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Zusammenfassung ix

Zusammenfassung

Diese Dissertation behandelt nichtsupersymmetrische Vakua der Stringtheorie im Rahmen
des Supergravitationsansatzes. Bei diesem Ansatz handelt es sich um die effektive Beschrei-
bung der Stringtheorie bei niedrigen Energien.

Das konkrete Forschungsgebiet, welches behandelt wird, ist die heterotische E8 × E8

Stringtheorie bei schwacher und starker Kopplung. Davon ist der starke Kopplungslimes
durch eine elfdimensionale Supergravitationstheorie (SUGRA) mit zwei zehndimensionalen
Grenzflächen beschreibbar (heterotische M-Theorie). Der Übergang zur schwachen Kopp-
lung wird durch die begrenzte Raumrichtung geregelt, deren Ausdehnung bei schwacher
Kopplung gegen null geht, so dass beide Grenzflächen miteinander identifiziert werden
können. Die resultierende Theorie ist die zehndimensionale heterotische E8 × E8 SUGRA.

Im Rahmen dieser heterotischen SUGRA werden zunächst sechs der ursprünglich neun
Raumdimensionen kompaktifiziert, um hierauf die Bedingungen für intakte Supersymme-
trie (SUSY) in vier Raumzeitdimensionen, bei nicht verschwindendem Hintergrundfluss,
zu untersuchen. Daraufhin wird die Verletzung einer dieser für SUSY notwendigen Bedin-
gungen erlaubt. Entscheidend dafür ist der vorhandene Hintergrundfluss. SUSY-Brechung
führt im Folgenden zu restriktiven Forderungen an die kompakte sechsdimensionale Man-
nigfaltigkeit, die durch Faserbündel mit zweidimensionaler Faser und vierdimensionaler
Basis erfüllt werden können. In einfachen Beispielen werden sowohl der Erwartungswert
des Dilatons, als auch das Volumen der Faser stabilisiert, wohingegen das Volumen der
Basis unbestimmt bleibt.

Des weiteren wird der Effekt eines fermionischen Kondensates auf das Modell unter-
sucht. Die erwartete zusätzliche SUSY-Brechung tritt auf, und es zeigt sich, dass die Bre-
chung durch den Fluss nicht durch die Brechung durch das Kondensat aufgehoben werden
kann.

Den Abschluss dieser Arbeit bildet die Untersuchung des starken Kopplungslimes der
zuvor gefundenen Beispiele. Dafür ist es notwendig, die Wirkung der heterotischen M-Theo-
rie so umzuformen, dass sie eine Summe von quadratischen Termen bildet, die gleich null
sind, wenn SUSY intakt ist. Eine genaue Analyse macht deutlich, dass dies nur in bestimm-
ten Fällen möglich ist.

Trotzdem kann die Konsistenz der M-theoretischen Ergebnisse mit den Ergebnissen
aus dem schwachen Kopplungslimes gezeigt werden. Darüber hinaus wird bewiesen, dass
es möglich ist die in der heterotischen SUGRA konstruierte Klasse von Beispielen auch im
starken Kopplungslimes zu behandeln.
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Abstract

This dissertation is concerned with non-supersymmetric vacua of string theory in the su-
pergravity (SUGRA) approach. This approach is the effective description of string theory
at low energies.

The concrete field of research that is treated here is heterotic E8 × E8 string theory
at weak and at strong coupling, respectively. In the strong coupling limit the theory is
described by eleven-dimensional SUGRA with two ten-dimensional boundaries (heterotic
M-Theory). The transition to the weak coupling limit is governed by the restricted space
dimension, whose length tends to zero for weak coupling such that the two boundaries get
identified with each other. The resulting theory is ten-dimensional E8 × E8 SUGRA.

In the context of this heterotic SUGRA, at first six of the former nine space-dimensions
are compactified, and then, in the presence of non-vanishing background flux, conditions for
unbroken supersymmetry (SUSY) in four space-time dimensions are analyzed. Afterwards,
a violation of one of the necessary SUSY conditions is allowed. An essential ingredient,
necessary for this to work, is the presence of flux. This kind of SUSY-breaking leads to
severe constraints on the compact six-dimensional manifold, which can be satisfied by fiber
bundles with two-dimensional fiber and four-dimensional base. In simple examples one can
stabilize the expectation value of the dilaton as well as the volume of the fiber, whereas
the volume of the base remains undetermined.

Furthermore, the effect of a fermionic condensate is analyzed. The expected additional
SUSY-breaking can be observed, and it is shown that the breaking induced by the flux can
not be canceled by the contributions from the condensate.

The end of this thesis is concerned with the discussion of the strong coupling limit
of the previously found examples. To analyze this, it is necessary to rewrite the action
of heterotic M-theory as a sum of quadratic terms, which vanish once SUSY is imposed.
However, as is clarified by a detailed analysis, this is only possible for certain cases.

Nonetheless, one can show the consistency of the M-theoretic results with the findings
in the weak coupling limit. Moreover, it is proofed that it is possible to treat the class of
examples constructed in heterotic SUGRA also in the strong coupling limit.
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Chapter 1

Introduction

The results of our works [1–4] could be summarized in the following concise way: ‘In
this thesis we are concerned with the problem of constructing non-supersymmetric flux
compactification vacua in the context of heterotic string theory and the lift of eventually
found vacua to eleven-dimensional supergravity with boundaries’. Such a statement is of
course not very self-enlightening and is in need for a further clarification and a localization
in the context. This is the goal of this introductory chapter.

This thesis uses as its basic framework the vast topic of string theory. In this context
we have derived some new results on supersymmetry breaking in heterotic string compact-
ifications. Moreover, the thesis represents to a good extent working techniques that are
essential to understand a wide range of publications. Therefore, by explaining how this
thesis is connected to string theory we will also shed light on more general trends in this
field of research. On the other hand, such an explanation will also prepare the reader for
the more technical details that are comprised in the main part of this work. Last but not
least it will in addition relate the results of this thesis to recent developments in string
theory.

Thus, a natural question to start with is to ask which working techniques we employ.
We therefore have to make clear that our whole discussion will take place in the language of
supergravity theories. Moreover, we will work in a classical regime, i.e. we will consider only
background solutions. As we think, this is in need of an explanation, and we will therefore
try to make clear the connection between string theory and supergravity in section 1.1.
During this discussion we will also show why eleven-dimensional supergravity has to be
viewed as a part of string theory.

The second important point to mention is that we are dealing with so-called flux-
compactifications. We will therefore discuss in section 1.2 the main problem that first
led to the inclusion of non-vanishing fluxes. In fact, all supergravity approaches to string
theory suffer from massless scalar fields, called moduli, which have to be absent in phe-
nomenological viable models. One mechanism to give a mass to some (or even all) of these
moduli is to use backgrounds with non-zero flux.

This leads us directly to the recent developments in the field of flux-compactification,
that we will shortly discuss in section 1.3. Here, we will focus on the use of the mathematical
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framework of G-structures and on the construction of non-supersymmetric vacua, since
these are the starting points for our own work. At the end of this chapter we will comment
on the organization of this thesis and summarize our main results.

1.1 The supergravity approach to string theory

In this section we are going to describe the supergravity (SUGRA) approach to string
theory. As it can be understood as the low energy limit of string theory, it will be inevitable
to review some basic features of string theory as well. However, on this we will be as
brief as possible and refer the reader to the well known textbooks on the topic [5–10] for
further information.1Besides introducing SUGRA, we will also discuss the advantages of
the approach.

1.1.1 String theory and its low energy limit

World sheet theory

String theory is in its essence the attempt to do high energy physics with one-dimensional
objects instead of point particles. It was developed at the end of the 1960’s in order
to deal with the strong interaction, but was discarded after the development of quantum
chromodynamics (QCD) (for a history of early string theory see e.g. [5,20–22] and references
therein). However, since there appeared states with spin s = 2 in the spectrum, and since
the mediating particle of gravitation, the graviton, has also spin s = 2, string theory was
revitalized in the mid eighties as a possible theory of quantum gravity [23–27].

The action of a freely moving point-particle can conveniently be described by the in-
tegral over the world-line of the particle (i.e. the path of the particle in space-time). The
basic idea of string theory is to replace this action by the integral over the two-dimensional
surface swept out by a one-dimensional object in space-time, the string. This gives a
parametrization of the space-time coordinates in terms of two world-sheet coordinates. A
different view on string theory is therefore to consider it as a two-dimensional theory with
a number of bosonic fields, which equals that of the space-time dimension.

In order to make the action dimensionless one has to introduce one length scale ls, that
can be understood as the typical length of a string. This is the only dimensionful parameter
that has to be introduced by hand into the theory and it implies that massive states of
string theory have masses of order 1/ls. In general, since one wants to describe quantum
gravity with string theory it is reasonable to identify the string scale 1/ls roughly with the
Planck scale Mp

∼= 1019 GeV. However, there are also models which make it possible to

1One should note that due to the limited space, but also due to the minimal connection to the works
presented here, we will omit several research directions in our discussion. The most important ones of
these are the AdS/CFT correspondence [11], F-theory [12], the string landscape [13], string inflation [14],
black hole physics [15], doubled field theory [16,17], and non-geometric fluxes [18,19].
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have a lower string scale [28,29].2

As it turns out, this two-dimensional description of string theory has a conformal sym-
metry3 promoting it to a conformal field theory (CFT). Starting from there, it is possible
to deduce a number of strong results. First, in order for the spectrum not to contain a
tachyon it is mandatory to add a second sector to the theory such that the world sheet
theory becomes supersymmetric. However, due to consistency at the one loop level [23],
it turns out that states with the same mass appear as supersymmetry (SUSY) multiplets
also from the space-time perspective. Pointed out more concisely: string theory without
tachyons has to obey supersymmetry.

Quantization of a field theory brings with it the danger that not all symmetries which
are preserved at tree level can automatically be kept at one-loop level. These so-called
anomalies will effectively destroy the symmetry properties, and thus render the theory
inconsistent (see e.g. [39, 40] and references therein). Anomalies also occur during the
quantization of the world-sheet theory of string theory. However, it can be shown that
they are absent when one fixes the number of bosonic fields to be ten.4 Since the number
of bosonic fields equals the number of space-time dimensions, superstring theory can only be
formulated in ten dimensions. The same analysis which gives the dimensional constraint
yields also equations which involve the space-time curvature and can be interpreted as
equations of motion (EoM’s) of a low-energy space-time theory [41–44].5 This is a first
hint of how to obtain a low energy limit of string theory.

Satisfying these conditions it turns out that there are only five consistent ways to
formulate string theory. The so-called type II theories contain only closed strings. There
are two of them that differ in its spectrum, type IIA which is non-chiral, and type IIB which
is chiral [45, 46]. Type I string theory also contains closed strings, but has the additional
requirement that all word-sheets that are swept out by strings have to be non-orientable.
For this reason it is also possible to include open strings to the spectrum [47, 48]. The
last class of theories, which will concern us mostly in this thesis, are the heterotic string
theories. In these, the closed strings can also carry gauge charges, while open strings are
forbidden. One can then distinguish two heterotic theories by the allowed gauge groups,
which are either SO(32) or E8 × E8 [25, 26].

Conceptually important in the above description of string theory is that it is defined
intrinsically as a power series. The expansion parameter in this series, the string coupling
gs can be traced back to the topology of the string world sheet, counting the number of
handles it has. In this sense, it is analogous to a loop expansion in quantum field theory
and is only sensible as long as the coupling gs is small. However, this can not be guaranteed

2The implication of a low string scale on LHC physics has been analyzed in [30–32]. Experimentally
excluded is the energy region below 1.67 TeV [33].

3Roughly speaking, a conformal symmetry leaves the angles between two lines equal. For more infor-
mation see [34–38].

4By ‘bosonic fields’ we mean here the fields which describe the embedding of the string world sheet into
space-time, and not other bosonic states as the dilaton or the Neveu-Schwarz flux.

5These equations appear as beta-functions of the world-sheet theory that have to vanish in order for
the theory to be anomaly free.
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from the beginning, since gs is determined by the theory itself [5–10]. Therefore, at this
point one could wonder how the theory is defined in the strong coupling regime, or whether
it can be defined at all.

Branes and dualities

The above description reflects the state of the art before the mid 1990’s. However, then
two new concepts were introduced that revolutionized string theory. On the one hand,
it was discovered that there can be other extended objects besides strings, which can be
included within the theory. These fill (p+1)-dimensional space-time, and since strings can
end on them and obey Dirichlet boundary condition at the endpoints, they were named
Dp-branes [49–51]. On the other hand, it was recognized that all of the five formulations
of the theory are actually related to each other by so-called dualities [52–58].

The simplest of these dualities goes under the name of T-duality [59–62]. To understand
its origin it is necessary to imagine that one could role up at least one dimension of space as
a circle of radius R. This is actually an old idea, which was promoted by Kaluza and Klein
in the 1920’s [63, 64] in order to unify gravity and electromagnetism, but was discarded
due to its predictions: a tower of massive states with even mass separation of the order of
the inverse radius 1/R, and a scalar field. However, since string theory is only consistent
in ten dimensions, it is more or less unavoidable to have compact space dimensions if the
theory should be able to describe physics in four dimensions.

The implications of these extra dimensions for string theory are quite interesting. In
contrast to a point particle, a closed string can not only propagate in the compact dimen-
sion, but can also wind around it such that it is not contractible any more. The mass of
such a string, when viewed from the perspective of the non-compact dimensions, has two
extra contributions: one from the quantized momentum in the internal dimension, which
would also be present for a point particle, and one being proportional to the number of
times the string is wrapped around the extra dimension. The important point to notice is
that the mass contribution from the momentum is proportional to an integer times 1/R,
while the winding contribution is proportional to the radius R (the larger R the larger
is the tension in the string and hence its mass). Going to the limit of infinite radius,
i.e. to the uncompactified theory, one gets back a continuous (and therefore propagating)
momentum, and decouples the infinitively heavy winding modes. On the other hand, tak-
ing the radius to zero decouples the momentum modes, but renders the winding modes
continuous. Physically one cannot distinguish these two regimes. In both cases one has a
continuous mass spectrum for every spatial dimension and the fact that in the limit R→ 0
it is produced by winding modes cannot be detected anymore.

It is therefore sensible to argue that the theory at radius R is dual to the theory at radius
1/R, where ‘dual’ means that both describe the same physics. This is essentially what
T-duality does. Extending the duality to the open string leads to even more interesting
results. In fact, an open string cannot wind anything as long as its endpoints are not fixed.
So what T-duality claims is that a string that moves freely in all space dimensions on the
one side of the duality is stuck to a fixed plane on the other side. These planes are the
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aforementioned D-branes. This means that since T-duality is valid in the closed string
sector, one has to introduce D-branes if one introduces open strings [49–51].

Analyzing these issues more carefully one can show that several of the above five de-
scriptions of string theory are connected to each other by T-duality. Starting from the
type I string, one reaches the two type II theories by shrinking an odd (type IIA) or an
even (type IIB) number of space dimension to zero and going to the T-dual description.
This in turn implies that the type II theories are mutually T-dual to each other. Fur-
thermore, since the open strings of type I can end everywhere in space, there has to be a
D9-brane present. Thus, type IIA theory has only Dp-branes with even p, whereas type IIB
contains only branes with odd p. Hence, when T-duality is included type I and the type II
string theories should be viewed as one single theory [53].

In a similar fashion one can argue that the two heterotic theories are connected by a
T-duality and provide in fact also only one description of string theory [52]. However, in
the heterotic case there are no D-branes, as there are no open strings. But another type
of branes, called NS5-branes, is present in these theories [65]. Since it can be shown that
these branes are associated to closed strings on a fundamental level, and not only in the
heterotic description, one also has to include them in the type I/II sector of the theory.

The next question to ask is then whether or not one can connect all five formulations
of string theory. As it turned out, this question is deeply related to the problem of a
strong coupling description for string theory. Since it would go beyond the scope of this
introductory chapter, and also since it is not needed in full detail in order to understand
the findings of our works, we will simply state the results here.

In fact, it can be argued that every strongly coupled description of string theory is
‘S-dual’ to another theory that is weakly coupled.6 To go one by one, the type IIB theory
is S-dual to itself [68], while type I and the heterotic theory with gauge group SO(32) are
mutually S-dual to each other [55]. The case of type IIA and the heterotic E8×E8 theory is
different. These are not S-dual to another string description, but to a, up to now, unknown
eleven-dimensional theory, called M-theory [56–58,69].

But how is it possible to know the dimension of an otherwise undetermined theory?
This can be understood by an argument similar to the one that led to T-duality. In the
type IIA theory it is possible to include D0-branes, that is point-like branes. Their mass
is always equal and proportional to the inverse string coupling 1/gs. Putting a number of
n D0-branes on top of each other and going to strong coupling (gs → ∞) leads then to a
continuous spectrum as if a former compact dimension becomes extended again. Hence,
one believes that the strong coupling regime of type IIA theory is governed by an eleven-
dimensional theory with one compact circle. By going through a duality chain (i.e. by
applying several S- and T-dualities), it is possible to show that the heterotic E8 × E8

theory is S-dual to the same eleven-dimensional theory, but now with two ten-dimensional
boundaries each with one E8 gauge group on it.

Therefore, all five different string theories, which can be constructed consistently, are

6S-duality was firstly described in the context of compactifications of the heterotic string to four di-
mensions, where the heterotic string is dual to itself [66, 67].
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connected by dualities and can be seen as different limits of one still unknown theory,
that most string theorist nowadays call M-theory. One way to obtain knowledge about
M-theory, is to consider the low energy limit of string theory, since there one can shed
some light on the part of M-theory that is connected to the type II and heterotic string
theories by S-duality. We will therefore discuss this limit next.

Supergravity as low energy limit of string theory

The normal way to obtain the low energy limit of a given theory is to integrate out all
fields in the path integral that are heavier then a given mass scale (see e.g. [70–73]). The
first question to answer is therefore at which scale one should truncate the spectrum. In
string theory there is only one parameter with a mass dimension, the inverse string length
1/ls. It is therefore natural to keep only states that are much lighter than 1/ls. But since
all massive excitations of a string have at least masses of order 1/ls too, it follows that a
low energy description of string theory should contain only its massless states.

The next question would then be, which action one should truncate. As one wants to
end with a low energy field theory defined in ten dimensions, one cannot use the known
world sheet action, but needs a field theoretic description of string theory at high energies.
As a matter of principle this is not known.

On the other hand the world sheet theory is perfectly suited to calculate string inter-
actions (see e.g. [30,74–79]). A way to obtain the low energy description is then to deduce
it from the S-matrix of string scattering (for the heterotic case see e.g. [80,81]).

Yet another way that could lead to the low energy action is to reconsider the anomalies
of the world-sheet theory. In our discussion we claimed that one obtains several EoM-like
equations for the states of string theory. Considering only the lowest orders in a string
loop expansion should then also give equations that have to be obeyed in the low energy
limit (again for the heterotic string see e.g. [82]). The hard task in these approaches is
to construct an action that would gives the right scattering amplitudes and equations of
motion. We will see in a moment that it is in fact not necessary to deduce the right action
in this way.

But before we do so, let us think about what the right expansion parameter for our
action should be. Clearly, one should expand the theory in a dimensionless quantity. On
the other hand, it should be an expansion that terminates soon if the energy is much
smaller then the string mass scale E � 1/ls. We therefore conclude that our action should
be a power series in E ls. Written in this way it becomes obvious that this is a good
description, either when the energies are very low, or when ls is very small.

To lowest order in ls it is then quite easy to determine the low energy limit of string
theory. To this end, one uses the fact that it was mandatory for string theory to be
formulated in ten dimensions and to be supersymmetric. As these two properties should
not be destroyed in the low energy limit, we are looking for ten-dimensional supersymmetric
theories that contain the graviton. The answer to this problem is supergravity in ten
dimensions.

Moreover, it turns out that there can be found exactly one ten-dimensional SUGRA
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for each of the five formulation of string theory, but not more [24, 83–88]. One concludes
therefore that indeed supergravity can be used as the low energy limit of string theory.
As we will see in the next section there are several advantages in using the supergravity
approach to string theory.

1.1.2 Advantages of the supergravity approach

After we have clarified, how string theory and supergravity are connected, one could ask:
what is this good for? Why does one consider the low energy limit of a theory of which
one has also a description that holds for high energies?

As we already pointed out in the last section, one answer to this question is M-theory,
as for M-theory it is not clear what the high energy description is. So, in order to exploit
the dualities of string theory fully in a controllable way, it is very useful to consider the
low energy regime. To be more precise, it can be shown that the action of type IIA
supergravity can be obtained from eleven-dimensional SUGRA by dimensional reduction,
i.e. by compactifying on a circle and discarding all massive states. This, together with the
fact that SUGRA in eleven dimensions is a unique theory [89], makes it very plausible to
view 11d SUGRA as the low energy limit of M-theory.

In the same way one can relate the heterotic E8×E8 supergravity to eleven-dimensional
supergravity including two boundaries, confirming also in this sector the claimed dual-
ities [57, 90–92]. Therefore, nearly everything we know about M-theory comes from its
low energy description7, and it is widely customary to use the term M-theory also for its
supergravity limit. In this thesis we are mainly interested in the heterotic E8 × E8 super-
gravity and its strong coupling limit, and hence we will reexamine these theories on a more
technical level in chapter 2.

Another way to understand the importance of the SUGRA approach to string theory is
to remember that string theory has to be formulated in ten dimensions. This is of course
in conflict with the fact that it should eventually describe four-dimensional physics. To
solve this problem it is inevitable to hide six of the ten dimensions. This is usually done by
following the idea of Kaluza-Klein reduction discussed in the last section and by proposing
that the six extra dimensions belong to a compact manifold of size so small that it can not
be resolved by present experiments.8 This procedure of compactification is extremely hard
to deal with in the original world sheet theory which becomes highly non-linear. On the
other hand, compactification is quite easy to handle within supergravity, where it merely
corresponds to a special form of the metric.

Furthermore, one can show that the metric of the internal space will affect the phys-
ical spectrum that can be observed in four dimensions. Since also the standard model
(SM) of particle physics, or more precisely its supersymmetric version (MSSM), should
be contained in the low energy description of string theory9, it is in principle possible to

7There is also a description of M-theory in terms of matrix-theory [93,94].
8Another way to hide the extra dimensions is to use D-brane models, in which four-dimensional physics

is located on a brane [28,95,96].
9For an introduction to the SM and the MSSM see e.g. [97,98]. Since string theory is supersymmetric,
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deduce constraints on the compactification from phenomenology and thus find a link from
standard model physics to string theory.

One should also note that in the beginning one does not know which compact manifold
to take. It is one strength of the supergravity approach to give quite sever constraints on
the internal spaces. In fact, a big part of this work is concerned with finding first these
constraints and then its solutions.

As a matter of fact, in order to find solutions, one has to think about another problem.
Since string theory on the world sheet is formulated as a consistent quantum theory, one
should of course also deal with quantized supergravity. However, this is a very difficult
thing to do in its own right [99, 100], and it would therefore seem that one has not won a
lot in going to the low energy regime. The right viewpoint to this issue is to think about
the quantum fields as oscillation around a background field [101]. The background field
is the solution to the classical problem, while only the oscillatory part is considered as
quantized. In the supergravity approach one considers only the classical solution. This is
necessary in order to find the correct and consistent background values of the fields.

In this sense treating sting theory in a supergravity framework is only the first step
in a complete quantum mechanical formulation. But the point that should be stressed
here is that without having the right classical background it would be even harder – if not
impossible – to develop a quantized field theoretic description. This is what makes the
supergravity approach on the one hand feasible and on the other hand essential. And it is
for this reason that so much work, including our own, has been devoted to this approach.

After having clarified the strength of supergravity in the context of string theory, we
also want to point out some of its drawbacks. An obvious downside is that one looses
the explicit stringiness of the theory, simply because one is dealing with ordinary field
theory. Stringy corrections to the lowest order supergravity action come as power series in
the string length ls and can in principle be inferred from S-matrix elements of the world
sheet theory [80–82, 102–104]. Other corrections can be found by anomaly considerations
of the supergravity theories and lead to higher order contributions in the action. This
is in particular the case for the heterotic theories and its M-theoretic limit [24, 90, 105].
Therefore, if one wants to calculate string cross sections, i.e. intrinsically stringy quantities,
one should definitively not do it within SUGRA, but within the world sheet approach.

A further implication of the SUGRA approach is that one is working at a classical
level. Despite of the benefits of this approach, which we listed above, one has to assure
that no quantum effects alter the results on a fundamental level. The scale at which one
expects that quantum gravity effects to become important is again given by the inverse
string length 1/ls. Therefore, in flat ten-dimensional space our truncation ansatz E � 1/ls
assures that we can treat the problem classically.

But when one starts to compactify the theory, another mass scale 1/R, determined
by the typical compactification radius R, is introduced. In order to guarantee that the
classical description still makes sense, one has to demand E � 1/R � 1/ls, thereby
decoupling Kaluza-Klein modes from quantum modes. Hence, there is an intrinsic consis-

one can of course only get the MSSM in the low energy limit if one does not invoke SUSY-breaking.
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tency condition on the supergravity approach, which demands that the length scales of the
compactification manifold should not get to small. On the other hand, the seize should
not get to big either in order not to be in conflict with four-dimensional physics. This is
a generic problem in the supergravity approach, and we discuss one of its solution in the
next section.

1.2 The moduli problem in supergravity

After having illuminated the advantages of the supergravity approach in the last section
we will focus here on one of its main problems, the issue of four-dimensional massless fields,
called moduli. The solution of this problem can be obtained by introducing non-vanishing
flux on the compact manifold, i.e. by doing ‘flux compactification’.

1.2.1 Calabi-Yau compactification and moduli

We have mentioned above that four-dimensional phenomenology and the internal compact
manifold are related. An important example is given by Calabi-Yau (CY) compactifi-
cations. It was recognized already some time ago that the amount of supersymmetry
preserved during the process of compactification is not predetermined. But a sensible as-
sumption for the energy regime we are interested in is that it should be possible to realize
the minimal supersymmetric extension of the standard model, which is an N = 1 theory10,
meaning that also the compactified theory should have N = 1 SUSY. For the simplest
settings this request on four-dimensional physics can be translated into conditions on the
internal space, and restricts it to have a vanishing Ricci tensor [27, 106–109]. In compact-
ifications form ten to four dimensions one knows that such spaces exist due to proofs by
Calabi and Yau [110, 111]. These spaces are therefore called Calabi-Yau manifolds (for
further properties of CY manifolds see e.g. [112–114]). For compactifications of M-theory
to four dimensions it is also possible to find explicit examples [115–117].

Having fixed the amount of supersymmetry from the phenomenological viewpoint, one
can ask next what kind of particles are to be expected. The answer to this question can
be given by explicitly calculating the effective four-dimensional SUSY action and provides
the result that one has to expect several massless scalar fields in every case. These scalar
fields correspond to flat directions in the potential and are called moduli [8–10]. The
disturbing fact about these findings is that such massless bosons should mediate forces in
four dimensions that have not been observed [118].

Besides from this conflict with experiment, moduli are also dangerous from the theo-
retical viewpoint. The reason for this is that the moduli fields correspond to geometrical
quantities of the CY manifold [119–123]. As their potential energy is flat, they can take
any value they want, leaving the compactification manifold quite undetermined. In partic-
ular, there is always one modulus corresponding to the overall size of the manifold. This is

10This means that SUSY is generated by one four-dimensional Dirac spinor, or equivalently by two Weyl
spinors.
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very unsatisfactory, since as we have discussed in the previous section the radius should be
neither to big nor to small. Therefore, in order to have viable physics in four-dimension,
but also to guarantee consistency of the supergravity approach, one is forced to introduce
some mechanism that gives a mass to all moduli fields and stabilizes their vacuum expec-
tation values. This in turn will then fix the form and the seize of the internal manifold,
respectively. One way to achieve this, which has become very popular in the recent years,
is to include non-vanishing background flux into the analysis.

1.2.2 Stabilizing moduli with flux

One way to understand the origin of background fluxes in string theory is to look at the
fields appearing in the classical supergravity actions. All ten-dimensional SUGRA theories
contain besides the metric and a scalar field (the dilaton) various p-form field strengths
that are built from (p− 1)-form potentials analogous to the electromagnetic field strength
and its one-form potential.11 Following the analogy, one can assign fluxes to these p-form
field strengths, just as one does in the electromagnetic field. That is, one claims that the
p-dimensional integral over a p-form field strength does not vanish for ‘magnetic’ p-form
flux, while one speaks of ‘electric’ flux when the (10−p)-dimensional integral over the field
strength is not zero.

Explicit sources for these fluxes are D-branes and NS5-branes. However, just as an
electromagnetic wave can propagate without sources, it is also possible to include general
p-form flux without sources. Furthermore, an analysis similar to the one that led to the
Dirac quantization condition [124] shows that also the more general p-form fluxes have to
be quantized [125–127].

In the previous section we claimed that for the simplest settings one has to compactify
on Calabi-Yau manifolds, but we did not explain in what sense these settings are simple.
The answer is that in the CY case one does set all background fluxes to zero. Due to flux
quantization it is impossible to generate flux dynamically, which ensures the consistency of
the ansatz.12 But in principle flux should be included in the analysis. However, it should
also not be in conflict with the four-dimensional Poincaré symmetry, i.e. with the known
background properties of the observed space-time. This restricts fluxes to be uniform in
four-dimensional space-time (when possible), or to be totally localized in the compact part
of space.

Non-vanishing flux has in general several implications on the problem of how to com-
pactify the theory in a supersymmetric way. First, SUSY in four dimensions can only be
obtained if not all flux components, which are possible in principle, are present. Moreover,
fluxes affect heavily the geometry of space-time. For example, the internal space cannot
be described as a CY manifold anymore. Since in this case there is no powerful existence
theorem as in the CY case, an essential problem is to construct explicitly manifolds that
satisfy all conditions required by supersymmetry in order to show that consistent solutions

11Eleven-dimensional supergravity also has a metric and a three-from potential, but no dilaton.
12As noticed already in [128] it is possible to change the amount of flux by tunneling processes, which

can be neglected in most cases.
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are not absent. Furthermore, fluxes can alter the overall space-time geometry such that
four-dimensional space-time obtains an exponential warp-factor, which is an extra scale
factor depending on the position in the internal space [129–140].

Considering all these changes, one should not be surprised that fluxes can also be used
to stabilize moduli. Keeping the discussion as broad as possible, one can say that fluxes
introduce new terms in the effective four-dimensional SUSY action and generate in that way
a non-flat potential for some of the moduli [141–149]. It is for this interesting possibility
to obtain massive moduli within the classical background approach of supergravity that
flux compactification has attracted so much attention in the recent years.13

However, there are also other interesting effects that one can study within the field
of flux compactification. In particular, as we mentioned before it is possible to find a
supersymmetric theory in four dimensions only, when certain conditions on the flux are
satisfied. Turning the argument around, one can also ask whether it is possible to break
SUSY in a way which resembles low energy SUSY-breaking from the four-dimensional
perspective. In the main part of this thesis we will present our results found on this
question for E8 × E8 supergravity.

One of the main problems which one encounters by dealing with fluxes is that CY man-
ifolds are no solutions any more. Although CY spaces are in itself already a very difficult
subject, there are several important mathematical results about them which facilitate the
actual work with them [112–114]. Much less is known about the manifolds that appear
in the context of flux compactification. But one powerful tool, which can be used in the
analysis of fluxes, is the classification of manifolds in terms of G-structures, whose adaption
by string theorists helped on the field a lot.

1.3 G-structures and flux compactifications

A first sign for the importance of the language of G-structures for flux compactification is
that it includes the Calabi-Yau case (i.e. no flux) as well as the non-CY case. A CY manifold
can be specified mathematically in several ways. One is, as we mentioned above, its
vanishing Ricci tensor. More important in the context of flux compactification is the notion
of manifolds of G-holonomy. This means that a vector which gets transported around any
closed loop on the manifold comes back transformed under the group G. Also, the covariant
derivative built with the Levi-Civita connection of any tensor or spinor that is invariant
under the group G is zero for a G-holonomy manifold (more information about holonomy
can be found e.g. in [153–156]). A statement that holds also for compactifications of
eleven-dimensional supergravity is then that as long as there is no flux the compactification
manifold has to obey G-holonomy in order to give N = 1 SUSY in four dimensions.

