary,
which use InnoDB. For ANALYZE TABLE operations that update the key
distribution, failure may occur even if the operation updates the table itself (for
example, if it is a MyISAM table). To obtain the updated distribution statistics, set
information_schema_stats_expiry=0.

The TABLES table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

61

https://dev.mysql.com/doc/refman/8.0/en/drop-spatial-reference-system.html
https://dev.mysql.com/doc/refman/8.0/en/drop-spatial-reference-system.html
https://dev.mysql.com/doc/refman/8.0/en/spatial-relation-functions-object-shapes.html#function_st-distance
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry
https://dev.mysql.com/doc/refman/8.0/en/information-schema-optimization.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_read_only
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_information_schema_stats_expiry

The INFORMATION_SCHEMA TABLES Table

• TABLE_TYPE

BASE TABLE for a table, VIEW for a view, or SYSTEM VIEW for an INFORMATION_SCHEMA table.

The TABLES table does not list TEMPORARY tables.

• ENGINE

The storage engine for the table. See The InnoDB Storage Engine, and Alternative Storage Engines.

For partitioned tables, ENGINE shows the name of the storage engine used by all partitions.

• VERSION

This column is unused. With the removal of .frm files in MySQL 8.0, this column now reports a
hardcoded value of 10, which is the last .frm file version used in MySQL 5.7.

• ROW_FORMAT

The row-storage format (Fixed, Dynamic, Compressed, Redundant, Compact). For MyISAM
tables, Dynamic corresponds to what myisamchk -dvv reports as Packed.

• TABLE_ROWS

The number of rows. Some storage engines, such as MyISAM, store the exact count. For other
storage engines, such as InnoDB, this value is an approximation, and may vary from the actual
value by as much as 40% to 50%. In such cases, use SELECT COUNT(*) to obtain an accurate
count.

TABLE_ROWS is NULL for INFORMATION_SCHEMA tables.

For InnoDB tables, the row count is only a rough estimate used in SQL optimization. (This is also
true if the InnoDB table is partitioned.)

• AVG_ROW_LENGTH

The average row length.

• DATA_LENGTH

For MyISAM, DATA_LENGTH is the length of the data file, in bytes.

For InnoDB, DATA_LENGTH is the approximate amount of space allocated for the clustered index, in
bytes. Specifically, it is the clustered index size, in pages, multiplied by the InnoDB page size.

Refer to the notes at the end of this section for information regarding other storage engines.

• MAX_DATA_LENGTH

For MyISAM, MAX_DATA_LENGTH is maximum length of the data file. This is the total number of
bytes of data that can be stored in the table, given the data pointer size used.

Unused for InnoDB.

Refer to the notes at the end of this section for information regarding other storage engines.

• INDEX_LENGTH

For MyISAM, INDEX_LENGTH is the length of the index file, in bytes.

For InnoDB, INDEX_LENGTH is the approximate amount of space allocated for non-clustered
indexes, in bytes. Specifically, it is the sum of non-clustered index sizes, in pages, multiplied by the
InnoDB page size.

62

https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

The INFORMATION_SCHEMA TABLES Table

Refer to the notes at the end of this section for information regarding other storage engines.

• DATA_FREE

The number of allocated but unused bytes.

InnoDB tables report the free space of the tablespace to which the table belongs. For a table located
in the shared tablespace, this is the free space of the shared tablespace. If you are using multiple
tablespaces and the table has its own tablespace, the free space is for only that table. Free space
means the number of bytes in completely free extents minus a safety margin. Even if free space
displays as 0, it may be possible to insert rows as long as new extents need not be allocated.

For NDB Cluster, DATA_FREE shows the space allocated on disk for, but not used by, a Disk Data
table or fragment on disk. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

For partitioned tables, this value is only an estimate and may not be absolutely correct. A more
accurate method of obtaining this information in such cases is to query the INFORMATION_SCHEMA
PARTITIONS table, as shown in this example:

SELECT SUM(DATA_FREE)
 FROM INFORMATION_SCHEMA.PARTITIONS
 WHERE TABLE_SCHEMA = 'mydb'
 AND TABLE_NAME = 'mytable';

For more information, see Section 4.21, “The INFORMATION_SCHEMA PARTITIONS Table”.

• AUTO_INCREMENT

The next AUTO_INCREMENT value.

• CREATE_TIME

When the table was created.

• UPDATE_TIME

When the table was last updated. For some storage engines, this value is NULL. Even with file-per-
table mode with each InnoDB table in a separate .ibd file, change buffering can delay the write to
the data file, so the file modification time is different from the time of the last insert, update, or delete.
For MyISAM, the data file timestamp is used; however, on Windows the timestamp is not updated by
updates, so the value is inaccurate.

UPDATE_TIME displays a timestamp value for the last UPDATE, INSERT, or DELETE performed on
InnoDB tables that are not partitioned. For MVCC, the timestamp value reflects the COMMIT time,
which is considered the last update time. Timestamps are not persisted when the server is restarted
or when the table is evicted from the InnoDB data dictionary cache.

• CHECK_TIME

When the table was last checked. Not all storage engines update this time, in which case, the value
is always NULL.

For partitioned InnoDB tables, CHECK_TIME is always NULL.

• TABLE_COLLATION

The table default collation. The output does not explicitly list the table default character set, but the
collation name begins with the character set name.

63

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_change_buffering
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Notes

• CHECKSUM

The live checksum value, if any.

• CREATE_OPTIONS

Extra options used with CREATE TABLE.

CREATE_OPTIONS shows partitioned for a partitioned table.

Prior to MySQL 8.0.16, CREATE_OPTIONS shows the ENCRYPTION clause specified for tables
created in file-per-table tablespaces. As of MySQL 8.0.16, it shows the encryption clause for file-
per-table tablespaces if the table is encrypted or if the specified encryption differs from the schema
encryption. The encryption clause is not shown for tables created in general tablespaces. To identify
encrypted file-per-table and general tablespaces, query the INNODB_TABLESPACES ENCRYPTION
column.

When creating a table with strict mode disabled, the storage engine's default row format is used
if the specified row format is not supported. The actual row format of the table is reported in the
ROW_FORMAT column. CREATE_OPTIONS shows the row format that was specified in the CREATE
TABLE statement.

When altering the storage engine of a table, table options that are not applicable to the new storage
engine are retained in the table definition to enable reverting the table with its previously defined
options to the original storage engine, if necessary. The CREATE_OPTIONS column may show
retained options.

• TABLE_COMMENT

The comment used when creating the table (or information as to why MySQL could not access the
table information).

Notes

• For NDB tables, the output of this statement shows appropriate values for the AVG_ROW_LENGTH and
DATA_LENGTH columns, with the exception that BLOB columns are not taken into account.

• For NDB tables, DATA_LENGTH includes data stored in main memory only; the MAX_DATA_LENGTH
and DATA_FREE columns apply to Disk Data.

• For NDB Cluster Disk Data tables, MAX_DATA_LENGTH shows the space allocated for the disk part
of a Disk Data table or fragment. (In-memory data resource usage is reported by the DATA_LENGTH
column.)

• For MEMORY tables, the DATA_LENGTH, MAX_DATA_LENGTH, and INDEX_LENGTH values
approximate the actual amount of allocated memory. The allocation algorithm reserves memory in
large amounts to reduce the number of allocation operations.

• For views, most TABLES columns are 0 or NULL except that TABLE_NAME indicates the view name,
CREATE_TIME indicates the creation time, and TABLE_COMMENT says VIEW.

Table information is also available from the SHOW TABLE STATUS and SHOW TABLES statements.
See SHOW TABLE STATUS Statement, and SHOW TABLES Statement. The following statements are
equivalent:

SELECT
 TABLE_NAME, ENGINE, VERSION, ROW_FORMAT, TABLE_ROWS, AVG_ROW_LENGTH,
 DATA_LENGTH, MAX_DATA_LENGTH, INDEX_LENGTH, DATA_FREE, AUTO_INCREMENT,
 CREATE_TIME, UPDATE_TIME, CHECK_TIME, TABLE_COLLATION, CHECKSUM,
 CREATE_OPTIONS, TABLE_COMMENT
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'

64

https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_strict_mode
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-cluster.html
https://dev.mysql.com/doc/refman/8.0/en/show-table-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-table-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html

The INFORMATION_SCHEMA TABLES_EXTENSIONS Table

 [AND table_name LIKE 'wild']
SHOW TABLE STATUS
 FROM db_name
 [LIKE 'wild']

The following statements are equivalent:

SELECT
 TABLE_NAME, TABLE_TYPE
 FROM INFORMATION_SCHEMA.TABLES
 WHERE table_schema = 'db_name'
 [AND table_name LIKE 'wild']
SHOW FULL TABLES
 FROM db_name
 [LIKE 'wild']

4.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table

The TABLES_EXTENSIONS table (available as of MySQL 8.0.21) provides information about table
attributes defined for primary and secondary storage engines.

Note

The TABLES_EXTENSIONS table is reserved for future use.

The TABLES_EXTENSIONS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• ENGINE_ATTRIBUTE

Table attributes defined for the primary storage engine. Reserved for future use.

• SECONDARY_ENGINE_ATTRIBUTE

Table attributes defined for the secondary storage engine. Reserved for future use.

4.40 The INFORMATION_SCHEMA TABLESPACES Table

This table is unused. It is deprecated; expect it to be removed in a future MySQL release. Other
INFORMATION_SCHEMA tables may provide related information:

• For NDB, the INFORMATION_SCHEMA FILES table provides tablespace-related information.

• For InnoDB, the INFORMATION_SCHEMA INNODB_TABLESPACES and INNODB_DATAFILES tables
provide tablespace metadata.

4.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS
Table

The TABLESPACES_EXTENSIONS table (available as of MySQL 8.0.21) provides information about
tablespace attributes defined for primary storage engines.

65

The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

Note

The TABLESPACES_EXTENSIONS table is reserved for future use.

The TABLESPACES_EXTENSIONS table has these columns:

• TABLESPACE_NAME

The name of the tablespace.

• ENGINE_ATTRIBUTE

Tablespace attributes defined for the primary storage engine. Reserved for future use.

4.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table

The TABLE_CONSTRAINTS table describes which tables have constraints.

The TABLE_CONSTRAINTS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the constraint belongs. This value is always def.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the constraint belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• CONSTRAINT_TYPE

The type of constraint. The value can be UNIQUE, PRIMARY KEY, FOREIGN KEY, or (as of MySQL
8.0.16) CHECK. This is a CHAR (not ENUM) column.

The UNIQUE and PRIMARY KEY information is about the same as what you get from the Key_name
column in the output from SHOW INDEX when the Non_unique column is 0.

• ENFORCED

For CHECK constraints, the value is YES or NO to indicate whether the constraint is enforced. For
other constraints, the value is always YES.

This column was added in MySQL 8.0.16.

4.43 The INFORMATION_SCHEMA
TABLE_CONSTRAINTS_EXTENSIONS Table

The TABLE_CONSTRAINTS_EXTENSIONS table (available as of MySQL 8.0.21) provides information
about table constraint attributes defined for primary and secondary storage engines.

66

https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/show-index.html

The INFORMATION_SCHEMA TABLE_PRIVILEGES Table

Note

The TABLE_CONSTRAINTS_EXTENSIONS table is reserved for future use.

The TABLE_CONSTRAINTS_EXTENSIONS table has these columns:

• CONSTRAINT_CATALOG

The name of the catalog to which the table belongs.

• CONSTRAINT_SCHEMA

The name of the schema (database) to which the table belongs.

• CONSTRAINT_NAME

The name of the constraint.

• TABLE_NAME

The name of the table.

• ENGINE_ATTRIBUTE

Constraint attributes defined for the primary storage engine. Reserved for future use.

• SECONDARY_ENGINE_ATTRIBUTE

Constraint attributes defined for the secondary storage engine. Reserved for future use.

4.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
The TABLE_PRIVILEGES table provides information about table privileges. It takes its values from the
mysql.tables_priv system table.

The TABLE_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog to which the table belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table belongs.

• TABLE_NAME

The name of the table.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the table level; see
GRANT Statement. Each row lists a single privilege, so there is one row per table privilege held by
the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

67

https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option

Notes

Notes

• TABLE_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.TABLE_PRIVILEGES
SHOW GRANTS ...

4.45 The INFORMATION_SCHEMA TRIGGERS Table
The TRIGGERS table provides information about triggers. To see information about a table's triggers,
you must have the TRIGGER privilege for the table.

The TRIGGERS table has these columns:

• TRIGGER_CATALOG

The name of the catalog to which the trigger belongs. This value is always def.

• TRIGGER_SCHEMA

The name of the schema (database) to which the trigger belongs.

• TRIGGER_NAME

The name of the trigger.

• EVENT_MANIPULATION

The trigger event. This is the type of operation on the associated table for which the trigger activates.
The value is INSERT (a row was inserted), DELETE (a row was deleted), or UPDATE (a row was
modified).

• EVENT_OBJECT_CATALOG, EVENT_OBJECT_SCHEMA, and EVENT_OBJECT_TABLE

As noted in Using Triggers, every trigger is associated with exactly one table. These columns
indicate the catalog and schema (database) in which this table occurs, and the table name,
respectively. The EVENT_OBJECT_CATALOG value is always def.

• ACTION_ORDER

The ordinal position of the trigger's action within the list of triggers on the same table with the same
EVENT_MANIPULATION and ACTION_TIMING values.

• ACTION_CONDITION

This value is always NULL.

• ACTION_STATEMENT

The trigger body; that is, the statement executed when the trigger activates. This text uses UTF-8
encoding.

• ACTION_ORIENTATION

This value is always ROW.

• ACTION_TIMING

Whether the trigger activates before or after the triggering event. The value is BEFORE or AFTER.

• ACTION_REFERENCE_OLD_TABLE

68

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_trigger
https://dev.mysql.com/doc/refman/8.0/en/triggers.html

Example

This value is always NULL.

• ACTION_REFERENCE_NEW_TABLE

This value is always NULL.

• ACTION_REFERENCE_OLD_ROW and ACTION_REFERENCE_NEW_ROW

The old and new column identifiers, respectively. The ACTION_REFERENCE_OLD_ROW value is
always OLD and the ACTION_REFERENCE_NEW_ROW value is always NEW.

• CREATED

The date and time when the trigger was created. This is a TIMESTAMP(2) value (with a fractional
part in hundredths of seconds) for triggers.

• SQL_MODE

The SQL mode in effect when the trigger was created, and under which the trigger executes. For the
permitted values, see Server SQL Modes.

• DEFINER

The account named in the DEFINER clause (often the user who created the trigger), in
'user_name'@'host_name' format.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the trigger was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the trigger was created.

• DATABASE_COLLATION

The collation of the database with which the trigger is associated.