The inclusion of fluxes generalizes the G-holonomy manifolds to so-called G-structure
manifolds. We will give a short introduction of G-structures in chapter 3, but want to
mention the most important points also here. Manifolds with G-structure are not random
spaces, but have to satisfy conditions that connect them to the holonomy case. All of them

13Comprehensive reviews which also organize the vast number of publications are [96,150–152].
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that are relevant for physical compactifications have to allow for (at least) one globally well
defined spinor that is invariant under G, in order to make N = 1 SUSY in four dimensions
possible. The covariant derivative of this spinor will not be zero as for G-holonomy mani-
folds, but can be understood as representing the torsion of the manifold. The amount of
allowed torsion is in turn determined by SUSY and can be used to find a classification of
G-structure manifolds and SUSY solutions. For vanishing torsion one gets of course the
holonomy case.

The role of flux should then be obvious. Vanishing flux as well as vanishing torsion
means that one has to compactify on G-holonomy manifolds. Therefore, one should be able
to identify flux and torsion. This is indeed possible and can be understood from the fact
that flux not only appears in the action, but also in the supersymmetry conditions of the
SUGRA theories. Therefore, SUSY determines the torsion of the manifold precisely via the
flux, and hence provides the connection between the two quantities. But by determining
the torsion it also determines the geometry of the compact space. The importance of the
G-structure approach to compactification is given exactly by this: it makes it possible to
clarify the deep relation between geometry and flux, that is otherwise quite obscure.14 It
thereby also makes it possible to classify possible solutions [158–161] and enables one to
search for explicit example classes.

As we mentioned briefly at the end of the last section, beside the problem of classifying
solutions and stabilizing moduli, also the issue of SUSY-breaking can be approached with
flux compactifications. We have argued in the last sections that string theory needs to be
supersymmetric and that we also expect the theory to be supersymmetric at intermediate
energy regimes, i.e. after compactification. A phenomenological reason for this is that the
hierarchy problem of the standard model15 is more easily solved when SUSY is broken at
a scale below the compactification scale (see e.g. [98] and references therein).

From the theoretical viewpoint it is also preferable to have supersymmetry intact in a
regime as large as possible. The argument for this are so-called BPS-states. Originally,
as a BPS-state a massive supersymmetric state was understood, whose mass saturates a
bound given by supersymmetry. [166, 167]. Such states are believed to give information
about the strong coupling and high energy regime of a theory, as supersymmetry is not
affected by the coupling or the energy scale.

In string theory one can also consider BPS-objects, most notably D-branes and NS5-
branes, that preserve a given amount of SUSY. Again, these objects give information about
the strong coupling and high energy regime in the low energy supergravity approximation,
and therefore tighten the connection between the SUGRA approach and the actual string

14An early paper that also recognizes the importance of torsion for compactifications without the use of
G-structures is [157]. There, solutions on Ricci-flat non-symmetric coset spaces were constructed with the
help of non-vanishing torsion.

15The standard model hierarchy problem is concerned with the mass of the higgs field. Naturally the
higgs mass should be of the order Λ2, with Λ the cut-off scale of the SM, while a mass in the range of
electroweak symmetry breaking, i.e. the TeV range, is experimentally preferred. This contradiction is
softened by low scale SUSY-breaking, due to cancellations of boson and fermion loops. For more details
see e.g. [162–165].
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theory [168–172]. By explicit strong SUSY-breaking in the theory one would loos this
information. SUSY-breaking, since it is necessary, should therefore be as mild as possible
and adiabatically connected to the supersymmetric case.

A very popular mechanism, which can achieve this, is so-called gaugino condensation.
Here, one considers a fermionic condensate which is connected to the SM only by gravity
[54, 173–178]. In this way an explicit SUSY-breaking at a high scale in a hidden sector is
mediated by gravity to soft SUSY-breaking terms in the observable sector. However, this
is a non-perturbative approach, since the formation of a condensate is a strong coupling
effect. One could therefore ask whether it is possible to achieve similar effects within a
perturbative setting alone.

In fact, this can be achieved by including non-vanishing fluxes. As we have discussed
previously it is essential for a supersymmetric vacuum that flux and torsion are in accor-
dance with each other. Stated differently: having the ‘wrong’ amount of flux will lead
to a non-supersymmetric setting (e.g. [133, 142, 143, 179–190]). However, just demanding
that SUSY is broken does not imply that one has found a consistent vacuum, i.e. that
the equations of motion are satisfied and that one has found a stable minimum of the
potential. Furthermore, it is not clear what the phenomenology in four dimensions would
be. Therefore, it is mandatory to have an organizing principle if one wants to discuss
SUSY-breaking with fluxes.

To this end, the notion of calibrated submanifolds can be used (see e.g. [158, 159,191–
196] and also section 4.3). In fact, the supersymmetry conditions for ten-dimensional
supergravity can be interpreted as calibration conditions for various extended objects in
four dimensions. Since these will also minimize their energy as long as they are calibrated,
one can consider them also as BPS-objects. Starting from this, it was shown in [197] in
the context of the type II theories that by allowing the SUSY conditions corresponding
to calibrated four-dimensional domain walls to fail a whole family of controllable soft
scale SUSY-breaking vacua can be constructed. This type of supersymmetry breaking was
therefore called domain wall SUSY-breaking (DWSB).

One of the main goals of our work was to extend this formalism to the case of the
heterotic string. To understand the relevance of this extension one should realize that by
string duality it is possible to argue that solutions that are found in the type II description
of the theory should have dual descriptions in the heterotic string. This was done in [190]
for non-supersymmetric solutions of the heterotic string. In our work we confirmed this
claim by explicit calculation16.

After having established DWSB in heterotic supergravity it was also possible to include
a gaugino condensate along the lines of [198] and examine its effects on our solutions.
Interestingly, SUSY-breaking by gaugino condensation seems to be orthogonal to DWSB
in the sense that one cannot cancel mutually the effects of both approaches and get a
supersymmetric vacuum.

From the perspective of string duality it is quite interesting whether the results we found

16Note that such a check is only possible when both supergravity descriptions are each in the weak
coupling limit.
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for the heterotic string can be extended to the strong coupling regime, i.e. to heterotic
M-theory. The second part of our work has been devoted to this question.

Important equations, which were already known for the heterotic string had to be
rederived first for eleven-dimensional supergravity. Thus, we laid only the foundations for
further research in this area, but were not able to answer all question as thoroughly as for
heterotic supergravity. However, it was at least possible for us to show that a substantial
class of solutions found in ten dimensions can be lifted to heterotic M-theory.

This brings us to the following summary of our work: We are searching for classical solu-
tions of heterotic string theory, i.e. certain background values for the metric, the dilaton,
the flux, and the gauge fields, which break supersymmetry in a controllable way. To find
these solutions we use the supergravity approach to string theory which is especially well
suited for the construction of classical backgrounds. Our search is guided twofold: firstly,
by the existence of an organized recipe to construct non-SUSY vacua of the type II string
with non-vanishing fluxes, and secondly, by string duality. The inclusion of gaugino con-
densation and the strong coupling limit connect our results to other fields of research and
guarantee in this way its consistency.

1.4 Outline and results

Let us end this introductory chapter by giving a short outline of the thesis and the results
achieved in it.

In chapter 2 we briefly review heterotic E8 × E8 supergravity in eleven and ten dimen-
sions. We present the actions, the supersymmetry transformations, and how to obtain the
ten-dimensional theory as a limit of the eleven-dimensional one. We show that both ac-
tions can be rewritten after compactification as four-dimensional integrals over an effective
potential which depends only on the internal manifold. The equations of motion derived
from these potentials are equivalent to the EoM’s obtained from the full action after the
compactification ansatz is inserted. This is an important result, which enables us to discuss
solely the potential in later chapters.

A main tool of flux compactification in general and of our work in particular is the use
of G-structures. We thus give a short introduction to this topic in chapter 3. Our special
interest will be on G2 structures in seven dimensions and SU(3) structures in six and seven
dimensions, as these will appear in our compactifications.

Our main results on the weakly coupled heterotic string are introduced in chapter 4,
following [1–3]. We start our discussion by rewriting the potential in a BPS-like form, i.e.
as a sum of perfect squares of supersymmetry conditions, which means that the potential
will be zero and extremized for unbroken SUSY.

In section 4.2 we discuss the implications of DWSB in general. We calculate the depen-
dence of the flux components on the torison of the manifold and compare it to the SUSY
case. From the potential we get an additional equation of motion that has to be satisfied
in order to obtain a consistent solution. As a further condition from the potential we find
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that the SUSY-breaking scale should lie well below the compactification scale. Therefore,
SUSY-breaking can be viewed as spontaneous in four dimensions. We also calculate the
gravitino and gaugino mass and show that they are equal.

After having reviewed the notion of calibration in section 4.3, which gives a geometric
interpretation to our model, we restrict our ansatz in section 4.4 in order to solve the
residual equation of motion. We show that solutions are given by fiber bundles with two-
dimensional fiber and four-dimensional base. From a four-dimensional analysis we obtain
the result that this class of solutions correspond to no-scale models in four dimensions, and
we confirm that the gravitino and gaugino masses are equal.

In section 4.5 we construct explicit examples that stabilize the dilaton and the radii of
the fiber. At the end of chapter 4 we include a gaugino condensate in our considerations
and show that it is not possible to cancel the SUSY-breaking effects of DWSB by the effects
of gaugino condensation. This shows that the two approaches are orthogonal to each other.

After this extensive discussion of the weak coupling limit, we examine in chapter 5
the question whether our results from ten dimensions can be lifted to the strong coupling
limit. To answer this question it is necessary to rewrite the potential of M-theory in
a BPS-like form, similar as in the ten-dimensional case. This turns out to be a hard
problem and following [4] chapter 5 is almost completely devoted to this issue. The result
of our consideration is that in the most general case it is not possible to give the potential
of heterotic M-theory in a BPS-like form. We crosscheck this statement by calculating
several known limits and can confirm it. But by examining the conditions for BPS-ness
more closely, we find that the class of solutions we got in section 4.4 can be lifted and gives
a BPS-like potential. This should be seen as a starting point for further research.

In chapter 6 we summarize our results and try to give an outlook on further work. In the
appendices we have gathered information about our conventions and several technicalities.
In appendix A.6 we also present a few results about flux backgrounds of M-theory which can
be reduced to type IIA, that did not appear in the literature yet, but are quite unconnected
to the rest of this work.
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Chapter 2

Heterotic Supergravity Theories

As was explained in chapter 1 the low energy limit of string theory can be described by
various supergravity theories in ten and eleven dimensions. Since in these theories it is
easily possible to define the form of the background metric, they serve as the ideal starting
ground for flux compactifications, where one demands a spacetime that is split into a four-
dimensional external and into a compact internal part. Moreover, it is even possible to see
some of the string dualities connecting the different formulations of string theory at the
level of its supergravity representatives. As we explained in the introduction we will focus
on classical backgrounds. Then, for most calculations it suffices to consider the bosonic part
of the SUGRA actions, since all the background values of fermions should be set to zero,
in order to preserve Poincaré symmetry. Most important for the results presented in this
thesis are eleven-dimensional supergravity with boundaries and heterotic supergravity in
ten dimensions. We therefore briefly review the actions and the supersymmetry conditions
of these theories in this chapter1. We furthermore discuss in general compactifications to
four dimensions and show that there exists a four-dimensional effective potential for both
theories. An interesting result is that the equations of motion derived from these potentials
are equivalent to those derived from the full action. Thus, it is allowed to use the effective
potential approach for further investigation.

2.1 Eleven-dimensional supergravity

We start our discussion with eleven-dimensional supergravity. In eleven dimension there
is one unique supergravity theory, as was shown in [89]. Furthermore, restricting the
field content to particles with a maximal spin of two, one cannot go higher then eleven
dimensions if one wants to construct consistent SUGRA theories. This makes eleven-
dimensional SUGRA special in its own right. On the other hand, as discussed in the
introduction, it is believed that the various formulations of string theory are different
limits of a single eleven-dimensional theory, called M-theory, whose low energy limit is

1A more thorough examination of all supergravity theories connected to string theory can be found in
any textbook on the field, e.g. [5–10].
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described by eleven-dimensional supergravity (which is most often also called M-theory in
this context). In fact, one keystone for this belief is that the strong coupling regimes of type
IIA and E8×E8 heterotic string theory can be described by eleven-dimensional SUGRA
[56, 57, 90, 92, 199], which makes it possible to interconnect all the known formulations of
string theory by dualities. The transition from strong to weak coupling is governed by
the size of the extra eleventh dimension. If one takes this dimension to be bounded one
arrives at the heterotic theory, while without boundary type IIA SUGRA can be found.
We therefore start our discussion with the bulk action, i.e. the action of the theory far
from the boundary, and include the effects of the boundary afterwards. Of course, the
boundary terms will be absent if one is only interested in the type IIA limit.

2.1.1 The bulk action

The bosonic part of the bulk action is the standard action of eleven-dimensional super-
gravity [89]

S0 =
1

2κ2

∫
X11

dvol11

(
R(11) − 1

2
|G11|2

)
− 1

12κ2

∫
X11

C11 ∧G11 ∧G11 , (2.1.1)

where C11 is the three-form potential for the four-form flux G11: dC11 = G11. The volume
form dvol11 contains the metric, dvol11 =

√−g(11) d11x, and the coupling constant κ is
related to the eleven-dimensional Planck length lP by

2κ2 =
1

2π
(2π lP )9 . (2.1.2)

The complete action is invariant under the local supersymmetry transformations2

δ EM
M = ε̄ΓM ΨM , (2.1.3)

δ (C11)MNP = − 3 ε̄Γ[MN ΨP ] ,

δΨM = ∇M ε+
1

288

(
Γ NPQR
M − 8 δNM ΓPQR

)
(G11)NPQR ε .

Here, EM
M denotes the vielbein associated to the eleven-dimensional metric g(11), ΨM is

the gravitino, and the SUSY generator ε is an eleven-dimensional Majorana spinor. Due to
the fact that we want to consider only classical background solutions, preserving Poincaré
invariance, all physical spinors (i.e. the gravitino ΨM) should vanish. This implies that
the bosonic SUSY transformations vanish, and that in order to obtain a supersymmetric
vacuum also the gravitino variation δΨM has to be zero. Therefore, in a supersymmetric
vacuum the Killing spinor equation

∇M ε+
1

288

(
Γ NPQR
M − 8 δNM ΓPQR

)
(G11)NPQR ε = 0 (2.1.4)

has to be satisfied.
2For a list of our notational conventions, see appendix A.1.
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2.1.2 Effects of the boundary

It was shown by Horava and Witten [57, 90] using anomaly considerations that one can
consistently include two ten-dimensional boundaries into eleven-dimensional SUGRA. Each
of these boundaries has to carry an E8 gauge field and contributes an additional piece to
the action

Sb = − 1

8πκ2

( κ
4π

)2/3 ∑
p=1,2

∫
B10,p

dvol10,p

(
TrF2

p −
1

2
Tr(R(10)

p )2
)
. (2.1.5)

The two-forms Fp are the two E8 field strengths and the trace Tr over the gauge fields
is related to the trace in the adjoint representation by Tr = 1

30
tradj. The trace over the

curvature two-forms is defined as

Tr(R(10)
p )2 = − (R(10)

p )IJy(R(10)
p )JI =

1

2
(R(10)

p )IJKL(R(10)
p )IJKL , (2.1.6)

where R
(10)
p is the curvature two-form restricted to the p-th boundary. In addition to the

Killing spinor equation, which is sufficient to guaranty SUSY for the bulk theory, one has
to set also the gaugino variations to zero

δχp = −1

4

(
ΓIJFp IJ

)
ε . (2.1.7)

One should note that the boundary terms come with an extra factor of κ2/3 compared
to the bulk action. In principle, there would be further corrections at higher orders of
κ2/3. We will consistently neglect these higher order contributions and restrict ourselves
to O(κ2/3). Even at this level one finds important alterations to the pure bulk theory.

For our later calculations it is worthwhile to note that one can view Horava-Witten
theory from two different perspectives. In the so-called upstairs picture one considers as
eleventh dimension the covering space of the orbifold S1/Z2 and identifies x11 ∼ x11+2πρ ∼
−x11. Therefore, one obtains two fixed ten-dimensional hyperplanes at x11

1 = 0 and at
x11

2 = πρ on which the action Sb lives. The Bianchi identity for G11, up to O(κ2/3), is then
given by [57,92,199]

1

4!
(dG11)IJKL 11dxIJKL = − 1

4π

( κ
4π

)2/3 ∑
i=1,2

δ(x11 − x11
i )(TrFi ∧ Fi −

1

2
TrR

(10)
i ∧R(10)

i ) ,

(2.1.8)
and the four-form flux G11 is fixed to be

(G11)IJKL = − 1

8π

( κ
4π

)2/3 [
ε(x11)K(1) + ε(x11 + πρ)K(2)

]
IJKL

, (2.1.9)

(G11)IJK 11 = 3 ∂[I(C11)JK] 11 −
1

8π2ρ

( κ
4π

)2/3[
ω

(1)
3 + ω

(2)
3

]
IJK

.
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The periodic step function ε(x11) is defined as

ε(x11) = sign(x11) − x11

πρ
(2.1.10)

in the interval x11 ∈
[
− πρ, πρ

]
and by periodic continuation outside of this region. We

also have used K(p) as a shorthand for the trace terms and introduced the Chern-Simons
forms ω(p), which are defined by

K(p) = dω
(p)
3 = TrFp ∧ Fp −

1

2
TrR(10)

p ∧R(10)
p . (2.1.11)

Thus, one sees that the inclusion of the boundary terms lead to a non-trivial Bianchi
identity and forces the four-form flux to be non-zero.

In the downstairs picture one takes as eleventh dimension an interval of length πρ with
the hyperplanes as boundaries. Then, the action S0 has to be supplemented with appropri-
ate boundary conditions for the fields [57,92]. Both of these pictures have their advantages
and disadvantages. The upstairs picture is particularly convenient if one performs partial
integrations along the eleventh dimension, since the covering space of the orbifold S1/Z2

does not have boundaries, but only fixed hyperplanes. On the other hand, in the down-
stairs picture one really deals with two fixed boundaries, and thus the variations of the
fields can be set to zero at the boundaries. We will therefore use the downstairs picture
later on when we derive the equations of motion, and the upstairs picture when we perform
partial integrals.

A further restriction due to the inclusion of boundaries is that all fields must have
definite parity under the orbifold action Z2. One finds that of the bosonic fields (g(11))IJ ,
(g(11))11 11, and (C11)IJ 11 are even and that the rest is odd. The gravitino obeys ΨI(−x11) =
Γ10ΨI(x11) and Ψ11(−x11) = −Γ10Ψ11(x11). Most important for our purposes is that the
SUSY generator ε becomes chiral on the boundary

Γ10 ε(0) = ε(0) , (2.1.12)

while it had no definite chirality in the pure bulk theory. This restricts the possibilities to
decompose ε when one compactifies the theory to four dimensions.

In order to obtain heterotic supergravity, one has to dimensionally reduce the bulk
action, and take the limit ρ → 0. Then, the flux (G11)IJKL becomes zero and the two
pieces of the M-theory boundary action will combine to give the first order α′-corrections
to heterotic supergravity. We will discuss these issues more thoroughly in section 2.3.

2.2 Heterotic supergravity

Heterotic supergravity can be obtained as the low energy limit of heterotic string theory.
As such it is naturally given as an expansion in the Regge-slope parameter α′ = l2s/4π

2. But
while for the type II theories it is sufficient to work at lowest order in α′, for the heterotic
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theories it is necessary to include the first order corrections in α′, in order to make the
theories anomaly free. Also, canceling these anomalies demands that heterotic supergravity
should include only SO(32) or E8×E8 gauge fields, respectively. Writing the action in the
string frame, where one explicitly includes the string coupling e2Φ in the Einstein-Hilbert
term, the bosonic sector of ten-dimensional N = 1 heterotic supergravity3, up to order
O(α′), is given by [200]

S =
1

2κ2
10

∫
d10x

√
−det g e−2Φ

[
RX10 + 4(dΦ)2 − 1

2
H2 +

α′

4
(TrR2

+ − TrF 2)
]
, (2.2.1)

with 2κ2
10 = (2π)7α′4. Here, Φ is the dilaton and RX10 is the Ricci scalar of the full

ten-dimensional space. The two-form F is the SO(32) or E8×E8 field strength, and the
trace Tr is related to the trace in the adjoint representation tradj by Tr = 1

30
tradj as in the

action (2.1.5). Since we are interested in the connection between M-theory and heterotic
supergravity in the end, we will only consider the gauge group E8×E8 in what follows. The
curvature two-forms RI

±J = 1
2
RI
±JKLdxK ∧ dxL are constructed using the connections

ωI±JK = ωIJK ±
1

2
HI

JK , (2.2.2)

with ωIJK denoting the ordinary Levi-Civita spin connection. Their traces are defined as

TrR2
± = −RI

±J ·R
J
±I =

1

2
R±IJKLR

IJKL
± . (2.2.3)

Finally, H stands for the Neveu-Schwarz (NS) three-form flux and is given by

H = dB +
α′

4
ωhet . (2.2.4)

Here, B is the Neveu-Schwarz two-form potential and ωhet a Chern-Simons form defined
by dωhet = (TrR+ ∧R+ − TrF ∧ F ). The Bianchi identity (BI) of H reads then

dH =
α′

4
(TrR+ ∧R+ − TrF ∧ F ) . (2.2.5)

with TrR+ ∧R+ = −RI
+J ∧R

J
+I .

One should note here that the term TrR2
+ besides being of order α′ is also a higher

derivative term and might be neglected therefore. However, it is necessary to keep this
term, in order to provide an anomaly free theory. An ambiguity arising here is which
connection should be used in constructing the involved curvature forms, as the connection
is not essential for anomaly cancellation [201,202]. However, using the connection ω+ is of
advantage in analyzing flux compactifications of heterotic string theory (see e.g. [137,190,
200]), and we will therefore also use the torsionful connection ω+ in our discussion.

3Note that so far we are restricting our discussion to purely bosonic heterotic configurations. However,
one may add non-trivial fermionic condensates to the bosonic background, a possibility that we will consider
in section 4.6.
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In order to construct supersymmetric bosonic backgrounds one needs to make sure that
the supersymmetry variations of the gravitino ΨM , dilatino λ, and gaugino χ vanish. At
leading order in α′ these are given by4

δΨI =
(
∇I −

1

4
/HI

)
ε = ∇−I ε = 0 , (2.2.6a)

δλ =
(
/∂Φ− 1

2
/H
)
ε = 0 , (2.2.6b)

δχ =
1

2
/F ε = 0 , (2.2.6c)

where HI = ιIH. Note that these supersymmetry transformations are not corrected at
order α′ [200]. We will see in the next section how to obtain this action from eleven-
dimensional supergravity with two boundaries.

2.3 Dimensional reduction of M-theory

In order to obtain the heterotic (or type IIA) theory from M-theory, one has to perform a
dimensional reduction. This means that one integrates out one dimension whose length is
set to zero afterwards. By this procedure one only keeps the zero modes of all fields, and
therefore one does not have to care about massive modes that could appear in compact-
ifications to non-zero volumes. In order to obtain a perfect match between the reduced
theory and the ten-dimensional action and its SUSY transformations, one also has to
reparametrize the metric and the gravitino. In addition, including the boundary, all fields
that are odd under the Z2-action on the extra dimension S1/Z2 will be projected out, once
the length of the extra dimension is set to zero. We start our discussion with the reduction
of the bulk and boundary actions (2.1.1) and (2.1.5). Afterwards, we will discuss the SUSY
variations.

Reduction of the bulk action

The most general ansatz for the reduction to ten dimensions would be to start with a
metric of the form

ds2
11 = ds2

10(xI , x11) +
(
U1(xI , x11)dxI + U2(xI , x11)dx11

)2
. (2.3.1)

However, since we are only interested in the zero modes of all fields, we can drop the
dependence on x11. In order to get to the desired result immediately (see e.g. [9, 10]),
one also introduces factors of eΦ/3 including the ten-dimensional dilaton Φ, i.e. we use the
ansatz

ds2
11 = e−

2
3

Φds2
10 + e

4
3

Φ(dx11 + X1)2 , (2.3.2)

4We denote the SUSY generator, the gravitino, and the gaugino with the same symbols as in the
eleven-dimensional theory in order to keep the notation simple. Moreover, the eleven-dimensional fields
get identified with the ten-dimensional ones after dimensional reduction, which justifies this notation.
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where X1 is a one-form with legs only in the ten large dimensions. In a similar way, one has
to decompose the three-form potential C11 and the four-form flux G11 into parts containing
one leg along the extra dimensions and parts that live only in the ten large dimensions.
Putting all these pieces together would produce the action of type IIA supergravity and
is described in every textbook on the subject (see e.g. [9, 10]). But since we are not so
much interested into the type IIA theory, but into heterotic SUGRA we will not follow this
route, but immediately take the influence of the boundary into account.

The zero modes of the eleven-dimensional fields will provide the ten-dimensional fields.
In order to obtain these modes one has to average all fields over the eleventh dimension
(in the upstairs picture) [92,199]

Y (0) =
1

2πρ

πρ∫
−πρ

Y (11) dx11 . (2.3.3)

From this one immediately sees that all fields that are odd under the Z2-action on the
extra dimension can be set to zero in the reduced action. First, we observe that (g(11))I 11

is odd, and will hence vanish. Therefore, the one-form potential X1 will be zero. Also, the
three-form potential and the four-form flux with only ten-dimensional indices are odd and
will give no contribution in ten dimensions. Thus, the Chern-Simons term in (2.1.1) will
vanish after dimensional reduction, and the flux is reduced to a three form

(G
(0)
11 )IJKL =

1

2πρ

πρ∫
−πρ

(G11)IJKL dx11 = 0 , (2.3.4)

(G
(0)
11 )IJK 11 = HIJK =

1

2πρ

πρ∫
−πρ

(G11)IJK 11 dx11

(G
(0)
11 )IJK 11 = 3 ∂[I(C11)JK] 11 −

1

8π2ρ

( κ
4π

)2/3(
ω(1) + ω(2)

)
IJK

.

Since in the limit ρ→ 0 the two boundaries become coincident, one can combine the two
Chern-Simons forms ω(p) into the (negative) heterotic Chern-Simons form ωhet. Further-
more, the coupling constant κ and the radius ρ are related to the string coupling gs and
α′ by

κ2 =
1

2
(2π)8 g3

s (α′)9/2 , (2.3.5)

ρ = gs (α′)1/2 .

Using these relations and defining CIJ 11 = BIJ yields exactly the heterotic NS flux

H = dB +
α′

4
ωhet . (2.3.6)
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In an analogous way one can show that the zero mode contribution of the elven-dimensional
Bianchi identity (2.1.8) gives the heterotic BI (2.2.5).

Taking into account the factors of eΦ in the metric decomposition (2.3.2), it is then an
easy task to see that the bulk action of Horava-Witten theory reduces to the lowest order
contribution of the heterotic SUGRA action. The O(α′) contributions will descend from
the boundary action of heterotic M-theory, as we will show in the next paragraph.

Reduction of the boundary action

In order to make contact to the O(α′) contributions of (2.2.1), one has to deal with two
subtleties. Firstly, as was discussed in section 2.2 in heterotic flux compactifications it
is useful to use a torsionful connection ω+, in order to construct the TrR2 term (see
e.g. [137, 190, 200]), while in M-theory one uses the Levi-Civita connection. However, as
the connection is not essential for anomaly cancellation [201, 202], it is possible to use
the torsionful connection also in heterotic M-theory. Thus, one should replace R with
R+ = R(ω+) in the boundary action (2.1.5) and the Bianchi identity (2.1.8) if one wants to
make contact to heterotic flux compactifications. Secondly, in order to put the action into
string frame one has to use the metric (2.3.2). This will lead to additional contributions
coming from the TrR2

+ term. Since these terms are of fourth order in derivatives and
are not necessary to ensure anomaly cancellation, we will consider them as higher order
contributions and neglect them in our discussion [92,199].

But then the reduction becomes quite trivial. In the limit ρ → 0 the two boundaries
get on top of each other, which means that the range of integration for the two summands
in (2.1.5) becomes equal. Therefore, the two curvature contributions will add up and the
two E8 gauge terms will sum to give one E8×E8 term. Using (2.3.5) and κ2 = 2πρ κ2

10 it
follows that one encounters also the right prefactor of α′

8κ210
in front of the integral. Thus,

we have shown that indeed the action of Horava-Witten theory reduces correctly to the
action of heterotic supergravity as it should be. The last step to proof the equivalence is
now to determine how the heterotic SUSY variations emerge from the eleven-dimensional
ones.

Reduction of supersymmetry variations

We will show in this section how to reduce the supersymmetry transformations of heterotic
M-theory (2.1.4) and (2.1.7) to those of heterotic supergravity (2.2.6). In our discussion we
will follow closely [10]. We will focus first on the SUSY variation of the elven-dimensional
gravitino δΨM and show how one can obtain the variations of the ten-dimensional gravitino
(2.2.6a) and of the dilatino (2.2.6b). The result will be that the dilatino is essentially the
eleventh component of ΨM , while the ten-dimensional gravitino is a shifted version of its
eleven-dimensional counterpart. We will neglect the boundary in the beginning. This will
give us the SUSY transformations of type IIA supergravity as an intermediate result. Only
in the end we will take into account the boundary effects, which will result in projecting
out various components of the flux.
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We start by rewriting the flux part of (2.1.4), using tangent space indices

δΨM =
(
∂M +

1

4
ω

(11)
MNPΓNP +

1

24

(
3G�11ΓM − ΓMG�11

))
ε . (2.3.7)

In order to be able to reduce this to ten dimensions, we have to know how the eleven-
dimensional spin connection5 ω

(11)
MNP behaves under the reduction (2.3.2). After some cal-

culation one finds

ω
(11)
IMNΓMN = eΦ/3

(
ω

(10)
IJKΓJK − 2

3
Γ J
I ∂JΦ

)
+ e4Φ/3 (dX1)IJΓJΓ10 , (2.3.8)

ω
(11)
10MNΓMN = − 1

2
e4Φ/3(dX1)IJΓIJ − 4

3
eΦ/3 ΓIΓ10∂IΦ , (2.3.9)

where all contractions on the right hand side are done with the purely ten-dimensional
metric. As a second step we define the heterotic dilatino and the heterotic gravitino to be

λ = −3 e−Φ/6 Ψ10 , (2.3.10)

Ψ
(10)
I = e−Φ/6

(
ΨI +

1

2
ΓIΓ10Ψ10

)
. (2.3.11)

Defining also ε(10) = eΦ/6ε, one finds that the variations of these fields are given by

δλ =
(

ΓI∂IΦΓ10 −
1

12
(G11)IJK 11ΓIJK +

3

8
eΦ (dX1)IJΓIJ (2.3.12)

− 1

96
eΦ(G11)IJKLΓIJKLΓ10

)
ε(10) ,

δΨ
(10)
I =

(
∇I −

1

8
(G11)IJK 11ΓJKΓ10 −

1

8
eΦ (dX1)JKΓ JK

I Γ10 (2.3.13)

+
1

192
eΦ (G11)J1J2J3J4Γ

J1J2J3J4ΓI

)
ε(10) .

These are the SUSY transformations corresponding to type IIA theory. To obtain the
heterotic equations one simply has to take into account that the purely ten-dimensional
components of G11 and the field X1 are projected out by the boundary conditions, as
discussed in the previous section. Furthermore, the chirality condition on the boundary
(2.1.12) will hold in general in the reduced theory, which means that the SUSY genera-
tor ε(10) will have definite chirality as required for the heterotic theory. Finally, defining
(G11)IJK 11 = HIJK , one obtains

δλ =
(

ΓI∂IΦΓ10 −
1

12
HIJKΓIJK

)
ε(10) =

(
/∂Φ− 1

2
/H
)
ε(10) , (2.3.14)

δΨ
(10)
I =

(
∇I −

1

8
HIJKΓJK

)
ε(10) =

(
∇I −

1

4
/HI

)
ε(10) . (2.3.15)

5Any spin connection is defined as ωMNP = 1
2 (−ΩMNP + ΩNPM + ΩPMN ), with Ω

P
MN = 2∂[NE

P
M ]

and E
N
M the corresponding vielbein.
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These are exactly the SUSY equations for the heterotic dilatino and gravitino, respectively.

Comparing the SUSY transformations of the gauginos in eleven dimensions (2.1.7) to
their corresponding transformation in ten dimensions (2.2.6c), one immediately sees that
they agree after the field redefinition χ1 + χ2 = −eΦ/6χ and F1 + F2 = F .

It is therefore obvious that not only the action, but also the supersymmetry variation
of heterotic supergravity can be obtained from the eleven-dimensional heterotic M-theory.

After this more general introduction, we will discuss common properties of both theories
under compactifications to four dimensions in the last section of this chapter .

2.4 Scalar potential and equations of motion

In the last three sections we have discussed heterotic M-theory and heterotic supergravity
in general. We also explained how to obtain one theory from the other by dimensional
reduction. In this section we will show (following [1–4, 197]) that by compactifying both
theories to four dimensions it is possible to rewrite the action as a four-dimensional in-
tegral over an effective scalar potential. For the eleven-dimensional as well as for the
ten-dimensional theory the equations of motion obtained from this potential are equivalent
to those deduced from the full action. One is therefore allowed to use the effective potential
for the investigation of four-dimensional physics in general. In particular, we will use the
results of this section to discuss the existence of consistent non-supersymmetric vacua of
heterotic supergravity in chapter 4 and their lift to M-theory in chapter 5.

2.4.1 Heterotic M-theory

We will start our analysis again with Horava-Witten theory. Here, the scalar potential will
have two contributions, one from the bulk and one from the boundary. In the boundary
part we will perform an extra Weyl rescaling of the metric, in order to obtain better
comparability with the heterotic theory.

The scalar potential

Since we want our compactification ansatz to maintain four-dimensional Poincaré invari-
ance, the metric and the four-form flux should be decomposed as

ds2
11 = e2Adŝ2

4 + ds2
7 , (2.4.1)

C11 =
1

3!
(C(4))µνσdxµνσ +

1

3!
Cmnpdx

mnp , (2.4.2)

G11 = µ̃ ˆdvol4 +
1

4!
Gmnpqdx

mnpq . (2.4.3)
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Here, A is a warp factor, dŝ2
4 is the metric of a maximally symmetric four-dimensional

space-time6, and ds2
7 is the metric of a seven-dimensional compact manifold M . The

volume element of the maximally symmetric four-dimensional space is denoted by ˆdvol4, µ̃
is a real constant, and G is the four-form flux restricted to the seven internal dimensions.
Inserting (2.4.1) and (2.4.3) into the bulk action (2.1.1) gives the bulk part V0 of the scalar
potential

S0 =
1

2κ2

∫
X4

ˆdvol4

∫
M

dvol7

[
e2A R̂(4) + e4A (R − 8∇2A − 20 dA2 − 1

2
|G|2

− 1

2
µ2 − µCy ∗G)

]
(2.4.4)

=
1

2κ2

∫
X4

ˆdvol4

∫
M

dvol7

[
e2A R̂(4) − V

]
= −

∫
X4

ˆdvol4 V0 .

Here, R denotes the Ricci scalar of M , and we introduced µ = e−4Aµ̃. Since the external
space is maximally symmetric, the unwarped four-dimensional curvature scalar R̂(4) is
constant and all other fields depend only on the seven-dimensional internal space M .

On the boundary the eleven-dimensional metric splits into a ten- and a one-dimensional
piece

ds2
11 = ds2

10 + v ⊗ v , (2.4.5)

with ds2
10 the metric on the boundary and v a one-form perpendicular to the boundary.

In order to get results that can be used easily if one wants to compare to the weakly
coupled heterotic theory, we perform a Weyl rescaling of the metric similar to (2.3.2)
g10 → g′10 = e−σg10.7 Note that we do not relate the rescaling to the dilaton Φ but keep
it unspecified for the moment by introducing the field σ. This rescaling will introduce
terms with four derivatives coming from the TrR2 terms in the boundary action, which we
neglect in our analysis, since they are of higher order. The metric g′10 is then compactified
according to

d(s′10)2 = e2A′dŝ2
4 + d(s′6)2 , (2.4.6)

where A′ is a shifted warp factor A′ = A + 1
2
σ. Taking this into account, the boundary

action can be written as

Sb = − 1

8πκ2

( κ
4π

)2/3 ∑
p=1,2

∫
X4

ˆdvol4

∫
B6,p

dvol′6,p e
4A′−3σ

{(
Tr(F (6)

p )2 − 1

2
Tr(R

(6)′

p+ )2
)

− 1

24

∣∣e−2A′ R̂(4) − 12|dA′|2
∣∣2 − 4 e−2A′ (∇i∇je

A′)(∇i∇jeA
′
)− 2

∣∣dA′yH∣∣2}. (2.4.7)

6A maximally symmetric space-time has a constant curvature scalar R. The possible spaces are therefore
Minkowski space (R = 0), anti de Sitter space (R < 0) and de Sitter space (R > 0).

7At the same time one should rescale the (11, 11)-component of the metric by e2σ. However, this cannot
be seen at the boundary.
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Here, we used that the E8 gauge fields are confined to the internal space F = F (6). The
appearing three form field Hijk = Gijk 11 is used to construct the torsionful curvature tensor
R+ in the same way as the Neveu-Schwarz three form is used as torsion in the heterotic
string. Note that we kept four derivative terms in this expression although we discarded
them in our previous discussion. We do this only in order to compare to the results found
in [1–3] for the heterotic string that will be presented later.

The action can thus be written as a four-dimensional integral over a scalar potential

S = −
∫
X4

ˆdvol4 V = −
∫
X4

ˆdvol4 (V0 + Vb) , (2.4.8)

combining the contribution from the bulk V0 and from the boundary Vb, respectively, which
are given by

V0 =
1

2κ2

∫
M

dvol7

{
− e2A R̂(4) − e4A

(
R− 8∇2A− 20 dA2 − 1

2
|G|2 − 1

2
µ2 − µCy ∗G

)}
,

(2.4.9a)

Vb =
1

8πκ2

( κ
4π

)2/3 ∑
p=1,2

∫
B6,p

dvol′6,p e
4A′−3σ

{(
Tr(F (6)

p )2 − 1

2
Tr(R

(6)′

p+ )2
)

(2.4.9b)

− 1

24

∣∣e−2A′ R̂(4) − 12|dA′|2
∣∣2 − 4 e−2A′ (∇i∇je

A′)(∇i∇jeA
′
)− 2

∣∣dA′yH∣∣2} .
Equations of motion

We will now show that the equations of motion derived from (2.4.8) are consistent with the
full eleven-dimensional equations coming from (2.1.1) and (2.1.5). In order to proof this, we
will make use of the downstairs picture. Setting the variations of the fields at the boundaries
to zero, as is usual, we are left with the bulk action plus boundary conditions [92]. Since
these boundary conditions will not change in going from eleven to four dimensions, we only
have to consider the bulk part of (2.4.8).

Varying (2.1.1) with respect to the metric g(11) and the three form potential C11, one
obtains

δg(11) : R
(11)
MN −

1

2
g

(11)
MN

[
R(11) − 1

2
|G11|2

]
− 1

2
(ιMG11)y(ιNG11) = 0 , (2.4.10)

δC11 : d ∗11 G11 +
1

2
G11 ∧G11 = 0 . (2.4.11)

Restricting (2.4.10) to internal coordinates MN = mn and inserting (2.4.3) leads to

Rmn − 4 e−A∇m∇ne
A − 1

2
ιmGyιnG (2.4.12)

− 1

2
gmn

[
e−2A R̂(4) + R − 8∇2A − 20 dA2 − 1

2
µ − 1

2
|G|2

]
= 0 .
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Taking the trace of (2.4.10) over its external indices one finds

6∇2e2A = R̂(4) + 2 e2A
(
R +

1

2
µ − 1

2
|G|2

)
. (2.4.13)

Furthermore, inserting (2.4.3) into the equation of motion for C11 (2.4.11) gives

d ∗G = −µG . (2.4.14)

These are exactly the EoM’s that one obtains if one varies the bulk part of (2.4.8) with
respect to the internal metric gmn, the warp factor A, and the flux G, respectively. Thus, by
inserting our compactification ansatz into the equations of motion of the eleven-dimensional
theory, we obtain the same results as if we vary (2.4.8). It is therefore sufficient to work
with the effective potential instead of the full eleven-dimensional action. This will simplify
our analysis during the rest of this work.

2.4.2 Scalar potential of heterotic supergravity

We now repeat the same steps as before for heterotic supergravity. We will see again that
an effective potential is sufficient in order to analyze the resulting four-dimensional physics.
In addition, in ten dimensions it is possible to obtain quite severe restrictions on the warp
factor and the four-dimensional cosmological constant from the equations of motion.

Four-dimensional compactifications and effective potential

We restrict our attention again to compactifications to four dimensions and assume that
the ten-dimensional spacetime X10 splits into a six-dimensional compact manifold Mh and
a maximally symmetric space X4 with cosmological constant Λ

ds2
X10

= e2Ahds2
X4

+ ds2
Mh

. (2.4.15)

Moreover, in order to keep our construction as general as possible, we allow for non-trivial
warping Ah, dilaton Φ, and fluxes H and F such that the 4d maximal symmetry is not
broken. As a result, the ten-dimensional BI (2.2.5) keeps the same form, but with R+

being just the curvature of the internal torsionful connection ωi+jl = ωijl + 1
2
H i

jl. In the
following, R± will denote this internal torsionful curvature.

Inserting our ansatz into the heterotic action (2.2.1), and setting S = −
∫
X4

d4xVh, the
resulting four-dimensional potential is given by

Vh = − 1

2κ2
10

∫
Mh

dvolMh
e4Ah−2Φ

{
e−2AhRX4 +R− 1

2
H2 − 4(dΦ)2 − 8∇2Ah

−20(dAh)
2 +

α′

4
(TrR2

+ − TrF 2) (2.4.16)

+α′
[
2e−2Ah(∇i∇jeAh)(∇i∇je

Ah) + |dAhyH|2 + 3
∣∣∣ 1

12
e−2AhRX4 − dAhydAh)

2
∣∣∣2]} ,

where R is the scalar curvature constructed using the internal six-dimensional metric, and
the last line of (2.4.16) arises from the fact that now R+ denotes just the internal curvature.
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Equations of motion

In order to derive the equations of motion from the action (2.2.1), a little care is needed,
due to the implicit dependence of H on other elementary fields through the BI (2.2.5), and
due to of the presence of the order α′ curvature corrections. However, this complication is
simplified by a lemma stating that the variation of the action with respect to the torsionful
curvature connection ω+ is proportional to the leading order equations of motion [200,203].
In an approach that solves the EoM’s order by order in α′ one can set these contributions
to zero. It is therefore sufficient to vary only the explicitly appearing fields if one wants to
derive the equations of motion. The EoM’s read then

δg : (RX10)IJ + 2∇I∇JΦ− 1

2
ιIH · ιJH +

α′

4

[
Tr( ιIR+ · ιJR+)− Tr( ιIF · ιJF )

]
− 1

2
gIJ

(
RX10 − 4|dΦ|2 + 4∇2Φ− 1

2
|H|2 +

α′

4

[
TrR2

+ − TrF 2
])

= 0 , (2.4.17)

δΦ : RX10 − 4|dΦ|2 + 4∇2Φ− 1

2
|H|2 +

α′

4

[
TrR2

+ − TrF 2
]

= 0 , (2.4.18)

δB : d(e−2Φ ∗10 H) = 0 , (2.4.19)

δA : e2Φ d(e−2Φ ∗10 F ) +A ∧ ∗10 F − ∗10 F ∧ A− F ∧ ∗10 dB = 0 , (2.4.20)

with A being the gauge potential of F . The dilaton EoM can be used to simplify the
Einstein equation. The resulting EoM is called ‘modified Einstein equation’ and reads

(RX10)IJ + 2∇I∇JΦ− 1

2
ιIH · ιJH +

α′

4

[
Tr(ιIR+ · ιJR+)− Tr(ιIF · ιJF )

]
= 0 . (2.4.21)

We proceed now by inserting our ansatz (2.4.15) into the equations of motion. Since the
three form flux H and the gauge fields are assumed to have no legs in the external four
dimensions, the form of their EoM’s stays exactly the same. One only has to keep in mind
that one deals with six-dimensional fields and replace the ten-dimensional Hodge star by
its six-dimensional counterpart. For the same reason the dilaton EoM also keeps its form,
once the expansion of the ten-dimensional curvature scalar RX10 and the curvature square

Tr(R
(10)
+ )2

RX10 = e−2Ah RX4 + R − 20 |dAh|2 − 8∇2Ah , (2.4.22)

Tr(R
(10)
+ )2 = TrR2

+ + 8 e−2Ah(∇i∇je
Ah)(∇i∇jeAh) + 4 |dAhyH|2 (2.4.23)

+
1

12

∣∣∣e−2Ah RX4 − 12|dAh|2
∣∣∣2

is inserted. Demanding that the dilaton EoM is satisfied leaves us with the modified Ein-
stein equation (2.4.21). Surprisingly, from this one can obtain rather restricting conditions
on the heterotic warp factor Ah and the four-dimensional curvature scalar RX4 , which is
directly proportional to the cosmological constant for the maximally symmetric spaces we
are considering. In particular, by choosing I, J = µ, ν and contracting with the metric on



2.4 Scalar potential and equations of motion 31

X4, one gets the equation

∇i(e−2Φ∇ie
4Ah) = e2Ah−2ΦRX4 + α′ e2Ah−2Φ

{ 1

24
e−2Ah

∣∣∣RX4 − |deAh |2
∣∣∣2

+2(∇i∇je
Ah)(∇i∇jeAh) + |d(eAh)yH|2

}
. (2.4.24)

Solving this equation perturbatively, we find that at the lowest order in α′ we have

∇i(e−2Φ∇ie
4Ah) ' e2Ah−2ΦRX4 , (2.4.25)

where by ' we mean equivalence at zeroth-order in α′. By integrating this equation over
the internal space, we get at the lowest order in α′ the condition

RX4

∫
Mh

e2Ah−2Φ volMh
' 0 ⇒ RX4 ' 0 . (2.4.26)

Note that multiplying (2.4.25) by e(p−4)Ah for any p 6= 4, integrating over Mh and using
(2.4.26) one finds ∫

Mh

volMh
epAh−2Φ (dAh)

2 ' 0 , (2.4.27)

which implies that the string-frame warp factor must be constant at lowest order in α′.
Hence, at leading order in α′, the modified external Einstein equations (2.4.21) implies

that RX4 vanishes and eA is constant. Plugging this back into (2.4.24) and expanding it
in powers of α′, one can check that the first corrections to the above result arise at order
α′3, and can thus be ignored at our level of accuracy.

We therefore conclude that, at order O(α′), the external Einstein equation (2.4.24)
requires the four-dimensional space to be flat and the warping to be constant. Note that
this result is valid for any purely bosonic compactification, whether it is supersymmetric
or not.

We will now show that one arrives at the same results if one starts directly with the
potential (2.4.16). To this end, we consider first the two equations of motion for the scalar
fields Φ and Ah

δΦ : RX10 −
1

2
|H|2 + 4 |dΦ|2 − 4∇2Φ − 16 dAydΦ − α′

4

(
Tr(R

(10)
+ )2 − TrF 2

)
= 0 ,

(2.4.28)

δAh : e−2Ah RX4 − 2RX10 + 8 |dΦ|2 − 8∇2Φ + |H|2 − 4∇2Ah − 16 |dAh|2 (2.4.29)

− 24 dAhydΦ − α′
(

Tr(R
(10)
+ )2 − TrF 2

)
= O(α′) .

Here, we used (2.4.22) and (2.4.23) to write the results more compactly. Furthermore,
O(α′) on the right hand side of the warp factor EoM denotes all terms coming from the
last line of (2.4.16). Inserting the dilaton EoM into the warp factor EoM gives us a condition
similar to (2.4.24)

∇i(e−2Φ∇ie
4Ah) = e2Ah−2ΦRX4 + O(α′) , (2.4.30)
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which yields again the result that dAh and RX4 are at least of order (α′)3 and can therefore
consistently be set to zero in our analysis. Applying this to the dilaton EoM (2.4.28)
returns exactly the dilaton equation of motion derived directly from ten dimensions.

The result that the warp factor can be considered constant also simplifies the re-
derivation of the other equations of motion. In particular, one can consistently neglect
the last line of (2.4.16) when one varies with respect to the other fields. Also, the deriva-
tives of Ah arising from partial integration can be set to zero. It is then clear by comparing
the ten-dimensional action (2.2.1) and the potential (2.4.16) that the equations of motion
for the two-form field B and the gauge potential A are identical irrespective whether they
are derived from ten dimensions directly or via the potential (2.4.16).

The last step in showing the equivalence of the two approaches is then to consider
variations of (2.4.16) with respect to the internal metric. These give

Rij + 2∇i∇jΦ −
1

2
ιiHyιjH +

α′

4

(
Tr ιiR+yιjR+ − Tr ιiFyιjF

)
= O(α′3) . (2.4.31)

Exactly the same equation is obtained by reducing the modified Einstein equation (2.4.21)
to the internal space (i.e. I, J = i, j). We conclude that also for compactifications of
heterotic supergravity it is sufficient to consider an effective potential instead of the full
ten-dimensional action.

Let us finish this section with some additional remarks. First, one should note that for
both, the heterotic as well as the M-theory case, the potentials (2.4.9) and (2.4.16) must
vanish on-shell. Both must be extremized under a general variation of the corresponding
warp factor. In particular, they must be extremized by a constant shift of the warp factor,
which demands that the potentials are zero on-shell.

Also, one might wonder why one finds a constant warp factor in the heterotic case,
while this is not possible in eleven dimensions. This seeming discrepancy lies in the fact
that we used the downstairs picture when discussing the EoM’s of Horava-Witten theory.
As mentioned, the EoM’s should be accompanied by boundary conditions in the downstairs
picture, which we did not derive explicitly. Presumably, these conditions will give extra
requirements on the warp factor. However, one should be careful here, since not the warp
factor A of (2.4.1) will be constant, but A′, which appeared on the boundary. This can
also be seen by fixing the overall normalization of the warpings by connecting them to the
four-dimensional Planck mass8 MP

M2
P =

1

κ2
10

∫
Mh

volMh
e2Ah−2Φ =

1

κ2

∫
M

dvol7 e
2A . (2.4.32)

By reducing M-theory to heterotic SUGRA the integral over seven dimensions becomes

1

κ2

∫
M

dvol7 e
2A =

2 πρ

κ2

∫
Mh

volMh
e2A′−2Φ , (2.4.33)

8This is obtained by requiring that the dimensional reduction to four dimensions gives the canonical
four-dimensional Einstein term (M2

P/2)
∫ √−gX4

RX4
.
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where we have set σ = 2/3 Φ as it should be for a proper dimensional reduction, and thus
we obtain Ah = A′ = A + Φ/3. This shows that indeed the field A′ should be constant in
the context of Horava-Witten theory.

Furthermore, as the warp factor is constant for heterotic SUGRA one can use (2.4.32)
to connect it to the string coupling gs

e2Ah =
g2

s l
8
sM

2
P

4πVol(M)
, (2.4.34)

where ls = 2π
√
α′ is the string length scale and Vol(Mh) =

∫
volMh

is the volume of the
internal space. Moreover, the string coupling gs is defined by

1

g2
s

=

∫
M
e−2Φ volM∫
M

volM
. (2.4.35)

This is all that we will need to discuss the supersymmetry properties of heterotic super-
gravity and heterotic M-theory in the following chapters. Most important for our discussion
is the fact that we are allowed to use the derived potentials instead of the full action. How-
ever, in order to see how one can obtain information out of these potentials, we still need
to introduce the concept of G-structures and its applications to flux compactifications. We
will give a short introduction to these topics in the next chapter.
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Chapter 3

G-Structures

The importance of G-structures for modern flux compactification cannot be underesti-
mated, as was already demonstrated in the introduction. Here, we will focus on the
technical aspects of G-structures and explain in more detail why they are so well suited
to discuss supersymmetric string compactifications with or without flux. To this end we
give a definition of G-structures in terms of the structure group of the tangent frame bun-
dle of the concerned manifold and discuss the meaning of tensors (and spinors) invariant
under the group G. As it turns out, the SUSY generator ε has to be an invariant spinor
for supersymmetric compactifications. This implies that the supersymmetry variation of
the gravitino can be used to determine the G-structure of the compactification manifold.
Furthermore, on the internal manifold non-vanishing flux will lead naturally to a torsionful
connection, which can be classified by using the appropriate G-structure. These two facts
explain the significance of G-structures for flux compactifications. In chapter 4 and 5 we
will make extensive use of G-structures. In particular we will need SU(3) structures in both
six and seven dimensions, as well as G2 structures in seven dimensions. We will therefore
discuss these at the end of this chapter.

3.1 General remarks on G-structures

In this section we discuss common properties of G-structures and their relation to physics.
We specify to SU(3) structures in six and seven dimensions and to G2 structures in the
next sections

3.1.1 An intuitive definition of G-structures

A quite intuitive definition and description of G-structures can be given in terms of the
tangent frame bundle of the concerned manifold M .1 Let us therefore remind the reader
of the concept of a bundle first. A generic bundle E consists of a base B and a fibre F
such that locally it looks like the direct product of B and F . However, globally it does not

1In our presentation we will follow closely [204], more material can be found, e.g. in [153,154,156]
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need to have a direct product structure. This is taken into account by transition functions
that determine how the fiber transforms if one goes from one patch on the base to another
patch. Only when all transition functions equal the identity, one obtains globally the direct
product manifold B × F . Moreover, the bundle comes with a smooth projection π to the
base. Assigning an element of the fiber to every point of the base, defines a section s of
the bundle. The map s should of course satisfy the relation π(s(p)) = p for every point
p ∈ B.

A very simple example for a trivial bundle is the cylinder. There, the base space is
taken to be the circle S1 and the fiber is a finite line. A section of this bundle is given
by a closed line that winds exactly once around the cylinder. A well known non-trivial
generalization of this is the moebius strip. Here, the base and the fiber are the same as
for the cylinder, but one has two patches whose transition function is an inversion of the
line, resulting in the non-orientedness of the moebius strip. But still, a section is given by
a closed line that winds once around the strip like in the case of the cylinder.

Another prominent class of examples for bundles, which is more important for our
discussion, is provided by vector bundles. Here, the fiber is a vector space and a section of
the bundle is given by a vector field. In particular, to every manifold M one can associate
its tangent vector bundle (or tangent bundle, for short) TM . The fiber of this bundle
at a point p ∈ M is given by the vector space TpM , that contains all vectors tangent to
the point p. A basis for this space is given by the partial derivatives in every direction
∂A. Clearly, for a d-dimensional manifold TpM is a d-dimensional vector space and the
transition functions of the fiber are given by elements of the group GL(d,R). A section
assigns to every point p one vector of the space TpM and gives hence a vector field over
M .

The tangent frame bundle associated to TM can then be defined as the bundle whose
fiber for a given point p ∈M is the set of ordered bases of the vector space TpM . Locally,
as we explained above, the bundle looks like the direct product (p, eA) with eA = eAA∂A
a set of d independent vectors forming a base of TpM . Note that the matrix eAA is only
restricted by the condition that the eA form a base of TpM . Hence, eA should really be
understood as the set of all (ordered) bases.

What can one say about the transition functions of the tangent frame bundle between
two different overlapping patches Uα and Uβ with coordinates xA and x′A, respectively? In
the overlap region one can represent eA in terms of both coordinates

eA = (eα)AA∂A = (eβ)AA∂
′
A = (eβ)BA

∂ xA

∂ x′B
∂A = (eβ)BA (tβα) A

B ∂A . (3.1.1)

Moreover, the transition functions tβα must satisfy the consistency condition

tαβ tβα = 1 , (3.1.2)

and the transitivity relation on an overlap region of three patches Uα, Uβ, Uγ

tαβ tβγ = tαγ . (3.1.3)
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All these requirements provide a group structure for the transition functions tαβ. This
group is called the structure group of M . In general it will be the group of general lin-
ear transformations in d dimensions GL(d,R), and the same group as for the transition
functions of the tangent bundle TM .

After this preliminary work, it is quite easy to define G-structure. A manifold is said to
be a G-structure manifold if its structure group can be reduced to the group G. Differently
put: a manifold will provide a G-structure when the transition functions of the tangent
frame bundle belong to the group G. But since every vector l from the tangent bundle can
be decomposed as l = lA eA this means that the vectors of the tangent bundle transform
under the group G, too. This in turn implies that also one-forms and generic tensors
transform under G when one considers a G-structure manifold.

The next question is then of course what the structure group of a given manifold is.
Again, one can find the answer by considering tensors and not the full tangent frame bundle.
As a matter of fact a tensor (or a spinor) that is globally well defined (and non-degenerate)
on M will reduce the structure group. The simplest way to imagine this is to assume that
one has already found as structure group the d dimensional rotations. If one finds now
in addition a nowhere vanishing vector l the group will reduce to the (d− 1)-dimensional
rotations, since one can find frames such that l points always in the same direction.

Another well known case with reduced structure group are Riemannian manifolds, e.g.
manifolds that admit a metric g. The structure group is then reduced to the orthogonal
transformations, as the metric fixes the length of vectors in all patches. Also important
is the case where one can define an almost complex structure on the manifold M . This
is a map J : TM → TM , that squares to minus one: J2 = −1. This means that J has
eigenvalues of +i and −i and hence the structure group will reduce to GL(d/2,C). If one
has both, a metric g and an almost complex structure J , that satisfy JgJ = g one speaks
of a hermitian metric. The structure group is then given by the unitary group U(d/2). In
this case one can also define a two-form J as

Jij = gik J
k
j . (3.1.4)

This two-form is called pre-symplectic structure2 and it would reduce the structure group
to the symplectic group Sp(d,R) if considered solely.

3.1.2 G-structures and torsion

In the last section we used invariant tensors to determine the structure group of M . How-
ever, it might be quite difficult to be sure if one has really found all invariant tensors in
some cases. Therefore, it is more systematically to start with a given G-structure and ask
then which invariant tensors can be built. Following [155, 159, 205–208] we will describe
how to do this and how one can further classify G-structure manifolds by torsion.

2Giving the same name to the pre-symplectic structure Jij and the almost complex structure J ij is
commonly done in the literature.
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As we have seen the most generic structure group of a d-dimensional manifold is
GL(d,R). This is true as long as one does not want to have spinors included. How-
ever, in supergravity theories it is mandatory to include spinors, and hence the manifolds
considered should be suitable for this. On the other hand, we will only deal with metric
spaces such that the maximal structure group will be reduced to O(d,R). In order to de-
fine spinor bundles on M it must be possible to define the double cover Spin(d) of O(d,R)
in a globally consistent way. We conclude that the manifolds that can be considered in
supergravity compactifications should at least have structure group Spin(d).

It is then not difficult to find the invariant tensors for a given G-structure. One simply
has to decompose the tensor representations of Spin(d) with respect to G, to see whether
there are invariants. For example, considering a seven dimensional manifold with SU(2)
structure we find one real and one complex vector, respectively, which are invariant under
SU(2), by decomposing the fundamental 7 of Spin(7)

7 → 1 + (1 + 2) + (1̄ + 2̄) . (3.1.5)

We will discuss more such decompositions later on when we consider the cases relevant for
our work.

Given now that for a structure group G there is an invariant tensor Υ, one can further
classify the structure by considering the covariant derivatives of Υ. One starts by defining
a connection ∇(T ) that satisfies ∇(T )Υ = 0. As indicated by the T this connection will
in general have intrinsic torsion τ that is measured by the difference of ∇(T ) and the
Levi-Civita connection ∇ associated with the metric on M

τ = ∇ − ∇(T ) . (3.1.6)

Being the difference between two connections the torsion is a tensor that takes values in
Λ1⊗Λ2.3 A more detailed classification of the G-structure manifolds can then be obtained
by decomposing τ with respect to G and by analyzing which G-modules are present within
τ , and which are not, respectively.

In order to do so, one notices that in d dimensions Λ2 is isomorphic to the Lie algebra of
SO(d), which in turn can be split into the Lie algebra of G and its orthogonal complement4

Λ2 ∼= so(d) = g ⊕ g⊥ . (3.1.7)

However, since Υ is invariant under G, it is also invariant under g. The action of τ on Υ is
therefore given by Λ1⊗g⊥. The G-modules appearing in Λ1⊗g⊥ are called torsion classes,
and provide the more detailed classification of G-structure manifolds. If the torsion τ is
identically zero the manifold is said to have G-holonomy instead of only G-structure. We
will use this classification later on when discussing SU(3) and G2 structures.

3Λp is the space of p-forms.
4Since the analysis is on the level of Lie algebras here, which are connected to the identity, one is

allowed to consider the Lie algebras of SO(d) instead of Spin(d).
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3.1.3 G-structures and supersymmetry

In the previous sections we have given an intuitive definition of G-structures and a classi-
fication in terms of invariant tensors and derivatives of these tensors. One may ask then:
what is the connection of these concepts to physics? The answer to this question is pro-
vided by not only considering invariant tensors, but also spinors. In fact, as we mentioned
before, supergravity theories demand at least one globally defined non-vanishing spinor,
i.e. a spinor that is invariant under the structure group G. But such a spinor ε should also
satisfy

∇(T )
A ε =

(
∇A −

1

4
τ BC
A Γ̃BC

)
ε = 0 . (3.1.8)

It is obvious that the gravitino variation of eleven dimensional SUGRA (2.1.4) and of
heterotic SUGRA (2.2.6a) are exactly of this form. More general, the gravitino variations
of all ten and eleven dimensional supergravity theories are of the form (3.1.8). Comparing
(3.1.8) to (2.1.4) and (2.2.6a) it can be understood that the torsion will depend on the flux
which appears in the gravitino variation.

The most prominent case of this interdependence of torsion and flux is the case of
Calabi-Yau compactification, firstly described in the seminal papers [27,130]. There, it was
shown that in the absence of flux the internal manifold of a heterotic string compactification
has to have SU(3) holonomy, i.e. it has to be a Calabi-Yau manifold, while for non-vanishing
flux only an SU(3) structure is possible. Later on this kind of analysis has been extended
to the other sectors of string theory and also to eleven dimensional supergravity.

Although equation (3.1.8) contains all information that is needed to classify the com-
pactification manifold by torsion classes, the information is quite entangled. A better
representation can be obtained by employing that the invariant p-forms of a given G-
structure can be constructed out of invariant spinors of the same structure by building
Clifford-algebra scalars

Υp =
1

p!

(
ε† Γ̃A1...Ap ε

)
dxA1...Ap , Υ̃p =

1

p!

(
εT Γ̃A1...Ap ε

)
dxA1...Ap . (3.1.9)

Clearly, since ∇(T )
A ε = 0, also ∇(T )

A Υp = ∇(T )
A Υ̃p = 0 as it should be for an invariant

form. This means that one can classify the torsion of the G-structure by considering the
exterior derivatives of the invariant forms Υp and Υ̃p. The G-modules which appear in the
decomposition of these derivatives are in one to one correspondence to the torsion classes
of the manifold. Since the supersymmetry variation of the gravitino has to vanish in order
to provide supersymmetric vacua, and since this variation has exactly the form of (3.1.8),
one can use the exterior derivatives of the invariant p-forms to establish criteria that a
compactification manifold has to fulfill in order to give supersymmetric vacua. This is
the reasons why G-structures are so useful in the discussion of flux compactification. In
chapter 4 and chapter 5 we will use these results in our analysis. But before we do so, we
need to give a more thorough account of the used G-structures, that is of SU(3) structures
in six and seven dimensions and of G2 structures in seven dimensions.
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3.2 SU(3) structures in six dimensions

We start our discussion with SU(3) structures in six dimensions (see e.g. [1,134,150,159,204,
206, 207]). This case will be relevant for heterotic supergravity, since compactification to
four dimensions lead to a six-dimensional internal manifold M with structure group SO(6).
This group is isomorphic to SU(4) and its 4 is the irreducible chiral spinor representation
of SO(6). In order to have N = 1 supersymmetry in four dimensions, there should be
only one invariant spinor on M . Decomposing the 4 with respect to various subgroups of
SU(4), one finds that SU(3) gives one invariant spinor. Hence, in order to end up with
N = 1 SUSY in four dimension, one has to compactify on SU(3) structure manifolds.
Scanning through the smallest irreducible representations of SU(4) one finds the following
decompositions with respect to SU(3)

spinor : 4 → 1 + 3 (3.2.1)

Λ1 : 6 → 3 + 3̄

Λ3/2 : 10 → 1 + 3 + 6

Λ2 : 15 → 1 + 3 + 3̄ + 8 .

Note that Λ3 would be the 20 of SO(6). By Λ3/2 we denote 3-forms that can locally be
promoted to holomorphic forms. Their representation is therefore the 10. We see that
we have besides one invariant chiral spinor η+ one invariant two-form J and one invariant
three-form Ω. In a moment we will explain how one can interpret these forms as an almost
complex structure and an associated (3, 0)-form on M .