Example

The following example uses the ins_sum trigger defined in Using Triggers:

mysql> SELECT * FROM INFORMATION_SCHEMA.TRIGGERS
 WHERE TRIGGER_SCHEMA='test' AND TRIGGER_NAME='ins_sum'\G
*************************** 1. row ***************************
 TRIGGER_CATALOG: def
 TRIGGER_SCHEMA: test
 TRIGGER_NAME: ins_sum
 EVENT_MANIPULATION: INSERT
 EVENT_OBJECT_CATALOG: def
 EVENT_OBJECT_SCHEMA: test
 EVENT_OBJECT_TABLE: account
 ACTION_ORDER: 1
 ACTION_CONDITION: NULL
 ACTION_STATEMENT: SET @sum = @sum + NEW.amount
 ACTION_ORIENTATION: ROW
 ACTION_TIMING: BEFORE
ACTION_REFERENCE_OLD_TABLE: NULL
ACTION_REFERENCE_NEW_TABLE: NULL
 ACTION_REFERENCE_OLD_ROW: OLD
 ACTION_REFERENCE_NEW_ROW: NEW
 CREATED: 2018-08-08 10:10:12.61
 SQL_MODE: ONLY_FULL_GROUP_BY,STRICT_TRANS_TABLES,
 NO_ZERO_IN_DATE,NO_ZERO_DATE,
 ERROR_FOR_DIVISION_BY_ZERO,

69

https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/triggers.html

The INFORMATION_SCHEMA USER_ATTRIBUTES Table

 NO_ENGINE_SUBSTITUTION
 DEFINER: me@localhost
 CHARACTER_SET_CLIENT: utf8mb4
 COLLATION_CONNECTION: utf8mb4_0900_ai_ci
 DATABASE_COLLATION: utf8mb4_0900_ai_ci

Trigger information is also available from the SHOW TRIGGERS statement. See SHOW TRIGGERS
Statement.

4.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table
The USER_ATTRIBUTES table (available as of MySQL 8.0.21) provides information about user
comments and user attributes. It takes its values from the mysql.user system table.

The USER_ATTRIBUTES table has these columns:

• USER

The user name portion of the account to which the ATTRIBUTE column value applies.

• HOST

The host name portion of the account to which the ATTRIBUTE column value applies.

• ATTRIBUTE

The user comment, user attribute, or both belonging to the account specified by the USER and HOST
columns. The value is in JSON object notation. Attributes are shown exactly as set using CREATE
USER and ALTER USER statements with ATTRIBUTE or COMMENT options. A comment is shown as
a key-value pair having comment as the key. For additional information and examples, see CREATE
USER Comment and Attribute Options.

Notes

• USER_ATTRIBUTES is a nonstandard INFORMATION_SCHEMA table.

• To obtain only the user comment for a given user as an unquoted string, you can employ a query
such as this one:

mysql> SELECT ATTRIBUTE->>"$.comment" AS Comment
 -> FROM INFORMATION_SCHEMA.USER_ATTRIBUTES
 -> WHERE USER='bill' AND HOST='localhost';
+-----------+
| Comment |
+-----------+
| A comment |
+-----------+

Similarly, you can obtain the unquoted value for a given user attribute using its key.

• Prior to MySQL 8.0.22, USER_ATTRIBUTES contents are accessible by anyone. As of MySQL
8.0.22, USER_ATTRIBUTES contents are accessible as follows:

• All rows are accessible if:

• The current thread is a replica thread.

• The access control system has not been initialized (for example, the server was started with the
--skip-grant-tables option).

• The currently authenticated account has the UPDATE or SELECT privilege for the mysql.user
system table.

• The currently authenticated account has the CREATE USER and SYSTEM_USER privileges.

70

https://dev.mysql.com/doc/refman/8.0/en/show-triggers.html
https://dev.mysql.com/doc/refman/8.0/en/show-triggers.html
https://dev.mysql.com/doc/refman/8.0/en/show-triggers.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-comments-attributes
https://dev.mysql.com/doc/refman/8.0/en/create-user.html#create-user-comments-attributes
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_select
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user

The INFORMATION_SCHEMA USER_PRIVILEGES Table

• Otherwise, the currently authenticated account can see the row for that account. Additionally, if the
account has the CREATE USER privilege but not the SYSTEM_USER privilege, it can see rows for
all other accounts that do not have the SYSTEM_USER privilege.

For more information about specifying account comments and attributes, see CREATE USER
Statement.

4.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table

The USER_PRIVILEGES table provides information about global privileges. It takes its values from the
mysql.user system table.

The USER_PRIVILEGES table has these columns:

• GRANTEE

The name of the account to which the privilege is granted, in 'user_name'@'host_name' format.

• TABLE_CATALOG

The name of the catalog. This value is always def.

• PRIVILEGE_TYPE

The privilege granted. The value can be any privilege that can be granted at the global level; see
GRANT Statement. Each row lists a single privilege, so there is one row per global privilege held by
the grantee.

• IS_GRANTABLE

YES if the user has the GRANT OPTION privilege, NO otherwise. The output does not list GRANT
OPTION as a separate row with PRIVILEGE_TYPE='GRANT OPTION'.

Notes

• USER_PRIVILEGES is a nonstandard INFORMATION_SCHEMA table.

The following statements are not equivalent:

SELECT ... FROM INFORMATION_SCHEMA.USER_PRIVILEGES
SHOW GRANTS ...

4.48 The INFORMATION_SCHEMA VIEWS Table

The VIEWS table provides information about views in databases. You must have the SHOW VIEW
privilege to access this table.

The VIEWS table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

• TABLE_NAME

The name of the view.

71

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_system-user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_grant-option
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_show-view

Notes

• VIEW_DEFINITION

The SELECT statement that provides the definition of the view. This column has most of what you
see in the Create Table column that SHOW CREATE VIEW produces. Skip the words before
SELECT and skip the words WITH CHECK OPTION. Suppose that the original statement was:

CREATE VIEW v AS
 SELECT s2,s1 FROM t
 WHERE s1 > 5
 ORDER BY s1
 WITH CHECK OPTION;

Then the view definition looks like this:

SELECT s2,s1 FROM t WHERE s1 > 5 ORDER BY s1

• CHECK_OPTION

The value of the CHECK_OPTION attribute. The value is one of NONE, CASCADE, or LOCAL.

• IS_UPDATABLE

MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES
(true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is
set to NO (false). The IS_UPDATABLE column in the VIEWS table displays the status of this flag. It
means that the server always knows whether a view is updatable.

If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are
rejected. (Even if a view is updatable, it might not be possible to insert into it; for details, refer to
Updatable and Insertable Views.)

• DEFINER

The account of the user who created the view, in 'user_name'@'host_name' format.

• SECURITY_TYPE

The view SQL SECURITY characteristic. The value is one of DEFINER or INVOKER.

• CHARACTER_SET_CLIENT

The session value of the character_set_client system variable when the view was created.

• COLLATION_CONNECTION

The session value of the collation_connection system variable when the view was created.

Notes

MySQL permits different sql_mode settings to tell the server the type of SQL syntax to support.
For example, you might use the ANSI SQL mode to ensure MySQL correctly interprets the standard
SQL concatenation operator, the double bar (||), in your queries. If you then create a view that
concatenates items, you might worry that changing the sql_mode setting to a value different from
ANSI could cause the view to become invalid. But this is not the case. No matter how you write out a
view definition, MySQL always stores it the same way, in a canonical form. Here is an example that
shows how the server changes a double bar concatenation operator to a CONCAT() function:

mysql> SET sql_mode = 'ANSI';
Query OK, 0 rows affected (0.00 sec)
mysql> CREATE VIEW test.v AS SELECT 'a' || 'b' as col1;
Query OK, 0 rows affected (0.00 sec)
mysql> SELECT VIEW_DEFINITION FROM INFORMATION_SCHEMA.VIEWS
 WHERE TABLE_SCHEMA = 'test' AND TABLE_NAME = 'v';
+----------------------------------+

72

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show-create-view.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/create-view.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/view-updatability.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_collation_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_concat

The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table

| VIEW_DEFINITION |
+----------------------------------+
| select concat('a','b') AS `col1` |
+----------------------------------+
1 row in set (0.00 sec)

The advantage of storing a view definition in canonical form is that changes made later to the value
of sql_mode do not affect the results from the view. However, an additional consequence is that
comments prior to SELECT are stripped from the definition by the server.

4.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table
The VIEW_ROUTINE_USAGE table (available as of MySQL 8.0.13) provides access to information
about stored functions used in view definitions. The table does not list information about built-in (native)
functions or loadable functions used in the definitions.

You can see information only for views for which you have some privilege, and only for functions for
which you have some privilege.

The VIEW_ROUTINE_USAGE table has these columns:

• TABLE_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• TABLE_SCHEMA

The name of the schema (database) to which the view belongs.

• TABLE_NAME

The name of the view.

• SPECIFIC_CATALOG

The name of the catalog to which the function used in the view definition belongs. This value is
always def.

• SPECIFIC_SCHEMA

The name of the schema (database) to which the function used in the view definition belongs.

• SPECIFIC_NAME

The name of the function used in the view definition.

4.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table
The VIEW_TABLE_USAGE table (available as of MySQL 8.0.13) provides access to information about
tables and views used in view definitions.

You can see information only for views for which you have some privilege, and only for tables for which
you have some privilege.

The VIEW_TABLE_USAGE table has these columns:

• VIEW_CATALOG

The name of the catalog to which the view belongs. This value is always def.

• VIEW_SCHEMA

The name of the schema (database) to which the view belongs.

73

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_sql_mode
https://dev.mysql.com/doc/refman/8.0/en/select.html

The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table

• VIEW_NAME

The name of the view.

• TABLE_CATALOG

The name of the catalog to which the table or view used in the view definition belongs. This value is
always def.

• TABLE_SCHEMA

The name of the schema (database) to which the table or view used in the view definition belongs.

• TABLE_NAME

The name of the table or view used in the view definition.

74

Chapter 5 INFORMATION_SCHEMA InnoDB Tables

Table of Contents
5.1 INFORMATION_SCHEMA InnoDB Table Reference ... 75
5.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table ... 77
5.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table 80
5.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table 84
5.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table 87
5.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables 87
5.7 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables .. 89
5.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables ... 90
5.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table .. 92
5.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table ... 93
5.11 The INFORMATION_SCHEMA INNODB_FIELDS Table ... 94
5.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table .. 94
5.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table ... 95
5.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table 96
5.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table .. 96
5.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table 97
5.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table .. 98
5.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table 99
5.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table 101
5.20 The INFORMATION_SCHEMA INNODB_INDEXES Table ... 102
5.21 The INFORMATION_SCHEMA INNODB_METRICS Table .. 103
5.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table 105
5.23 The INFORMATION_SCHEMA INNODB_TABLES Table .. 106
5.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table ... 108
5.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table 110
5.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View ... 111
5.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table 112
5.28 The INFORMATION_SCHEMA INNODB_TRX Table .. 113
5.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table ... 116

This section provides table definitions for INFORMATION_SCHEMA InnoDB tables. For related
information and examples, see InnoDB INFORMATION_SCHEMA Tables.

INFORMATION_SCHEMA InnoDB tables can be used to monitor ongoing InnoDB activity, to detect
inefficiencies before they turn into issues, or to troubleshoot performance and capacity issues. As your
database becomes bigger and busier, running up against the limits of your hardware capacity, you
monitor and tune these aspects to keep the database running smoothly.

5.1 INFORMATION_SCHEMA InnoDB Table Reference
The following table summarizes INFORMATION_SCHEMA InnoDB tables. For greater detail, see the
individual table descriptions.

Table 5.1 INFORMATION_SCHEMA InnoDB Tables

Table Name Description Introduced

INNODB_BUFFER_PAGE Pages in InnoDB buffer pool

INNODB_BUFFER_PAGE_LRU LRU ordering of pages in InnoDB
buffer pool

INNODB_BUFFER_POOL_STATS InnoDB buffer pool statistics

75

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema.html

INFORMATION_SCHEMA InnoDB Table Reference

Table Name Description Introduced

INNODB_CACHED_INDEXES Number of index pages cached
per index in InnoDB buffer pool

INNODB_CMP Status for operations related to
compressed InnoDB tables

INNODB_CMP_PER_INDEX Status for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_PER_INDEX_RESETStatus for operations related to
compressed InnoDB tables and
indexes

INNODB_CMP_RESET Status for operations related to
compressed InnoDB tables

INNODB_CMPMEM Status for compressed pages
within InnoDB buffer pool

INNODB_CMPMEM_RESET Status for compressed pages
within InnoDB buffer pool

INNODB_COLUMNS Columns in each InnoDB table

INNODB_DATAFILES Data file path information for
InnoDB file-per-table and general
tablespaces

INNODB_FIELDS Key columns of InnoDB indexes

INNODB_FOREIGN InnoDB foreign-key metadata

INNODB_FOREIGN_COLS InnoDB foreign-key column
status information

INNODB_FT_BEING_DELETED Snapshot of
INNODB_FT_DELETED table

INNODB_FT_CONFIG Metadata for InnoDB table
FULLTEXT index and associated
processing

INNODB_FT_DEFAULT_STOPWORDDefault list of stopwords for
InnoDB FULLTEXT indexes

INNODB_FT_DELETED Rows deleted from InnoDB table
FULLTEXT index

INNODB_FT_INDEX_CACHE Token information for newly
inserted rows in InnoDB
FULLTEXT index

INNODB_FT_INDEX_TABLE Inverted index information for
processing text searches against
InnoDB table FULLTEXT index

INNODB_INDEXES InnoDB index metadata

INNODB_METRICS InnoDB performance information

INNODB_SESSION_TEMP_TABLESPACESSession temporary-tablespace
metadata

8.0.13

INNODB_TABLES InnoDB table metadata

INNODB_TABLESPACES InnoDB file-per-table, general,
and undo tablespace metadata

76

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Table Name Description Introduced

INNODB_TABLESPACES_BRIEF Brief file-per-table, general,
undo, and system tablespace
metadata

INNODB_TABLESTATS InnoDB table low-level status
information

INNODB_TEMP_TABLE_INFO Information about active user-
created InnoDB temporary tables

INNODB_TRX Active InnoDB transaction
information

INNODB_VIRTUAL InnoDB virtual generated column
metadata

5.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
The INNODB_BUFFER_PAGE table provides information about each page in the InnoDB buffer pool.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Buffer Pool
Tables.

Warning

Querying the INNODB_BUFFER_PAGE table can affect performance. Do
not query this table on a production system unless you are aware of the
performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• BLOCK_ID

The buffer pool block ID.