As discussed in the last section the connection between η+, J , and Ω is established by

Jij =
i

‖η+‖2
η†+γijη+ , Ωijk =

1

‖η+‖2
ηT+γijkη+ , (3.2.2)

where ‖η+‖2 = η†+η+. Making use of the Fierz identities

η+η
†
+ =

1

8

6∑
l=0

1

l!
η†+γil...i1η+ γ

i1...il , η+η
T
+ =

1

8

6∑
l=0

1

l!
ηT+γil...i1η+ γ

i1...il , (3.2.3)

one can show that J and Ω define indeed an almost complex structure5

J j
i J

k
j = −δ ki , J j

i Ωjkl = −iΩikl . (3.2.4)

Here it is worth to notice that in the expansion of η+η
†
+ only even numbers of gamma

matrices contribute, while for η+η
T
+ the only contributions comes from l = 3. Defining the

local projection operator on (1, 0)-forms

P j
i =

1

2
(δ ji + i J j

i ) , (3.2.5)

5To show this one has to use relations like η†+η+ η
†
+η+ = ‖η+‖4 and the Fierz identities, and compare

coefficients of gamma matrices.
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one finds that locally J is a (1, 1)-form and Ω a (3, 0)-form respectively. As such they
satisfy the relations

J ∧ Ω = 0 ,
1

3!
J ∧ J ∧ J = − i

8
Ω ∧ Ω . (3.2.6)

These relations will hold not only locally, but globally, when the almost complex structure
is integrable. This is the case when the exterior derivative of Ω is proportional to itself,
i.e. when d(eY1Ω) = 0 for some scalar function Y1. Then, the SU(3) structure manifold will
be a complex manifold. In contrast, when d(eY2J) = 0 one speaks of a Kähler manifold.
Finally a manifold that satisfies both of these conditions is a Calabi-Yau manifold.

Making use of (A.1.12) one can calculate the action of the Hodge star on J and Ω

∗6 J =
1

2
J ∧ J , ∗6Ω = −iΩ , (3.2.7)

which shows that Ω is imaginary anti-self-dual. Furthermore, one can also construct the
projection operator (3.2.5) from the components of Ω

Ωikl Ω
jkl

= 16P j
i = 8 (δ ji + i J j

i ) . (3.2.8)

The torsion classes can be expressed in terms of the exterior derivatives of J and Ω.
The torsion τ ∈ Λ1 ⊗ g⊥ = 6⊗ (15− g) decomposes with respect to SU(3) as

(3 + 3̄) ⊗ (1 + 3 + 3̄) = (1 + 1) + (8 + 8) + (6 + 6̄) + (3 + 3̄) + (3 + 3̄)

= W1 + W2 + W3 + W4 + (W5 + W 5) . (3.2.9)

In terms of the torsion classes Wi, dJ and dΩ read

dJ = − 3

2
Im(W 1Ω) + W4 ∧ J + W3 , (3.2.10)

dΩ = W1 J ∧ J + W2 ∧ J + W 5 ∧ Ω , (3.2.11)

where W1 is a complex scalar, W2 is a primitive (1, 1)-form, and W3 is real (2, 1)+(1, 2) and
primitive. W4 is a real one-form and W5 is a (1, 0)-form.6 These are the basic properties
of SU(3) structures in six dimensions that are needed for the work presented in chapter 4.
We will therefore turn to seven dimensions now.

3.3 G2 and SU(3) structure in seven dimensions

In this section we will review some points concerning G2 and SU(3) structures on seven
dimensional manifolds which will become important in chapter 5 (see e.g. [206–208, 210–
217]). For a seven dimensional manifold the structure group to start with is SO(7) (or

6A notion of primitivity, which is sufficient for our purposes, is that a form is primitive if its contractions
with J and Ω vanishes. For more information on the topic see e.g. [10, 209].



42 3. G-Structures

its double cover Spin(7)). Scanning the decomposition of the spinor representation 8 with
respect to subgroups of SO(7) for one invariant spinor, one is lead to the exceptional group
G2. The one-, two-, and three-forms decompose according to

spinor : 8 → 1 + 7 , (3.3.1)

Λ1 : 7 → 7 ,

Λ2 : 21 → 7 + 14 ,

Λ3 : 35 → 1 + 7 + 27 .

Hence, a G2 structure manifold is completely determined by an invariant three-form
φ, or equivalently by a globally well defined SO(7) Majorana spinor η. Normalizing this
spinor such that ‖η‖2 = 1 one can relate these quantities by

φ =
i

3!
η† γmnp η dxmnp , ∗7 φ = ψ = − 1

4!
η† γmnpq η dxmnpq . (3.3.2)

For a manifold of G2 holonomy, dφ = dψ = 0 would hold. The departure from holonomy
can be measured by the G2 torsion classes

dφ = τ0 ψ + 3 τ1 ∧ φ+ ∗7 τ3 , dψ = 4 τ1 ∧ ψ + τ2 ∧ φ . (3.3.3)

These torsion classes are elements of Λ1 ⊗ g⊥ = 7⊗ (21− g)

7⊗ 7 = 1 + 7 + 14 + 27 (3.3.4)

= τ1 + τ2 + τ3 + τ4 .

By inverting (3.3.3) it is possible to express them in terms of the invariant forms φ and ψ

τ0 =
1

7
dφyψ , τ1 = − 1

12
dφyφ =

1

12
dψyψ , (3.3.5)

τ2 =
1

2
(dψyφ− ∗7 dψ)− 2 τ1yφ τ3 = ∗7dφ− τ0 φ+ 3 τ1yψ .

= − ∗7 dψ + 4 τ1yφ ,

A set of extremely useful identities can be obtained by choosing locally an explicit repre-
sentation of φ, e.g. [210]

φ = dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356 =
1

3!
φmnpdx

mnp , (3.3.6)

ψ = dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247 =
1

4!
ψmnpqdx

mnpq .

Using this representation one can show by explicit calculations that φ and ψ satisfy the
relations

φmnp φ
mqr = ψ qr

np + 2 δq[n δ
r
p] , (3.3.7)

φmnp ψ
mqrs = 6 δ

[q
[n φ

rs]
p] ,

ψmnpq ψ
mnrs = 2ψ rs

pq + 8 δr[p δ
s
q] .
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In order to obtain an SU(3) structure from a G2 structure, one needs a globally well defined
invariant one-form v as can be seen by further decomposing (3.3.1) with respect to SU(3)

spinor : 8 → 1 + 1̄ + 3 + 3̄ , (3.3.8)

Λ1 : 7 → 1 + 3 + 3̄ ,

Λ2 : 21 → 1 + 2× 3 + 2× 3̄ + 8 ,

Λ3 : 35 → 1 + 1̄ + 1 + 2× 3 + 2× 3̄ + 6 + 6̄ + 8 .

Besides the one-form one finds two invariant spinors, one two-form, a complex three-form,
and a real three-form. The first of the two spinors is the original G2 spinor η, while the
second spinor can be defined with the help of the one-form v

η+ =
1√
2
e
Z
2 (1 + vmγ

m) η , η∗+ = η− =
1√
2
e
Z
2 (1− vmγm) η . (3.3.9)

Here Z is a real function and vm denotes the components of v. Using these spinors one
can construct several new forms on the SU(3) structure manifold

Σp =
1

p!
η†+ γn1...np η+ dxn1...np , Σ̃p =

1

p!
ηT+ γn1...np η+ dxn1...np . (3.3.10)

Denoting the invariant two and three-forms with J , Ω, and v ∧ J in analogy to the six
dimensional SU(3) structure case the following relations can be established

Σ0 = ||η+||2 = ||η−||2 = eZ , Σ7 = i eZ dvol7 , Σ̃0 = Σ̃1 = Σ̃2 = 0 ,

Σ1 = eZ v , Σ6 =
i

3!
eZ J ∧ J ∧ J , Σ̃5 = Σ̃6 = Σ̃7 = 0 ,

Σ2 = −i eZ J , Σ5 = −1

2
eZ v ∧ J ∧ J , Σ̃3 = −i eZ Ω ,

Σ3 = −i eZ v ∧ J , Σ4 = −1

2
eZ J ∧ J , Σ̃4 = i eZ v ∧ Ω .

(3.3.11)

A detailed calculation shows that J and Ω satisfy relations analogous to the SU(3) structure
relations in six dimensions

J ∧ Ω = 0 , dvol7 = v ∧ dvol6 =
1

3!
v ∧ J ∧ J ∧ J = − i

8
v ∧ Ω ∧ Ω̄ . (3.3.12)

Furthermore, v is perpendicular to J and Ω

Jy v = 0 , Ωy v = 0 , (3.3.13)

and thus M looks locally like the direct product of a six dimensional SU(3) structure
manifold and a line. It is then possible to use J and Ω in order to introduce an almost
complex structure on this six dimensional subspace, since they satisfy

J n
m J p

n = −δpm + vm v
p , Ωmpq Ω̄npq = 8 (δnm + i J n

m − vm v
n) , (3.3.14)

J n
m Ωnpq = −iΩmpq ,
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which means that Ω is (3, 0) and J (1, 1) with respect to this almost complex structure.
Similarly to the six dimensional case, one can use the property (A.1.6) of the gamma
matrices to calculate the Hodge duals of v, J , and Ω

∗7 v =
1

3!
J ∧ J ∧ J , ∗7 J =

1

2
v ∧ J ∧ J , ∗7 Ω = −i v ∧ Ω . (3.3.15)

Writing the G2 spinor η in terms of η+, one gets from (3.3.2) the connection between the
G2 and the SU(3) structure forms

φ = v ∧ J + Re Ω , ψ =
1

2
J ∧ J + v ∧ Im Ω . (3.3.16)

The torsion is already quite complicated for this case, since it takes values in Λ1 ⊗ g⊥ =
(1 + 3 + 3̄)⊗ (1 + 2× 3 + 2× 3̄). The departure from SU(3) holonomy is measured by
14 torsion classes

dv = RJ + V̄1yΩ + V1y Ω̄ + v ∧W0 + T1 , (3.3.17)

dJ = − 3

2
Im(W̄1 Ω) + W4 ∧ J + W3 + v ∧

( 2

3
ReE J + V̄2yΩ + V2y Ω̄ + T2

)
,

dΩ = W1 J ∧ J + W2 ∧ J + W̄5 ∧ Ω + v ∧ (E Ω − 4V2 ∧ J + S) .

Here, R is a real scalar, while W1 and E are complex scalars. W5, V1, and V2 are (1, 0)-
forms, while W0 and W4 are real one-forms. W2, T1, T2 are primitive and (1, 1). W3 and S
are (2, 1)+(1, 2) and primitive. All degrees of the forms are understood with respect to the
almost complex structure defined by J and Ω. Note that while W1 to W5 are also present
in the six dimensional case, the other torsion classes are special to seven dimensions and
describe the embedding of the SU(3) structure manifold into M .

With the tools presented in this chapter, we are now ready to turn back to the physical
problems we want to address. In the next chapter we will heavily rely on the results on
SU(3) structures in six dimensions in order to deal with heterotic supergravity, while in
chapter 5 seven dimensional G-structures will be needed for our discussion of heterotic
M-theory.



Chapter 4

Heterotic Domain Wall
Supersymmetry Breaking

After we have laid the theoretical foundations in the previous two chapters, we can now
go on to the main topics of this thesis. In this chapter we will be concerned with the
construction of non-supergravity vacua for heterotic supersymmetry. To this end, we will
first rewrite the potential (2.4.16)

Vh = − 1

2κ2
10

∫
Mh

dvolMh
e4Ah−2Φ

{
e−2AhRX4 +R− 1

2
H2 − 4(dΦ)2 − 8∇2Ah

− 20(dAh)
2 +

α′

4
(TrR2

+ − TrF 2)

+ α′
[
2e−2Ah(∇i∇jeAh)(∇i∇je

Ah) + |dAhyH|2 + 3| 1

12
e−2AhRX4 − dAhydAh)

2|2
]}

,

and the supersymmetry conditions (2.2.6)

δΨI =
(
∇I −

1

4
/HI

)
ε = ∇−I ε = 0 ,

δλ =
(
/∂Φ− 1

2
/H
)
ε = 0 ,

δχ =
1

2
/F ε = 0 ,

in terms of the SU(3) structure forms J and Ω. By this we will see that the potential can
be put into a BPS-like form, i.e. it becomes a sum of squares that vanish once SUSY is
satisfied.

By a special pattern of controlled SUSY-breaking, called domain wall SUSY-breaking
(DWSB), we will obtain severe constraints on the compactification manifold. By solving
these constraints we will explicitly construct examples of DWSB-vacua. At the end of the
chapter we will also discuss the effects that the inclusion of a gaugino condensate has on
our vacua. We find that both DWSB and gaugino condensation give rise to supersym-
metry breaking and that one can encompass most of the non-supersymmetric vacua that
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are known up to now in the literature by these two SUSY-breaking patterns. The work
presented in this chapter was firstly published in [1–3], and we will follow closely the pre-
sentation given there. Note that since we are concerned here only with ten-dimensional
heterotic supergravity compactified on a six-dimensional manifold, we will denote the het-
erotic warp factor by A instead of Ah. Furthermore, the spinor ε is a Majorana-Weyl
spinor of SO(1, 9) and the Hodge star ∗ will be the six-dimensional Hodge star. We use
this notation in order to keep the equations as simple as possible.

4.1 BPS-like potential and SUSY conditions

The scalar potential V written in the form (2.4.16) does not appear particularly useful to
study supersymmetry. In order to improve the situation, we have to make manifest the
underlying supersymmetric structure. As we are going to show, this is possible due to the
use of the SU(3) structure of the internal space, its invariant (3, 0)-form Ω, its Kähler (or
fundamental) (1, 1)-form J , and its related globally defined chiral spinor η+, which were
discussed in section 3.2. In supersymmetric compactifications [130,134] η+ can be seen as
the internal component of the ten-dimensional SUSY-generator ε, that decomposes as

ε = ζ ⊗ η+ + c.c. . (4.1.1)

Here both ζ and η+ are chiral in four and six dimensions, respectively: γ(4)ζ = ζ and
γ(6)η+ = η+. Note, that if X4 is Minkowski space, then ζ is a constant chiral spinor. If X4

is an AdS4 space, then ζ is the Killing spinor defined by

∇µζ =
1

2
w0γ̂µζ

∗ , (4.1.2)

where w0 has an arbitrary phase and is related to the AdS4 radius R by |w0| = 1/R. Let
us stress that, at this stage, we do not require ε or η+ to satisfy any particular require-
ments except being globally well-defined. In other words, Ω and J define a generic SU(3)
structure.

The potential in terms of SU(3) structure

The key point for our analysis is that Ω and J also specify the six-dimensional metric
g. Thus, in principle, one can express the scalar curvature R appearing in the potential
(2.4.16) as a function of Ω and J . This problem has been addressed in [218], and in [197,219]
for the more general SU(3)×SU(3) structure case relevant in type II configurations. Here
we use the general formula obtained in [197] (see equation (C.1) therein), from which one
can derive the following identity1

R = − 1

2
(dJ)2 − 1

8
[d(J ∧ J)]2 − 1

2
|dΩ|2 +

1

2
|J ∧ dΩ|2 +

1

2
u2 −∇iui , (4.1.3)

1To obtain (4.1.3) from (C.1) of [197], one should set f = 1, A = Φ = H = 0, Ψ1 = ieiJ and Ψ2 = Ω
therein.
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with

u = uidy
i =

1

4
(J ∧ J)yd(J ∧ J) − 1

2
Re(ΩydΩ) . (4.1.4)

Thus, by using (4.1.3), together with the BI (2.2.5), one can rewrite (2.4.16) as2

V = V0 + V1 , (4.1.5)

with

V0 =
1

4κ2
10

∫
dvolM e4A−2Φ

[
e−4A+2Φd(e4A−2ΦJ)− ∗H

]2
+

1

4κ2

∫
dvolM e4A−2Φ

{1

4

[
e−2A+2Φd

(
e2A−2ΦJ ∧ J

)]2
+ 4(dA)2

}
+

1

4κ2

∫
dvolM e−2A+2Φ

[
|d(e3A−2ΦΩ)|2 − |J ∧ d(e3A−2ΦΩ)|2

]
− 1

4κ2

∫
dvolM e4A−2Φ

{
2dA+

1

4
e−2A+2Φ(J ∧ J)yd(e2A−2ΦJ ∧ J)

+
1

2
e−3A+2ΦRe[Ωyd(e3A−2ΦΩ)]

}2

, (4.1.6a)

V1 =
α′

8κ2
10

∫
e4A−2Φ

[
Tr(F ∧ ∗F ) + Tr(F ∧ F ) ∧ J

]
− α′

8κ2

∫
e4A−2Φ

[
Tr(R+ ∧ ∗R+) + Tr(R+ ∧R+) ∧ J

]
− α′

2κ2

∫
M

dvolM e4A−2Φ
[
2 e−2A(∇i∇jeA)(∇i∇je

A)

+ (ιjH · ιjH)∇iA∇jA+ 3 |dA · dA|2
]
. (4.1.6b)

Note that the potential (4.1.5) depends explicitly on the dilaton and fluxes, but both
explicitly and implicitly on the metric, the latter through the SU(3) structure tensors J
and Ω. Thus, in order to derive the equations of motion from this form of the potential,
one needs to know the variations of J and Ω with respect to the metric, which are given
by

δJ = −1

2
δgij gk(idy

k ∧ ιj)J , δΩ = −1

2
δgij gk(idy

k ∧ ιj) Ω , (4.1.7)

where δgij is a general variation of the inverse of the six-dimensional metric. Following the
steps of section 2.4.2, would of course yield again that dA is zero up to order α′3. However,
we keep these terms for the moment for the sake of completeness.

In principle, one should also express the curvature R+ in terms of the SU(3) structure
forms J and Ω and the flux H, but this turns out to be not necessary for our purposes.
One can use the decompositions in (p, q)-forms induced by the almost complex structure

2We also denote the heterotic potential Vh by V in this chapter.
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associated with J and Ω to rewrite the first two lines of the right hand side of (4.1.6b) as
a sum of squares

Tr(F ∧ ∗F ) + Tr(F ∧ F ) ∧ J = dvolM
[
2 Tr |F (2,0)|2 + Tr(JyF )2

]
, (4.1.8a)

Tr(R+ ∧ ∗R+) + Tr(R+ ∧R+) ∧ J = dvolM
[
2 Tr |R(2,0)

+ |2 + Tr(JyR+)2
]
. (4.1.8b)

Note that by this scalar potential approach we have followed a philosophy quite similar
to the one in [137], where a similar potential was constructed. Let us however point
out a few differences between our potential and the one obtained there. First, we are
not assuming constant warping. While this aspect will not be crucial for most of the
discussions on compactifications with constant warping, allowing for a non-trivial warping
makes explicit the consistency of our truncation ansatz as can be seen by our discussion
of the EoM’s in section 2.4.2. Secondly, our potential (4.1.5)-(4.1.6) is expressed in terms
of the SU(3)-invariant (3, 0)-form Ω, and not of the associated almost complex structure
as in [137]. Finally, and most importantly, our potential is a sum of squares, while the
potential of [137] is not, since it contains an O(α′0)-term linear in the curvature. We will
show next that all square terms vanish separately for non-broken SUSY, meaning that our
potential is of BPS-like form. As we will see, having a fully-BPS structure will be crucial
in studying possible mechanisms of supersymmetry breaking.

Supersymmetric vacua from the BPS potential

As explained in section 2.4.2, any vacuum must extremize the potential (4.1.5)-(4.1.6).
Since this potential is a sum of squares, the simplest possibility is that each of these
squares vanish separately. Let us first consider the O(α′0) potential V0 (4.1.6a). Imposing
that all squares vanish demands that the warping should be constant, dA = 0, in agreement
with the discussion of section 2.4.2, and that the following equations should be satisfied:

d(e−2ΦΩ) = 0 , (4.1.9a)

d(e−2ΦJ ∧ J) = 0 , (4.1.9b)

e2Φd(e−2ΦJ) = ∗H . (4.1.9c)

These match the conditions obtained in [130,134] by standard spinorial arguments. Let us
shortly review how to obtain them.

After our compactification to four dimensions one can deduce two equations from the
gravitino variation (2.2.6a) by specifying to the external (I = µ) or internal (I = i)
components of the gravitino. By applying the spinor decomposition (4.1.1) and our gamma
matrix conventions form appendix A.1 one finds for the external components

δΨµ =
1

2
eAγ̂µζ ⊗ (/∂Aη+ + e−Aw0η

∗
+) + c.c. = 0 ,

⇒ /∂Aη+ + e−Aw0η
∗
+ = 0 . (4.1.10)
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Multiplying this equation by (η†+γi) and ηT+, and using the properties of the SU(3) spinor
η+ discussed in section 3.2, one finds that dA and w0 must be zero for a supersymmetric
vacuum. This means that the O(α′3) result that we have obtained from the equations of
motion has to hold to all orders in α′ when SUSY is not broken.

Turning to the internal components of (2.2.6a) and the dilatino equation (2.2.6b) we
find the two equations (

∇m −
1

4
/Hm

)
η+ = 0 , (4.1.11a)(

/∂φ− 1

2
/H
)
η+ = 0 . (4.1.11b)

These can be used to calculate the derivatives of J and Ω, which turn out to give exactly
(4.1.9).3 We see therefore that by imposing SUSY all squares in the order α′0 contribution
to the potential vanish. Therefore V0 is extremized automatically in the supersymmetric
case.

Note that in order to satisfy (4.1.9) the choices for the internal manifold M are quite
restricted. In particular, (4.1.9a) requires M to be a complex manifold with a nowhere
vanishing globally defined holomorphic (3, 0)-form. The second condition (4.1.9b) requires
the internal space to be conformally balanced [220]. Finally, the third condition (4.1.9c)
imposes that, in presence of a non-vanishing three-form flux H the space is not Kähler.

By introducing the complexified three-form G = H− ie2Φd(e−2ΦJ), one can see (4.1.9c)
as an imaginary-self-duality (ISD) condition

∗ G = iG , (4.1.12)

which means that G2,1 is primitive, G3,0 = 0, and G1,2 = η ∧ J for some (0,1)-form η.4

The above supersymmetry equations can be rewritten in a slightly different form, by
introducing another three-form

G = H − i dJ = G − 2 i dΦ ∧ J . (4.1.13)

Indeed, one can first use (4.1.9b) to rewrite (4.1.9c) as: G3,0 = 0 = G1,2. Then, by noticing
that (4.1.9a) implies via (3.2.10) that (dJ)3,0 = 0, (4.1.9) can be rewritten as

d(e−2ΦΩ) = 0 , (4.1.14a)

d(e−2ΦJ ∧ J) = 0 , (4.1.14b)

G1,2 = 0 = G0,3 . (4.1.14c)

3For example

dJ =
1

2
∇i Jjkdxijk =

1

2‖η+‖2
(

(∇i‖η+‖2) Jjk + i
[
(∇iη+)†γjkη+ + η†+γjk(∇iη+)

])
dxijk .

4Note that a (3, 0)-form is always imaginary anti-self-dual. A (1, 2)-form is imaginary anti-self-dual if
it is primitive. Hence, the (3, 0)-part of G is zero and its (1, 2)-part is non-primitive, respectively.
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As we will see in section 4.4.2 expressing the supersymmetry conditions as in (4.1.14c) is
more natural from the viewpoint of the effective four-dimensional theory. On the other
hand, (4.1.9c) has a direct interpretation in terms of calibrations as discussed in section 4.3.

Let us finally rewrite (4.1.9) in terms of torsion classes (3.2.10). From (4.1.9a) and
(4.1.9b) it is clear that

dΦ = W4 = ReW5 , (4.1.15)

and that W1 = W2 = 0. One can then deduce from (4.1.9c) that the flux H has no (3, 0)-
or (0, 3)-components and that

H1,2 = iW 0,1
4 ∧ J + iW 1,2

3 . (4.1.16)

From these considerations one can also see immediately that G3,0, G0,3, and G1,2 have to
be zero for supersymmetric vacua.

Next, we discuss the O(α′) potential (4.1.6b). Again, we require squared terms to
vanish separately. The terms in the last line automatically vanish, since we have already
imposed that A is constant. On the other hand, from the first line in (4.1.6b) and via
(4.1.8a) one gets the conditions

F 0,2 = 0 , JyF = 0 . (4.1.17)

This means that the gauge bundle should be holomorphic, and should moreover have a
primitive field-strength or, in other words, the gauge bundle must be Hermitian-Yang-Mills
(HYM). That this is the case can be seen by plugging our compactification ansatz into the
gaugino variation (2.2.6c). We find that

/Fη+ = −i (J · F ) η+ +
1

2
(ιmΩ · F ) γmη∗+ = 0 , (4.1.18)

which gives the conditions (4.1.17) when contracted with η†+ and ηT+γi.
Finally, from the second line of (4.1.6b) or (4.1.8b) one gets

R0,2
+ = 0 , JyR+ = 0 (4.1.19)

Conditions which, up to higher order α′ corrections, are automatically implied by the su-
persymmetry conditions as was shown in [221]. Therefore, due to the fact that it is of
BPS-like form, the whole potential (4.1.6) will be extremized automatically for a super-
symmetric vacuum. In the next section we will analyze what can be learned from the
potential if we drop one of the SUSY conditions (4.1.9).

4.2 Supersymmetry breaking vacua: general discus-

sion

Let us now address the possible patterns of supersymmetry breaking in purely bosonic
heterotic vacua. We will identify a particularly natural possibility, which we will further
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restrict in section 4.4 to a rather simple subfamily of constructions. As we will see in
section 4.5 this restricted class of vacua include as a subcase the supersymmetry-breaking
backgrounds considered in [190], which were mainly motivated by duality arguments.

4.2.1 Torsion induced SUSY-breaking vacua

Our strategy to construct non-supersymmetric vacua can be divided into two steps. First,
we look for a supersymmetry breaking ansatz such that it violates the SUSY conditions of
subsection 4.1, but still leads to a vanishing potential V , since this is still required by the
equations of motion. As a second step, we need to consider whether V can be extremized
within this ansatz, and which further constraints an extremization may impose.

Focusing on the O(α′0) piece of the potential, one sees that V0 is the sum of positive and
negative definite terms, and that the violation of the supersymmetry conditions implies
that some of the positive definite terms do not vanish. Hence, V0 = 0 is only possible if
there is an exact cancellation between positive and negative definite terms in (4.1.6a).

From the general remarks of section 2.4.2, we know that the warping should be constant
up to order α′2, and so we can already set dA = 0. While we are still left with a large
number of terms in V , a drastic simplification is obtained by imposing that the conditions
(4.1.9c) and (4.1.9b) are not violated in the non-supersymmetric vacuum. As we will
discuss in section 4.3 this guarantees the geometrical structure needed in order to define
the stability of the gauge bundle and of space-time filling NS5-branes. It is therefore
natural to maintain these conditions in the context of compactification with a stable gauge
sectors. To summarize, we impose

d(e−2ΦJ ∧ J) = 0 , (4.2.1a)

e2Φd(e−2ΦJ) = ∗H (⇔ ∗G = iG) , (4.2.1b)

but we allow for
d(e−2ΦΩ) 6= 0 . (4.2.2)

This choice makes all the terms of V0 containing derivatives of J vanish and encodes the
origin of the supersymmetry breaking in the violation of (4.1.9a). If we further simplify
the potential by imposing that

Ωyd(e−2ΦΩ) = 0 , (4.2.3)

then the last line on the right hand side of (4.1.6a) also vanishes. We are thus left with
the following non-vanishing contributions to the potential

V ′0 =
1

4κ2
10

∫
dvolM e4A−2Φ

[
|e−3A+2Φd(e3A−2ΦΩ)|2 − |J ∧ dΩ|2

]
, (4.2.4)

which, taking into account that dA = 0, vanishes if and only if 5

|e2Φd(e−2ΦΩ)|2 = |J ∧ dΩ|2 . (4.2.5)

5Notice that we could have had vanishing potential even by violating the condition (4.2.1a), due to
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Hence, one sees from the right hand side of (4.2.5) that it is the (2, 2)-component of (4.2.2)
which induces the SUSY-breaking

SUSY-breaking ⇔ d(e−2ΦΩ)2,2 6= 0 . (4.2.6)

An important implication of this condition is that this supersymmetry breaking mechanism
is possible only if the complex structure defined by the SU(3) structure is not integrable.

This way of breaking supersymmetry can be seen as the heterotic counterpart of the
type II supersymmetry breaking pattern discussed in [197], which generalizes the flux-
induced SUSY-breaking pattern of type IIB warped Calabi-Yau/F-theory backgrounds
[133]. In [197], this mechanism was named ‘domain-wall supersymmetry breaking’ (DWSB)
because of its interpretation in terms of calibrations. As we will discuss in section 4.3, this
interpretation is possible in the heterotic case as well, and so the present vacua will be
named in the same manner.

In order to make contact with the flux literature, it is useful to translate the above
conditions to the language of torsion classes (3.2.10). As in the supersymmetric case,
(4.2.1a) and (4.2.3) are equivalent to fixing W4 and W5 in terms of the dilaton

W4 = dΦ , ReW5 = dΦ , (4.2.7)

while (4.2.3) and (4.2.5) give conditions on W1 and W2

e2Φd(e−2ΦΩ) = W1 J ∧ J +W2 ∧ J , with |W2|2 = 24|W1|2 , (4.2.8)

where we recall that W2 is a primitive (1, 1)-form. Finally, (4.2.1b) can be rewritten as

H3,0 = −3

4
W 1 Ω , (4.2.9a)

H2,1 = −iW 1,0
4 ∧ J − iW 2,1

3 . (4.2.9b)

Note that in this language the supersymmetry breaking can be associated to a non-
vanishing W1, that is, a non-vanishing (dJ)3,0. As one can see from equation (4.2.9a)
this is directly related to a non-vanishing H3,0-component of the flux.

We can also characterize this supersymmetry breaking mechanism in terms of the three-
form G. By inserting the expressions for H and dΦ into (4.1.13) one finds

G3,0 = G1,2 = 0 (4.2.10)

as in the supersymmetric case. The origin of supersymmetry breaking can then be traced
back to the non-vanishing of G0,3

SUSY-breaking ⇔ G0,3 = −3

2
W1 Ω 6= 0 . (4.2.11)

a non-trivial cancellation of the terms containing d(e2A−2ΦJ ∧ J) in (4.1.6a). However, in this case the
extremization of these terms in (4.1.6) is not straightforward and needs to be checked separately. This kind
of SUSY-breaking can be thought as driven by D-terms and removes part of the integrable geometrical
structure which could be crucial to study the stability of the bundle, cf. sections 4.3 and 4.4.2 below.
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Formally, this condition is identical to the SUSY-breaking condition in type IIB warped
Calabi-Yau/F-theory backgrounds [133], where G is constructed as G = FRR + ie−ΦH with
FRR the Ramond-Ramond three-form flux.

We also want to analyze how the conditions (4.2.1) – (4.2.3) alter the Killing spinor
equations (4.1.11) and the external SUSY condition (4.1.10). In fact, due to our ansatz
it could be that dA = 0 = w0 is no longer guaranteed by supersymmetry. However, since
we know that in any vacuum these two quantities have to be zero up to O(α′3) in order
to satisfy the equations of motion, we conclude that also (4.1.10) is not changed up to
negligible α′ corrections.