• SPACE

The tablespace ID; the same value as INNODB_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 5.2 INNODB_BUFFER_PAGE.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

77

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_buffer_pool
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

Page Type Description

ENCRYPTED_RTREE Encrypted R-tree

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

FIL_PAGE_TYPE_UNUSED Unused

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

LOB_DATA Uncompressed LOB data

LOB_FIRST First page of uncompressed LOB

LOB_INDEX Uncompressed LOB index

PAGE_IO_COMPRESSED Compressed page

PAGE_IO_COMPRESSED_ENCRYPTED Compressed and encrypted page

PAGE_IO_ENCRYPTED Encrypted page

RSEG_ARRAY Rollback segment array

RTREE_INDEX R-tree index

SDI_BLOB Uncompressed SDI BLOB

SDI_COMPRESSED_BLOB Compressed SDI BLOB

SDI_INDEX SDI index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

ZLOB_DATA Compressed LOB data

ZLOB_FIRST First page of compressed LOB

ZLOB_FRAG Compressed LOB fragment

ZLOB_FRAG_ENTRY Compressed LOB fragment index

ZLOB_INDEX Compressed LOB index

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

78

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a
PAGE_TYPE value of INDEX. The column is NULL if the server has not yet accessed the table.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a
secondary index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

• PAGE_STATE

The page state. The following table shows the permitted values.

Table 5.3 INNODB_BUFFER_PAGE.PAGE_STATE Values

Page State Description

FILE_PAGE A buffered file page

MEMORY Contains a main memory object

NOT_USED In the free list

NULL Clean compressed pages, compressed pages
in the flush list, pages used as buffer pool watch
sentinels

READY_FOR_USE A free page

REMOVE_HASH Hash index should be removed before placing in
the free list

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending, IO_PIN = relocation and removal from the flush not permitted.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

79

Example

• IS_STALE

Whether the page is stale. Added in MySQL 8.0.24.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 BLOCK_ID: 0
 SPACE: 97
 PAGE_NUMBER: 2473
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 733855581
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378385672
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 PAGE_STATE: FILE_PAGE
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 66
 IS_STALE: NO

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the buffer
pool until space is required for other data. The INNODB_BUFFER_PAGE table reports information
about these pages until they are evicted from the buffer pool. For more information about how the
InnoDB manages buffer pool data, see Buffer Pool.

5.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU
Table

The INNODB_BUFFER_PAGE_LRU table provides information about the pages in the InnoDB buffer
pool; in particular, how they are ordered in the LRU list that determines which pages to evict from the
buffer pool when it becomes full.

The INNODB_BUFFER_PAGE_LRU table has the same columns as the INNODB_BUFFER_PAGE table
with a few exceptions. It has LRU_POSITION and COMPRESSED columns instead of BLOCK_ID and
PAGE_STATE columns, and it does not include and IS_STALE column.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Buffer Pool
Tables.

Warning

Querying the INNODB_BUFFER_PAGE_LRU table can affect performance.
Do not query this table on a production system unless you are aware of

80

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_buffer_pool
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_buffer_pool
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_eviction
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

the performance impact and have determined it to be acceptable. To avoid
impacting performance on a production system, reproduce the issue you want
to investigate and query buffer pool statistics on a test instance.

The INNODB_BUFFER_PAGE_LRU table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• LRU_POSITION

The position of the page in the LRU list.

• SPACE

The tablespace ID; the same value as INNODB_TABLES.SPACE.

• PAGE_NUMBER

The page number.

• PAGE_TYPE

The page type. The following table shows the permitted values.

Table 5.4 INNODB_BUFFER_PAGE_LRU.PAGE_TYPE Values

Page Type Description

ALLOCATED Freshly allocated page

BLOB Uncompressed BLOB page

COMPRESSED_BLOB2 Subsequent comp BLOB page

COMPRESSED_BLOB First compressed BLOB page

ENCRYPTED_RTREE Encrypted R-tree

EXTENT_DESCRIPTOR Extent descriptor page

FILE_SPACE_HEADER File space header

FIL_PAGE_TYPE_UNUSED Unused

IBUF_BITMAP Insert buffer bitmap

IBUF_FREE_LIST Insert buffer free list

IBUF_INDEX Insert buffer index

INDEX B-tree node

INODE Index node

LOB_DATA Uncompressed LOB data

LOB_FIRST First page of uncompressed LOB

LOB_INDEX Uncompressed LOB index

PAGE_IO_COMPRESSED Compressed page

PAGE_IO_COMPRESSED_ENCRYPTED Compressed and encrypted page

PAGE_IO_ENCRYPTED Encrypted page

RSEG_ARRAY Rollback segment array

RTREE_INDEX R-tree index

SDI_BLOB Uncompressed SDI BLOB

SDI_COMPRESSED_BLOB Compressed SDI BLOB

81

The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table

Page Type Description

SDI_INDEX SDI index

SYSTEM System page

TRX_SYSTEM Transaction system data

UNDO_LOG Undo log page

UNKNOWN Unknown

ZLOB_DATA Compressed LOB data

ZLOB_FIRST First page of compressed LOB

ZLOB_FRAG Compressed LOB fragment

ZLOB_FRAG_ENTRY Compressed LOB fragment index

ZLOB_INDEX Compressed LOB index

• FLUSH_TYPE

The flush type.

• FIX_COUNT

The number of threads using this block within the buffer pool. When zero, the block is eligible to be
evicted.

• IS_HASHED

Whether a hash index has been built on this page.

• NEWEST_MODIFICATION

The Log Sequence Number of the youngest modification.

• OLDEST_MODIFICATION

The Log Sequence Number of the oldest modification.

• ACCESS_TIME

An abstract number used to judge the first access time of the page.

• TABLE_NAME

The name of the table the page belongs to. This column is applicable only to pages with a
PAGE_TYPE value of INDEX. The column is NULL if the server has not yet accessed the table.

• INDEX_NAME

The name of the index the page belongs to. This can be the name of a clustered index or a
secondary index. This column is applicable only to pages with a PAGE_TYPE value of INDEX.

• NUMBER_RECORDS

The number of records within the page.

• DATA_SIZE

The sum of the sizes of the records. This column is applicable only to pages with a PAGE_TYPE
value of INDEX.

• COMPRESSED_SIZE

The compressed page size. NULL for pages that are not compressed.

82

Example

• COMPRESSED

Whether the page is compressed.

• IO_FIX

Whether any I/O is pending for this page: IO_NONE = no pending I/O, IO_READ = read pending,
IO_WRITE = write pending.

• IS_OLD

Whether the block is in the sublist of old blocks in the LRU list.

• FREE_PAGE_CLOCK

The value of the freed_page_clock counter when the block was the last placed at the head of the
LRU list. The freed_page_clock counter tracks the number of blocks removed from the end of the
LRU list.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_PAGE_LRU LIMIT 1\G
*************************** 1. row ***************************
 POOL_ID: 0
 LRU_POSITION: 0
 SPACE: 97
 PAGE_NUMBER: 1984
 PAGE_TYPE: INDEX
 FLUSH_TYPE: 1
 FIX_COUNT: 0
 IS_HASHED: YES
NEWEST_MODIFICATION: 719490396
OLDEST_MODIFICATION: 0
 ACCESS_TIME: 3378383796
 TABLE_NAME: `employees`.`salaries`
 INDEX_NAME: PRIMARY
 NUMBER_RECORDS: 468
 DATA_SIZE: 14976
 COMPRESSED_SIZE: 0
 COMPRESSED: NO
 IO_FIX: IO_NONE
 IS_OLD: YES
 FREE_PAGE_CLOCK: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Querying this table can require MySQL to allocate a large block of contiguous memory, more than 64
bytes times the number of active pages in the buffer pool. This allocation could potentially cause an
out-of-memory error, especially for systems with multi-gigabyte buffer pools.

• Querying this table requires MySQL to lock the data structure representing the buffer pool while
traversing the LRU list, which can reduce concurrency, especially for systems with multi-gigabyte
buffer pools.

• When tables, table rows, partitions, or indexes are deleted, associated pages remain in the
buffer pool until space is required for other data. The INNODB_BUFFER_PAGE_LRU table reports
information about these pages until they are evicted from the buffer pool. For more information about
how the InnoDB manages buffer pool data, see Buffer Pool.

83

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-buffer-pool.html

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

5.4 The INFORMATION_SCHEMA
INNODB_BUFFER_POOL_STATS Table

The INNODB_BUFFER_POOL_STATS table provides much of the same buffer pool information provided
in SHOW ENGINE INNODB STATUS output. Much of the same information may also be obtained using
InnoDB buffer pool server status variables.

The idea of making pages in the buffer pool “young” or “not young” refers to transferring them between
the sublists at the head and tail of the buffer pool data structure. Pages made “young” take longer
to age out of the buffer pool, while pages made “not young” are moved much closer to the point of
eviction.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Buffer Pool
Tables.

The INNODB_BUFFER_POOL_STATS table has these columns:

• POOL_ID

The buffer pool ID. This is an identifier to distinguish between multiple buffer pool instances.

• POOL_SIZE

The InnoDB buffer pool size in pages.

• FREE_BUFFERS

The number of free pages in the InnoDB buffer pool.

• DATABASE_PAGES

The number of pages in the InnoDB buffer pool containing data. This number includes both dirty and
clean pages.

• OLD_DATABASE_PAGES

The number of pages in the old buffer pool sublist.

• MODIFIED_DATABASE_PAGES

The number of modified (dirty) database pages.

• PENDING_DECOMPRESS

The number of pages pending decompression.

• PENDING_READS

The number of pending reads.

• PENDING_FLUSH_LRU

The number of pages pending flush in the LRU.

• PENDING_FLUSH_LIST

The number of pages pending flush in the flush list.

• PAGES_MADE_YOUNG

The number of pages made young.

• PAGES_NOT_MADE_YOUNG

84

https://dev.mysql.com/doc/refman/8.0/en/show-engine.html
https://dev.mysql.com/doc/refman/8.0/en/server-status-variables.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_sublist
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_eviction
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html

The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table

The number of pages not made young.

• PAGES_MADE_YOUNG_RATE

The number of pages made young per second (pages made young since the last printout / time
elapsed).

• PAGES_MADE_NOT_YOUNG_RATE

The number of pages not made per second (pages not made young since the last printout / time
elapsed).

• NUMBER_PAGES_READ

The number of pages read.

• NUMBER_PAGES_CREATED

The number of pages created.

• NUMBER_PAGES_WRITTEN

The number of pages written.

• PAGES_READ_RATE

The number of pages read per second (pages read since the last printout / time elapsed).

• PAGES_CREATE_RATE

The number of pages created per second (pages created since the last printout / time elapsed).

• PAGES_WRITTEN_RATE

The number of pages written per second (pages written since the last printout / time elapsed).

• NUMBER_PAGES_GET

The number of logical read requests.

• HIT_RATE

The buffer pool hit rate.

• YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages made young per thousand gets.

• NOT_YOUNG_MAKE_PER_THOUSAND_GETS

The number of pages not made young per thousand gets.

• NUMBER_PAGES_READ_AHEAD

The number of pages read ahead.

• NUMBER_READ_AHEAD_EVICTED

The number of pages read into the InnoDB buffer pool by the read-ahead background thread that
were subsequently evicted without having been accessed by queries.

• READ_AHEAD_RATE

The read-ahead rate per second (pages read ahead since the last printout / time elapsed).

85

Example

• READ_AHEAD_EVICTED_RATE

The number of read-ahead pages evicted without access per second (read-ahead pages not
accessed since the last printout / time elapsed).

• LRU_IO_TOTAL

Total LRU I/O.

• LRU_IO_CURRENT

LRU I/O for the current interval.

• UNCOMPRESS_TOTAL

The total number of pages decompressed.

• UNCOMPRESS_CURRENT

The number of pages decompressed in the current interval.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_BUFFER_POOL_STATS\G
*************************** 1. row ***************************
 POOL_ID: 0
 POOL_SIZE: 8192
 FREE_BUFFERS: 1
 DATABASE_PAGES: 8085
 OLD_DATABASE_PAGES: 2964
 MODIFIED_DATABASE_PAGES: 0
 PENDING_DECOMPRESS: 0
 PENDING_READS: 0
 PENDING_FLUSH_LRU: 0
 PENDING_FLUSH_LIST: 0
 PAGES_MADE_YOUNG: 22821
 PAGES_NOT_MADE_YOUNG: 3544303
 PAGES_MADE_YOUNG_RATE: 357.62602199870594
 PAGES_MADE_NOT_YOUNG_RATE: 0
 NUMBER_PAGES_READ: 2389
 NUMBER_PAGES_CREATED: 12385
 NUMBER_PAGES_WRITTEN: 13111
 PAGES_READ_RATE: 0
 PAGES_CREATE_RATE: 0
 PAGES_WRITTEN_RATE: 0
 NUMBER_PAGES_GET: 33322210
 HIT_RATE: 1000
 YOUNG_MAKE_PER_THOUSAND_GETS: 18
NOT_YOUNG_MAKE_PER_THOUSAND_GETS: 0
 NUMBER_PAGES_READ_AHEAD: 2024
 NUMBER_READ_AHEAD_EVICTED: 0
 READ_AHEAD_RATE: 0
 READ_AHEAD_EVICTED_RATE: 0
 LRU_IO_TOTAL: 0
 LRU_IO_CURRENT: 0
 UNCOMPRESS_TOTAL: 0
 UNCOMPRESS_CURRENT: 0

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

86

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table

5.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES
Table

The INNODB_CACHED_INDEXES table reports the number of index pages cached in the InnoDB buffer
pool for each index.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Buffer Pool
Tables.

The INNODB_CACHED_INDEXES table has these columns:

• SPACE_ID

The tablespace ID.

• INDEX_ID

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• N_CACHED_PAGES

The total number of index pages cached in the InnoDB buffer pool for a specific index since MySQL
Server last started.

Examples

This query returns the number of index pages cached in the InnoDB buffer pool for a specific index:

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CACHED_INDEXES WHERE INDEX_ID=65\G
*************************** 1. row ***************************
 SPACE_ID: 4294967294
 INDEX_ID: 65
N_CACHED_PAGES: 45

This query returns the number of index pages cached in the InnoDB buffer pool for each index, using
the INNODB_INDEXES and INNODB_TABLES tables to resolve the table name and index name for
each INDEX_ID value.

SELECT
 tables.NAME AS table_name,
 indexes.NAME AS index_name,
 cached.N_CACHED_PAGES AS n_cached_pages
FROM
 INFORMATION_SCHEMA.INNODB_CACHED_INDEXES AS cached,
 INFORMATION_SCHEMA.INNODB_INDEXES AS indexes,
 INFORMATION_SCHEMA.INNODB_TABLES AS tables
WHERE
 cached.INDEX_ID = indexes.INDEX_ID
 AND indexes.TABLE_ID = tables.TABLE_ID;

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.6 The INFORMATION_SCHEMA INNODB_CMP and
INNODB_CMP_RESET Tables

The INNODB_CMP and INNODB_CMP_RESET tables provide status information on operations related to
compressed InnoDB tables.

87

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-buffer-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression

Example

The INNODB_CMP and INNODB_CMP_RESET tables have these columns:

• PAGE_SIZE

The compressed page size in bytes.

• COMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been compressed. Pages are
compressed whenever an empty page is created or the space for the uncompressed modification log
runs out.

• COMPRESS_OPS_OK

The number of times a B-tree page of size PAGE_SIZE has been successfully compressed. This
count should never exceed COMPRESS_OPS.

• COMPRESS_TIME

The total time in seconds used for attempts to compress B-tree pages of size PAGE_SIZE.

• UNCOMPRESS_OPS

The number of times a B-tree page of size PAGE_SIZE has been uncompressed. B-tree pages are
uncompressed whenever compression fails or at first access when the uncompressed page does not
exist in the buffer pool.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing B-tree pages of the size PAGE_SIZE.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP\G
*************************** 1. row ***************************
 page_size: 1024
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 2. row ***************************
 page_size: 2048
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 3. row ***************************
 page_size: 4096
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0
uncompress_time: 0
*************************** 4. row ***************************
 page_size: 8192
 compress_ops: 86955
compress_ops_ok: 81182
 compress_time: 27
 uncompress_ops: 26828
uncompress_time: 5
*************************** 5. row ***************************
 page_size: 16384
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 0

88

Notes

uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Monitoring InnoDB Table Compression at Runtime and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see InnoDB Table and Page Compression.

5.7 The INFORMATION_SCHEMA INNODB_CMPMEM and
INNODB_CMPMEM_RESET Tables

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables provide status information on compressed
pages within the InnoDB buffer pool.

The INNODB_CMPMEM and INNODB_CMPMEM_RESET tables have these columns:

• PAGE_SIZE

The block size in bytes. Each record of this table describes blocks of this size.

• BUFFER_POOL_INSTANCE

A unique identifier for the buffer pool instance.

• PAGES_USED

The number of blocks of size PAGE_SIZE that are currently in use.

• PAGES_FREE

The number of blocks of size PAGE_SIZE that are currently available for allocation. This column
shows the external fragmentation in the memory pool. Ideally, these numbers should be at most 1.

• RELOCATION_OPS

The number of times a block of size PAGE_SIZE has been relocated. The buddy system can relocate
the allocated “buddy neighbor” of a freed block when it tries to form a bigger freed block. Reading
from the INNODB_CMPMEM_RESET table resets this count.

• RELOCATION_TIME

The total time in microseconds used for relocating blocks of size PAGE_SIZE. Reading from the table
INNODB_CMPMEM_RESET resets this count.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMPMEM\G
*************************** 1. row ***************************
 page_size: 1024
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 2. row ***************************
 page_size: 2048

89

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-tuning-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_buffer_pool

Notes

buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 3. row ***************************
 page_size: 4096
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0
*************************** 4. row ***************************
 page_size: 8192
buffer_pool_instance: 0
 pages_used: 7673
 pages_free: 15
 relocation_ops: 4638
 relocation_time: 0
*************************** 5. row ***************************
 page_size: 16384
buffer_pool_instance: 0
 pages_used: 0
 pages_free: 0
 relocation_ops: 0
 relocation_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression in your database.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For usage information, see Monitoring InnoDB Table Compression at Runtime and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see InnoDB Table and Page Compression.

5.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and
INNODB_CMP_PER_INDEX_RESET Tables

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables provide status
information on operations related to compressed InnoDB tables and indexes, with separate statistics
for each combination of database, table, and index, to help you evaluate the performance and
usefulness of compression for specific tables.

For a compressed InnoDB table, both the table data and all the secondary indexes are compressed. In
this context, the table data is treated as just another index, one that happens to contain all the columns:
the clustered index.

The INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET tables have these columns:

• DATABASE_NAME

The schema (database) containing the applicable table.

• TABLE_NAME

The table to monitor for compression statistics.

• INDEX_NAME

The index to monitor for compression statistics.

90

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-tuning-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_secondary_index
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_clustered_index

Example

• COMPRESS_OPS

The number of compression operations attempted. Pages are compressed whenever an empty page
is created or the space for the uncompressed modification log runs out.

• COMPRESS_OPS_OK

The number of successful compression operations. Subtract from the COMPRESS_OPS value to get
the number of compression failures. Divide by the COMPRESS_OPS value to get the percentage of
compression failures.

• COMPRESS_TIME

The total time in seconds used for compressing data in this index.

• UNCOMPRESS_OPS

The number of uncompression operations performed. Compressed InnoDB pages are
uncompressed whenever compression fails, or the first time a compressed page is accessed in the
buffer pool and the uncompressed page does not exist.

• UNCOMPRESS_TIME

The total time in seconds used for uncompressing data in this index.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_CMP_PER_INDEX\G
*************************** 1. row ***************************
 database_name: employees
 table_name: salaries
 index_name: PRIMARY
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 23451
uncompress_time: 4
*************************** 2. row ***************************
 database_name: employees
 table_name: salaries
 index_name: emp_no
 compress_ops: 0
compress_ops_ok: 0
 compress_time: 0
 uncompress_ops: 1597
uncompress_time: 0

Notes

• Use these tables to measure the effectiveness of InnoDB table compression for specific tables,
indexes, or both.

• You must have the PROCESS privilege to query these tables.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of these tables, including data types and default values.

• Because collecting separate measurements for every index imposes substantial performance
overhead, INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET statistics are not
gathered by default. You must enable the innodb_cmp_per_index_enabled system variable
before performing the operations on compressed tables that you want to monitor.

• For usage information, see Monitoring InnoDB Table Compression at Runtime and Using the
Compression Information Schema Tables. For general information about InnoDB table compression,
see InnoDB Table and Page Compression.

91

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_page
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression_failure
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression_failure
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_buffer_pool
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_compression
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_cmp_per_index_enabled
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression-tuning-monitoring.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples-compression-sect.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-compression.html

The INFORMATION_SCHEMA INNODB_COLUMNS Table

5.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table
The INNODB_COLUMNS table provides metadata about InnoDB table columns.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_COLUMNS table has these columns:

• TABLE_ID

An identifier representing the table associated with the column; the same value as
INNODB_TABLES.TABLE_ID.

• NAME

The name of the column. These names can be uppercase or lowercase depending on the
lower_case_table_names setting. There are no special system-reserved names for columns.

• POS

The ordinal position of the column within the table, starting from 0 and incrementing sequentially.
When a column is dropped, the remaining columns are reordered so that the sequence has no gaps.
The POS value for a virtual generated column encodes the column sequence number and ordinal
position of the column. For more information, see the POS column description in Section 5.29, “The
INFORMATION_SCHEMA INNODB_VIRTUAL Table”.

• MTYPE

Stands for “main type”. A numeric identifier for the column type. 1 = VARCHAR, 2 = CHAR, 3 =
FIXBINARY, 4 = BINARY, 5 = BLOB, 6 = INT, 7 = SYS_CHILD, 8 = SYS, 9 = FLOAT, 10 = DOUBLE,
11 = DECIMAL, 12 = VARMYSQL, 13 = MYSQL, 14 = GEOMETRY.

• PRTYPE

The InnoDB “precise type”, a binary value with bits representing MySQL data type, character set
code, and nullability.

• LEN

The column length, for example 4 for INT and 8 for BIGINT. For character columns in multibyte
character sets, this length value is the maximum length in bytes needed to represent a definition
such as VARCHAR(N); that is, it might be 2*N, 3*N, and so on depending on the character encoding.

• HAS_DEFAULT

A boolean value indicating whether a column that was added instantly using ALTER TABLE ...
ADD COLUMN with ALGORITHM=INSTANT has a default value. All columns added instantly have a
default value, which makes this column an indicator of whether the column was added instantly.

• DEFAULT_VALUE

The initial default value of a column that was added instantly using ALTER TABLE ... ADD
COLUMN with ALGORITHM=INSTANT. If the default value is NULL or was not specified, this column
reports NULL. An explicitly specified non-NULL default value is shown in an internal binary format.
Subsequent modifications of the column default value do not change the value reported by this
column.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_COLUMNS where TABLE_ID = 71\G
*************************** 1. row ***************************

92

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html

Notes

 TABLE_ID: 71
 NAME: col1
 POS: 0
 MTYPE: 6
 PRTYPE: 1027
 LEN: 4
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 2. row ***************************
 TABLE_ID: 71
 NAME: col2
 POS: 1
 MTYPE: 2
 PRTYPE: 524542
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL
*************************** 3. row ***************************
 TABLE_ID: 71
 NAME: col3
 POS: 2
 MTYPE: 1
 PRTYPE: 524303
 LEN: 10
 HAS_DEFAULT: 0
DEFAULT_VALUE: NULL

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table
The INNODB_DATAFILES table provides data file path information for InnoDB file-per-table and
general tablespaces.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

Note

The INFORMATION_SCHEMA FILES table reports metadata for InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the global temporary tablespace, and undo tablespaces.

The INNODB_DATAFILES table has these columns:

• SPACE

The tablespace ID.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the
MySQL data directory, the path value is a fully qualified directory path. Otherwise, the path is relative
to the data directory.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_DATAFILES WHERE SPACE = 57\G
*************************** 1. row ***************************
SPACE: 57
 PATH: ./test/t1.ibd

93

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table

Notes

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.11 The INFORMATION_SCHEMA INNODB_FIELDS Table
The INNODB_FIELDS table provides metadata about the key columns (fields) of InnoDB indexes.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_FIELDS table has these columns:

• INDEX_ID

An identifier for the index associated with this key field; the same value as
INNODB_INDEXES.INDEX_ID.

• NAME

The name of the original column from the table; the same value as INNODB_COLUMNS.NAME.

• POS

The ordinal position of the key field within the index, starting from 0 and incrementing sequentially.
When a column is dropped, the remaining columns are reordered so that the sequence has no gaps.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FIELDS WHERE INDEX_ID = 117\G
*************************** 1. row ***************************
INDEX_ID: 117
 NAME: col1
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table
The INNODB_FOREIGN table provides metadata about InnoDB foreign keys.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_FOREIGN table has these columns:

• ID

The name (not a numeric value) of the foreign key index, preceded by the schema (database) name
(for example, test/products_fk).

• FOR_NAME

The name of the child table in this foreign key relationship.

94

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_foreign_key
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_child_table

Example

• REF_NAME

The name of the parent table in this foreign key relationship.

• N_COLS

The number of columns in the foreign key index.

• TYPE

A collection of bit flags with information about the foreign key column, ORed together. 0 = ON
DELETE/UPDATE RESTRICT, 1 = ON DELETE CASCADE, 2 = ON DELETE SET NULL, 4 = ON
UPDATE CASCADE, 8 = ON UPDATE SET NULL, 16 = ON DELETE NO ACTION, 32 = ON UPDATE
NO ACTION.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN\G
*************************** 1. row ***************************
 ID: test/fk1
FOR_NAME: test/child
REF_NAME: test/parent
 N_COLS: 1
 TYPE: 1

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS
Table

The INNODB_FOREIGN_COLS table provides status information about InnoDB foreign key columns.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_FOREIGN_COLS table has these columns:

• ID

The foreign key index associated with this index key field; the same value as INNODB_FOREIGN.ID.

• FOR_COL_NAME

The name of the associated column in the child table.

• REF_COL_NAME

The name of the associated column in the parent table.

• POS

The ordinal position of this key field within the foreign key index, starting from 0.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FOREIGN_COLS WHERE ID = 'test/fk1'\G
*************************** 1. row ***************************
 ID: test/fk1

95

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_parent_table
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html

Notes

FOR_COL_NAME: parent_id
REF_COL_NAME: id
 POS: 0

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED
Table

The INNODB_FT_BEING_DELETED table provides a snapshot of the INNODB_FT_DELETED table;
it is used only during an OPTIMIZE TABLE maintenance operation. When OPTIMIZE TABLE is
run, the INNODB_FT_BEING_DELETED table is emptied, and DOC_ID values are removed from the
INNODB_FT_DELETED table. Because the contents of INNODB_FT_BEING_DELETED typically have
a short lifetime, this table has limited utility for monitoring or debugging. For information about running
OPTIMIZE TABLE on tables with FULLTEXT indexes, see Fine-Tuning MySQL Full-Text Search.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index (for example, test/articles). The output appears similar to the example provided for the
INNODB_FT_DELETED table.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

The INNODB_FT_BEING_DELETED table has these columns:

• DOC_ID

The document ID of the row that is in the process of being deleted. This value might reflect the value
of an ID column that you defined for the underlying table, or it can be a sequence value generated
by InnoDB when the table contains no suitable column. This value is used when you perform
text searches, to skip rows in the INNODB_FT_INDEX_TABLE table before data for deleted rows
is physically removed from the FULLTEXT index by an OPTIMIZE TABLE statement. For more
information, see Optimizing InnoDB Full-Text Indexes.

Notes

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• You must have the PROCESS privilege to query this table.

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
The INNODB_FT_CONFIG table provides metadata about the FULLTEXT index and associated
processing for an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

96

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html#fulltext-optimize
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html

Example

The INNODB_FT_CONFIG table has these columns:

• KEY

The name designating an item of metadata for an InnoDB table containing a FULLTEXT index.

The values for this column might change, depending on the needs for performance tuning and
debugging for InnoDB full-text processing. The key names and their meanings include:

• optimize_checkpoint_limit: The number of seconds after which an OPTIMIZE TABLE run
stops.

• synced_doc_id: The next DOC_ID to be issued.

• stopword_table_name: The database/table name for a user-defined stopword table. The
VALUE column is empty if there is no user-defined stopword table.

• use_stopword: Indicates whether a stopword table is used, which is defined when the
FULLTEXT index is created.

• VALUE

The value associated with the corresponding KEY column, reflecting some limit or current value for
an aspect of a FULLTEXT index for an InnoDB table.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_CONFIG;
+---------------------------+-------------------+
| KEY | VALUE |
+---------------------------+-------------------+
optimize_checkpoint_limit	180
synced_doc_id	0
stopword_table_name	test/my_stopwords
use_stopword	1
+---------------------------+-------------------+

Notes

• This table is intended only for internal configuration. It is not intended for statistical information
purposes.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.16 The INFORMATION_SCHEMA
INNODB_FT_DEFAULT_STOPWORD Table

The INNODB_FT_DEFAULT_STOPWORD table holds a list of stopwords that are used by default when
creating a FULLTEXT index on InnoDB tables. For information about the default InnoDB stopword list
and how to define your own stopword lists, see Full-Text Stopwords.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

The INNODB_FT_DEFAULT_STOPWORD table has these columns:

97

https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_stopword
https://dev.mysql.com/doc/refman/8.0/en/fulltext-stopwords.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html

Example

• value

A word that is used by default as a stopword for FULLTEXT indexes on InnoDB
tables. This is not used if you override the default stopword processing with either the
innodb_ft_server_stopword_table or the innodb_ft_user_stopword_table system
variable.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DEFAULT_STOPWORD;
+-------+
| value |
+-------+
| a |
| about |
| an |
| are |
| as |
| at |
| be |
| by |
| com |
| de |
| en |
| for |
| from |
| how |
| i |
| in |
| is |
| it |
| la |
| of |
| on |
| or |
| that |
| the |
| this |
| to |
| was |
| what |
| when |
| where |
| who |
| will |
| with |
| und |
| the |
| www |
+-------+
36 rows in set (0.00 sec)

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
The INNODB_FT_DELETED table stores rows that are deleted from the FULLTEXT index for an
InnoDB table. To avoid expensive index reorganization during DML operations for an InnoDB
FULLTEXT index, the information about newly deleted words is stored separately, filtered out of search

98

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_server_stopword_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_user_stopword_table
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html

Example

results when you do a text search, and removed from the main search index only when you issue an
OPTIMIZE TABLE statement for the InnoDB table. For more information, see Optimizing InnoDB Full-
Text Indexes.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

The INNODB_FT_DELETED table has these columns:

• DOC_ID

The document ID of the newly deleted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column. This value is used when you perform text searches, to skip rows
in the INNODB_FT_INDEX_TABLE table before data for deleted rows is physically removed from the
FULLTEXT index by an OPTIMIZE TABLE statement. For more information, see Optimizing InnoDB
Full-Text Indexes.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_FT_DELETED;
+--------+
| DOC_ID |
+--------+
| 6 |
| 7 |
| 8 |
+--------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE
Table

The INNODB_FT_INDEX_CACHE table provides token information about newly inserted rows in a
FULLTEXT index. To avoid expensive index reorganization during DML operations, the information
about newly indexed words is stored separately, and combined with the main search index only when
OPTIMIZE TABLE is run, when the server is shut down, or when the cache size exceeds a limit
defined by the innodb_ft_cache_size or innodb_ft_total_cache_size system variable.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

The INNODB_FT_INDEX_CACHE table has these columns:

• WORD

99

https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html#fulltext-optimize
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html#fulltext-optimize
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html#fulltext-optimize
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html#fulltext-optimize
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_cache_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_total_cache_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html

Notes

A word extracted from the text of a newly inserted row.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the newly inserted row. This value might reflect the value of an ID column that
you defined for the underlying table, or it can be a sequence value generated by InnoDB when the
table contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the
DOC_ID value. The value does not represent an absolute position; it is an offset added to the
POSITION of the previous instance of that word.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index (for example test/articles). The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a
specified table.

mysql> USE test;
mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,
 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;
mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');
mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';
mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_CACHE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

100

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE
Table

The INNODB_FT_INDEX_TABLE table provides information about the inverted index used to process
text searches against the FULLTEXT index of an InnoDB table.

This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT index (for
example, test/articles).

For related usage information and examples, see InnoDB INFORMATION_SCHEMA FULLTEXT Index
Tables.

The INNODB_FT_INDEX_TABLE table has these columns:

• WORD

A word extracted from the text of the columns that are part of a FULLTEXT.

• FIRST_DOC_ID

The first document ID in which this word appears in the FULLTEXT index.

• LAST_DOC_ID

The last document ID in which this word appears in the FULLTEXT index.

• DOC_COUNT

The number of rows in which this word appears in the FULLTEXT index. The same word can occur
several times within the cache table, once for each combination of DOC_ID and POSITION values.

• DOC_ID

The document ID of the row containing the word. This value might reflect the value of an ID column
that you defined for the underlying table, or it can be a sequence value generated by InnoDB when
the table contains no suitable column.

• POSITION

The position of this particular instance of the word within the relevant document identified by the
DOC_ID value.

Notes

• This table is empty initially. Before querying it, set the value of the innodb_ft_aux_table system
variable to the name (including the database name) of the table that contains the FULLTEXT
index (for example, test/articles). The following example demonstrates how to use the
innodb_ft_aux_table system variable to show information about a FULLTEXT index for a
specified table. Before information for newly inserted rows appears in INNODB_FT_INDEX_TABLE,
the FULLTEXT index cache must be flushed to disk. This is accomplished by running an OPTIMIZE
TABLE operation on the indexed table with the innodb_optimize_fulltext_only system
variable enabled. (The example disables that variable again at the end because it is intended to be
enabled only temporarily.)

mysql> USE test;
mysql> CREATE TABLE articles (
 id INT UNSIGNED AUTO_INCREMENT NOT NULL PRIMARY KEY,

101

https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-fulltext_index-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_aux_table
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_optimize_fulltext_only

The INFORMATION_SCHEMA INNODB_INDEXES Table

 title VARCHAR(200),
 body TEXT,
 FULLTEXT (title,body)
) ENGINE=InnoDB;
mysql> INSERT INTO articles (title,body) VALUES
 ('MySQL Tutorial','DBMS stands for DataBase ...'),
 ('How To Use MySQL Well','After you went through a ...'),
 ('Optimizing MySQL','In this tutorial we show ...'),
 ('1001 MySQL Tricks','1. Never run mysqld as root. 2. ...'),
 ('MySQL vs. YourSQL','In the following database comparison ...'),
 ('MySQL Security','When configured properly, MySQL ...');
mysql> SET GLOBAL innodb_optimize_fulltext_only=ON;
mysql> OPTIMIZE TABLE articles;
+---------------+----------+----------+----------+
| Table | Op | Msg_type | Msg_text |
+---------------+----------+----------+----------+
| test.articles | optimize | status | OK |
+---------------+----------+----------+----------+
mysql> SET GLOBAL innodb_ft_aux_table = 'test/articles';
mysql> SELECT WORD, DOC_COUNT, DOC_ID, POSITION
 FROM INFORMATION_SCHEMA.INNODB_FT_INDEX_TABLE LIMIT 5;
+------------+-----------+--------+----------+
| WORD | DOC_COUNT | DOC_ID | POSITION |
+------------+-----------+--------+----------+
1001	1	4	0
after	1	2	22
comparison	1	5	44
configured	1	6	20
database	2	1	31
+------------+-----------+--------+----------+
mysql> SET GLOBAL innodb_optimize_fulltext_only=OFF;

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• For more information about InnoDB FULLTEXT search, see InnoDB Full-Text Indexes, and Full-Text
Search Functions.

5.20 The INFORMATION_SCHEMA INNODB_INDEXES Table

The INNODB_INDEXES table provides metadata about InnoDB indexes.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_INDEXES table has these columns:

• INDEX_ID

An identifier for the index. Index identifiers are unique across all the databases in an instance.

• NAME

The name of the index. Most indexes created implicitly by InnoDB have consistent names
but the index names are not necessarily unique. Examples: PRIMARY for a primary key index,
GEN_CLUST_INDEX for the index representing a primary key when one is not specified, and
ID_IND, FOR_IND, and REF_IND for foreign key constraints.

• TABLE_ID

An identifier representing the table associated with the index; the same value as
INNODB_TABLES.TABLE_ID.

• TYPE

102

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-fulltext-index.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html

Example

A numeric value derived from bit-level information that identifies the index type. 0 = nonunique
secondary index; 1 = automatically generated clustered index (GEN_CLUST_INDEX); 2 = unique
nonclustered index; 3 = clustered index; 32 = full-text index; 64 = spatial index; 128 = secondary
index on a virtual generated column.

• N_FIELDS

The number of columns in the index key. For GEN_CLUST_INDEX indexes, this value is 0 because
the index is created using an artificial value rather than a real table column.

• PAGE_NO

The root page number of the index B-tree. For full-text indexes, the PAGE_NO column is unused and
set to -1 (FIL_NULL) because the full-text index is laid out in several B-trees (auxiliary tables).

• SPACE

An identifier for the tablespace where the index resides. 0 means the InnoDB system tablespace.
Any other number represents a table created with a separate .ibd file in file-per-table mode. This
identifier stays the same after a TRUNCATE TABLE statement. Because all indexes for a table reside
in the same tablespace as the table, this value is not necessarily unique.

• MERGE_THRESHOLD

The merge threshold value for index pages. If the amount of data in an index page falls below the
MERGE_THRESHOLD value when a row is deleted or when a row is shortened by an update operation,
InnoDB attempts to merge the index page with the neighboring index page. The default threshold
value is 50%. For more information, see Configuring the Merge Threshold for Index Pages.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_INDEXES WHERE TABLE_ID = 34\G
*************************** 1. row ***************************
 INDEX_ID: 39
 NAME: GEN_CLUST_INDEX
 TABLE_ID: 34
 TYPE: 1
 N_FIELDS: 0
 PAGE_NO: 3
 SPACE: 23
MERGE_THRESHOLD: 50
*************************** 2. row ***************************
 INDEX_ID: 40
 NAME: i1
 TABLE_ID: 34
 TYPE: 0
 N_FIELDS: 1
 PAGE_NO: 4
 SPACE: 23
MERGE_THRESHOLD: 50

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.21 The INFORMATION_SCHEMA INNODB_METRICS Table

The INNODB_METRICS table provides a wide variety of InnoDB performance information,
complementing the specific focus areas of the Performance Schema tables for InnoDB. With simple

103

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_virtual_generated_column
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/index-page-merge-threshold.html
https://dev.mysql.com/doc/refman/8.0/en/index-page-merge-threshold.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

The INFORMATION_SCHEMA INNODB_METRICS Table

queries, you can check the overall health of the system. With more detailed queries, you can diagnose
issues such as performance bottlenecks, resource shortages, and application issues.

Each monitor represents a point within the InnoDB source code that is instrumented to gather counter
information. Each counter can be started, stopped, and reset. You can also perform these actions for a
group of counters using their common module name.

By default, relatively little data is collected. To start, stop, and reset counters, set one of the system
variables innodb_monitor_enable, innodb_monitor_disable, innodb_monitor_reset, or
innodb_monitor_reset_all, using the name of the counter, the name of the module, a wildcard
match for such a name using the “%” character, or the special keyword all.

For usage information, see InnoDB INFORMATION_SCHEMA Metrics Table.

The INNODB_METRICS table has these columns:

• NAME

A unique name for the counter.

• SUBSYSTEM

The aspect of InnoDB that the metric applies to.

• COUNT

The value since the counter was enabled.

• MAX_COUNT

The maximum value since the counter was enabled.

• MIN_COUNT

The minimum value since the counter was enabled.

• AVG_COUNT

The average value since the counter was enabled.

• COUNT_RESET

The counter value since it was last reset. (The _RESET columns act like the lap counter on a
stopwatch: you can measure the activity during some time interval, while the cumulative figures are
still available in COUNT, MAX_COUNT, and so on.)

• MAX_COUNT_RESET

The maximum counter value since it was last reset.

• MIN_COUNT_RESET

The minimum counter value since it was last reset.

• AVG_COUNT_RESET

The average counter value since it was last reset.

• TIME_ENABLED

The timestamp of the last start.

• TIME_DISABLED

104

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_monitor_enable
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_monitor_disable
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_monitor_reset
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_monitor_reset_all
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-metrics-table.html

Example

The timestamp of the last stop.

• TIME_ELAPSED

The elapsed time in seconds since the counter started.

• TIME_RESET

The timestamp of the last reset.

• STATUS

Whether the counter is still running (enabled) or stopped (disabled).

• TYPE

Whether the item is a cumulative counter, or measures the current value of some resource.

• COMMENT

The counter description.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_METRICS WHERE NAME='dml_inserts'\G
*************************** 1. row ***************************
 NAME: dml_inserts
 SUBSYSTEM: dml
 COUNT: 3
 MAX_COUNT: 3
 MIN_COUNT: NULL
 AVG_COUNT: 0.046153846153846156
 COUNT_RESET: 3
MAX_COUNT_RESET: 3
MIN_COUNT_RESET: NULL
AVG_COUNT_RESET: NULL
 TIME_ENABLED: 2014-12-04 14:18:28
 TIME_DISABLED: NULL
 TIME_ELAPSED: 65
 TIME_RESET: NULL
 STATUS: enabled
 TYPE: status_counter
 COMMENT: Number of rows inserted

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

• Transaction counter COUNT values may differ from the number of transaction events reported in
Performance Schema EVENTS_TRANSACTIONS_SUMMARY tables. InnoDB counts only those
transactions that it executes, whereas Performance Schema collects events for all non-aborted
transactions initiated by the server, including empty transactions.

5.22 The INFORMATION_SCHEMA
INNODB_SESSION_TEMP_TABLESPACES Table

The INNODB_SESSION_TEMP_TABLESPACES table provides metadata about session temporary
tablespaces used for internal and user-created temporary tables. This table was added in MySQL
8.0.13.

105

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

Example

The INNODB_SESSION_TEMP_TABLESPACES table has these columns:

• ID

The process or session ID.

• SPACE

The tablespace ID. A range of 400 thousand space IDs is reserved for session temporary
tablespaces. Session temporary tablespaces are recreated each time the server is started. Space
IDs are not persisted when the server is shut down and may be reused.

• PATH

The tablespace data file path. A session temporary tablespace has an ibt file extension.

• SIZE

The size of the tablespace, in bytes.

• STATE

The state of the tablespace. ACTIVE indicates that the tablespace is currently used by a session.
INACTIVE indicates that the tablespace is in the pool of available session temporary tablespaces.

• PURPOSE

The purpose of the tablespace. INTRINSIC indicates that the tablespace is used for optimized
internal temporary tables use by the optimizer. SLAVE indicates that the tablespace is allocated for
storing user-created temporary tables on a replication slave. USER indicates that the tablespace is
used for user-created temporary tables. NONE indicates that the tablespace is not in use.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_SESSION_TEMP_TABLESPACES;
+----+------------+----------------------------+-------+----------+-----------+
| ID | SPACE | PATH | SIZE | STATE | PURPOSE |
+----+------------+----------------------------+-------+----------+-----------+
8	4294566162	./#innodb_temp/temp_10.ibt	81920	ACTIVE	INTRINSIC
8	4294566161	./#innodb_temp/temp_9.ibt	98304	ACTIVE	USER
0	4294566153	./#innodb_temp/temp_1.ibt	81920	INACTIVE	NONE
0	4294566154	./#innodb_temp/temp_2.ibt	81920	INACTIVE	NONE
0	4294566155	./#innodb_temp/temp_3.ibt	81920	INACTIVE	NONE
0	4294566156	./#innodb_temp/temp_4.ibt	81920	INACTIVE	NONE
0	4294566157	./#innodb_temp/temp_5.ibt	81920	INACTIVE	NONE
0	4294566158	./#innodb_temp/temp_6.ibt	81920	INACTIVE	NONE
0	4294566159	./#innodb_temp/temp_7.ibt	81920	INACTIVE	NONE
0	4294566160	./#innodb_temp/temp_8.ibt	81920	INACTIVE	NONE
+----+------------+----------------------------+-------+----------+-----------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.23 The INFORMATION_SCHEMA INNODB_TABLES Table

The INNODB_TABLES table provides metadata about InnoDB tables.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

106

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html

Example

The INNODB_TABLES table has these columns:

• TABLE_ID

An identifier for the InnoDB table. This value is unique across all databases in the instance.