What can one say about (4.1.11)? Here, things are a bit more complicated. According
to the chirality of η+ one can parametrize the violation of δΨi = 0 = δλ by(

∇i −
1

4
/H i

)
η+ = pi η+ + qijγ

jη∗+ , (4.2.12a)(
/∂φ− 1

2
/H
)
η+ = uiγ

iη+ + r η∗+ . (4.2.12b)

One should note here that due to the contraction with one gamma matrix the second index
of qij is of (1, 0)-type, while ui is a (0, 1)-form6

P k
i qjk = qji , P

k

i uk = ui . (4.2.13)

Note also that qij is not antisymmetric in its indices. Using this parametrization one can
again compute the derivatives of J and Ω which turn out to be

e2φd
(
e−2φJ ∧ J

)
= 4 Re (p − u) ∧ J ∧ J − 8 Re (s ∧ Ω) , (4.2.14a)

e2φd
(
e−2φJ

)
− ∗H = 2 Im

(
r∗Ω
)

+ 2 Re (p − 2u) ∧ J − 2 Im
(
t∗i ∧ ιiΩ

)
, (4.2.14b)

e2φd
(
e−2φΩ

)
= 2 (p− u) ∧ Ω − r J ∧ J + 8 i s ∧ J . (4.2.14c)

Here, we defined s = 1
2
qij dyi ∧ dyj, tj = qi

jdyi, u = uidy
i and p = pidy

i. Comparing these
equations to our ansatz (4.2.1) – (4.2.3) one sees that the first two of them must be equal
to zero. In the first equation both terms on the right hand side have to vanish separately.
This gives the conditions

Reu = Re p , s ∧ Ω = 0 , s ∧ Ω = 0 , (4.2.15)

which implies that s is a (1, 1)-form. Then, the last term on the right hand side of the
second equation is (3, 0) + (0, 3). This means that by contracting this equation with Ω one
can relate r to the trace of qij

r = qij g
ij . (4.2.16)

6This can be seen by e.g. multiplying (4.2.12b) from the left by ηT+γ
jk. Then one obtains a term of the

form uiΩ
ijk. Since Ω is a (3, 0)-form and raising an index changes it form holomorphic to antiholomorphic

(and vice versa), this means that ui is of (0, 1)-type.
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Furthermore, the middle term has to vanish separately, leading to

Re (p − 2u) = − 3 Reu = − 3 Re p = 0 . (4.2.17)

Since u is a (0, 1)-form the vanishing of Reu means that u = 0

Reu =
1

2
Re (u + i Jyu) =

1

2
(Reu − JyImu) = 0 , ⇒ u = 0 . (4.2.18)

At last, contracting the third equation of (4.2.14) with Ω and demanding (4.2.3) sets also
Im p = 0. Thus, we see that the SUSY-breaking condition (4.2.2) takes the form

e2φd
(
e−2φΩ

)
= −r J ∧ J + 8 i s ∧ J , (4.2.19)

where s is a (1, 1)-form and can be decomposed in a primitive and a non-primitive part
s = − i

6
r J + sP. Comparing this with the first condition in (4.2.8), we find r = 3W1 and

s = − i

8
(W2 + 4W1J) . (4.2.20)

From this one can finally see that the violations of the gravitino and dilatino Killing spinor
equations are of the form

δΨµ = 0 , (4.2.21a)

δΨi = − i

4
Sij ζ ⊗ γjη∗+ + c.c. , (4.2.21b)

δλ = 3W1 ζ ⊗ η∗+ + c.c. , (4.2.21c)

where we have introduced the two-form7

S = W2 + 4W1J . (4.2.22)

In order to conclude our O(α′0) discussion, it remains to impose the extremization of
V0, which unlike the supersymmetric case is not automatic. However, it is sufficient to
impose the extremization of V ′0 given in (4.2.4), since all other terms are automatically
extremized, being quadratic in vanishing terms. In particular, it is easy to see that the
only non-trivial contribution comes from the extremization of V ′0 under variations of the
metric. By using equation (4.1.7), the resulting residual equations of motion are given by

Im
[
ι(iΩyιj)dS

]
= 8 gij|W1|2 − 2Re[W 1(ιiW2yιjJ)]− Re[ιiW2 y ιjW 2]

= |W1|2
{

9 gij − Re
[
ιi

(W2

W1

+ J
)
yιj
(W 2

W 1

+ J
)]}

. (4.2.23)

7Note that there is a relative factor of 2 between (−i/4S) and s. This is because S is a generic (1, 1)-
form, whose second index could be holomorphic as well as anitholomorphic, while the second index of s
can only be holomorphic, due to its connection to q.



4.2 Supersymmetry breaking vacua: general discussion 55

Due to the contraction with the (0, 3)-form Ω, only the (3, 0) and primitive (2, 1) compo-
nents of dS can contribute to the left hand side of (4.2.23). Since the right hand side is a
(1, 1)-tensor, it can only be matched to the left hand side if dS has only (3, 0) components.
This implies that the primitive (2, 1) components of dS must vanish

(dS)
(2,1)
P = 0 . (4.2.24)

In fact, the (3, 0) component of dS also vanishes, as can be seen by using (4.2.22) and
(4.2.8).8 We conclude that the right hand side of (4.2.23) must vanish identically. By
introducing the matrix

U i
j =

1

3

(W2

W1

+ J
)i
j =

1

3
gik
(W2

W1

+ J
)
kj
, (4.2.25)

we arrive at the following matrix equation

Re (U i
kU

k

j ) = Re (U · U †) = 1 , (4.2.26)

where (U †)ij = (U j
i) = gjkg

il(U
k
l). To sum up, the equations of motion (4.2.23) boil down

to the conditions (4.2.24) and (4.2.26). Furthermore, the primitivity of W2 implies that

J ijU
j
i = Tr(JU) = −2 . (4.2.27)

While at this point these conditions look rather mysterious, we will provide a simple
geometrical interpretation for them in section 4.4.

At order α′ we also need to impose the extremization of the term V1 in (4.1.6b). Since
dA = 0, terms containing the warping do not provide further constraints. On the other
hand, the terms containing the gauge bundle field-strength F are extremized if

F 0,2 = 0 , JyF = 0 (4.2.28)

as in the supersymmetric case. Recall that the almost-complex structure of M is not
integrable. Following [222], we can say that (4.2.28) requires the bundle to be pseudo-HYM
and in particular that the condition F 0,2 = 0 requires the bundle to be pseudo-holomorphic.
Clearly, one cannot use the standard theory of bundles on Kähler spaces. However, as we
will discuss in more detail in section 4.3, the conditions (4.2.1a) and (4.2.1b) still allow to
define a sort of stability of the gauge bundle, analogous to the one for bundles on Kähler
spaces.

Finally, from the second line of (4.1.6b) one gets

R0,2
+ = 0 , JyR+ = 0 . (4.2.29)

Unlike the supersymmetric case, these equations are not any longer automatically satisfied.
However, imposing that the supersymmetry breaking is mild enough compared to the
compactification scale, the violation of (4.2.29) is expected to be mild as well, and possibly
negligible at O(α′). We will come back to this point in subsection 4.2.3, but focus now on
how our SUSY-breaking ansatz affects gravitino and gaugino masses.

8This component is proportional to dS ∧ Ω = −S ∧ dΩ, which vanishes upon imposing (4.2.8).
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4.2.2 Gravitino and gaugino mass

While equations (4.2.6) and (4.2.11) translate the fact that supersymmetry is broken into
geometry, one can also provide a more physical measure of the amount of SUSY-breaking
by computing the four-dimensional gravitino and gaugino masses. Note that in general a
simple consistent truncation ansatz does not necessarily exists for these backgrounds and,
as a result, there is no precise definition of the four-dimensional gravitino. Nevertheless,
one can introduce a sort of a four-dimensional gravitino Ψ4D

µ defined by the fermionic
decomposition

Ψµ +
1

2
Γµ(ΓmΨm − λ) = Ψ4D

µ ⊗ η∗+ + c.c. . (4.2.30)

Note that defined in this way Ψ4D
µ may depend on the internal coordinates, and thus

cannot be considered as a properly defined four-dimensional gravitino. Nevertheless, the
combination of the ten-dimensional gravitino and dilatino appearing on the left hand side of
(4.2.30) is such that the four-dimensional kinetic term for Ψ4D

µ , resulting from the ten-
dimensional action of [200]9 has a canonical form and does not mix with other fermions.

One can now introduce a function m3/2 which plays the role of the gravitino mass but
generically also depends on the internal coordinates. Indeed, let us define m3/2 as follows

δΨ4D
µ =

1

2
m3/2 γ̂µζ , (4.2.31)

i.e. by using the usual four-dimensional SUSY-breaking formula which relates the variation
of the gravitino to the gravitino mass.10

Applied to the SUSY-breaking backgrounds described in subsection 4.2.1, by (4.2.21)
we see that the above definitions yield the expression

m3/2 = 3 eAW1 . (4.2.32)

So m3/2 can be related to the scale set by the (4d normalized) torsion class W1. Note again
that this scale depends on the coordinates of the internal manifold.

In order to make contact with a four-dimensional effective theory, one would like to
have a more standard expression for the gravitino mass m3/2. This can be obtained by
imposing Ψ4D

µ to be constant in the internal space and averaging m3/2 with an appropriate
dilaton-factor

m3/2 = 〈m3/2〉 =

∫
M

dvolM e−2Φm3/2∫
M

dvolM e−2Φ
=

ieA
∫
M
e−2Φ Ω ∧G

4
∫
M

dvolM e−2Φ
, (4.2.33)

where in the last step we have used (4.2.11) and the condition G3,0 = 0 for the three-form
G defined in (4.1.13). One can then use (2.4.34) to fix the four-dimensional Einstein frame

9Our conventions and the ones used in [200] are related by: Φthere = exp(2Φhere/3), Hthere =
Hhere/3

√
2, Ψthere

M = Ψhere
M , λthere = −λhere/2

√
2, and χthere = −χhere.

10In order to identify the four-dimensional spinor ζ in (4.1.1) with the generator of the four-dimensional
supersymmetry, it is convenient to choose the normalization η†+η+ = eA for the internal spinor η+. This
is possible since Re p = 0 which implies ∇i‖η+‖2 = 0.
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and gets

m3/2 =
i g3

s l
4
sMP

∫
M
e−2Φ Ω ∧G

8
√
πVol(M)3/2

. (4.2.34)

Let us now turn to the gaugino mass. The four-dimensional gaugino χ4D is related to
the ten-dimensional gaugino by the decomposition

χ = e−2Aχ4D ⊗ η+ + c.c. . (4.2.35)

The relevant terms in the ten-dimensional action [200] are given by

− α′

4κ2

∫
d10x
√
−g e−2Φ

(
Trχ /∇χ− 1

4
Trχ /Hχ

)
, (4.2.36)

Plugging (4.2.35) into (4.2.36) and integrating over the internal space, while keeping χ4D

constant on it, one obtains the following value for the gaugino mass

m1/2 =
i eA

∫
M
e−2ΦΩ ∧H

2
∫
M

dvolM e−2Φ
=

ieA
∫
M
e−2Φ Ω ∧G

4
∫
M

dvolM e−2Φ
, (4.2.37)

where in the last step we have used the condition G3,0 = 0 again. We thus see that the
gaugino mass equals the gravitino mass (4.2.33)

m1/2 = m3/2 . (4.2.38)

As we will see in section 4.4.2, this result has a very simple four-dimensional interpretation.

4.2.3 Conditions on the curvature

Let us now discuss the conditions on the curvature (4.2.29) that arise at order α′ from the
minimization of the potential piece (4.1.6b). First of all, note that

R+ijkl = R−klij − (dH)ijkl . (4.2.39)

So, by using the BI (2.2.5) we get the relation

R+ijkl = R−klij + O(α′) . (4.2.40)

Hence, in the scalar potential the terms (4.2.29) can be rewritten as

Ωijk R
ij
− = 0 , Jij R

ij
− = 0 (4.2.41)

up to O(α′2). These conditions can be rephrased by saying that the internal spinor η+

specifying the SU(3) structure should be covariantly constant with respect to the torsion-
full covariant derivative∇−i . From (4.2.12a) and (4.2.21b), we know that this is not the case
in the torsional SUSY-breaking backgrounds of subsection 4.2.1. However, let us assume
that the SUSY-breaking is mild, so that ∇−i η+ ∼ O(α′β), with 0 < β ≤ 1. Roughly
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speaking, this would mean that both equations in (4.2.29) are violated at O(α′β). In
particular, by using (4.1.8b), the curvature squared term in (4.1.6b) would be of O(α′2β),
and so negligible in our approximation for β ≥ 1/2. Under this condition, the full potential
would be extremized at our level of accuracy.

We can make this argument more concrete. From (4.2.12a) and (4.2.21b) we have

∇−i η+ = − i
4
Sijγjη∗+ . (4.2.42)

Taking into account (4.2.22) and the condition |W2|2 = 24|W1|2, we get qualitatively
∇−i η+ ∼ W1γiη

∗
+. The torsion class W1 has the dimension of mass and defines a dimen-

sionless SUSY-breaking length scale LSB (measured in string units) through

W1 ∼ (lsLSB)−1 (4.2.43)

Then, taking gij ∼ l2sL
2
KK, with LKK being the KK length measured in string units we have

∇−i η+ ∼ LKK L
−1
SB. Furthermore, by introducing the four-dimensional KK-scale MKK =

eA/(lsLKK) and recalling (4.2.32), we can restate (4.2.43) in a more physical way

m3/2 ∼ MKK LKK L
−1
SB . (4.2.44)

One has mild SUSY-breaking, which can be seen as spontaneous from the four-dimensional
point of view, when m3/2 �MKK. This condition corresponds to

LKK

LSB

� 1 . (4.2.45)

This also means that the violation of SUSY in terms of spinors is small ∇−i η+ � 1.
Lets try to parametrize this relation in terms of LKK. In the regime of the validity of

a supergravity approximation all compactification scales should be larger than the string
length which is guaranteed if

LKK > 1 =
α′

4π2l2s
=

4π2l2s
α′

. (4.2.46)

Demanding that∇−i η+ is of order α′β (measured in string length, as∇−i η+ is dimensionless)
yields by (4.2.46)

∇−i η+ ∈
(
L−2β

KK , L
2β
KK

)
. (4.2.47)

For minimal SUSY-breaking one should choose ∇−i η+ ∼ L−2β
KK , which is even smaller then

O(α′β). Together with our former estimate ∇−i η+ ∼ LKK L
−1
SB we get a relation between

the KK length and the SUSY-breaking length

LSB ∼ L2β+1
KK . (4.2.48)

If for example β = 1/2 in (4.2.48) we can identify LSB with L2
KK.
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We can consider these issues also in a bit more detail. The curvature terms (4.2.41)
can be rewritten by using (4.2.42) and the formula

[∇−i ,∇−j ] η+ =
1

4
R−klij γ

klη+ . (4.2.49)

They read

Ji1i2R
i1i2
− j1j2 = 2P lk Sk[j1 S∗j2]l , (4.2.50a)

Ωj1i1i2R
i1i2
− j2j3 = 4 i Pj1

k∇−[j2Sj3]k +
1

2
Ωj1

kl Sk[j2 S∗j3]l , (4.2.50b)

where Pi
j is defined in (3.2.5) and projects onto holomorphic indices of the almost complex

structure. Then, we have the following curvature squared terms contributing to (4.1.6b)

|JijRij
−|2 ∼ |W1|4 , (4.2.51a)

|ΩijkR
ij
−|2 ∼ |∂W1|2 + |W 2

1 ∂W1|+ |W1|4

∼ (ls LKK)−2|W1|2 + (ls LKK)−1|W1|3 + |W1|4 . (4.2.51b)

By using (4.2.43), the dimensionless contribution to the O(α′) equations of motions asso-
ciated to the curvature terms in (4.1.6b) can be approximated as

(EoM)O(α′) ∼ gij l
2
s

(
|ΩyR−|2 + |JyR−|2

)
∼ 1

L2
KK

[(LKK

LSB

)2

+
(LKK

LSB

)3

+
(LKK

LSB

)4]
. (4.2.52)

Note that from gij one gets an extra factor of l2sL
2
KK. We have separated an overall factor

of L−2
KK, which gives a leading factor of O(α′), while the terms in squared brackets provides

a further suppression because of (4.2.45). In order to make the correction (4.2.52) of order
α′2, for example, and therefore safely negligible at our O(α′) approximation, (4.2.52) should
scale at least like L−4

KK. Then, one would have to demand LSB = L2
KK, and thus β = 1/2.

On the other hand, one could further relax this condition, depending on the details of the
background. If for example in (4.2.51b) one finds |∂W1| . |W1|2, then it is enough to take

LSB = L
3/2
KK, i.e. β = 1/4.

We conclude that the curvature sector of the O(α′)-correction restricts possible so-
lutions such that only mild supersymmetry breaking is allowed. The mass scale of the
SUSY-breaking has to be well below the compactification scale and hence the breaking
of supersymmetry can be regarded as spontaneous from the four-dimensional perspective.
The more severe restriction that we encountered in this section arose from the order α′0

part of the potential. We will analyze possible solutions in section 4.4 and 4.5. But before
we come to this, we will present another view of DWSB coming from the perspective of
calibrations.
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4.3 NS5-branes, calibrations and bundle stability

As already discussed in the literature (see e.g. [158, 159]) the supersymmetry conditions
(4.1.9) admit a clear interpretation in terms of so-called p-form calibrations [191–193],
which are p-forms that measure the energy of extended BPS objects of the theory. Classes of
BPS objects are most conveniently separated in terms of their four-dimensional appearance,
as illustrated in figure 4.1, since a different calibration exists for each four-dimensional BPS
object. In particular, the two-form e−2ΦJ is a calibration for an NS5-brane that wraps
an internal two-cycle of M and fills the four-dimensional space-time X4. The four-form
e−2ΦJ∧J , on the other hand, is a calibration for NS5-branes wrapping an internal four-cycle
and filling two directions in X4 (showing up as 4d strings upon dimensional reduction).
Finally, for any constant phase eiϑ, e−2ΦIm(eiϑΩ) calibrates NS5-branes wrapped on three
internal and three external directions, thus appearing as a domain-wall in four dimensions.
More schematically, we have the following dictionary between calibrations and BPS objects
of the compactification.11

Calibration 10d BPS object 4d BPS object

e−2ΦJ NS5 on X4 × Π2 gauge theory

e−2ΦΩ NS5 on X3 × Π3 domain wall

e−2ΦJ ∧ J NS5 on X2 × Π4 string

Here, Πp is a p-dimensional submanifold of M , and Xd is a d-dimensional slice of X4.
More precisely, the statement is that all these p-forms can be defined as calibrations only
if the corresponding differential SUSY conditions (4.1.9) are satisfied. Now, recall that our
SUSY-breaking pattern is characterized by (4.2.1) and (4.2.2). Hence, we see that, even if
supersymmetry is broken, e−2ΦJ and e−2ΦJ ∧J can still be identified as calibrations, while
e−2ΦIm(eiϑΩ) cannot.

Figure 4.1: BPS objects of the theory, in terms of their four-dimensional appearance.

11Following the discussion below, gauge bundles could also be added to this dictionary on the same
footing as space-time filling NS5-branes.
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For this reason, we call this pattern ‘domain-wall supersymmetry breaking’ (DWSB)
as done in [197] for the analogous case in the context of type II flux compactifications,
which used the interpretation in terms of calibration provided by [194, 196, 223]. In order
to understand better the implications of this observation, let us recall the main properties
of a calibration.

In general, a calibration structure provides a natural BPS bound for certain branes
in the ten-dimensional theory. Let us, for instance, consider NS5-branes filling X4 and
wrapping an internal two-cycle Π2 ⊂ M . These branes couple magnetically to the three-
form flux H and thus modify the (internal) BI as

dH =
α′

4
(TrR+ ∧R+ − TrF ∧ F ) + 2κ2 τNS5 δ

4(Π2) , (4.3.1)

where τNS5 = (2π)−5(α′)−3 and δ4(Π2) is a four-form that localizes the NS5-brane in the
four-dimensional space orthogonal to its world volume. It is clear that H and Π2 cannot be
considered as independent and for this reason it is convenient to go to a dual description,
where the NS5-brane couples electrically to the seven-form flux Ĥ = dvolM ∧ (e−2Φ ∗H).12

We can then write Ĥ = volM ∧ H̃, where H̃ = e−2Φ ∗ H is a three-form of M . The
dualization procedure in absence of NS5-branes is reviewed in appendix A.2 and leads
to a dual formulation of the supergravity potential V introduced in section 4.2. The only
modification due to the addition of an NS5-brane is the addition of the NS5-brane potential
to V

VNS5 = τNS5

∫
Π2

(e−2Φ
√

det g|Π2 d2σ − B̃) , (4.3.2)

where B̃ is the two-form potential of H̃, H̃ = dB̃, and d2σ = dσ1 ∧ dσ2 is the volume
density induced by the world-volume coordinates (σ1, σ2) on Π2.

As stated above, such a brane has the corresponding calibration e−2ΦJ . This two-form
provides the following algebraic inequality

e−2Φ
√

det g|Π2 d2σ ≥ e−2ΦJ |Π2 , (4.3.3)

for any (appropriately oriented) Π2. When the above inequality is saturated at every point
of Π2, then one says that the cycle Π2 is calibrated:

Π2 calibrated ⇔ e−2Φ
√

det g|Π2 d2σ = e−2ΦJ |Π2 . (4.3.4)

Now, the differential condition (4.2.1b) can be rewritten as

d(e−2ΦJ) = H̃ , (4.3.5)

and allows to prove the following important statement: an NS5-brane wrapping a calibrated
two-cycle Π2 globally minimizes its potential energy (4.3.2) under continuous deformations.

12In order to simplify the notation, in the remainder of this section we will set eA = 1.
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More precisely, considering any other two-cycle Π′2 connected to Π2 by a three chain Γ,
∂Γ = Π′2 − Π2, one gets VNS5(Π′2) ≥ VNS5(Π2)

VNS5(Π′2) ≥ τNS5

∫
Π′2

(e−2ΦJ − B̃) = τNS5

∫
Π2

(e−2ΦJ − B̃) = VNS5(Π2) . (4.3.6)

In this inequality we have used (4.3.3) in the first step, the differential condition (4.3.5) in
the second one, and the definition of calibrated cycles (4.3.4) in the last step, respectively.
The same arguments equally apply for the calibration e−2ΦJ ∧ J .

Thus, we see that in DWSB compactifications we have a natural notion of BPSness
and stability for space-filling and string-like NS5-branes. These structures are typically
associated to supersymmetric settings, and one can see them as a distinguished property
of the SUSY-breaking pattern considered here, in analogy with the type II setting of [197].

In fact, the calibration structures provided by e−2ΦJ and e−2ΦJ ∧ J have also impli-
cations on the notion of gauge-bundle stability in the non-supersymmetric context. Since
to the gauge bundle an induced NS5-brane charge density proportional to Tr(F ∧ F ) is
associated (which is at the origin of the BI identity (4.3.1)), it is again convenient to work
in the dual formulation reviewed in appendix A.2. In this formulation, one can isolate the
following contributions of the gauge bundle to the total potential

Vbundle =
1

8κ2

∫
M

[
e−2Φ Tr(F ∧ ∗F ) + B̃ ∧ Tr(F ∧ F )

]
. (4.3.7)

Now, the bundle-analog of the inequality (4.3.3) for NS5-branes is

Tr(F ∧ ∗F ) ≥ − Tr(F ∧ F ) ∧ J , (4.3.8)

and the analog of the calibration condition (4.3.4) is the pseudo-HYM [222] condition13

Tr(F ∧ ∗F ) = − Tr(F ∧ F )∧ J ⇔
{
F 0,2 = 0 (F-flatness)
J ∧ J ∧ TrF = 0 (D-flatness)

. (4.3.9)

Now, as for NS5-branes, one can easily show that the pseudo-HYM gauge bundles are abso-
lute minima of Vbundle under continuous deformations, and again the differential condition
(4.3.5) is crucial for the result. Indeed, suppose that F is a pseudo-HYM field strength and
F ′ is any other field-strength which is cohomologous to F , so that there is a three-form α
such that Tr(F ′ ∧ F ′) = Tr(F ∧ F ) + dα. Then, we have Vbundle(F

′) ≥ Vbundle(F ), since

Vbundle(F
′) ≥ − 1

8κ2

∫
M

Tr(F ′ ∧ F ′) ∧ (e−2ΦJ − B̃)

= − 1

8κ2

∫
M

Tr(F ∧ F ) ∧ (e−2ΦJ − B̃) = Vbundle(F ) , (4.3.10)

where we have used (4.3.8) in the first step, the differential condition (4.3.5) in the second
one, and the pseudo-HYM condition (4.3.9) in the last one. As written in (4.3.9) the

13The prefix ‘pseudo’ comes from the non-integrability of the almost-complex structure of M .
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pseudo-HYM condition can be split into two parts. The first, F 0,2 = 0, demands the
bundle to be pseudo-holomorphic [222] and can be seen as an F-flatness condition, while
the second one can be seen as a D-flatness condition [224].

Now, suppose that we can solve the F-flatness condition F 0,2 = 0. Then, clearly the
D-flatness in (4.3.9) admits a solution only if

∫
M

e−2ΦJ ∧ J ∧ TrF = 0 . (4.3.11)

This necessary condition is quasi-topological since it depends only on the first Chern class
of the bundle, but changes under the deformations of e−2ΦJ ∧ J . A natural question is
then if one can extend this necessary condition in order to get a quasi-topological necessary
and sufficient condition. In other words, one can ask whether a notion of quasi-topological
stability exist for pseudo-holomorphic bundles in our backgrounds, which are only almost-
complex spaces, but nevertheless admit the calibration structures described above.

In the complex (supersymmetric) case, the existence of a solution of the D-flatness
equation for a holomorphic gauge bundle is equivalent to the so-called µ-stability of the
bundle by the theorems of Donaldson-Uhlenbeck-Yau [225,226], which are valid for Kähler
spaces, and their generalizations to non-Kähler hermitian spaces [227]. In particular, in
the non-Kähler case of interest for supersymmetric heterotic flux compactifications, the
µ-stability of a bundle E is defined in terms of the µ-slope of E

µ(E) =
1

rankE

∫
M

e−2ΦJ ∧ J ∧ TrF . (4.3.12)

Then, a bundle E is µ-stable if µ(E ′) < µ(E), for all coherent subsheaves E ′ of E.14 In
the heterotic case one has furthermore to impose µ(E) = 0 and this leads to considering
the semi-stability condition µ(E ′) ≤ 0.

A key ingredient for obtaining all the above results is the closure of the four-form
e−2ΦJ ∧ J , i.e. the fact that the internal non-Kähler space is balanced. Interestingly, this
property is also preserved in our non-supersymmetric almost-complex backgrounds and this
suggests a possible extension of the above notion of stability to our non-supersymmetric
setting. This extension would then ultimately originate from the existence of the calibration
structures characterizing our backgrounds (see e.g. [229] for a recent study of the properties
of calibrated geometries). However, a proper analysis of this possibility is beyond the scope
of this thesis.

We therefore end here our discussion about calibrations, and turn back to the problem
of finding solutions to the conditions (4.2.24) and (4.2.26) that need to be satisfied in order
to solve the EoM’s of our SUSY-breaking theory.

14For an introduction to algebraic geometry in general and sheaves in particular see [228].
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4.4 1
2 Domain-Wall supersymmetry breaking

In this section we solve the constraint (4.2.26) by identifying, via the above dictionary
relating supersymmetry conditions and calibrations, a subclass of the SUSY-breaking con-
figurations discussed in section 4.2 with particularly interesting properties

This subclass presents a rather constrained internal geometry and SUSY-breaking
pattern with respect to the general DWSB case. More precisely, via an effective four-
dimensional interpretation we will show that these compactifications are particular real-
izations of four-dimensional no-scale vacua with broken supersymmetry. This result can be
understood by translating the definition of our subclass to the type II context. Then one
finds that the N = 0 vacua described in [133] fall into this subclass.15 We would therefore
expect that, upon the usual chain of dualities, any of the N = 0 vacua of [133] are mapped
within the class of heterotic backgrounds described in this section.

4.4.1 1
2 DWSB vacua

Let us first define our subclass of backgrounds by demanding that they satisfy in addition
to equations (4.2.1) the condition

Im
[
eiϑd

(
e−2ΦΩ

)]
= 0 , (4.4.1)

for some phase eiϑ. This condition is clearly weaker than (4.1.9a), and thus trivially satisfied
for a supersymmetric background. In the case where the phase eiϑ = eiϑ0 is constant, one
can think of equation (4.4.1) as half-imposing the supersymmetry equation (4.1.9a), in the
sense that Ω does not satisfy (4.1.9a) but Im(eiϑ0Ω) does. In order to separate the subclass
for which (4.4.1) holds from our general ansatz we will call it 1

2
DWSB backgrounds. Finally,

note that in terms of the differential conditions satisfied by our background, imposing
equations (4.1.9b), (4.1.9c) and (4.4.1) seems as close as we may get to a supersymmetric
background, since by additionally imposing (4.4.1) with the choice of ϑ′ 6= ϑmod π the
whole set of SUSY conditions (4.1.9) follows.

By decomposing (4.4.1) in terms of J and Ω it is easy to convince oneself that it is
equivalent to require the condition (4.2.3), as well as Im(eiϑW1) = 0 and Im(W2/W1) = 0.
From the latter condition one obtains that the matrix U defined in (4.2.25) is real. This
in turn implies that U † = −U , and so the constraint (4.2.26) reads

U2 = −1 , ⇔ (JU)2 = 1 , (4.4.2)

where we have also used that [U, J ] = 0. It is then natural to introduce the matrices

PN =
1

2
(1 + IU) , P⊥N =

1

2
(1 − IU) , (4.4.3)

15The same applies to the so-called one-parameter DWSB vacua constructed in [197].
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satisfying the following properties

P †N = PN , P 2
N = PN , [PN , I] = 0 , (4.4.4)

and similarly for P⊥N . These properties imply that PN and P⊥N are projection operators
that split the tangent bundle into two orthogonal sub-bundles

TM = TN ⊕ T⊥N , (4.4.5)

which preserve the almost complex structure in the sense that J ·TN ⊂ TN and J ·T⊥N ⊂ T⊥N ,
and so we can write J = JTN + JT⊥N , with JTN and JT⊥N almost-complex structures on TN
and T⊥N respectively. On the other hand, (4.2.27) implies that

TrPN = 2 , (4.4.6)

and so TN is a two-dimensional vector space. Finally, by using (4.2.25) one can see that

W2 = 2W1 J (P⊥N − 2PN) , (4.4.7)

which together with (4.2.8) gives

e2Φd(e−2ΦΩ) = 3W1(JP⊥N ) ∧ (JP⊥N ) . (4.4.8)

By Frobenius’ theorem16, the subbundle TN can be integrated into a two-dimensional
submanifold. We are thus led to consider a fibered space of the form

N ↪→ M
π−→ B , (4.4.9)

with a two-dimensional fiber N and a four-dimensional base B. Note that JPN defines a
preferred (integrable) complex structure j on N at each point of B. This fibration structure
induces a dual decomposition of the cotangent bundle TM∗ = T ∗B ⊕ T ∗⊥B , with T ∗B = (T⊥N )∗

and T ∗⊥B = (TN)∗, and so we can decompose the SU(3) structure accordingly as

J = JB + j , Ω = ΩB ∧Θ . (4.4.10)

Here, we defined j = JPN = − i
2
Θ∧Θ, JB = JP⊥N , etc. Using this notation, we can rewrite

(4.4.8) as
e2Φd(e−2ΦΩ) = 3W1 JB ∧ JB . (4.4.11)

An important implication of (4.4.11) is that the fibration (4.4.9) is equipped with a
transverse complex structure, i.e. an integrable complex structure along the base. To
see this, let us introduce some (non-canonical) local coordinates17 xa, ym, where the xa

are along the fiber N and the ym are along the base B, in the sense that the fibers are

16Frobenius theorem states that for an integrable subbundle of the tangentbundle TM there exists a
foliation of M that is regular, i.e. the tangent bundles of the leaf equals the subbundle (see e.g. [230]).

17Here, the indices a and m are of course two- and four-dimensional, respectively.
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described by ym = const. We can then write ΩB = 1
2
(ΩB)mndym ∧ dyn and, by using the

coordinate co-frame dxa and dym for TM∗, we can (non-canonically) split Θ = ΘB + ΘN

(with ΘN 6= 0) and d = dB + dN , with obvious notation. Now, taking components of dΩ
with one or two indices along the fiber, it is implied by (4.4.11) that

dBΩB∧ΘN + ΩB∧dBΘN + ΩB∧dNΘB = 0 , dNΩB∧ΘN + ΩB∧dNΘN = 0 . (4.4.12)

The first condition in (4.4.12) is telling us that (dBΩB − αB ∧ ΩB)|xa=consta = 0, for some
one-form αB = (αB)mdym, and this in turn means that ΩB defines an integrable complex
structure on the four-dimensional slice xa = const. The second equation implies that
∂aΩB ∝ ΩB and thus that this complex structure is conserved while moving along the fiber
coordinates xa. Note, that even if the choice of coordinates xa, ym is not canonical, as one
may go to a different coordinate system

xa → x̃a(x, y) , ym → ỹm(y) , (4.4.13)

the above conclusions are clearly covariant under such a change of coordinates and hold
therefore in general. This means that ΩB defines an integrable complex structure on the
base or, in other words, that one can introduce complex coordinates (z1, z2) on the base
such that ΩB = 1

2
(ΩB)ijdz

i ∧ dzj and ∂a(ΩB)ij ∝ (ΩB)ij.
On the other hand, since N is two-dimensional the almost complex structure j of the

fiber is always integrable. Our background is hence characterized by two integrable complex
structures on the base and on the fiber, respectively, which however do not combine into
an integrable complex structure on the whole space. This is only possible for a non-trivial
fibration. Explicit examples of such fibrations will be discussed in section 4.5.

To summarize, for 1
2
DWSB backgrounds the compactification manifold M can be de-

scribed by a fibration of a two-dimensional fiber N over a four-dimensional base B, both
N and B being complex manifolds. Moreover, the torsion classes of M are given by (4.2.7)
and

W2 = 2W1 (J − 3 j) , with W1 = f e−iϑ . (4.4.14)

Here, f is a real function and j a real (1,1)-form such that j · J = j · j = 1 (in fact,
j = JPN and J − j = JB). The remaining torsion class W3 is constrained via the presence
of the flux H and equation (4.2.1b).

Note that in order to obtain vacua one also needs to impose the condition (4.2.24) on
the two-form S, which can be rewritten as

S = 6W1JB . (4.4.15)

The form S appears also in the internal gravitino variation (4.2.21b) and so the violation
of the gravitino and dilatino Killing spinor equations takes the form

δΨµ = 0 , (4.4.16a)

δΨm = −3i

2
W1 (JB)mn ζ ⊗ γnη∗+ + c.c. , (4.4.16b)

δλ =
3

2
W1 ⊗ η∗+ + c.c. . (4.4.16c)
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As we have discussed in section 4.2.2, W1 is directly related to the gravitino mass. JB is in
turn related to the source of SUSY-breaking, and more precisely to the chiral fields that
develop non-vanishing F-terms, as the four-dimensional analysis of the next subsection
shows.

4.4.2 Four-dimensional interpretation

In the following we would like to show that 1
2
DWSB vacua can be interpreted as the ten-

dimensional realization of a no-scale supersymmetry breaking in four dimensions [231,232].
In order to see this, we need an effective four-dimensional supergravity describing these
kinds of flux compactifications. Unfortunately, such a theory is not available. However, the
problem of identifying the four-dimensional theory governing quite general heterotic flux
compactifications has been investigated in several papers (see e.g. [233,234] and references
therein) which, under suitable simplifying assumptions, arrived at precise expressions for
the effective four-dimensional theory. One of these assumption is that all the scalar quan-
tities in the internal spaces are assumed to be constant. Therefore, in the following we
will implicitly approximate W1 and the dilaton to be constant, which by (4.2.7) implies
that W4 = W5 = 0. Note also that W1 constant implies that ϑ = ϑ0 is constant, and so
without loss of generality we can set it to zero. Then, our compactification manifold M
satisfies ImW1 = ImW2 = W4 = W5 = 0, and thus reduce to compactifications on half-flat
manifolds, like those studied in [233,235–238].

In terms of the SU(3) structure described by J and Ω, the Kähler potential reads18

K = − log(s+ s) − log
( 1

3! l6s

∫
M

J ∧ J ∧ J
)
− log

(
− i

8 l6s

∫
M

Ω ∧ Ω
)
, (4.4.17)

where ls = 2π
√
α′ and the real part of s is given by

Re s =
1

2πl6s

∫
dvolM e−2Φ =

Vol(M)

2πl6sg
2
s

. (4.4.18)

On the other hand, the superpotential [136, 137] has the standard Gukov-Vafa-Witten
[141] form19

W =
iM3

P

8π l5s

∫
M

Ω ∧ (H − idJ) =
iM3

P

8π l5s

∫
M

Ω ∧G . (4.4.19)

We can use these expressions to compute the gravitino mass from the standard four-
dimensional supergravity formula

m3/2 =
1

M2
P

eK/2W . (4.4.20)

18Here, for simplicity, we do not consider the gauge bundle contribution to the Kähler potential.
19The overall factor in (4.4.19) has been fixed by reproducing (4.4.17) and (4.4.19) following the approach

of [239], which combines the domain-wall arguments, analogous to the ones originally used in [141], and
the use of superconformal supergravity in four dimensions.
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Computing W and K by using Ω and J restricted by the conditions provided in sec-
tion 4.2.1,20 and approximating the dilaton and W1 as constants, one finds indeed agree-
ment with (4.2.34).

In order to show the no-scale structure [231, 232] of 1
2
DWSB vacua we follow closely

[240], where a similar analysis was done for type II theories. We expand J = JB + j as

JB = l2s (Re ta) ρa , j = l2s (Reu) j(0) , (4.4.21)

where ρa is some basis of self-dual two-forms on the base B and j(0) represents a fixed
reference two-form orthogonal to the base. ta and u may be considered as pseudo-Kähler
moduli of the base and the fiber respectively, complexified into chiral four-dimensional
fields by the coefficients appearing in the expansion of the internal two-form B in the same
basis. Analogously, the chiral field s appearing in (4.4.17) must be considered as the chiral
field obtained by complexifying Re s by the axion dual to the external Bµν . By assuming
off-shell the condition dΩ ∧ JB = 0, which follows from (4.4.11), it is easy to be convinced
that the superpotential (4.4.19) depends only on the fiber pseudo-Kähler modulus u and
pseudo-complex structure moduli zi encoded in Ω:

∂W
∂s

= 0 ,
∂W
∂ta

= 0 . (4.4.22)

On the other hand, the Kähler potential can be expanded

K = − log(Re s)− log[hab (Re ta) (Re tb)]− log(Reu)− log
(
− i

8 l6s

∫
M

Ω ∧ Ω
)
, (4.4.23)

where

hab =
1

2

∫
M

ρa ∧ ρb ∧ j(0) . (4.4.24)

Introducing common indices α, β, . . . for (s, ta), one finds

Kαβ̄ ∂αK ∂β̄K = 3 , (4.4.25)

where Kαβ is the inverse of the matrix ∂α∂β̄K. The conditions (4.4.22) and (4.4.25) are
typical of no-scale models and indeed are sufficient to give a semi-positive definite potential

V4D-SUGRA = eKKIJDIWDJW + (D-term)2 ≥ 0 , (4.4.26)

where DIW = ∂IW + (∂IK)W , KIJ is the inverse of ∂I∂JK, and I, J, . . . are indices
collectively denoting the chiral fields (u, zi).

20Notice that, in fact, the (3, 0)-form Ω appearing in (4.4.17) and (4.4.19) has no fixed normalization
and only matches the Ω used in the rest of the paper (normalized as Ω ∧ Ω = i8dvolM ) up to a overall
constant. Such a change of normalization corresponds to a Kähler transformation in the four-dimensional
theory and thus does not affect physical quantities like |m3/2|, as it is clear from (4.4.17), (4.4.19), and
(4.4.20).
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In order to extremize the potential, one needs to impose

DuW = 0 , DiW = 0 , (D-term) = 0 . (4.4.27)

Explicitly, we have the expressions

DuW ∝ 1

u+ u

∫
M

Ω ∧G , (4.4.28a)

DiW ∝
∫
M

ξi ∧G , (4.4.28b)

where

ξi = ∂iΩ − Ω

∫
M
∂iΩ ∧ Ω∫

M
Ω ∧ Ω

(4.4.29)

should be the basis of (2, 1)-forms relevant for the four-dimensional description. Then,
assuming that the truncated theory makes sense, imposing (4.4.27) is equivalent to the
conditions (4.2.10), which were obtained from our previous ten-dimensional analysis. We
can then interpret (4.2.10) as the above four-dimensional F-flatness conditions. In addition
the F-terms that do not enter the scalar potential, DsW and DaW , are non-vanishing
whenever G0,3 6= 0 (or equivalently W1 6= 0), again in agreement with the ten-dimensional
analysis. The only remaining ten-dimensional condition is (4.2.1a), which becomes J ∧
dJ = 0 in the constant dilaton approximation, and which can be interpreted as the four-
dimensional D-flatness condition.

Finally, let us also briefly consider the gauge bundle sector. By a simple dimensional
reduction of the ten-dimensional action (2.2.1), it is easy to see that the kinetic term for
the four-dimensional gauge field is given by

−1

4
Res TrF µνFµν (4.4.30)

Therefore, the holomorphic gauge coupling is given by f(s) = s, and from the standard
formula for the gaugino mass we get

m4D
1/2 = − 1

M2
P

eK/2KssDsW ∂s log(Re f) =
1

M2
P

eK/2W = m3/2 . (4.4.31)

This agrees with (4.2.38), which was obtained directly by dimensionally reducing the
fermionic ten-dimensional action, and shows that our 1

2
DWSB ansatz is consistent with

the more general picture developed in section 4.2.
After having found the four-dimensional interpretation of the 1

2
DWSB ansatz, it is still

necessary to find explicit solutions. This will be the topic of the next section.

4.5 Examples via homogeneous fibrations

In order to illustrate the general features of 1
2
DWSB vacua, we will discuss a concrete

setting in this section in which explicit examples can be constructed. Recall that the



70 4. Heterotic Domain Wall Supersymmetry Breaking

1
2
DWSB ansatz implies that the compactification manifold M is based on a fibration of

the form

N ↪→ M
π−→ B , (4.5.1)

with a two-dimensional fiber N and a four-dimensional base B. We will at first simplify
the geometry by assuming that all geometric quantities are only base-dependent. In other
words, we assume that Φ, W1, and the forms ΩB and JB in (4.4.10) can be seen as functions
and forms on the base B.21 This implies that dΦ, dW1, dΩB, and dJB are also solely forms
on the base B.

This simplifying assumption has several consequences. For instance, by (4.4.11) one
can see that the pull-back of dΘ to any fiber N vanishes, dΘ|N = 0. This means that the
pulled-back hermitian metric g|N on N is flat, and so we are led to take a two-torus as a
fiber

N ' T 2 , (4.5.2)

i.e. M is elliptically fibered. Starting with [143], such elliptically fibered manifolds have
played a key role in the literature of torsional heterotic backgrounds, and in particular in
constructions motivated by duality arguments – see e.g. [189,190,241,242]. Here, we see the
elliptic fibration arising from imposing a rather simple pattern of torsional supersymmetry
breaking. In the following we will analyze which further constraints this pattern imposes
on M .

4.5.1 Constraints on the elliptic fibration

Since our fiber is a two-torus, the one-form Θ, introduced in (4.4.10), takes the form

Θ =
ls LT 2√

Im τ
eC θ , θ = η1 − τ η2 , (4.5.3)

where ls = 2π
√
α′ and ηa (a = 1, 2) are one-forms which can be written locally as

ηa = dxa + Aa(y) , (4.5.4)

with xa ' xa + 1 dimensionless coordinates along the T 2-fiber and Aa(y) one-forms along
B, that only depend on the base coordinates yα, α = 1, . . . , 4. τ is the complex structure of
the T 2 fiber, LT 2 is the dimensionless T 2 length scale in string units, and 〈eC〉 . 1 encodes
the non-trivial dependence of the fiber volume on the base coordinates, which is given by
Vol(T 2) = e2C l2s L

2
T 2 .

The one-forms Aa(y) can be seen locally as U(1) gauge fields on B, while globally they
can be further twisted by SL(2,Z) transformations, the large diffeomorphism group of T 2 if
the T 2-fibration degenerates at some points. The same applies to the associated U(1) field
strengths ωa = dAa, which must obey an SL(2,Z)-twisted quantization condition and so

21Stated more precisely, we assume that Φ, W1, ΩB, JB and F can be obtained as the pull-back of
corresponding functions and forms by the fibration map π : M → B.
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define SL(2,Z)-twisted cohomology classes in B. Note however that ωa are cohomologically
trivial in the ambient manifold M , since dηa = ωa.

Let us next determine how the background quantities J and Ω, decomposed as in
(4.4.10), are constrained by our 1

2
DWSB ansatz.22 Using the fact that the right hand side

of (4.4.11) has only legs along the base, one arrives at the conditions

d
( eC−2Φ

√
Im τ

ΩB

)
= 0 , (4.5.5a)

∂τ = 0 , (4.5.5b)

while equation (4.2.1a) yields

d(e2C−2ΦJB) = 0 , (4.5.5c)

JB ∧ χ = 0 . (4.5.5d)

Here, we have introduced the complex two-form

χ = ω1 − τω2 = dθ + dτ ∧ η2 . (4.5.6)

From (4.5.5a) and (4.5.5c) we see that B not only admits an integrable complex structure,
but also a Kähler structure, with holomorphic (2,0)-form and Kähler form given by

Ω̂B =
e2D−C
√

Im τ
ΩB , ĴB = e2DJB , (4.5.7)

and where
eD = gs e

C−Φ , (4.5.8)

with gs defined in (2.4.35). It is then natural to express the internal metric in terms of this
four-dimensional Kähler metric dŝ2

B

ds2
M = e−2Ddŝ2

B + l2s L
2
T 2

e2C

Im τ
θ ⊗ θ . (4.5.9)

However, the metric dŝ2
B is Calabi-Yau only if e2C Im τ is constant, as

ĴB ∧ ĴB =
1

2
e2C Im τ Ω̂B ∧ Ω̂B . (4.5.10)

Imposing the condition (4.2.1b) leads to the following expression for the three-form H

H = ∗̂Bd e−2D − l2s L
2
T 2

[
(dce2C) ∧ η1 ∧ η2 +

e2C

Im τ
Re
(
∗̂Bχ ∧ θ)

]
, (4.5.11)

22To make our conventions compatible with those usually adopted in the literature, we take the choices

JB = −e1 ∧ e2 − e3 ∧ e4 , j = e5 ∧ e6 , ΩB = (e1 + ie2) ∧ (e3 + ie4) , Θ = e5 − ie6 ,

where e1, . . . , e6 is an oriented orthonormal coframe on M . Indeed, note that with these choices JB and
ΩB are self-dual under Hodge duality on the base: ∗BJB = JB, ∗BΩB = ΩB.
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where dc = i(∂−∂) and ∗̂B is the Hodge star belonging to the Kähler metric dŝ2
B. This three-

form flux should satisfy the BI (4.3.1) and appropriate quantization conditions, respectively,
in order to give consistent vacua. We will discuss these issues below.

Note that the above constraints would also apply to any supersymmetric background
based on an homogeneous elliptic fibration, due to the fact that we considered only the parts
of (4.4.11) that have components along the fiber. Indeed, the fact that our background
breaks supersymmetry is purely encoded in the condition

d(e−2ΦΩ) = g−2
s ls LT 2 Ω̂B ∧ χ 6= 0 , (4.5.12)

which arises from the purely base dependent part of (4.4.11). In order to break supersym-
metry in this way, one must require that χ has non-vanishing (0,2) and (2,0) components.23

Of course, by relaxing the 1
2
DWSB ansatz further ways of breaking supersymmetry arise.

For instance, we see from (4.5.5d) that χ must be primitive and from section 4.4.2 that a
non-primitive χ can be interpreted as a non-vanishing D-term.

Recall now that for this class of N = 0 vacua one needs to impose the residual condition
(4.2.24) coming from the equation of motions. For our elliptic fibration, this is equivalent
to require that ∂(e−2DW1) = 0, which is solved by

W1 = cSB e
2D , (4.5.13)

where cSB is a constant, which parametrizes the amount of SUSY-breaking and is therefore
proportional to the gravitino mass.

Gravitino mass

The parameter cSB should directly enter physical quantities, which measure the amount of
SUSY-breaking of a compactification, as it is the case for the gravitino mass. Following
our discussion of section 4.2.2 we will first consider the gravitino mass density m3/2. By
comparing (4.5.13) and (4.2.32) it reads

m3/2 = 3 eA cSB e
2D . (4.5.14)

Since eA is constant, we see that the SUSY-breaking is milder in the points of B with
strong conformal factor e−2D � 1. A rough estimate of the gravitino mass is obtained
by the approximation eC ' 1 and eD, τ constant. Then, by using (4.4.11), (4.5.12), and
(4.5.13) we find

cSB '
2ls LT 2

3 Im τ
×
∫
B Ω̂B ∧ χ∫
B Ω̂B ∧ Ω̂B

. (4.5.15)

Taking into account (2.4.34), (4.2.33), and (4.5.14), one finally gets

m3/2 '
gs MP e

4D ‖χ0,2‖
2L4
B
√
π Im τ

, (4.5.16)

23Having χ0,2 6= 0, but χ2,0 = 0 is not sufficient, since we can change the orientation of T 2, basically
swapping χ and χ, and thus getting an N = 1 supersymmetry. Having χ0,2 = χ2,0 = 0 means that both
orientations on T 2 lead to preserved supersymmetry, and thus we have an N = 2 compactification.
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where

L4
B = l−4

s V̂ol(B) , (4.5.17)

and where we have introduced the quantity

‖χ0,2‖ =

∫
B Ω̂B ∧ χ√(∫
B Ω̂B ∧ Ω̂B

) , (4.5.18)

which measures the alignment of χ with Ω̂B. While a generalization of the above expression
for non-trivial eΦ, eC , eD, and τ is straightforward, (4.5.16) already captures most of the
qualitative behavior of m3/2, and is hence sufficient for the purposes of our discussion.

From (4.5.16) we see that one can suppress the SUSY-breaking scale by combining the
following (possibly non-independent) conditions: gs � 1, ‖χ0,2‖ � 1, L4

B � 1, eD � 1
and Im τ � 1. Recall that we are implicitly assuming that χ2,0 6= 0, which already selects
an N = 1 supersymmetry in four-dimensions, eventually broken by the non-vanishing χ0,2.
The expression (4.5.16) then refers to the gravitino which is selected by the flux χ2,0.

Bianchi identity and tadpole conditions

We would like to impose the Bianchi Identity (4.3.1) now. From (4.5.11) we obtain

dH = d∗̂B d e−2D + l2s L
2
T 2

{
(dcd e2C) ∧ η1 ∧ η2 − e2C

Im τ
∗̂B χ ∧ χ (4.5.19)

−Re
[
d
( e2C

Im τ
∗̂Bχ

)
∧ θ − e2C

Im τ
∗̂Bχ ∧ (∂τ) ∧ η2

]
+

dce2C ∧ Im(χ ∧ θ)
Im τ

}
=

α′

4
(TrR+ ∧R+ − TrF ∧ F ) + 2κ2 τNS5 δ

4(Π2) .

Note that dH has components that are totally restricted to the base as well as contributions
with one or even two legs along the fiber. This means that the sources appearing in the
last line of (4.5.19) also need such contributions. For example, in order to cancel the
contribution of (dcd e2C)∧ η1∧ η2 one needs sources along the T 2-fiber. Such sources could
be gauge bundles with Tr(F ∧F ) dual to a two-cycle in B, or NS5-branes that do not wrap
the T 2-fiber. For instance, an NS5-brane wrapping besides the four-dimensional spacetime
a holomorphic curve Π2 ⊂ B would contribute a factor of δ2

B(Π2)∧η1∧η2 to the right hand
side of (4.3.1), leading to dcd e2C = δ2

B(Π2). On the other hand, configurations in which
sources are located along one cycle of T 2 and along a one-dimensional cycle of B could
cancel the middle line of (4.5.19).

Since all this would be generically difficult to treat, we make the simplifying assumption
that only sources completely located on the base should contribute to the Bianchi identity.
This means that we will only consider NS5-branes that wrap the T 2-fiber and are sitting at
points pi of the base. We furthermore assume that the T 2 fibration has constant volume,
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so that eC is constant along B. In particular we set

eC = 1 , d

(
∗̂BReχ

Im τ

)
= 0 , d

(
∗̂BRe(τ χ)

Im τ

)
= 0 . (4.5.20)

We can further motivate these restrictions by considering the TrR+∧R+-term in (4.5.19).
Following [242] and expanding the curvature tensor R+ in powers of the base length scale
LB and the fiber length scale LT 2 we obtain

TrR+ ∧R+ = TrRB+ ∧RB+ +O
(
L2
T 2

L2
B

)
. (4.5.21)

Here RB+ is the torsionful curvature of the base B computed using the four-dimensional
metric e−2Ddŝ2

B. This means that TrR+ ∧ R+ is a four-form on B as long as the ratio of
fiber size to base size is small.24

But by (4.5.16) we can suppress the SUSY-breaking scale by considering an anisotropic
fibration, with the base much larger then the fiber

LB � LT 2 . (4.5.22)

Moreover, by the discussion of section 4.2.3, an anisotropic fibration should simplify the
conditions on the curvature (4.2.29) as discussed below. We see therefore that the as-
sumption that (4.5.19) should only live on the base is justified if one wants to have a mild
SUSY-breaking.

Then, one should also consider the gauge bundle F on M to be the pull-back of a
gauge bundle FB on B. The pseudo-HYM equation (4.2.28) reduces to a anti-self duality
condition on the base

∗BFB = −FB , (4.5.23)

which is equivalent to the statement that FB is (1, 1) and primitive.

Taking all this into account one can derive the following equation from (4.5.19)

d∗̂(0)d e−2D =
1

16π2 L2
B

[
Tr(R̂B ∧ R̂B) − Tr(FB ∧ FB)

]
+

1

L2
B

∑
i

δ4
B(pi)

+
1

16π2 L2
B

d ∆ +
L2
T 2

L2
BIm τ

∗̂(0)χ ∧ χ + O
(
L2
T 2

L4
B

)
, (4.5.24)

where

∆ = 2∗̂(0)d ∇̂2
(0)D + ∗̂(0)

[
2(∇̂2

(0)e
−2D)d e2D + d

(
e2D∇̂2

(0)e
−2D
)]
. (4.5.25)

24Note that R+ is invariant under an overall rescaling of the six-dimensional metric and is constructed
from the torsionful connection Γi+jk = Γijk + 1

2H
i
jp, which depends quadratically on LB and LT 2 . Hence,

it only depends on even powers of LB/LT 2 .
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In order to arrive at this equation one has to take two steps. One first has to reexpress R+

in terms of the the Levi-Civita curvature on the base RB

TrRB+ ∧RB+ = Tr R̂B ∧ R̂B + 2 d ∗̂Bd∇̂2D + d ∗̂B
[
2(∇̂2e−2D)d e2D + d

(
e2A∇̂2e−2D

)]
.

(4.5.26)
Then, one introduces a dimensionless and O(α′0) metric dŝ2

(0) by

dŝ2
B = l2s L

2
B d ŝ2

(0) , (4.5.27)

in order to make the dependence on LB clear. One should also note that all ‘hatted’
quantities are computed using the Kähler metric dŝ2

B.
The reformulated Bianchi identity (4.5.24) will clearly only then admit a solution (up

to higher order corrections in 1/LB) if its integrated counterpart

NNS5 + QNS5(E) + L2
T 2

∫
∗̂Bχ ∧ χ

Im τ
= QNS5(B) (4.5.28)

is also satisfied. Here, NNS5 is the number of NS5-branes and we introduced the total
NS5-brane charge sourced by the gauge bundle and the curvature of the base

QNS5(E) = − 1

16π2

∫
Tr(FB ∧ FB) , QNS5(B) = − 1

16π2

∫
Tr(R̂B ∧ R̂B) . (4.5.29)

The absence of anti-NS5-branes implies that NNS5 is always positive, and from (4.5.23)
the same applies to QNS5(E). The left hand side of (4.5.28) is then always positive, and
this implies an upper bound for the number of NS5-branes and non-trivial gauge bundle
that can be introduced for a fixed manifold B.

Once the condition (4.5.28) is satisfied, one can integrate (4.5.24) perturbatively. More
precisely, along the lines of the N = 2 case discussed in [190], one can rewrite (4.5.24) in
terms of a shifted conformal factor

e−2D′ = e−2D − 1

8π2 L2
B
∇̂2

(0)D . (4.5.30)

In this way (4.5.24) takes the form of a standard Poisson equation

− ∇̂2
(0)e
−2D′ ∗̂(0) 1 =

1

16π2 L2
B

[
Tr(R̂B ∧ R̂B)− Tr(FB ∧ FB)

]
+

1

L2
B

∑
i

δ4
B(pi)

+
L2
T 2

L2
B Im τ

∗̂(0)χ ∧ χ+O
(
L2
T 2

L4
B

)
, (4.5.31)

where on the right hand side of (4.5.31) we have omitted terms like

1

16π2 L2
B

d ∗̂(0)
[
2 (∇̂2

(0)e
−2D′)d e2D′ + d

(
e2D′∇̂2

(0)e
−2D′

)]
. (4.5.32)
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If (4.5.28) is fulfilled, (4.5.31) can always be integrated. As one can see by inserting (4.5.31)
the possible corrections provided by (4.5.32) are then of order O(L2

T 2/L4
B), and one can

therefore consistently neglect them.25 This means that also in the N = 0 case there is a
mechanism to stabilize the dilaton, like the one discussed in [190] for N = 2 vacua.

The K3 case and H-flux quantization

We will now even further restrict our setting by demanding that also τ is constant. Recall
that (4.5.10) implies that in this case the base should be a Calabi-Yau two-fold: B = K3.
Furthermore, since τ does not degenerate, the one-forms Aa(y) can be seen as proper U(1)
gauge fields along K3 and then the corresponding field-strengths ωa = dAa are quantized
as ∫

Π2⊂K3

ωa ∈ Z , (4.5.33)

and so the forms ωa define non-trivial elements of the integral cohomology groupH2(K3,Z).
In fact, from (4.5.20) we have that d(∗̂K3χ) = 0, and so χ must be harmonic. Finally, in
order to evaluate (4.5.28) one has to use QNS5(K3) = −1

2
p1(K3) = 24.26

We are thus led to the setting of non-degenerate T 2 fibrations over K3

T 2 ↪→ M → K3 , (4.5.34)

which is often considered in the construction of heterotic torsional backgrounds [143, 189,
190,241,242]. Note in particular that for this case the SUSY-breaking conditions discussed
below (4.5.12) reduce to those identified in [190] by direct inspection of the Killing spinor
equations and of the O(α′0) equations of motion.

The K3 example allows us to discuss the quantization of the H-flux in a rather simple
way. In general this is a complicated problem, partly because of the non-closure of H due
to the contributions on the right hand side of (4.3.1). However, in the simplified setting of
an elliptically fibered K3, the H-field (4.5.11) reduces to

H = ∗̂K3d e−2D −
l2s L

2
T 2

Im τ
Re
(
∗̂K3χ ∧ θ) . (4.5.35)

The flux H can then be written as H = π∗(HK3) + π∗(ha) ∧ ηa. HK3 and ha define
forms on K3 that can be pulled-back to M via π∗, the operator induced by the projector
π : M → K3. In particular we have that

h1 = −
l2s L

2
T 2

Im τ
Re
(
∗̂K3χ) and h2 =

l2s L
2
T 2

Im τ
Re
(
τ ∗̂K3χ) (4.5.36)

25 Here we are implicitly ignoring the fact that, in the vicinity of NS5-branes, d∗̂(0)d e−2D diverges and
the tree-level supergravity approximation breaks down. However, the SUSY-breaking effects are at the LB
scale and very close to the NS5-brane supersymmetry is restored. Thus, we expect that NS5-brane sources
can be consistently incorporated.

26 Note that in our conventions p1(B) = 1
8π2

∫
Tr(R̂B ∧ R̂B), which apparently differs by an overall sign

from the standard definition of Pontjagin classes, since we use a positive-definite trace Tr = −Trstandard.
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are also harmonic forms. The proper quantization condition is to impose that both two-
forms l−2

s ha must be harmonic representatives of integral cohomology classes inH2(K3;Z).27

More precisely, we get the following condition on χ

L2
T 2

Im τ

∫
Π2

Re
(
∗̂K3χ) ∈ Z ,

L2
T 2

Im τ

∫
Π2

Re
(
τ ∗̂K3χ) ∈ Z , (4.5.37)

for any two-cycle Π2 ⊂ K3.

Curvature corrections

Let us finally consider the R+-dependent terms in the scalar potential (4.1.6b) for this
simplified case, in order to illustrate our general discussion of section 4.2.3. First of all, by
using (4.5.15) and taking into account that Ω̂K3 scales as L2

K3/
√

Im τ , we see that cSB scales
as LT 2/L2

K3 (assuming an approximately square T 2-fiber). Furthermore, since the fiber is
flat, the leading contribution to the curvature has its origin in K3. The dimensionless length
scale LKK introduced in section 4.2.3 can then be identified with e−DLK3. By comparing
the two estimates for the torsion class W1, (4.2.43) and (4.5.13), we see that LSB ' L2

KK.
Hence, we find β = 1/2 in (4.2.48).

The explicit calculation shows that the curvature terms in (4.2.50) lead indeed to a
behavior as in (4.2.51)

|JijRij
−|2 ∼ e8D |cSB|4 , (4.5.38a)

|ΩijkR
ij
−|2 ∼ e6D |cSB|2 |dD|2K3 + e8D |cSB|2

∼ e6D L−6
K3 + e8D L−8

K3 . (4.5.38b)

Then, by (4.2.52) we see that the O(α′) correction to the equations of motion goes like

(EoM)O(α′) ∼ e4D |cSB|2 L2
K3

(
|dD|2K3 + e2D |cSB|2

)
∼ e4D L−4

K3 + e6D L−6
K3 , (4.5.39)

where in the last step, we have used the above estimate cSB ∼ L−2
K3 and the fact that from

(4.5.24) we can assume that |dD|2K3 ∼ L−2
K3. This already confirms the estimate made in

section 4.2.3 that the contribution of the first-order potential goes like L−4
KK, and is thus

O(α′2). Actually, one could have D approximately constant, e.g. |dD|2 . L−4
K3, in most of

the internal space. Then, the correction would be even of O(α′3) and so one can safely
neglect the contributions from the R+-terms to the scalar potential for our 1

2
DWSB models.

Putting all these pieces together, we will show in the next subsection how one can
stabilize the fiber size by considering very simple examples.

27The ha could be seen as U(1) field-strengths in the eight-dimensional theory obtained by compactifying
the ten-dimensional theory on T 2, and are thus appropriately quantized.
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4.5.2 Simple examples

In order to obtain simple explicit N = 0 examples of the setting provided by the T 2

fibration over K3 reviewed above, let us set NNS5 = 0 and take a trivial gauge bundle on
K3. This means that the condition (4.5.28) reduces to

L2
T 2

∫
∗̂Bχ ∧ χ

Im τ
= 24 . (4.5.40)

The task is therefore to find a primitive harmonic form χ which has both (2, 0) and (0, 2)
non-vanishing components that satisfies the above equation.

The well known properties of K3 – see e.g. [243] for a review – greatly help in this search.
H2(K3;R) has dimension b2 = 22 and, picking up a basis {eI}22

I=1, the inner product matrix

IIJ =

∫
K3

eI ∧ eJ (4.5.41)

has signature (3, 19). In particular, one can choose an integral basis {αI}22
I=1 of H2(K3;Z)

such that

IIJ =

(
0 1
1 0

)
⊕
(

0 1
1 0

)
⊕
(

0 1
1 0

)
⊕ (−E8) ⊕ (−E8) , (4.5.42)

where E8 is the Cartan matrix of the E8 algebra. Re Ω̂K3, Im Ω̂K3, and ĴK3 provide a basis
of the self-dual harmonic forms in H2(K3;R), which is a space-like plane with respect to
the metric (4.5.41).

Instead of attempting a detailed general discussion of the constraints derived above, we
will just provide a couple of simple examples, which should nevertheless give an idea of the
qualitative features of more general solutions. First, let us take a simple choice for Ω̂K3:

Ω̂K3 =
(2π)2α′L2

K3√
Imτ

(α1 + iα2) , (4.5.43)

with α1 = e1 + e2 and α2 = e3 + e4, in terms of the integral basis {eI}22
I=1. Let us then

define χ in terms of four integers na and ma, a = 1, 2, as follows

χ = (n1 − τm1)α1 + (n2 − τm2)α2 . (4.5.44)

Taking into account the self-duality of α1,2 and the fact that
∫

K3
α1∧α1 =

∫
K3
α2∧α2 = 2,

the condition (4.5.40) reduces to

24 Im τ = L2
T 2

(
2 |n1 − τm1|2 + 2 |n2 − τm2|2

)
, (4.5.45)

which, for fixed quantized numbers na and ma, relates τ and L2
T2 . Furthermore, in order to

have both χ2,0 and χ0,2 non-zero, and hence N = 0 supersymmetry, one needs to impose

n2 − τm2

n1 − τm1
6= ±i . (4.5.46)
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Example 1

A particularly simple example is obtained by setting n1 = 1 and n2 = m1 = m2 = 0. In this
case, we have a non-trivial fibration of the S1 described by the coordinate x1 introduced in
(4.5.4) only, while the second S1 described by x2 is trivially fibered. The condition (4.5.45)
then gives

L2
T 2 = 12 Im τ , (4.5.47)

while the H-field quantization conditions (4.5.37) reduce to

L2
T 2 = k1 Im τ , L2

T 2 Re τ = k2 Im τ , (4.5.48)

with k1,2 ∈ Z. From this one can infer a relation of k1 and k2

k1 Re τ = k2 . (4.5.49)

If for example Re τ = 0, then τ = iR2/R1 and L2
T 2 = R1R2/α

′. The condition (4.5.48)
imposes that k1 = 12 and k2 = 0, while (4.5.47) provides the following constraint on the
radius R1

α′

R2
1

' 1

12
' 0.083 . (4.5.50)

Then α′

R2
1

is relatively small, moderately justifying the supergravity approximation. On the

other hand, R2 is obviously non-constrained. Notice that the profile of eD is determined by
(4.5.24). Since we are assuming that NNS5 = 0, for LK3 � 1 we can reasonably approximate
eD ' 1. Then, the formula (4.5.16) for the gravitino mass gives

m3/2 '
gsMP

2L4
K3

√
R1

πR2

. (4.5.51)

Example 2

To obtain a non-trivial fibration also of the second circle, let us take for example n1 =
m2 = 1, m1 = n2 = 0 and |τ | = 1 (with |Reτ | ≤ 1/2), so that R1 = R2. Then (4.5.45)
gives

L2
T 2 = 6 Im τ , (4.5.52)

while the flux quantization condition (4.5.37) still takes the form (4.5.48).
Clearly, the general solution of these equations is given by k1 = 6 and k2 = 0,±1,±2,±3.