• NAME

The name of the table, preceded by the schema (database) name where appropriate (for example,
test/t1). Names of databases and user tables are in the same case as they were originally
defined, possibly influenced by the lower_case_table_names setting.

• FLAG

A numeric value that represents bit-level information about table format and storage characteristics.

• N_COLS

The number of columns in the table. The number reported includes three hidden columns that are
created by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR). The number reported also
includes virtual generated columns, if present.

• SPACE

An identifier for the tablespace where the table resides. 0 means the InnoDB system tablespace.
Any other number represents either a file-per-table tablespace or a general tablespace. This
identifier stays the same after a TRUNCATE TABLE statement. For file-per-table tablespaces, this
identifier is unique for tables across all databases in the instance.

• ROW_FORMAT

The table's row format (Compact, Redundant, Dynamic, or Compressed).

• ZIP_PAGE_SIZE

The zip page size. Applies only to tables with a row format of Compressed.

• SPACE_TYPE

The type of tablespace to which the table belongs. Possible values include System for
the system tablespace, General for general tablespaces, and Single for file-per-table
tablespaces. Tables assigned to the system tablespace using CREATE TABLE or ALTER TABLE
TABLESPACE=innodb_system have a SPACE_TYPE of General. For more information, see
CREATE TABLESPACE.

• INSTANT_COLS

The number of columns that existed before the first instant column was added using ALTER
TABLE ... ADD COLUMN with ALGORITHM=INSTANT. This column is no longer used as of MySQL
8.0.29 but continues to show information for tables with columns that were added instantly prior to
MySQL 8.0.29.

• TOTAL_ROW_VERSIONS

The number of row versions for the table. The initial value is 0. The value is incremented by ALTER
TABLE ... ALGORITHM=INSTANT operations that add or remove columns. When a table with
instantly added or dropped columns is rebuilt due to a table-rebuilding ALTER TABLE or OPTIMIZE
TABLE operation, the value is reset to 0. For more information, see Column Operations.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLES WHERE TABLE_ID = 214\G
*************************** 1. row ***************************

107

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_lower_case_table_names
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_virtual_generated_column
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_system_tablespace
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/create-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/optimize-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-online-ddl-operations.html#online-ddl-column-operations

Notes

 TABLE_ID: 1064
 NAME: test/t1
 FLAG: 33
 N_COLS: 6
 SPACE: 3
 ROW_FORMAT: Dynamic
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 INSTANT_COLS: 0
TOTAL_ROW_VERSIONS: 3

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table
The INNODB_TABLESPACES table provides metadata about InnoDB file-per-table, general, and undo
tablespaces.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

Note

The INFORMATION_SCHEMA FILES table reports metadata for InnoDB
tablespace types including file-per-table tablespaces, general tablespaces, the
system tablespace, the global temporary tablespace, and undo tablespaces.

The INNODB_TABLESPACES table has these columns:

• SPACE

The tablespace ID.

• NAME

The schema (database) and table name.

• FLAG

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• ROW_FORMAT

The tablespace row format (Compact or Redundant, Dynamic or Compressed, or Undo). The
data in this column is interpreted from the tablespace flag information that resides in the data file.

There is no way to determine from this flag information if the tablespace row format is Redundant or
Compact, which is why one of the possible ROW_FORMAT values is Compact or Redundant.

• PAGE_SIZE

The tablespace page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

• ZIP_PAGE_SIZE

The tablespace zip page size. The data in this column is interpreted from the tablespace flags
information that resides in the .ibd file.

108

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ibd_file
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_ibd_file

The INFORMATION_SCHEMA INNODB_TABLESPACES Table

• SPACE_TYPE

The type of tablespace. Possible values include General for general tablespaces, Single for file-
per-table tablespaces, System for the system tablespace, and Undo for undo tablespaces.

• FS_BLOCK_SIZE

The file system block size, which is the unit size used for hole punching. This column pertains to the
InnoDB transparent page compression feature.

• FILE_SIZE

The apparent size of the file, which represents the maximum size of the file, uncompressed. This
column pertains to the InnoDB transparent page compression feature.

• ALLOCATED_SIZE

The actual size of the file, which is the amount of space allocated on disk. This column pertains to
the InnoDB transparent page compression feature.

• AUTOEXTEND_SIZE

The auto-extend size of the tablespace. This column was added in MySQL 8.0.23.

• SERVER_VERSION

The MySQL version that created the tablespace, or the MySQL version into which the tablespace
was imported, or the version of the last major MySQL version upgrade. The value is unchanged
by a release series upgrade, such as an upgrade from MySQL 8.0.x to 8.0.y. The value can be
considered a “creation” marker or “certified” marker for the tablespace.

• SPACE_VERSION

The tablespace version, used to track changes to the tablespace format.

• ENCRYPTION

Whether the tablespace is encrypted. This column was added in MySQL 8.0.13.

• STATE

The tablespace state. This column was added in MySQL 8.0.14.

For file-per-table and general tablespaces, states include:

• normal: The tablespace is normal and active.

• discarded: The tablespace was discarded by an ALTER TABLE ... DISCARD TABLESPACE
statement.

• corrupted: The tablespace is identified by InnoDB as corrupted.

For undo tablespaces, states include:

• active: Rollback segments in the undo tablespace can be allocated to new transactions.

• inactive: Rollback segments in the undo tablespace are no longer used by new transactions.
The truncate process is in progress. The undo tablespace was either selected by the purge
thread implicitly or was made inactive by an ALTER UNDO TABLESPACE ... SET INACTIVE
statement.

• empty: The undo tablespace was truncated and is no longer active. It is ready to be dropped or
made active again by an ALTER UNDO TABLESPACE ... SET INACTIVE statement.

109

https://dev.mysql.com/doc/refman/8.0/en/innodb-page-compression.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-page-compression.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-page-compression.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html
https://dev.mysql.com/doc/refman/8.0/en/alter-tablespace.html

Example

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES WHERE SPACE = 26\G
*************************** 1. row ***************************
 SPACE: 26
 NAME: test/t1
 FLAG: 0
 ROW_FORMAT: Compact or Redundant
 PAGE_SIZE: 16384
 ZIP_PAGE_SIZE: 0
 SPACE_TYPE: Single
 FS_BLOCK_SIZE: 4096
 FILE_SIZE: 98304
ALLOCATED_SIZE: 65536
AUTOEXTEND_SIZE: 0
SERVER_VERSION: 8.0.23
 SPACE_VERSION: 1
 ENCRYPTION: N
 STATE: normal

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.25 The INFORMATION_SCHEMA
INNODB_TABLESPACES_BRIEF Table

The INNODB_TABLESPACES_BRIEF table provides space ID, name, path, flag, and space type
metadata for file-per-table, general, undo, and system tablespaces.

INNODB_TABLESPACES provides the same metadata but loads more slowly because other metadata
provided by the table, such as FS_BLOCK_SIZE, FILE_SIZE, and ALLOCATED_SIZE, must be loaded
dynamically.

Space and path metadata is also provided by the INNODB_DATAFILES table.

The INNODB_TABLESPACES_BRIEF table has these columns:

• SPACE

The tablespace ID.

• NAME

The tablespace name. For file-per-table tablespaces, the name is in the form of schema/
table_name.

• PATH

The tablespace data file path. If a file-per-table tablespace is created in a location outside the
MySQL data directory, the path value is a fully qualified directory path. Otherwise, the path is relative
to the data directory.

• FLAG

A numeric value that represents bit-level information about tablespace format and storage
characteristics.

• SPACE_TYPE

110

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_file_per_table

Example

The type of tablespace. Possible values include General for InnoDB general tablespaces, Single
for InnoDB file-per-table tablespaces, and System for the InnoDB system tablespace.

Example

mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESPACES_BRIEF WHERE SPACE = 7;
+-------+---------+---------------+-------+------------+
| SPACE | NAME | PATH | FLAG | SPACE_TYPE |
+-------+---------+---------------+-------+------------+
| 7 | test/t1 | ./test/t1.ibd | 16417 | Single |
+-------+---------+---------------+-------+------------+

Notes

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View

The INNODB_TABLESTATS table provides a view of low-level status information about InnoDB tables.
This data is used by the MySQL optimizer to calculate which index to use when querying an InnoDB
table. This information is derived from in-memory data structures rather than data stored on disk. There
is no corresponding internal InnoDB system table.

InnoDB tables are represented in this view if they have been opened since the last server restart
and have not aged out of the table cache. Tables for which persistent stats are available are always
represented in this view.

Table statistics are updated only for DELETE or UPDATE operations that modify indexed columns.
Statistics are not updated by operations that modify only nonindexed columns.

ANALYZE TABLE clears table statistics and sets the STATS_INITIALIZED column to
Uninitialized. Statistics are collected again the next time the table is accessed.

For related usage information and examples, see InnoDB INFORMATION_SCHEMA Schema Object
Tables.

The INNODB_TABLESTATS table has these columns:

• TABLE_ID

An identifier representing the table for which statistics are available; the same value as
INNODB_TABLES.TABLE_ID.

• NAME

The name of the table; the same value as INNODB_TABLES.NAME.

• STATS_INITIALIZED

The value is Initialized if the statistics are already collected, Uninitialized if not.

• NUM_ROWS

The current estimated number of rows in the table. Updated after each DML operation. The value
could be imprecise if uncommitted transactions are inserting into or deleting from the table.

• CLUST_INDEX_SIZE

111

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/analyze-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-system-tables.html

Example

The number of pages on disk that store the clustered index, which holds the InnoDB table data in
primary key order. This value might be null if no statistics are collected yet for the table.

• OTHER_INDEX_SIZE

The number of pages on disk that store all secondary indexes for the table. This value might be null if
no statistics are collected yet for the table.

• MODIFIED_COUNTER

The number of rows modified by DML operations, such as INSERT, UPDATE, DELETE, and also
cascade operations from foreign keys. This column is reset each time table statistics are recalculated

• AUTOINC

The next number to be issued for any auto-increment-based operation. The rate at which the
AUTOINC value changes depends on how many times auto-increment numbers have been requested
and how many numbers are granted per request.

• REF_COUNT

When this counter reaches zero, the table metadata can be evicted from the table cache.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TABLESTATS where TABLE_ID = 71\G
*************************** 1. row ***************************
 TABLE_ID: 71
 NAME: test/t1
STATS_INITIALIZED: Initialized
 NUM_ROWS: 1
 CLUST_INDEX_SIZE: 1
 OTHER_INDEX_SIZE: 0
 MODIFIED_COUNTER: 1
 AUTOINC: 0
 REF_COUNT: 1

Notes

• This table is useful primarily for expert-level performance monitoring, or when developing
performance-related extensions for MySQL.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO
Table

The INNODB_TEMP_TABLE_INFO table provides information about user-created InnoDB temporary
tables that are active in an InnoDB instance. It does not provide information about internal InnoDB
temporary tables used by the optimizer. The INNODB_TEMP_TABLE_INFO table is created when first
queried, exists only in memory, and is not persisted to disk.

For usage information and examples, see InnoDB INFORMATION_SCHEMA Temporary Table Info
Table.

The INNODB_TEMP_TABLE_INFO table has these columns:

• TABLE_ID

112

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-temp-table-info.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-temp-table-info.html

Example

The table ID of the temporary table.

• NAME

The name of the temporary table.

• N_COLS

The number of columns in the temporary table. The number includes three hidden columns created
by InnoDB (DB_ROW_ID, DB_TRX_ID, and DB_ROLL_PTR).

• SPACE

The ID of the temporary tablespace where the temporary table resides.

Example
mysql> CREATE TEMPORARY TABLE t1 (c1 INT PRIMARY KEY) ENGINE=INNODB;
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TEMP_TABLE_INFO\G
*************************** 1. row ***************************
TABLE_ID: 97
 NAME: #sql8c88_43_0
 N_COLS: 4
 SPACE: 76

Notes

• This table is useful primarily for expert-level monitoring.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.28 The INFORMATION_SCHEMA INNODB_TRX Table

The INNODB_TRX table provides information about every transaction currently executing inside
InnoDB, including whether the transaction is waiting for a lock, when the transaction started, and the
SQL statement the transaction is executing, if any.

For usage information, see Using InnoDB Transaction and Locking Information.

The INNODB_TRX table has these columns:

• TRX_ID

A unique transaction ID number, internal to InnoDB. These IDs are not created for transactions that
are read only and nonlocking. For details, see Optimizing InnoDB Read-Only Transactions.

• TRX_WEIGHT

The weight of a transaction, reflecting (but not necessarily the exact count of) the number of rows
altered and the number of rows locked by the transaction. To resolve a deadlock, InnoDB selects
the transaction with the smallest weight as the “victim” to roll back. Transactions that have changed
nontransactional tables are considered heavier than others, regardless of the number of altered and
locked rows.

• TRX_STATE

The transaction execution state. Permitted values are RUNNING, LOCK WAIT, ROLLING BACK, and
COMMITTING.

113

https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-examples.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-performance-ro-txn.html

The INFORMATION_SCHEMA INNODB_TRX Table

• TRX_STARTED

The transaction start time.

• TRX_REQUESTED_LOCK_ID

The ID of the lock the transaction is currently waiting for, if TRX_STATE is LOCK WAIT; otherwise
NULL. To obtain details about the lock, join this column with the ENGINE_LOCK_ID column of the
Performance Schema data_locks table.

• TRX_WAIT_STARTED

The time when the transaction started waiting on the lock, if TRX_STATE is LOCK WAIT; otherwise
NULL.

• TRX_MYSQL_THREAD_ID

The MySQL thread ID. To obtain details about the thread, join this column with the ID column of
the INFORMATION_SCHEMA PROCESSLIST table, but see Persistence and Consistency of InnoDB
Transaction and Locking Information.

• TRX_QUERY

The SQL statement that is being executed by the transaction.

• TRX_OPERATION_STATE

The transaction's current operation, if any; otherwise NULL.

• TRX_TABLES_IN_USE

The number of InnoDB tables used while processing the current SQL statement of this transaction.

• TRX_TABLES_LOCKED

The number of InnoDB tables that the current SQL statement has row locks on. (Because these
are row locks, not table locks, the tables can usually still be read from and written to by multiple
transactions, despite some rows being locked.)

• TRX_LOCK_STRUCTS

The number of locks reserved by the transaction.

• TRX_LOCK_MEMORY_BYTES

The total size taken up by the lock structures of this transaction in memory.

• TRX_ROWS_LOCKED

The approximate number or rows locked by this transaction. The value might include delete-marked
rows that are physically present but not visible to the transaction.

• TRX_ROWS_MODIFIED

The number of modified and inserted rows in this transaction.

• TRX_CONCURRENCY_TICKETS

A value indicating how much work the current transaction can do before being swapped out, as
specified by the innodb_concurrency_tickets system variable.