By setting k2 = 0, we get R2
1 = R2

2 = α′/6. However, in this case Re τ = 0 and
then χ0,2 = 0, which implies that the solution is actually N = 1. In the other cases
k2 = ±1,±2,±3, one gets N = 0 solutions. For example, in the case of k2 = 1 one gets

Re τ =
1

6
, Im τ =

√
35

6
, (4.5.53)
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and
α′

R2
1

=
α′

R2
2

=
1√
35
' 0.17 , (4.5.54)

which is even less relatively small than (4.5.50), and then even more moderately justifies
the supergravity approximation. The gravitino mass (4.5.16) for these parameters is

m3/2 '
gs MP

2
√
π L4

K3

× 1

6
, (4.5.55)

where the extra suppressing factor with respect to (4.5.51) with R1 = R2 comes from
‖χ0,2‖ ' 1/6.

These two simple examples should be sufficient to see how 1
2
DWSB vacua on an ellipti-

cally fibered K3 space can be constructed. It is however interesting too see already in this
simple examples that the flux quantization condition (4.5.37) together with the integrated
Bianchi identity (4.5.40) combine in order to restrict the size of the fiber. While on the
one hand this leads to fiber sizes that are quite small and hence shed doubt on the justifi-
cation of our supergravity approach, on the other hand this restriction in size guarantees
that the base is always larger than the fiber, which is the essential condition for our whole
approximation and for the mildness of supersymmetry breaking. Therefore, we believe
that DWSB is a fruitful alternative to the type of SUSY-breaking normally discussed in
the context of heterotic supergravity, which is gaugino condensation. In order to see the
similarities and differences in the two approaches, we will in the next section analyze how
an additional gaugino condensate affects our model.

4.6 Adding a gaugino condensate

Up to now we have focused on four-dimensional N = 0 Minkowski vacua where the SUSY-
breaking mechanism is due to the torsional geometry of the background. However, in the
context of no-scale heterotic string compactifications, the source of supersymmetry break-
ing has traditionally been identified with the presence of a gaugino condensate generated
by non-perturbative effects [173, 174]. It is therefore natural to incorporate a gaugino
condensate to the above class of constructions, in order to see which new patterns of
supersymmetry breaking it may lead to. In fact, since a gaugino condensate will mod-
ify the four-dimensional no-scale scalar potential, one may wonder whether its presence
may restore supersymmetry and trigger the decay of the N = 0 vacua discussed above to
supersymmetric AdS4 vacua.

4.6.1 Gaugino condensate and no-scale SUSY-breaking

A simple way to measure the effect of a gaugino condensate in a heterotic compactification
is to incorporate the gaugino field up to quartic order into the supergravity action. In
particular, one finds that the ten-dimensional string frame bosonic action is modified to

S =
1

2κ2

∫
d10x
√
−g e−2Φ

[
R + 4 (dΦ)2 − 1

2
T 2 +

α′

4
Tr(R2

+ − F 2 − 2χ /Dχ)
]
, (4.6.1)
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where χ is the ten-dimensional gaugino field and we have defined the three-forms

T = H − 1

2
Σ , ΣMNP =

α′

4
TrχΓMNPχ . (4.6.2)

Let us now consider compactifications to four-dimensions, in which Σ (and therefore
also T ) has only internal legs. As already pointed out in [138, 173, 174] the presence of a
non-trivial Σ modifies the scalar potential of the compactification. Indeed, following the
computations of section 2.4.2, we see that the potential (4.1.6) is modified to

V ′ = V (H → T ) +
α′

4κ2
10

∫
dvolM e4A−2Φ χ /DJχ , (4.6.3)

where V is given by (4.1.6) with H substituted by T , and

/DJ = /D +
1

24
e−4A+2Φ[∗ d(e4A−2ΦJ)]ijkΓ

ijk . (4.6.4)

In order to get a four-dimensional Minkowski vacuum in this context, we again need to
impose that V ′ is vanishing and extremized. By separately imposing that V (H → T )
is extremized, one is naturally lead to consider configurations of the kind discussed in
subsection (4.2.1), up to the replacement H → T . Namely, one should impose

e2Φd(e−2ΦJ) = ∗T (4.6.5)

instead of (4.2.1b), and leave dA = 0, (4.2.1a), (4.2.8), and (4.2.28) unchanged. Further-
more, the gaugino term ∫

dvolM e4A−2Φ χ /DJχ (4.6.6)

must also be extremized. This leads to a set of conditions to be satisfied by χ and Σ.
Note that even in the case in which W1 = 0 supersymmetry is still broken by the gaugino

condensate, as one can check by looking directly at the supersymmetry transformations

δεΨI =
(
∇I −

1

4
/T I
)
ε − 1

16
ΓI /Σε , (4.6.7a)

δελ =
(
/∂Φ − 1

2
/T
)
ε − 3

8
/Σε , (4.6.7b)

δεχ =
1

2
/F ε . (4.6.7c)

In particular, for compactifications to flat space and non-vanishing gaugino condensate,
the external gravitino variation is always non-vanishing, as δΨµ = − 1

16
Γµ /Σε 6= 0. One

may then restore supersymmetry by considering compactifications to AdS4, as analyzed
in [198]. Such kind of compactifications will be considered in the next subsection.

As discussed in section 4.3 in the absence of a gaugino condensate the background
condition (4.1.9c) can be interpreted in terms of calibrations for gauge bundles and space-
time filling NS5-branes. Remarkably, the modification of (4.1.9c) into (4.6.5) is exactly the
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necessary one in order to preserve this interpretation. As in section 4.3 this can be seen
by going to the dual formulation, briefly reviewed in appendix A.2, where one uses the
seven-form Ĥ instead of H as fundamental field. Recall that Ĥ is the flux which couples
electrically to NS5-branes, and hence the one to appear in the generalized calibration. As
discussed in appendix A.2 in the presence of a gaugino condensate Ĥ and H are related
by Ĥ = e−2Φ ∗10 T = ∗10(H − 1

2
Σ). We can then split Ĥ as

Ĥ = dvolX4 ∧ H̃ = dvolX4 ∧ (e4A−2Φ ∗ T ) . (4.6.8)

Note that (4.6.5) ensures that H̃ is closed and even exact, and so we can write H̃ = dB̃,
where B̃ is an internal potential two-form.

It is in fact illustrating to express the full potential (4.6.3) in the dual formulation.
Starting from the dual action given in (A.2.6), one arrives at the potential

Ṽ ′ = V (H → −e−4A+2Φ ∗ H̃) +
α′

4κ2
10

∫
dvolM e4A−2Φ χ /DJχ

− 1

2κ2
10

∫
M

(e4A−2ΦJ − B̃) ∧ [dH − α′

4

(
TrR+ ∧R+ + TrF ∧ F )] , (4.6.9)

where the potential V has again the form (4.1.6). We see that the DWSB ansatz, sup-
plemented by the Bianchi identity (2.2.5) and the extremization of (4.6.6) is sufficient to
get a vacuum, since the last term in (4.6.9) can be seen as being quadratic in vanishing
terms because of (2.2.5) and (4.6.5). Note that in this formulation H̃ and χ are regarded
as independent fields and that this gives a simple interpretation of the no-scale structure
observed in [174]. Indeed, by starting from a Calabi-Yau compactification, one can allow a
non-trivial gaugino condensate Σ 6= 0 by taking χ such that /DCYχ = 0 and still imposing
H̃ = 0. Of course, by going back to the ordinary formulation, the latter translates into
H = 1

2
Σ 6= 0, as originally found in [174].

Let us stress that so far χ has not been restricted at all. Of course, χ should allow for a
4d + 6d splitting χ = χ4D⊗χ6D +c.c., with χ4D playing the role of the condensing gaugino
in four-dimensions. Also, χ6D (and thus Σ) cannot be completely arbitrary, but should obey
certain consistency conditions, like for instance those derived from the potential (4.6.6),
and the other set of equations that must be imposed on the background. In particular note
that by imposing (4.6.5), we have

/DJ |(4.6.5) = /DT = /D − 1

4
/T , (4.6.10)

where /DT is the Dirac operator for the gaugino, cf. (A.2.6)

Sgaugino = − α′

4κ2
10

∫
d10x
√
−g e−2Φ χ /DTχ . (4.6.11)

This means that if we impose the DWSB conditions of section 4.2 together with the gaugino
equations of motion on our background, then the full potential (4.6.3) vanishes, consistently
with the requirement of having a four-dimensional Minkowski vacuum.
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As a subset of the above class of vacua one may consider the case in which we have a
torsional but complex manifold M . This implies that W1 = 0, and so supersymmetry is
not broken at the classical level as in section 4.2, but just by the presence of the gaugino
condensate. This generalization to torsional backgrounds of the Calabi-Yau models con-
sidered in [174] has been proposed in [138] as a way to achieve a richer pattern of moduli
stabilization and supersymmetry. As argued there, the fact that M is complex together
with the Bianchi identity implies the choice χ6D = η+, where η+ comes from the 6d compo-
nent of the Killing spinor ε of the compactification, split as in (4.1.1). Then Σ = Σ3,0 +Σ0,3

and (4.2.1b) can be written as

e2Φ∂(e−2ΦJ) = iH2,1 , H3,0 =
1

2
Σ3,0 , (4.6.12)

so the (2, 1) component of H is naturally associated with the compactification scale, while
the (3, 0) component is associated to the, presumably lower, gaugino condensate scale.
Moreover, we have that

χ /DJ χ ∼ Ω · dJ |W1=0 + c.c. = 0 . (4.6.13)

Hence, the second piece in (4.6.3) also vanishes.
The two different scales associated to the components H2,1 and H3,0 of the H-flux

suggest that, in principle, below the scale of H2,1 one could truncate the potential (4.6.3)
by imposing the first equation in (4.6.12). In general this would imply freezing the vevs of
several compactification moduli in such a way that the first equation in (4.6.12) is satisfied.
We would then be left with a truncated potential of the form

Vno−scale =
1

4κ2

∫
M

dvolMe
4A−2Φ (H3,0 + H0,3 − 1

2
Σ)2 , (4.6.14)

which has exactly the form of the no-scale potential considered in [174]. It is not clear,
however, whether this no-scale structure will survive at the scale set by H2,1, since at this
scale we may change the vevs of the complex structure moduli, which in turn change the
definition of H3,0.

4.6.2 Supersymmetric AdS4 vacua and calibrations

As recalled above, Σ enters the supersymmetry transformations (4.6.7) in such a way that it
always breaks supersymmetry in compactifications to Minkowski space. Indeed, by taking
a metric ansatz of the form (2.4.15) and following the computations in [198] one finds that
supersymmetry requires a non-vanishing cosmological constant and allows for a possible
non-trivial warping, in sharp contrast with the perturbative results of section 2.4.2. More
precisely, one defines the AdS4 Killing spinor ζ as ∇µζ = 1

2
w0γ̂µζ

∗, where w0 is a constant
related to the AdS4 radius by

|w0|2 =
1

R2
AdS

. (4.6.15)
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Then, the external gravitino supersymmetry requires that

ΩyΣ = 8 e−Aw0 , dA = −1

8
∗ (J ∧ Σ) , (4.6.16)

which indeed reduce to the results of section 2.4.2 for Σ = 0.
Moreover, a non-vanishing Σ will modify the supersymmetry conditions (4.1.9). Fol-

lowing again the computations in [198] it is easy to see that the remaining supersymmetry
conditions can be rewritten as

e−4A+2Φd
(
e4A−2ΦJ

)
= ∗T + 3 e−AIm (w0Ω) , (4.6.17a)

e−3A+2Φd
(
e3A−2ΦΩ

)
= −w0 e

−AJ ∧ J , (4.6.17b)

which again reduces to (4.1.9) for w0 = dA = 0. In fact, (4.6.17b) implies that

d
(
e2A−2ΦJ ∧ J

)
= 0 , (4.6.18)

generalizing equation (4.1.9b) for non-constant warping. Finally, it is easy to see that the
equations (4.6.17) imply that

∗T = − 3

2
e−AIm (w0Ω) + d(3A− Φ) ∧ J + W3 . (4.6.19)

What happens then to the potential (4.6.3) when the above set of supersymmetry
conditions are imposed? By plugging (4.6.17) into the first term on the right hand side of
(4.6.3) one gets28

V (H → T )|SUSY =
3

κ2
10

∫
dvolM e2A−2Φ

{
9
∣∣Im(w0Ω)

∣∣2 + |w0|2
(
|J ∧ J |2 − |J ∧ J ∧ J |2

)}
=

3|w0|2

κ2

∫
dvolM e2A−2Φ . (4.6.20)

On the other hand, by also imposing the gaugino equations of motion derived from (4.6.11),
one obtains that the second term in (4.6.3) gives

α′

4κ2
10

∫
dvolM e4A−2Φ χ /DJχ|SUSY = − 3α′

16κ2
10

∫
dvolM e3A−2ΦχRe(w0 /Ω)χ

= − 3

4κ2
10

∫
dvolM e3A−2ΦRe(w0Ω)yΣ

= −6|w0|2

κ2
10

∫
dvolM e2A−2Φ , (4.6.21)

where in the last step we have used the first of (4.6.16). Note that the gaugino equations
of motion are automatically satisfied if we decompose the ten-dimensional gaugino as χ =
χ4D ⊗ η+ + c.c.. Combining (4.6.20) and (4.6.21) and using (2.4.32), we get

V ′|SUSY = − 3|w0|2

κ2
10

∫
e2A−2ΦdvolM = − 3M2

P

R2
AdS

. (4.6.22)

28Here, we assume that the deviation from the flat supersymmetric case is at least of order α′. Hence, we
neglect contributions to the potential energy coming from the curvature and O[(∇A)2] terms in (4.1.6b).
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Hence, we reproduce the expected value of the potential energy of an AdS4 compactification
with cosmological constant ΛAdS = −3/R2

AdS. Note that the contribution from the gaugino
term (4.6.21) is crucial to get the correct result. On the other hand, note that in order
to evaluate this contribution we have imposed the equations of motion of the gaugino. It
seems technically difficult to do it otherwise and so, unlike for purely bosonic backgrounds,
we do not have a direct off-shell expression for the scalar potential.

Despite this, one can still analyze the supersymmetry conditions of backgrounds with
fermion condensates and interpret them in terms of calibrations. In particular, by direct
comparison with equations (4.1.9) and the discussion in sections 4.3, one would still expect
the following dictionary between calibrations and BPS-objects of the compactification

Calibration 10d BPS object 4d BPS object

e4A−2ΦJ NS5 on X4 × Π2 gauge theory

e3A−2ΦΩ NS5 on X3 × Π3 domain wall

e2A−2ΦJ ∧ J NS5 on X2 × Π4 string

with again Πp a p-dimensional submanifold of M and Xd a d-dimensional slice of X4.
By extending the results of [223] to NS5-branes, one can check that (4.6.17) and (4.6.18)
indeed correspond to the existence of generalized calibrations for NS5-branes in an AdS4

background.

4.6.3 1
2 DWSB AdS4 vacua with gaugino condensate

Having understood in terms of calibrations the conditions for heterotic four-dimensional
N = 1 AdS4 vacua with a gaugino condensate, it is now clear how to implement our
previous strategy to construct N = 0 AdS4 backgrounds of the same sort. Recall from
section 4.2 that for the N = 0 vacua considered there the supersymmetry conditions (4.2.1)
were still satisfied, allowing to define a stable gauge bundle as in section 4.3. On the other
hand, the domain-wall BPSness condition was relaxed to (4.2.2), and half-imposed for
1
2
DWSB backgrounds via (4.4.1).

In the case of AdS4 compactifications, the surviving 1/2 domain-wall BPSness is de-
termined by (4.6.17a) itself, since the equation of motion d(e4A−2Φ ∗ T ) = 0 for T implies
that

d[e3A−2ΦIm(w0Ω)] = 0 . (4.6.23)

We are thus naturally led to consider N = 0 AdS4 backgrounds, where supersymmetry
breaking originates from a background condition of the form29

e−3A+2Φd
[
e3A−2ΦRe(w0Ω)

]
= Re(w0W1)J ∧ J + Re(w0W2) ∧ J , (4.6.24)

29That this form is consistent with our ansatz can be shown as in section 4.2.1. The actual computation
is given in appendix A.3.
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so that supersymmetry is broken when Re(w0W1) 6= −e−A|w0|2 or W2 6= 0. This implies
that these backgrounds are characterized by the torsion classes of the internal manifold M
via

W4 = d(Φ−A) , ReW5 = dΦ− 3

2
dA , Im(w0W1) = Im(w0W2) = 0 , (4.6.25)

while W3 is specified by the relation

∗T = − 3

2
Im
(
(W 1 + 2e−Aw0)Ω

)
+ d(3A − Φ) ∧ J + W3 . (4.6.26)

A further source of supersymmetry breaking comes from the external gravitino super-
symmetry conditions. More precisely, setting

ΩyΣ = 8 e−Aσ0 (4.6.27)

one finds that the external gravitino supersymmetry is broken if σ0 6= w0. Hence, we have
two natural SUSY-breaking scalar parameters for this kind of compactifications

I1 = W1 + e−Aw0 , I2 =
1

2
e−A(σ0 − w0) . (4.6.28)

Note that this family of backgrounds contains all of the supergravity compactifications
with non-vanishing Σ considered up to date in the literature. In particular, it generalizes
the compactifications analyzed in [138,174,244], where vacua with W1 = w0 = 0 have been
discussed, and where thus only the SUSY-breaking parameter I2 was turned on. Such
N = 0 constructions are in some sense orthogonal to the ones considered in section 4.2,
since there we had σ0 = w0 = 0 and so only I1 6= 0. It is therefore natural to wonder to
what extent four-dimensional vacua for arbitrary values of both SUSY-breaking parameters
turned on can be constructed.

As before, some amount of information can be obtained by analyzing the scalar potential
(4.6.3). One can easily see that the first term on the right hand side of (4.6.3) reads

V (H → T )| 1
2

DWSB =
1

4κ2
10

∫
e2A−2ΦdvolM(36|w0|2 + |W2|2 − 24|W1|2) , (4.6.29)

while, by imposing the gaugino equations of motion derived from (4.6.11) and following
the same steps as in (4.6.21), the second term on the right hand side of (4.6.3) gives

α′

4κ2
10

∫
dvolM e4A−2Φ χ /DJχ| 1

2
DWSB = − 6

κ2
10

∫
dvolM e2A−2Φ Re(w0σ0) . (4.6.30)

Summing up these two terms one gets

V ′| 1
2

DWSB =
1

4κ2
10

∫
e2A−2ΦdvolM

[
36|w0|2 − 24|W1|2 + |W2|2 − 24Re(w0σ0)

]
, (4.6.31)
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which on-shell should equal −3|w0|2M2
P . This is indeed the case for unbroken SUSY, as

already considered in section 4.6.2, since there we have that W2 = I1 = I2 = 0, which in
turn implies that w0 = σ0 = −eAW1.

If on the other hand we consider the torsional geometries considered in section 4.2,
which are associated to Minkowski DWSB vacua, we need to impose the constraint |W2|2 =
24|W1|2 on the above vacuum energy. One then concludes that, by consistency, an AdS4

vacuum of this kind needs to satisfy the relation σ0 = 2w0,30 and so supersymmetry is
necessarily broken because the first equation in (4.6.16) is not satisfied. This fact shows
that, naively, adding a gaugino condensate on top of the N = 0 torsional geometries of
section 4.2 is not enough to restore the supersymmetry of the compactification. Indeed,
from section 4.6.2 we see that in order to construct supersymmetric AdS4 vacua the torsion
class W2 must vanish. By equation (4.2.8), this is not possible for the Minkowski DWSB
vacua of section 4.2, since there by assumption W1 6= 0. In particular, if we consider
the fibered manifolds of section 4.4 we see that M should undergo some kind of topology
change in order to flow to a manifold M ′ with W2 = 0. It is not clear how the presence of Σ
could trigger such topology change, so one would expect that adding a gaugino condensate
on top of the no-scale vacua of section 4.4 would most likely take them to a 1

2
DWSB AdS4

background of the kind considered here, not being clear if this would be a vacuum of the
theory. Of course, adding further non-perturbative effects produced by, e.g. worldsheet
instantons may provide the necessary ingredients to promote our heterotic no-scale vacua
to an N = 1 AdS4 vacuum, along the lines of [245].

This ends our discussion of DWSB in the context of heterotic string theory. We want
to point out again the crucial role that the use of SU(3) structures had in our construction.
Without them even to reach at our starting point, namely the scalar potential (4.1.6) of
BPS-like form, would have been impossible. One can trace this back to the fact that the
underlying SU(3) structure of the manifold makes it possible to rewrite the curvature scalar
of the internal manifold and the SUSY variation of the gravitino, which are two highly non-
trivial expressions, in a very simple and suggestive form. With this firm starting point it
was then comparably easy to find conditions for a mild, controllable SUSY-breaking.

Again, the notion of SU(3) structure was very useful in our discussion of calibrations
which provided a physical explanation to our, at first sight, ad hoc ansatz. However, as we
tried to explain, the necessity to be still able to define a gauge bundle in a well defined way
makes our choice of SUSY-breaking very natural. With the tools given at hand by SU(3)
structures we were finally able to find a subclass of our ansatz for which it was possible to
construct consistent non-supersymmetric vacua of heterotic supergravity.

The inclusion of a gaugino condensate gave a nice completion of the topic, as it brings
together our new ansatz and the well known case of SUSY-breaking via a fermionic con-
densate. Besides documenting the changes that our formalism undergoes when such a

30In fact, one could also consider the case where σ0 = 2w0 + biw0, b ∈ R. However, σ0 should enter
the holomorphic gravitino mass that can be calculated following section 4.2.2. Since the gravitino mass is
proportional to the superpotential and the latter is expected to be aligned with the phase of w0 (as the
supersymmetric case shows), we are naturally led to expect that σ0 has the same phase as w0.
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condensate is added, we were also able to show that it is not possible to reach a supersym-
metric configuration by including a gaugino condensate within our ansatz.

However, one should note at the end of this section that our whole discussion has taken
place in the regime of small string coupling gs. As was shown by Witten in [91] this regime
is not very suitable to reach realistic values for the various coupling constants of nature in
a consistent way. It is therefore an interesting question whether our ansatz can be lifted to
the regime of strong coupling, i.e. whether it is possible to implement DWSB in heterotic
M-theory. We tried to provide the first steps in answering this question in [4] and will
present our findings in the next chapter.



Chapter 5

BPS-Potentials in M-Theory

We saw in the last chapter how non-supersymmetric vacua can be constructed for weakly
coupled heterotic string theory in the low energy regime, i.e. for heterotic supergravity.
The strong coupling behavior of these non-superymmetric theories should most likely be
describable in terms of Horava-Witten theory if the DWSB ansatz that we employed in
the last chapter could be lifted to the M-theory setting.

In order to make this possible, one has to satisfy the following main conditions. Firstly,
it should be possible to reach the weak coupling limit by dimensionally reducing the eleven-
dimensional theory. Since in this limit we deal with a six-dimensional internal manifold
with SU(3) structure, one should start in eleven dimensions by compactifying on a seven-
dimensional manifold that also has SU(3) structure. As we discussed in chapter 3 these
manifolds can be viewed locally as the direct product of a six-dimensional SU(3) structure
submanifold and an additional seventh dimension, which serves naturally as the direction
of dimensional reduction. We will therefore concern ourselves with compactifications on
seven-dimensional SU(3) structure manifolds.

Secondly, it should be possible to define a BPS-like potential also in the case of heterotic
M-theory. To understand this we should once more repeat the logic of the last chapter.
There, we started with a BPS-like action in order to be sure that any supersymmetric
vacuum satisfies the equations of motion. Only being sure of this it was possible to deform
the SUSY conditions such that the DWSB ansatz emerges. Since then the potential was
not any longer automatically extremized, we also had to deal with an additional equation
of motion, which restricted the geometry so severe (at least in the case of 1

2
DWSB) that,

in the end, it was possible to find explicit solutions. But without the BPS-like form of the
potential, this approach would have been void, since there would have been no guarantee
that the EoM‘s are satisfied from the beginning. One thus sees that also in the M-theory
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case one should first rewrite the potential1

V0 =
1

2κ2

∫
M

dvol7

[
− e2A R̂(4) − e4A (R− 8∇2A− 20 dA2 − 1

2
|G|2 − 1

2
µ2 − µCy ∗G)

]
,

Vb =
1

8πκ2

( κ
4π

)2/3 ∑
p=1,2

∫
B6,p

dvol′6,p e
4A′−3σ

{(
Tr(F (6)

p )2 − 1

2
Tr(R

(6)′

p+ )2
)

− 1

24

∣∣e−2A′ R̂(4) − 12|dA′|2
∣∣2 − 4 e−2A′ (∇i∇je

A′)(∇i∇jeA
′
)− 2

∣∣dA′yH∣∣2}
in terms of the supersymmetry conditions, and check whether or not it has a BPS-like
form.

This is essentially what we have done in [4] and what we will present in this chapter.
The main obstacle in this work was the rewriting of the curvature scalar of the internal
manifold in terms of the SU(3) structure forms of our seven-dimensional compactification
manifold. Since every seven-dimensional manifold, which has a globally well defined spinor,
has also a G2 structure, and since an expression for the curvature scalar is known for
this case, we considered the problem of a G2 manifold first and then specialized to the
SU(3) structure case. As it turned out the expression is quite involved and it is difficult
to implement the SUSY-conditions into it. We therefore give a detailed description of the
supersymmetry conditions and of our method of bringing them together with the expression
for the curvature scalar.

Unfortunately, our findings are that for a general seven-dimensional SU(3) structure
manifold it is not possible to bring the potential into a BPS-like form. Since this result
is quite unexpected, we provide several simple limits with known outcomes to confirm
its consistency. We then also comment whether or not a lift of the models discussed in
chapter 4 is possible.

5.1 The Ricci scalar of G2 manifolds

As we pointed out in the introduction to this chapter a main obstacle in the analysis
of (2.4.8) is the seven-dimensional Ricci scalar R, as it is not possible to see how this
quantity behaves for broken or unbroken SUSY. Thus, its standard form is not suitable for
the discussion of the BPSness of the potential. As in chapter 4 we will therefore use that
all information encoded in the metric g of a G-structure manifold is also contained in the
forms invariant under G, and express the Ricci scalar in terms of these forms. We start
with the discussion of the curvature scalar of manifolds with G2 structure and derive from
this an expression in terms of SU(3) structure.

1Of course, if not stated otherwise all quantities appearing in this chapter belong to the eleven-
dimensional theory and its compactification to four dimensions described in section 2.1 and section 2.4.1.
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5.1.1 R in terms of G2 structure

The Ricci scalar for G2 structure manifolds was worked out in [210] in terms of the G2

torsion classes defined by (3.3.3) and reads

R = − 12 ∗ d ∗ τ1 +
21

8
τ 2

0 + 30 |τ1|2 −
1

2
|τ2|2 −

1

2
|τ3|2 . (5.1.1)

Due to the complicated dependence of τ2 and τ3 on φ and ψ given in (3.3.5) this seems
not to be a very pleasing formula. But as we show in appendix A.4, it is possible to use
the results of [210] in order to connect the absolute values of the torsion classes with each
other

|τ2|2 = |dψ|2 − 48 |τ1|2 , (5.1.2)

|τ3|2 = |dφ|2 − 36 |τ1|2 − 7 |τ0|2 .
Using these equations, the scalar curvature R can be rewritten in terms of φ and ψ in a
quite suggestive way

R = − 12 ∗ d ∗ τ1 +
49

8
τ 2

0 + 72 |τ1|2 −
1

2
|dφ|2 − 1

2
|dψ|2 (5.1.3)

= −∇m (dψyψ)m +
1

2
|dψyψ|2 +

1

8
|dφyψ|2 − 1

2
|dφ|2 − 1

2
|dψ|2 ,

as it depends only on φ, ψ, and their exterior derivatives.

5.1.2 R in terms of SU(3) structure

Although equation (5.1.3) provides a good description of R as a function of φ and ψ, this
form is not convenient for our purposes, as we are interested in manifolds with SU(3)
structure. The next task is thus to decompose φ and ψ according to (3.3.16) and find
the expression for R in terms of v, J , and Ω. A lengthy calculation provides the building
blocks of R∣∣dφ∣∣2 =

∣∣v ∧ dJ − Re dΩ
∣∣2 − ∣∣dv ∧ J − Re dΩ

∣∣2 +
∣∣Re dΩ

∣∣2 + 2
∣∣dv ∧ J∣∣2 (5.1.4)

+
∣∣dvyv − dJyJ

∣∣2 − ∣∣dvyv∣∣2 − ∣∣dJyJ∣∣2 ,
∣∣dψ∣∣2 =

∣∣∣1
2

dJ2 + dv ∧ Im Ω
∣∣∣2 − ∣∣∣Im dΩyv

∣∣∣2 − ∣∣∣dvyv∣∣∣2 − ∣∣∣1
2

dJ2yv
∣∣∣2 (5.1.5)

+
∣∣∣dvyv + Im dΩyIm Ω

∣∣∣2 − ∣∣∣Im dΩyIm Ω
∣∣∣2 +

∣∣∣1
2

dJ2yv − Im dΩ
∣∣∣2 ,

∣∣∣dψyψ∣∣∣2 =
∣∣∣1
4

dJ2yJ2 − Re dΩy(v ∧ J) + dvyIm Ω − 2 dvyv − Im dΩyIm Ω
∣∣∣2 (5.1.6)

+
1

4

∣∣∣dJ2y(v ∧ J2)
∣∣∣2 − ∣∣∣Im dΩy(v ∧ Im Ω)

∣∣∣2 +
1

16

∣∣∣Im dΩy(J2 + 2v ∧ Im Ω)
∣∣∣2

+
1

4

∣∣∣Im dΩyJ2
∣∣∣2 − 1

16

∣∣∣2 dJ2y(v ∧ J2) + Im dΩy(J2 + 2v ∧ Im Ω)
∣∣∣2 ,
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∣∣∣dφyψ∣∣∣2 =
∣∣∣2dvyJ +

1

2
Re dΩy J2 − dJyIm Ω + Re dΩy(v ∧ Im Ω)

∣∣∣2 (5.1.7)

=
∣∣∣2dvyJ + Re dΩy J2 − 1

2
Im[dΩy(v ∧ Ω̄)]

∣∣∣2 ,
dψyψ =

1

4
dJ2y J2 + dvyImΩ− 1

2
v(Im dΩyJ2)− Re dΩy(v ∧ J) (5.1.8)

− 2dvyv − Im dΩyImΩ− v
(
Im dΩy(v ∧ ImΩ)

)
,

which are at this stage not very illuminating.2 However, we have reached our first goal,
namely we have rewritten the Ricci scalar R purely in terms of the SU(3) structure forms
v, J , and Ω. Note that most of the appearing parts are square terms, but there are also a
lot of linear contributions coming from dψyψ. In order to check for a BPS-like potential
we have to know whether the square terms vanish when we impose supersymmetry. To
this end we turn to the investigation of the SUSY conditions in the next section.

5.2 Supersymmetry conditions

The only fermionic fields appearing in Horava-Witten theory are the gravitino and the
two gauginos living on the two boundaries. The supersymmetry variations of these fields
are given in (2.1.4) and in (2.1.7), respectively, and have to vanish for a supersymmetric
setting. As in chapter 4 one should decompose the Majorana spinor ε appearing in the
SUSY variation in a four-dimensional and a seven-dimensional spinor, suitable for seven-
dimensional SU(3) structure manifolds.

However, in [208] it was shown that there are three ways to decompose the spinor ε such
that one obtains an SU(3) invariant SO(7) spinor, which can be identified with the spinor
η+ of section 3.3. The possibilities are further restricted to two if one wants to consider
N = 1 SUSY in four dimensions. In order to decide, which one of these two should be
used in our case, one has to keep in mind that the spinor ε should reduce to its counterpart
in ten dimensions after dimensional reduction. For N = 1 SUSY this means that in type
IIA there should be two internal spinors of opposite chirality, while in the heterotic case
there can only be one chiral spinor. As it turns out only one of the possibilities of [208] can
give the heterotic limit. The other N = 1 case must therefore be associated to M-theory
without boundaries. We will comment on this case briefly in appendix A.6.