• TRX_ISOLATION_LEVEL

The isolation level of the current transaction.

114

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-data-locks-table.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_concurrency_tickets

Example

• TRX_UNIQUE_CHECKS

Whether unique checks are turned on or off for the current transaction. For example, they might be
turned off during a bulk data load.

• TRX_FOREIGN_KEY_CHECKS

Whether foreign key checks are turned on or off for the current transaction. For example, they might
be turned off during a bulk data load.

• TRX_LAST_FOREIGN_KEY_ERROR

The detailed error message for the last foreign key error, if any; otherwise NULL.

• TRX_ADAPTIVE_HASH_LATCHED

Whether the adaptive hash index is locked by the current transaction. When the adaptive hash
index search system is partitioned, a single transaction does not lock the entire adaptive hash index.
Adaptive hash index partitioning is controlled by innodb_adaptive_hash_index_parts, which is
set to 8 by default.

• TRX_ADAPTIVE_HASH_TIMEOUT

Whether to relinquish the search latch immediately for the adaptive hash index, or reserve it across
calls from MySQL. When there is no adaptive hash index contention, this value remains zero and
statements reserve the latch until they finish. During times of contention, it counts down to zero,
and statements release the latch immediately after each row lookup. When the adaptive hash index
search system is partitioned (controlled by innodb_adaptive_hash_index_parts), the value
remains 0.

• TRX_IS_READ_ONLY

A value of 1 indicates the transaction is read only.

• TRX_AUTOCOMMIT_NON_LOCKING

A value of 1 indicates the transaction is a SELECT statement that does not use the FOR UPDATE
or LOCK IN SHARED MODE clauses, and is executing with autocommit enabled so that the
transaction contains only this one statement. When this column and TRX_IS_READ_ONLY are
both 1, InnoDB optimizes the transaction to reduce the overhead associated with transactions that
change table data.

• TRX_SCHEDULE_WEIGHT

The transaction schedule weight assigned by the Contention-Aware Transaction Scheduling (CATS)
algorithm to transactions waiting for a lock. The value is relative to the values of other transactions.
A higher value has a greater weight. A value is computed only for transactions in a LOCK WAIT
state, as reported by the TRX_STATE column. A NULL value is reported for transactions that are
not waiting for a lock. The TRX_SCHEDULE_WEIGHT value is different from the TRX_WEIGHT value,
which is computed by a different algorithm for a different purpose.

Example
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_TRX\G
*************************** 1. row ***************************
 trx_id: 1510
 trx_state: RUNNING
 trx_started: 2014-11-19 13:24:40
 trx_requested_lock_id: NULL
 trx_wait_started: NULL
 trx_weight: 586739
 trx_mysql_thread_id: 2
 trx_query: DELETE FROM employees.salaries WHERE salary > 65000

115

https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index_parts
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_adaptive_hash_index_parts
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit

Notes

 trx_operation_state: updating or deleting
 trx_tables_in_use: 1
 trx_tables_locked: 1
 trx_lock_structs: 3003
 trx_lock_memory_bytes: 450768
 trx_rows_locked: 1407513
 trx_rows_modified: 583736
 trx_concurrency_tickets: 0
 trx_isolation_level: REPEATABLE READ
 trx_unique_checks: 1
 trx_foreign_key_checks: 1
trx_last_foreign_key_error: NULL
 trx_adaptive_hash_latched: 0
 trx_adaptive_hash_timeout: 10000
 trx_is_read_only: 0
trx_autocommit_non_locking: 0
 trx_schedule_weight: NULL

Notes

• Use this table to help diagnose performance problems that occur during times of heavy concurrent
load. Its contents are updated as described in Persistence and Consistency of InnoDB Transaction
and Locking Information.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

5.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table
The INNODB_VIRTUAL table provides metadata about InnoDB virtual generated columns and columns
upon which virtual generated columns are based.

A row appears in the INNODB_VIRTUAL table for each column upon which a virtual generated column
is based.

The INNODB_VIRTUAL table has these columns:

• TABLE_ID

An identifier representing the table associated with the virtual column; the same value as
INNODB_TABLES.TABLE_ID.

• POS

The position value of the virtual generated column. The value is large because it encodes the column
sequence number and ordinal position. The formula used to calculate the value uses a bitwise
operation:

((nth virtual generated column for the InnoDB instance + 1) << 16)
+ the ordinal position of the virtual generated column

For example, if the first virtual generated column in the InnoDB instance is the third column of the
table, the formula is (0 + 1) << 16) + 2. The first virtual generated column in the InnoDB
instance is always number 0. As the third column in the table, the ordinal position of the virtual
generated column is 2. Ordinal positions are counted from 0.

• BASE_POS

The ordinal position of the columns upon which a virtual generated column is based.

Example
mysql> CREATE TABLE `t1` (

116

https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-information-schema-internal-data.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_virtual_generated_column
https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_virtual_generated_column

Notes

 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (a+b) VIRTUAL,
 `h` varchar(10) DEFAULT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
mysql> SELECT * FROM INFORMATION_SCHEMA.INNODB_VIRTUAL
 WHERE TABLE_ID IN
 (SELECT TABLE_ID FROM INFORMATION_SCHEMA.INNODB_TABLES
 WHERE NAME LIKE "test/t1");
+----------+-------+----------+
| TABLE_ID | POS | BASE_POS |
+----------+-------+----------+
| 98 | 65538 | 0 |
| 98 | 65538 | 1 |
+----------+-------+----------+

Notes

• If a constant value is assigned to a virtual generated column, as in the following table, an entry
for the column does not appear in the INNODB_VIRTUAL table. For an entry to appear, a virtual
generated column must have a base column.

CREATE TABLE `t1` (
 `a` int(11) DEFAULT NULL,
 `b` int(11) DEFAULT NULL,
 `c` int(11) GENERATED ALWAYS AS (5) VIRTUAL
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;

However, metadata for such a column does appear in the INNODB_COLUMNS table.

• You must have the PROCESS privilege to query this table.

• Use the INFORMATION_SCHEMA COLUMNS table or the SHOW COLUMNS statement to view additional
information about the columns of this table, including data types and default values.

117

https://dev.mysql.com/doc/refman/8.0/en/glossary.html#glos_virtual_generated_column
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_process
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

118

Chapter 6 INFORMATION_SCHEMA Thread Pool Tables

Table of Contents
6.1 INFORMATION_SCHEMA Thread Pool Table Reference .. 119
6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table 120
6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table 120
6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table ... 120

Note

As of MySQL 8.0.14, the INFORMATION_SCHEMA thread pool tables are also
available as Performance Schema tables. (See Performance Schema Thread
Pool Tables.) The INFORMATION_SCHEMA tables are deprecated; expect them
be removed in a future version of MySQL. Applications should transition away
from the old tables to the new tables. For example, if an application uses this
query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_state;

The following sections describe the INFORMATION_SCHEMA tables associated with the thread pool
plugin (see MySQL Enterprise Thread Pool). They provide information about thread pool operation:

• TP_THREAD_GROUP_STATE: Information about thread pool thread group states

• TP_THREAD_GROUP_STATS: Thread group statistics

• TP_THREAD_STATE: Information about thread pool thread states

Rows in these tables represent snapshots in time. In the case of TP_THREAD_STATE, all rows for a
thread group comprise a snapshot in time. Thus, the MySQL server holds the mutex of the thread
group while producing the snapshot. But it does not hold mutexes on all thread groups at the same
time, to prevent a statement against TP_THREAD_STATE from blocking the entire MySQL server.

The INFORMATION_SCHEMA thread pool tables are implemented by individual plugins and the decision
whether to load one can be made independently of the others (see Thread Pool Installation). However,
the content of all the tables depends on the thread pool plugin being enabled. If a table plugin is
enabled but the thread pool plugin is not, the table becomes visible and can be accessed but is empty.

6.1 INFORMATION_SCHEMA Thread Pool Table Reference

The following table summarizes INFORMATION_SCHEMA thread pool tables. For greater detail, see the
individual table descriptions.

Table 6.1 INFORMATION_SCHEMA Thread Pool Tables

Table Name Description

TP_THREAD_GROUP_STATE Thread pool thread group states

TP_THREAD_GROUP_STATS Thread pool thread group statistics

TP_THREAD_STATE Thread pool thread information

119

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool.html
https://dev.mysql.com/doc/refman/8.0/en/thread-pool-installation.html

The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table

6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE
Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are also
available as Performance Schema tables. (See Performance Schema Thread
Pool Tables.) The INFORMATION_SCHEMA tables are deprecated; expect them
to be removed in a future version of MySQL. Applications should transition away
from the old tables to the new tables. For example, if an application uses this
query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_group_state;

The TP_THREAD_GROUP_STATE table has one row per thread group in the thread pool. Each row
provides information about the current state of a group.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_GROUP_STATE table, see
The tp_thread_group_state Table. The Performance Schema tp_thread_group_state table has
equivalent columns.

6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS
Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are also
available as Performance Schema tables. (See Performance Schema Thread
Pool Tables.) The INFORMATION_SCHEMA tables are deprecated; expect them
to be removed in a future version of MySQL. Applications should transition away
from the old tables to the new tables. For example, if an application uses this
query:

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_GROUP_STATS;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_group_stats;

The TP_THREAD_GROUP_STATS table reports statistics per thread group. There is one row per group.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_GROUP_STATS table, see
The tp_thread_group_stats Table. The Performance Schema tp_thread_group_stats table has
equivalent columns.

6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

Note

As of MySQL 8.0.14, the thread pool INFORMATION_SCHEMA tables are also
available as Performance Schema tables. (See Performance Schema Thread
Pool Tables.) The INFORMATION_SCHEMA tables are deprecated; expect them
to be removed in a future version of MySQL. Applications should transition away
from the old tables to the new tables. For example, if an application uses this
query:

120

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-group-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-group-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-group-stats-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-group-stats-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-thread-pool-tables.html

The INFORMATION_SCHEMA TP_THREAD_STATE Table

SELECT * FROM INFORMATION_SCHEMA.TP_THREAD_STATE;

The application should use this query instead:

SELECT * FROM performance_schema.tp_thread_state;

The TP_THREAD_STATE table has one row per thread created by the thread pool to handle
connections.

For descriptions of the columns in the INFORMATION_SCHEMA TP_THREAD_STATE table, see The
tp_thread_state Table. The Performance Schema tp_thread_state table has equivalent columns.

121

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-state-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-tp-thread-state-table.html

122

Chapter 7 INFORMATION_SCHEMA Connection-Control
Tables

Table of Contents
7.1 INFORMATION_SCHEMA Connection-Control Table Reference .. 123
7.2 The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS
Table .. 123

The following sections describe the INFORMATION_SCHEMA tables associated with the
CONNECTION_CONTROL plugin.

7.1 INFORMATION_SCHEMA Connection-Control Table Reference

The following table summarizes INFORMATION_SCHEMA connection-control tables. For greater detail,
see the individual table descriptions.

Table 7.1 INFORMATION_SCHEMA Connection-Control Tables

Table Name Description

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTSCurrent number of consecutive failed connection
attempts per account

7.2 The INFORMATION_SCHEMA
CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

This table provides information about the current number of consecutive failed connection attempts per
account (user/host combination).

CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS has these columns:

• USERHOST

The user/host combination indicating an account that has failed connection attempts, in
'user_name'@'host_name' format.

• FAILED_ATTEMPTS

The current number of consecutive failed connection attempts for the USERHOST value. This counts
all failed attempts, regardless of whether they were delayed. The number of attempts for which the
server added a delay to its response is the difference between the FAILED_ATTEMPTS value and
the connection_control_failed_connections_threshold system variable value.

Notes

• The CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS plugin must be activated for this table
to be available, and the CONNECTION_CONTROL plugin must be activated or the table contents are
always empty. See The Connection-Control Plugins.

• The table contains rows only for accounts that have had one or more consecutive failed connection
attempts without a subsequent successful attempt. When an account connects successfully, its
failed-connection count is reset to zero and the server removes any row corresponding to the
account.

123

https://dev.mysql.com/doc/refman/8.0/en/connection-control-variables.html#sysvar_connection_control_failed_connections_threshold
https://dev.mysql.com/doc/refman/8.0/en/connection-control.html

Notes

• Assigning a value to the connection_control_failed_connections_threshold system
variable at runtime resets all accumulated failed-connection counters to zero, which causes the table
to become empty.

124

https://dev.mysql.com/doc/refman/8.0/en/connection-control-variables.html#sysvar_connection_control_failed_connections_threshold

Chapter 8 INFORMATION_SCHEMA MySQL Enterprise
Firewall Tables

Table of Contents
8.1 INFORMATION_SCHEMA Firewall Table Reference ... 125
8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table 125
8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table 125

The following sections describe the INFORMATION_SCHEMA tables associated with MySQL Enterprise
Firewall (see MySQL Enterprise Firewall). They provide views into the firewall in-memory data cache.
These tables are available only if the appropriate firewall plugins are enabled.

8.1 INFORMATION_SCHEMA Firewall Table Reference

The following table summarizes INFORMATION_SCHEMA firewall tables. For greater detail, see the
individual table descriptions.

Table 8.1 INFORMATION_SCHEMA Firewall Tables

Table Name Description Deprecated

MYSQL_FIREWALL_USERS Firewall in-memory data for
account profiles

8.0.26

MYSQL_FIREWALL_WHITELIST Firewall in-memory data for
account profile allowlists

8.0.26

8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS
Table

The MYSQL_FIREWALL_USERS table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists names and operational modes of registered firewall account profiles. It is
used in conjunction with the mysql.firewall_users system table that provides persistent storage
of firewall data; see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_USERS table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• MODE

The current operational mode for the profile. Permitted mode values are OFF, DETECTING,
PROTECTING, RECORDING, and RESET. For details about their meanings, see Firewall Concepts.

As of MySQL 8.0.26, this table is deprecated and subject to removal in a future MySQL version. See
Migrating Account Profiles to Group Profiles.

8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST
Table

The MYSQL_FIREWALL_WHITELIST table provides a view into the in-memory data cache for MySQL
Enterprise Firewall. It lists allowlist rules of registered firewall account profiles. It is used in conjunction

125

https://dev.mysql.com/doc/refman/8.0/en/firewall.html
https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/firewall-usage.html#firewall-concepts
https://dev.mysql.com/doc/refman/8.0/en/firewall-usage.html#firewall-account-profile-migration

The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

with the mysql.firewall_whitelist system table that provides persistent storage of firewall data;
see MySQL Enterprise Firewall Tables.

The MYSQL_FIREWALL_WHITELIST table has these columns:

• USERHOST

The account profile name. Each account name has the format user_name@host_name.

• RULE

A normalized statement indicating an acceptable statement pattern for the profile. A profile allowlist is
the union of its rules.

As of MySQL 8.0.26, this table is deprecated and subject to removal in a future MySQL version. See
Migrating Account Profiles to Group Profiles.

126

https://dev.mysql.com/doc/refman/8.0/en/firewall-reference.html#firewall-tables
https://dev.mysql.com/doc/refman/8.0/en/firewall-usage.html#firewall-account-profile-migration

Chapter 9 Extensions to SHOW Statements
Some extensions to SHOW statements accompany the implementation of INFORMATION_SCHEMA:

• SHOW can be used to get information about the structure of INFORMATION_SCHEMA itself.

• Several SHOW statements accept a WHERE clause that provides more flexibility in specifying which
rows to display.

INFORMATION_SCHEMA is an information database, so its name is included in the output from SHOW
DATABASES. Similarly, SHOW TABLES can be used with INFORMATION_SCHEMA to obtain a list of its
tables:

mysql> SHOW TABLES FROM INFORMATION_SCHEMA;
+---------------------------------------+
| Tables_in_INFORMATION_SCHEMA |
+---------------------------------------+
| CHARACTER_SETS |
| COLLATIONS |
| COLLATION_CHARACTER_SET_APPLICABILITY |
| COLUMNS |
| COLUMN_PRIVILEGES |
| ENGINES |
| EVENTS |
| FILES |
| KEY_COLUMN_USAGE |
| PARTITIONS |
| PLUGINS |
| PROCESSLIST |
| REFERENTIAL_CONSTRAINTS |
| ROUTINES |
| SCHEMATA |
| SCHEMA_PRIVILEGES |
| STATISTICS |
| TABLES |
| TABLE_CONSTRAINTS |
| TABLE_PRIVILEGES |
| TRIGGERS |
| USER_PRIVILEGES |
| VIEWS |
+---------------------------------------+

SHOW COLUMNS and DESCRIBE can display information about the columns in individual
INFORMATION_SCHEMA tables.

SHOW statements that accept a LIKE clause to limit the rows displayed also permit a WHERE clause that
specifies more general conditions that selected rows must satisfy:

SHOW CHARACTER SET
SHOW COLLATION
SHOW COLUMNS
SHOW DATABASES
SHOW FUNCTION STATUS
SHOW INDEX
SHOW OPEN TABLES
SHOW PROCEDURE STATUS
SHOW STATUS
SHOW TABLE STATUS
SHOW TABLES
SHOW TRIGGERS
SHOW VARIABLES

The WHERE clause, if present, is evaluated against the column names displayed by the SHOW
statement. For example, the SHOW CHARACTER SET statement produces these output columns:

mysql> SHOW CHARACTER SET;
+----------+-----------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |

127

https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-databases.html
https://dev.mysql.com/doc/refman/8.0/en/show-tables.html
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/string-comparison-functions.html#operator_like
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html

+----------+-----------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
dec8	DEC West European	dec8_swedish_ci	1
cp850	DOS West European	cp850_general_ci	1
hp8	HP West European	hp8_english_ci	1
koi8r	KOI8-R Relcom Russian	koi8r_general_ci	1
latin1	cp1252 West European	latin1_swedish_ci	1
latin2	ISO 8859-2 Central European	latin2_general_ci	1
...

To use a WHERE clause with SHOW CHARACTER SET, you would refer to those column names. As
an example, the following statement displays information about character sets for which the default
collation contains the string 'japanese':

mysql> SHOW CHARACTER SET WHERE `Default collation` LIKE '%japanese%';
+---------+---------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------+---------------------+--------+
ujis	EUC-JP Japanese	ujis_japanese_ci	3
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
+---------+---------------------------+---------------------+--------+

This statement displays the multibyte character sets:

mysql> SHOW CHARACTER SET WHERE Maxlen > 1;
+---------+---------------------------------+---------------------+--------+
| Charset | Description | Default collation | Maxlen |
+---------+---------------------------------+---------------------+--------+
big5	Big5 Traditional Chinese	big5_chinese_ci	2
cp932	SJIS for Windows Japanese	cp932_japanese_ci	2
eucjpms	UJIS for Windows Japanese	eucjpms_japanese_ci	3
euckr	EUC-KR Korean	euckr_korean_ci	2
gb18030	China National Standard GB18030	gb18030_chinese_ci	4
gb2312	GB2312 Simplified Chinese	gb2312_chinese_ci	2
gbk	GBK Simplified Chinese	gbk_chinese_ci	2
sjis	Shift-JIS Japanese	sjis_japanese_ci	2
ucs2	UCS-2 Unicode	ucs2_general_ci	2
ujis	EUC-JP Japanese	ujis_japanese_ci	3
utf16	UTF-16 Unicode	utf16_general_ci	4
utf16le	UTF-16LE Unicode	utf16le_general_ci	4
utf32	UTF-32 Unicode	utf32_general_ci	4
utf8mb3	UTF-8 Unicode	utf8mb3_general_ci	3
utf8mb4	UTF-8 Unicode	utf8mb4_0900_ai_ci	4
+---------+---------------------------------+---------------------+--------+

128

https://dev.mysql.com/doc/refman/8.0/en/show-character-set.html

Chapter 10 MySQL 8.0 FAQ: INFORMATION_SCHEMA
Questions

• 10.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

• 10.2: Is there a discussion forum for INFORMATION_SCHEMA?

• 10.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

• 10.4: What is the difference between the Oracle Data Dictionary and MySQL
INFORMATION_SCHEMA?

• 10.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

Questions and Answers

10.1: Where can I find documentation for the MySQL INFORMATION_SCHEMA database?

See Chapter 1, INFORMATION_SCHEMA Tables.

You may also find the MySQL User Forums to be helpful.

10.2: Is there a discussion forum for INFORMATION_SCHEMA?

See the MySQL User Forums.

10.3: Where can I find the ANSI SQL 2003 specification for INFORMATION_SCHEMA?

Unfortunately, the official specifications are not freely available. (ANSI makes them available
for purchase.) However, there are books available, such as SQL-99 Complete, Really by Peter
Gulutzan and Trudy Pelzer, that provide a comprehensive overview of the standard, including
INFORMATION_SCHEMA.

10.4: What is the difference between the Oracle Data Dictionary and MySQL
INFORMATION_SCHEMA?

Both Oracle and MySQL provide metadata in tables. However, Oracle and MySQL use different table
names and column names. The MySQL implementation is more similar to those found in DB2 and SQL
Server, which also support INFORMATION_SCHEMA as defined in the SQL standard.

10.5: Can I add to or otherwise modify the tables found in the INFORMATION_SCHEMA database?

No. Since applications may rely on a certain standard structure, this should not be modified. For this
reason, we cannot support bugs or other issues which result from modifying INFORMATION_SCHEMA
tables or data.

129

https://forums.mysql.com/list.php?20
https://forums.mysql.com/list.php?20

130

	MySQL Information Schema
	Table of Contents
	Preface and Legal Notices
	Chapter 1 INFORMATION_SCHEMA Tables
	Chapter 2 Introduction
	Chapter 3 INFORMATION_SCHEMA Table Reference
	Chapter 4 INFORMATION_SCHEMA General Tables
	4.1 INFORMATION_SCHEMA General Table Reference
	4.2 The INFORMATION_SCHEMA ADMINISTRABLE_ROLE_AUTHORIZATIONS Table
	4.3 The INFORMATION_SCHEMA APPLICABLE_ROLES Table
	4.4 The INFORMATION_SCHEMA CHARACTER_SETS Table
	4.5 The INFORMATION_SCHEMA CHECK_CONSTRAINTS Table
	4.6 The INFORMATION_SCHEMA COLLATIONS Table
	4.7 The INFORMATION_SCHEMA COLLATION_CHARACTER_SET_APPLICABILITY Table
	4.8 The INFORMATION_SCHEMA COLUMNS Table
	4.9 The INFORMATION_SCHEMA COLUMNS_EXTENSIONS Table
	4.10 The INFORMATION_SCHEMA COLUMN_PRIVILEGES Table
	4.11 The INFORMATION_SCHEMA COLUMN_STATISTICS Table
	4.12 The INFORMATION_SCHEMA ENABLED_ROLES Table
	4.13 The INFORMATION_SCHEMA ENGINES Table
	4.14 The INFORMATION_SCHEMA EVENTS Table
	4.15 The INFORMATION_SCHEMA FILES Table
	4.16 The INFORMATION_SCHEMA KEY_COLUMN_USAGE Table
	4.17 The INFORMATION_SCHEMA KEYWORDS Table
	4.18 The INFORMATION_SCHEMA ndb_transid_mysql_connection_map Table
	4.19 The INFORMATION_SCHEMA OPTIMIZER_TRACE Table
	4.20 The INFORMATION_SCHEMA PARAMETERS Table
	4.21 The INFORMATION_SCHEMA PARTITIONS Table
	4.22 The INFORMATION_SCHEMA PLUGINS Table
	4.23 The INFORMATION_SCHEMA PROCESSLIST Table
	4.24 The INFORMATION_SCHEMA PROFILING Table
	4.25 The INFORMATION_SCHEMA REFERENTIAL_CONSTRAINTS Table
	4.26 The INFORMATION_SCHEMA RESOURCE_GROUPS Table
	4.27 The INFORMATION_SCHEMA ROLE_COLUMN_GRANTS Table
	4.28 The INFORMATION_SCHEMA ROLE_ROUTINE_GRANTS Table
	4.29 The INFORMATION_SCHEMA ROLE_TABLE_GRANTS Table
	4.30 The INFORMATION_SCHEMA ROUTINES Table
	4.31 The INFORMATION_SCHEMA SCHEMATA Table
	4.32 The INFORMATION_SCHEMA SCHEMATA_EXTENSIONS Table
	4.33 The INFORMATION_SCHEMA SCHEMA_PRIVILEGES Table
	4.34 The INFORMATION_SCHEMA STATISTICS Table
	4.35 The INFORMATION_SCHEMA ST_GEOMETRY_COLUMNS Table
	4.36 The INFORMATION_SCHEMA ST_SPATIAL_REFERENCE_SYSTEMS Table
	4.37 The INFORMATION_SCHEMA ST_UNITS_OF_MEASURE Table
	4.38 The INFORMATION_SCHEMA TABLES Table
	4.39 The INFORMATION_SCHEMA TABLES_EXTENSIONS Table
	4.40 The INFORMATION_SCHEMA TABLESPACES Table
	4.41 The INFORMATION_SCHEMA TABLESPACES_EXTENSIONS Table
	4.42 The INFORMATION_SCHEMA TABLE_CONSTRAINTS Table
	4.43 The INFORMATION_SCHEMA TABLE_CONSTRAINTS_EXTENSIONS Table
	4.44 The INFORMATION_SCHEMA TABLE_PRIVILEGES Table
	4.45 The INFORMATION_SCHEMA TRIGGERS Table
	4.46 The INFORMATION_SCHEMA USER_ATTRIBUTES Table
	4.47 The INFORMATION_SCHEMA USER_PRIVILEGES Table
	4.48 The INFORMATION_SCHEMA VIEWS Table
	4.49 The INFORMATION_SCHEMA VIEW_ROUTINE_USAGE Table
	4.50 The INFORMATION_SCHEMA VIEW_TABLE_USAGE Table

	Chapter 5 INFORMATION_SCHEMA InnoDB Tables
	5.1 INFORMATION_SCHEMA InnoDB Table Reference
	5.2 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE Table
	5.3 The INFORMATION_SCHEMA INNODB_BUFFER_PAGE_LRU Table
	5.4 The INFORMATION_SCHEMA INNODB_BUFFER_POOL_STATS Table
	5.5 The INFORMATION_SCHEMA INNODB_CACHED_INDEXES Table
	5.6 The INFORMATION_SCHEMA INNODB_CMP and INNODB_CMP_RESET Tables
	5.7 The INFORMATION_SCHEMA INNODB_CMPMEM and INNODB_CMPMEM_RESET Tables
	5.8 The INFORMATION_SCHEMA INNODB_CMP_PER_INDEX and INNODB_CMP_PER_INDEX_RESET Tables
	5.9 The INFORMATION_SCHEMA INNODB_COLUMNS Table
	5.10 The INFORMATION_SCHEMA INNODB_DATAFILES Table
	5.11 The INFORMATION_SCHEMA INNODB_FIELDS Table
	5.12 The INFORMATION_SCHEMA INNODB_FOREIGN Table
	5.13 The INFORMATION_SCHEMA INNODB_FOREIGN_COLS Table
	5.14 The INFORMATION_SCHEMA INNODB_FT_BEING_DELETED Table
	5.15 The INFORMATION_SCHEMA INNODB_FT_CONFIG Table
	5.16 The INFORMATION_SCHEMA INNODB_FT_DEFAULT_STOPWORD Table
	5.17 The INFORMATION_SCHEMA INNODB_FT_DELETED Table
	5.18 The INFORMATION_SCHEMA INNODB_FT_INDEX_CACHE Table
	5.19 The INFORMATION_SCHEMA INNODB_FT_INDEX_TABLE Table
	5.20 The INFORMATION_SCHEMA INNODB_INDEXES Table
	5.21 The INFORMATION_SCHEMA INNODB_METRICS Table
	5.22 The INFORMATION_SCHEMA INNODB_SESSION_TEMP_TABLESPACES Table
	5.23 The INFORMATION_SCHEMA INNODB_TABLES Table
	5.24 The INFORMATION_SCHEMA INNODB_TABLESPACES Table
	5.25 The INFORMATION_SCHEMA INNODB_TABLESPACES_BRIEF Table
	5.26 The INFORMATION_SCHEMA INNODB_TABLESTATS View
	5.27 The INFORMATION_SCHEMA INNODB_TEMP_TABLE_INFO Table
	5.28 The INFORMATION_SCHEMA INNODB_TRX Table
	5.29 The INFORMATION_SCHEMA INNODB_VIRTUAL Table

	Chapter 6 INFORMATION_SCHEMA Thread Pool Tables
	6.1 INFORMATION_SCHEMA Thread Pool Table Reference
	6.2 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATE Table
	6.3 The INFORMATION_SCHEMA TP_THREAD_GROUP_STATS Table
	6.4 The INFORMATION_SCHEMA TP_THREAD_STATE Table

	Chapter 7 INFORMATION_SCHEMA Connection-Control Tables
	7.1 INFORMATION_SCHEMA Connection-Control Table Reference
	7.2 The INFORMATION_SCHEMA CONNECTION_CONTROL_FAILED_LOGIN_ATTEMPTS Table

	Chapter 8 INFORMATION_SCHEMA MySQL Enterprise Firewall Tables
	8.1 INFORMATION_SCHEMA Firewall Table Reference
	8.2 The INFORMATION_SCHEMA MYSQL_FIREWALL_USERS Table
	8.3 The INFORMATION_SCHEMA MYSQL_FIREWALL_WHITELIST Table

	Chapter 9 Extensions to SHOW Statements
	Chapter 10 MySQL 8.0 FAQ: INFORMATION_SCHEMA