Then, to describe heterotic M-theory one is restricted to use the following decomposition
into a chiral 4d spinor χ+ and the SU(3) structure spinor η+

ε = χ+ ⊗ η+ + χ− ⊗ η− = χ+ ⊗ η+ + c. c. . (5.2.1)

2Note that we used dJ2y(v ∧ ImΩ) = −2 Re dΩy(v ∧ J) during the calculation.
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Using this split the gaugino variations can be rewritten with the help of (3.3.11) and yield
the conditions that Fp is (1, 1) and primitive with respect to the almost complex structure3

defined by Ω and J

FpyJ = 0 , F2,0
p = F0,2

p = 0 . (5.2.2)

The eleven-dimensional gravitino variation gives rise to two sets of conditions4

δΨµ = 0 ⇒ e−Aw0 η
∗
+ +

(
∂�A+

1

6
G�+

iµ

3

)
η+ = 0 , (5.2.3a)

δΨm = 0 ⇒ ∇m η+ =
1

288
(iµγm + 8Gmpqrγ

pqr −Gnpqrγ
npqr

m ) η+ . (5.2.3b)

The first of these equations will give algebraic constraints on the flux G11. As is easy to
see from (3.3.11) the contraction of (5.2.3a) with η†+ leads to µ = 0. Therefore, we will
consider only internal four-flux and set µ = 0 in what follows. The second equation can
be translated into differential conditions on v, J , and Ω. Similar analyses have also been
performed by [207,208,211–214], whose results are equivalent to ours.

5.2.1 Differential conditions

Contracting (5.2.3b) with η†+γn1...np−1 and anti-symmetrizing over all indices gives the ex-

terior derivatives of Σp. Exchanging η†+ with ηT+ yields the derivatives of Σ̃p, which can be
converted with (3.3.11) into the derivatives of v, J , Ω, and their wedge products. Further-
more, dZ = dA and d(v ∧ J) = dv ∧ J − v ∧ dJ demand that w0 = 0. For supersymmetric
vacua we are thus dealing with compactifications to warped Minkowski space, that obey
only internal flux, and whose internal manifold has to satisfy the conditions5

e−2Ad
(
e2A v

)
= 0 , (5.2.4a)

e−3Ad
(
e3AΩ

)
= 0 , (5.2.4b)

e−4Ad
(
e4A J

)
= ∗G , (5.2.4c)

e−2Ad
(
e2A J ∧ J

)
= − 2 v ∧G , (5.2.4d)

d
(
J ∧ J ∧ J

)
= − 6 v ∧ J ∧G . (5.2.4e)

5.2.2 Conditions on the flux

Acting on (5.2.3a) with η†+γn1...np−1 and ηT+γn1...np−1 gives various constraints on the flux
which we listed in appendix A.5. The most important ones of these are the three restrictions

Σ̃3yG = 0 , Σ̃4yG = 0 , Σ5yG = −6 Σ0 dA . (5.2.5)

3In this chapter we will often leave out the explicit reference to Ω and J , when we speak of (p, q)-
forms. We remind the reader that in any case such statements are only valid locally on the six-dimensional
subspace perpendicular to v.

4Here, we used the AdS killing spinor equation ∇̂µχ+ = 1/2w∗0 γ̂µχ−.
5To obtain these simple expressions one also have to make use of (5.2.3a).
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Splitting the flux G into parts proportional and perpendicular to v, G = F − v ∧H, and
decomposing F and H under SU(3)

F = A1 J ∧ J + A2 ∧ J + B ∧ Ω + B ∧ Ω , (5.2.6)

H = C1 Ω + C1Ω + C2 ∧ J + C3 ,

one finds that B = 0 and C1 = 0.6 Hence F is (2, 2) and H is (2, 1) + (1, 2). Furthermore
the exterior derivative of the warp factor is determined by A1 and C2

dA = A1 v −
1

3
C2y J = a1 v + a2 . (5.2.7)

Plugging the decomposition of dv, dJ , and dΩ in terms of torsion classes (3.3.17) and
(5.2.6) into (5.2.4) one can rewrite all SUSY conditions in terms of these torsion classes

R = 0 , V1 = T1 = 0 , W0 = 2 a2 , (5.2.8)

E = ReE = −3A1 = −3 a1 , W1 = − 4

3
C1 = 0 = R , V2 = B = 0 ,

W4 = −1

2
W0 =

1

3
C2y J , W2 = S = 0 , T2 = −A2 ,

2 ReW5 = C2y J , 2 ImW5 = C2 , C3 = − vy ∗W3 .

This will turn out to be useful in our discussion of the scalar potential.

5.3 Is a BPS-like potential possible?

We have now the two basic ingredients at hand to discuss whether a BPS-like potential is
possible for heterotic M-theory. On the one hand, we have rewritten the Ricci scalar in
terms of exterior derivatives of v, J , and Ω. On the other hand, we know what results these
derivatives have for unbroken SUSY. Thus, a BPS-like form of the potential is possible
when (2.4.8) can be written as a sum of perfect squares containing the supersymmetry
conditions (5.2.4). In order to check for this, we will first consider the bulk potential and
turn afterwards to the boundary contributions.

5.3.1 Bulk potential

Since we know from section 5.2 that a supersymmetric vacuum must have µ = w0 = 0 we
focus on these settings. This means that R̂(4) and the both terms containing µ vanish in
(2.4.9a) and we can start with

V0 = − 1

2κ2

∫
M

dvol7 e
4A (R − 8∇2A − 20 dA2 − 1

2
|G|2) . (5.3.1)

6A1 is a real and C1 a complex scalar, respectively. With respect to the almost complex structure
defined by J and Ω, A2 is primitive and (1, 1), B is (1, 0), C2 a real one-form, and C3 is (2, 1) + (1, 2) and
primitive.
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Comparing the formula for R (5.1.4) with (5.2.4) we see that in order to possibly match
the differential supersymmetry conditions we have to insert the right powers of eA into the
exterior derivatives of v, J , and Ω, respectively. This will obviously lead to terms linear in
dA. Defining

dṽ = e−2Ad(e2A v) , dΩ̃ = e−3Ad(e3A Ω) , (5.3.2)

dJ̃ = e−4Ad(e4A J) , dJ̃2 = e−2Ad(e2A J2) ,

we find in particular that

dφ(dv, dΩ, dJ) = dφ(dṽ, dΩ̃, dJ̃) − 6 dA ∧ v ∧ J − 3 dA ∧ ReΩ , (5.3.3)

dψ(dv, dΩ, dJ2) = dψ(dṽ, dΩ̃, dJ̃2) − dA ∧ J2 − 5 dA ∧ v ∧ ImΩ .

Additional linear terms will come from the derivative piece of R in (5.1.3) after a partial
integration. As we explained in section 2.1 there will be no boundary terms from the
partial integration if we use the upstairs picture. We can then write7∫

M

dvol7 e
4A
{
R − 8∇2A − 20 dA2

}
(5.3.4)

=

∫
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∣∣dAyv∣∣2 + 3 Re dΩ̃y
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− 3
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dJ̃yReΩ + 6 dṽy
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dAyv
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Re
[
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(
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)]
− 3

(
dA ∧ dṽ

)
yImΩ

}
.

Here, dφ̃ and dψ̃ are shorthand notations for dφ(dṽ, dΩ̃, dJ̃) and dψ(dṽ, dΩ̃, dJ̃2), respec-
tively. Clearly, all but the first four terms of this expression vanish at most linear when
the conditions (5.2.4) are imposed. If it is not possible to cancel them, then a BPS-like
form of V will not be available.

In order to see if such a cancellation happens, we have to include the flux in our
discussion. The first four terms of (5.3.4) contain exterior derivatives dJ̃ and dJ̃2. If
SUSY is to be maintained after the compactification these should be proportional to the
flux G. Inserting G will also lead to contributions that do not vanish quadratically under
SUSY. Schematically these contributions will look like

|dJyU + V |2 = |(dJ − ∗G)yU + V |2 − | ∗GyU |2 − 2 (∗GyU)y(dJyU + V ) , (5.3.5)

and could eventually cancel the terms in (5.3.4). But as it turns out, a direct insertion is
very cumbersome and not very enlightening.

7Here, we used (dJyv)yReΩ = −Re dΩy(v ∧ J).
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Instead, we split the derivatives of v, J , and Ω in their parts proportional and perpen-
dicular to v

dṽ = dṽ⊥ + v ∧ (dṽyv) , dΩ̃ = dΩ̃⊥ + v ∧ (dΩ̃yv) , (5.3.6)

dJ̃ = dJ̃⊥ + v ∧ (dJ̃yv) , dJ̃2 = dJ̃2⊥ + v ∧ (dJ̃2yv) .

In particular, it is the fact that dJ̃2
⊥ will vanish for supersymmetric vacua due to dJ̃2 =

−4v ∧G that simplifies the calculation. The square terms in (5.3.4) can be brought to the
form
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Im[dΩ̃y(v ∧ Ω̄)]− 2dṽ⊥yJ − Re dΩ̃⊥yJ

2
]
.

(5.3.7d)

Note that in each expression there is one term including dφ̃⊥ = dφ(dṽ, dΩ̃⊥, dJ̃⊥) or
dψ̃⊥ = dψ(dṽ, dΩ̃⊥, dJ̃

2
⊥). We find that in the combination of these

1

2

∣∣dψ̃⊥yψ∣∣2 +
1

8

∣∣dφ̃⊥yψ∣∣2 − 1

2

∣∣dφ̃⊥∣∣2 − 1

2

∣∣dψ̃⊥∣∣2 = (5.3.8)

− 1

2
|dJ̃⊥|2 −

1

2
|dΩ̃⊥|2 −

1

8
|dJ̃2
⊥|2 +

1

2

∣∣∣1
4

dJ̃2
⊥yJ

2 − 1

2
Re(dΩ̃⊥yΩ)− dṽyv

∣∣∣2 +
1

8

∣∣dΩ̃⊥yJ
2
∣∣2

− 1

2

∣∣dṽyv∣∣2 − 1

2

∣∣dṽ⊥∣∣2 − 2 (dṽ⊥yIm Ω)y(dṽyv) +
1

6
(Re dΩ̃⊥ ∧ dṽ⊥)yJ3 − 6dṽy(dA ∧ v) ,

only the last term and |dJ̃⊥|2 do not vanish quadratically when supersymmetry is imposed.
Note that in order to obtain this expression we used the identities

Im dΩ̃⊥y
[
(dṽ⊥yImΩ) ∧ ImΩ

]
+

1

2
(dṽ⊥yJ)(Re dΩ̃⊥yJ

2)− Re dΩ̃⊥y(dṽ⊥ ∧ J) = (5.3.9)

=
1

6
(Re dΩ̃⊥ ∧ dṽ⊥)yJ3 ,∣∣dv ∧ ImΩ

∣∣2 − ∣∣dvyImΩ
∣∣2 = 2

∣∣dvyv∣∣2 , ∣∣dv ∧ J∣∣2 − ∣∣dvyJ∣∣2 =
∣∣dv⊥∣∣2 + 2

∣∣dvyv∣∣2 .
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Since in the end we will integrate over the whole expression, we can even get a further
simplification using partial integration and the fact that 2 (dṽ⊥yIm Ω)y(dṽyv) = (dṽ ∧
dṽ)y(v ∧ ImΩ)∫
M

e4A
{1

6
(Re dΩ̃⊥∧dṽ⊥)yJ3 − (dṽ∧dṽ)y(v∧ImΩ)

}
= 3

∫
M

e4A (dA∧dṽ)yImΩ . (5.3.10)

This will cancel exactly against the last term appearing in (5.3.4). We thus conclude that
we can neglect all terms including dṽ⊥ in (5.3.8) except for −1

2
|dṽ⊥|2, as long as we also

neglect the term −3(dA ∧ dṽ)yImΩ from (5.3.4). We also see that the last term of (5.3.8)
will cancel against a term in (5.3.4).

Examining the rest of (5.3.7a) – (5.3.7c), we find only six more terms that do not vanish
quadratically under supersymmetry

Re dΩ̃y
(
v ∧ dJ̃⊥

)
,

[
J ∧ (dJ̃yv)

]
yImdΩ̃⊥ , − 1

8

∣∣dJ̃2yv
∣∣2 , (5.3.11)

1

32

∣∣dJ̃2y(v ∧ J2)
∣∣2 , − 1

8

[
dJ̃2y(v ∧ J2)

]
y
(
ImdΩ̃⊥yJ

2
)
, − 3(dAyv)ImdΩ̃yJ2 .

This means that due to the split (5.3.6) we have reduced the number of squares that do not
vanish under SUSY at all, and which thus should be combined with G flux, to three. To
check whether from these terms can come contributions that cancel the linearly vanishing
expressions, or if some of them cancel themselves, we will in the end expand all expressions
in terms of the SU(3) torsion classes (3.3.17) and use the SUSY conditions in the form
(5.2.8).

But before we do so, it is important to note that we have not yet used the Bianchi
identity of the four-form flux G. In [197] and in chapter 4 the use of the Bianchi identity was
crucial in order to obtain a BPS-like potential. We follow these references and implement
the Bianchi identity by a partial integration∫
M

dvol7 e
4A
{
− 1

2
|dJ̃⊥|2 −

1

2

∣∣G∣∣2} =

∫
M

dvol7 e
4A
{
− 1

2
|dJ̃ |2 − 1

2

∣∣G∣∣2 +
1

2
|dJ̃yv|2

}
=

∫
M

dvol7 e
4A
{
− 1

2
|dJ̃ − ∗G|2 +

1

2
dGy(v ∧ J2) +

1

2
|dJ̃yv|2

}
= (5.3.12)

∫
M

dvol7 e
4A
{
− 1

2
|dJ̃ − ∗G|2 +

1

2
|dJ̃yv|2

}
− 1

4π

( κ
4π

)2/3 ∑
p=1,2

∫
B6,p

e4A J ∧K(p),

where we used (2.1.8) in the last step. We conclude that we have to include 1
2
|dJ̃yv|2 into

our analysis of the bulk action in order to take the Bianchi identity of G into account.
Furthermore, we get an additional contribution to the boundary action, due to the δ-terms
of the BI (2.1.8).
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All things considered, in order to obtain a BPS-like form of the potential the sum of
1
2
|dJ̃yv|2, the remaining linear terms of (5.3.4), and the six terms of (5.3.11)

L =
1

2
|dJ̃yv|2 − 1

8

∣∣dJ̃2yv
∣∣2 +

1

32

∣∣dJ̃2y(v ∧ J2)
∣∣2 − 1

8

[
dJ̃2y(v ∧ J2)

]
y
(
ImdΩ̃⊥yJ

2
)

− 18
∣∣dAyv∣∣2 +

[
J ∧ (dJ̃yv)

]
yImdΩ̃⊥ + Re dΩ̃y

(
v ∧ dJ̃⊥

)
+ 3 Re dΩ̃y

(
dA ∧ v ∧ J

)
− 3
(
dAyv

)
dJ̃yReΩ− 3

(
dAyv

)
Im dΩ̃yJ2 +

3

2

(
dAyv

)
Re
[
dΩ̃y

(
v ∧ Ω

)]
(5.3.13)

has to vanish quadratically for a supersymmetric setting. Inserting the expansion (3.3.17),
and reordering terms we get

L =
3

2

∣∣(dJ̃y(v ∧ J)− 6 dAyv
∣∣2 + (RedΩ̃yv)y

[
dJ̃ − 3 dA ∧ J

]
+ ImdΩ̃y(J ∧ (dJ̃yv))− 24 ReE ImW1 − 90 (dAyv)ImW1 (5.3.14)

= 6 |ReE + 3 dAyv|2 − 10 ImW1(ReE + 3 dAyv)− 8 ReV2y(2 ReW5 +W4 + 4 dA)

+ 6 ImE ReW1 + 6 (dAyv)ImW1 + T2yImW2 + ReSyW3 . (5.3.15)

Using the relations (5.2.8) we see that all except of the last three terms of (5.3.15) will
indeed go to zero quadratically under SUSY. The last three terms vanishes linearly, since
dAyv, T2, and W3 are non-zero generically. However, we can rewrite (ReE ImW1) using
partial integration and the fact that Im dW1yv = 0 under SUSY8∫

M

dvol7 e
4A ReE ImW1 = −2

∫
M

dvol7 e
4A (dAyv)ImW1 . (5.3.16)

Another partial integration shows that (dAyv)ImW1 will vanish quadratically under the
integral, since∫

M

dvol7 e
4A (dAyv)ImW1 = −1

4

∫
M

dvol7 e
4A
[
(∂mvm) ImW1 + Im dW1yv

]
. (5.3.17)

The second term on the right hand side gives zero, and therefore one obtains∫
M

dvol7 e
4A
[
(dAyv) +

1

4
(∂mvm)

]
ImW1 = 0 . (5.3.18)

ImW1 is an arbitrary function (not depending on the direction of v) and can be viewed
as a test function. Thus e4A

[
(dAyv) + 1

4
(∂mvm)

]
integrates to zero. But under SUSY

(5.2.3b) gives ∂mvm = ∇mvm = 7(dAyv) which means that e4A(dAyv) will also inte-
grate to zero when SUSY is imposed. Since ImW1 is zero in this case, too, we see that∫

dvol7 e
4A (dAyv)ImW1 will vanish quadratically in a supersymmetric setting.

8Here, we used ReE dvol7 = 1
2dJy(v ∧ J) dvol7 = 1

4dJ ∧ J ∧ J = 1
12dJ3.
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Unfortunately, we cannot see how one could argue in a similar way for the last two terms
of (5.3.15). Thus, we conclude with the surprising result that M-theory compactified on
a general seven-dimensional SU(3) structure manifold does not admit a BPS-like scalar
potential, since in general the torsion classes T2 and W3 do not vanish.

Gathering all terms together the bulk potential reads

V0 =
1

4κ2

∫
M

dvol7 e
4A
{
|dJ̃ − ∗G|2 + |dΩ̃⊥|2 +

1

4
|dJ̃2
⊥|2 −

1

4

∣∣dΩ̃⊥yJ
2
∣∣2 (5.3.19)

−
∣∣∣1
4

dJ̃2
⊥yJ

2 − 1

2
Re(dΩ̃⊥yΩ)− dṽyv − Re dΩ̃y(v ∧ J)

∣∣∣2 +
∣∣dṽyv∣∣2 +

∣∣dṽ⊥∣∣2
+
∣∣Re dΩ̃yv

∣∣2 +
1

4
Im[dΩ̃y(v ∧ Ω̄)]×

[1

4
Im[dΩ̃y(v ∧ Ω̄)]− 2 dṽ⊥yJ − Re dΩ̃⊥yJ

2
]

+ 2 Re dΩ̃y
(
v ∧ J ∧ (dṽ⊥yIm Ω)

)
− 3
∣∣dJ̃y(v ∧ J)− 6 dAyv

∣∣2 + 7 (dAyv)Im dΩ̃⊥yJ
2

− 2 (Re dΩ̃yv)y
[
dJ̃⊥ − 3 dA ∧ J

]
− 2 Im dΩ̃⊥y(J ∧ (dJ̃yv))

}
.

One should notice here that it are the last two terms that spoil the BPS-like form

Vno-BPS = − 1

2κ2

∫
M

dvol7 e
4A
{

(Re dΩ̃yv)y
[
dJ̃⊥ − 3 dA ∧ J

]
+ Im dΩ̃⊥y(J ∧ (dJ̃yv))

}
= − 1

2κ2

∫
M

dvol7 e
4A
{

24 ImW1(dAyv) + ReSyW3 + ImW2yT2 + 6 ImE ReW1

+ 14 ImW1(ReE + 3 dAyv)− 8 ReV2y(2 ReW5 +W4 + 4dA)
}
. (5.3.20)

However, for S and T2 identically vanishing, also this part of the potential reduces to a
BPS-like form

Vno-BPS
S=0
=
T2=0
− 1

2κ2

∫
M

dvol7 e
4A
{1

2

[
dJ̃⊥yJ − 6 a2 −

1

2
Re(dΩ̃⊥yΩ̄)

]
y
[
ReΩ̃y(v ∧ J)

]
+

1

16
Im[dΩ̃y(v ∧ Ω̄)] Re dΩ̃⊥yJ

2 +
19

6
(dAyv)Im dΩ̃⊥yJ

2
}
. (5.3.21)

So we wee that it is in general not possible to bring the bulk part of the potential to a
BPS-like form. But by setting the terms containing T2 and W3 to zero, such a form can
be reached.

5.3.2 Boundary potential

The boundary potential receives contributions from two sources. Besides (2.4.9b) one also
has to include the piece obtained by integration over the Bianchi identity in (5.3.12). Before
combining these two expressions, one has to make sure that both are given in terms of the
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same metric g′10 that we introduced in section 2.4. However, going from g10 to g′10 does not
lead to new contributions from K(p), and thus one simply finds

Vb =
1

8πκ2

( κ
4π

)2/3 ∑
p=1,2

∫
B6,p

dvol′6,p e
4A′−2φ

{
− 1

24

∣∣e−2A′ R̂(4) − 12|dA′|2
∣∣2 (5.3.22)

+
(

Tr|F (6)
p yJ |2 + 2 Tr|(F (6)

p )2,0|2
)
− 1

2

(
Tr|R(6)′

p+ yJ |2 + 2 Tr|(R(6)′

p+ )2,0|2
)

− 4 e−2A′ (∇i∇je
A′)(∇i∇jeA

′
)− 2

∣∣dA′yH∣∣2} .
Since for a supersymmetric vacuum we have to restrict to Minkowski space, R̂(4) will
vanish. Also the terms containing Fp will vanish by the SUSY conditions (5.2.2). Let us
consider next the dA′ terms. From (5.2.4a), (5.2.7), and the definition A′ = A+ 1

2
σ given

in section 2.4.1 we know that

−2 dA′ + dσ⊥ + dvyv = 0 , (5.3.23)

where dσ⊥ denotes as usual the part of dσ that is perpendicular to v. Thus, in order
to obtain dA′ = 0 for a SUSY vacuum, the identity dσ⊥ = −W0 should hold. Since we
did not specify σ yet, we choose it in such a way that the above equation is satisfied. In
section 5.4.3 we will see a justification for this choice.

The last terms to consider are the R
(6)′

p+ terms. These vanish if R
(6)′

p+ is (1, 1) and
primitive. For the heterotic string this can be shown by using the integrability condition[

∇het
i ,∇het

j

]
ηhet =

1

4
Rklijγ

kl ηhet , (5.3.24)

where ’het’ denotes that the various objects belong to ten-dimensional heterotic super-
gravity (see e.g. [137, 221] and chapter 4). We thus trace back the problem to the ten-
dimensional setting.

In order to do so, one has to determine how the seven-dimensional covariant deriva-
tive ∇m, which appears in (5.2.3b), is related to its six-dimensional counterpart at the
boundary. This is an quite easy task in type IIA supergravity, where the geometry in
ten dimensions can be chosen to be independent of the extra dimension (see e.g. [10]). In
Horava-Witten theory this gets changed by the non-vanishing of the four-form flux Bianchi
identity. However, the modifications appear only at order κ2/3. Since the boundary terms
are already of order κ2/3, one can consistently neglect the corrections and work in the type
IIA setting

ds2
7 = e−σ(ds′6)2 + e2σdx11 (5.3.25)

with σ and g′6 independent of x11. A calculation along the lines of [10] shows then that

∇(6)′

− i
(
e
σ
4 η+

)
= ∇(6)′

i

(
e
σ
4 η+

)
− 1

8
G11 ijk γ

jk
(
e
σ
4 η+

)
= O(κ2/3) . (5.3.26)
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Then, on each boundary[
∇(6)′

− i ,∇
(6)′

− j

] (
e
σ
4 η+

)
= e

σ
4

[
∇(6)′

− i ,∇
(6)′

− j

]
η+ =

1

4
e
σ
4 R

(6)′

− klij γ
kl η+ = O(κ2/3) , (5.3.27)

which is precisely the condition one obtains for the heterotic string. From this it follows

that R
(6)′

p+ is (1, 1) and primitive up to O(κ2/3), which is sufficient for our analysis as the

boundary potential is already of order κ2/3.

We conclude that the boundary potential can be rewritten in a BPS-like form, although
this is not possible for the bulk potential. The fact that a BPS-like form of the potential
is not available in general does of course not mean that our ansatz is inconsistent. It
merely states that in addition to the Bianchi identity and the SUSY conditions the ansatz
has to satisfy further restrictions that come from the variation of (5.3.20) in order to
ensure the equations of motion. On the other hand, (5.3.21) tells us how to restrict our
compactification ansatz if we wish to get a BPS-like scalar potential. For example if one
chooses a manifold for which T2 and ReS vanish identically (and not only if SUSY is
imposed) then the whole action can be written in terms of squares of the supersymmetry
conditions. However, it would be nice to see whether our findings give the correct results
when restricted to well known geometrical settings. This will be discussed in the next
section.

5.4 Limiting cases

In order to strengthen our results, we will show that they reduce correctly in the three
cases of G2 holonomy, six-dimensional SU(3) holonomy, and the heterotic limit.

5.4.1 G2 holonomy

It is well known that compactifications on manifolds with G2 holonomy do not allow four-
form flux G. Hence, they are not viable for Horava-Witten theory where G is necessarily
non-zero. Nevertheless, one can ask whether our formulas behave in the right way in this
limit, although we know that they will not give a solution for heterotic M-theory. In
particular, we expect the curvature scalar R to be zero for a G2 holonomy manifold M .
Furthermore, once the SUSY conditions are satisfied also the G flux should be set to zero
and the warp factor A should be constant.

G2 holonomy is specified by the conditions

dφ = 0 , and dψ = 0 . (5.4.1)

Applying these conditions to the decomposition (3.3.16) of φ and ψ in SU(3) structure
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forms one finds that for G2 holonomy manifolds

ReW1 =
2

3
ImE = −R , ImW1 =

2

3
ReE , T1 = −ReW2 , T1 = ImW2 , (5.4.2)

ReV1 =
1

2
ImW5 , ImV1 = −1

2
ReW5 , ReS = W3 , JyW0 = 2 ImV2 ,

W0 = W4 + 4 ReV2 = ReW5 + 2 ReV2 .

These conditions do clearly not imply that all SU(3) torsion classes vanish. This means
that although it is clear from (5.4.1) and (5.1.3) that R = 0, it is a non-trivial consistency
check for our equations that the scalar curvature also vanishes in (5.3.4) for a G2 manifold.

In order to test also the equations (5.3.7) we split dφ and dψ into parts proportional
and perpendicular to v and find the four conditions

Re dΩ̃⊥ = 3 a2 ∧ Re Ω ,

1

2
dJ̃2
⊥ = a2 ∧ J2 − dṽ⊥ ∧ Im Ω , (5.4.3)

Im dΩ̃⊥ =
1

2
dJ̃2yv + (5 a2 + dṽyv) ∧ Im Ω − (dAyv) J2 ,

dJ̃⊥ = (6 dA + dṽyv) ∧ J + Re dΩ̃yv − 3 (dAyv) Re Ω .

Plugging these into (5.3.7), one can express the first line of (5.3.4) solely in terms of dAyv

1

2

∣∣dψ̃yψ∣∣2 − 1

2

∣∣dφ̃∣∣2 − 1

2

∣∣dψ̃∣∣2 +
1

8

∣∣dφ̃yψ∣∣2 = −6 dAyv , (5.4.4)

while the rest of (5.3.4) reduces to 12|a2|2 + 18|dAyv|2. We thus see that∫
M

dvol7 e
4A
{
R − 8∇2A − 20 dA2

}
= 12

∫
M

dvol7 e
4A |dA|2 , (5.4.5)

which is just what one gets by setting R = 0 and integrating by parts. This means that
our formulas give indeed the right results in the G2 holonomy limit.

Considering the SUSY conditions, one immediately sees that the combination of the
conditions (5.2.8) and (5.4.2) leads necessarily to the vanishing of all torsion classes and
all flux components. Since this is what is expected for a G2 holonomy compactification,
we conclude that also here our formulas provide the correct answer.

5.4.2 SU(3) holonomy

Next we consider manifolds M that obey

dJ⊥ = 0 and dΩ⊥ = 0 . (5.4.6)

This means that locally M splits into a six-dimensional manifold of SU(3) holonomy (i.e.
a Calabi-Yau three-fold) times a line in the direction of v. Globally however, there can
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still be dependencies of J and Ω on v, and hence dJ 6= 0 6= dΩ. In terms of torsion classes
this can be achieved by setting Wi = 0 for i = 1, . . . , 5. Since this will cancel all terms in
(5.3.15) that do not vanish quadratically when SUSY is imposed, for this case a BPS-like
form of the bulk potential is possible.

But before we come to the potential let us again check whether our formulas are con-
sistent. We have now

dφCY = dv ∧ J + v ∧ (Re dΩyv) , and dψCY =
1

2
v ∧ (dJ2yv) + dv ∧ ImΩ . (5.4.7)

Plugging these directly into (5.1.3) we find∫
M

dvol7 e
4AR =

∫
M

dvol7 e
4A
{ 1

32

∣∣dJ2y(v ∧ J2)
∣∣2 − 1

8

∣∣dJ2yv
∣∣2 − 1

2

∣∣Re dΩyv
∣∣2 (5.4.8)

− 1

2

∣∣dv⊥∣∣2 +
(
Re dΩy(v ∧ J)

)
y
[1

2
Re dΩy(v ∧ J)− ImΩydv⊥

]
− 2 ImΩy

(
(dvyv) ∧ dv⊥

)
+

1

8
Im[dΩy(v ∧ Ω̄)]×

[1

4
Im[dΩy(v ∧ Ω̄)]− 2dṽ⊥yJ

]
− 4 Re dΩy(v ∧ a2 ∧ J)

+ 4 ImΩy(a2 ∧ dv⊥) + 8 dvy(a2 ∧ v) + (dAyv)
(
dJ2y(v ∧ J2)

)}
.

On the other hand, working with (5.3.4), (5.3.7), and (5.3.8) we get

1

2

∣∣dψ̃yψ∣∣2 +
1

8

∣∣dφ̃yψ∣∣2 − 1

2

∣∣dφ̃∣∣2 − 1

2

∣∣dψ̃∣∣2 − 12
∣∣dA∣∣2 =

1

32

∣∣dJ2y(v ∧ J2)
∣∣2 (5.4.9)

− 1

2

∣∣Re dΩyv
∣∣2 − 1

8

∣∣dJ2yv
∣∣2 − 1

2

∣∣dv⊥∣∣2 + 2 dvy(a2 ∧ v)− 2 ImΩy
(
(dvyv) ∧ dv⊥

)
+

1

8
Im[dΩy(v ∧ Ω̄)]×

[1

4
Im[dΩy(v ∧ Ω̄)]− 2dṽ⊥yJ

]
− Re dΩy(v ∧ a2 ∧ J)− 12

∣∣a2

∣∣2
+
(
Re dΩy(v ∧ J)

)
y
[1

2
Re dΩy(v ∧ J)− ImΩydv⊥

]
+ 7 ImΩy(a2 ∧ dv⊥)− 18

∣∣dAyv∣∣2 ,
which gives exactly (5.4.8) when inserted into (5.3.4). This confirms that our formulas are
correct.

The bulk potential in this Calabi-Yau limit reads then

V0 =
1

4κ2

∫
M

dvol7 e
4A
{∣∣dJ̃ − ∗G∣∣2 − 3

∣∣dJ̃y(v ∧ J)− 6 dAyv
∣∣2 +

∣∣dṽ∣∣2 + 40|a2|2

+
∣∣Re dΩ̃yv

∣∣2 +
∣∣dṽ⊥yJ∣∣2 − ∣∣8 a2 − dṽyv

∣∣2 +
∣∣4 a2 − dṽyv + ImΩydṽ⊥

∣∣2 (5.4.10)

−
∣∣1
4

Im
[
dΩ̃y(v ∧ Ω̄)

]∣∣2 − ∣∣Re dΩ̃y(v ∧ J) + 4 a2 − dṽyv + ImΩydṽ⊥
∣∣2} .

As we have explained at the beginning of this section this potential has a BPS-like form.
This becomes clear from (5.2.8) which states that for W1 = . . . = W5 = 0 all torison
classes except ReE and T2 have to vanish under SUSY and that ReE = −3dAyv. This
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implies that a2 = 0 and that dJ̃y(v ∧ J) = 6dAyv under SUSY, respectively. So we see
that all squares vanish for a supersymmetric setting. Furthermore, the only component of
the four-form flux G which is not zero is F 2,2. This is in accordance with the necessity
of a non-vanishing F in Horava-Witten theory. But it is also consistent with the fact
that one expects zero H-flux once one reduces the theory to a heterotic compactification
on a Calabi-Yau manifold. In order to see how this precisely works, we will consider the
ten-dimensional limit in the next section.

5.4.3 The ten-dimensional limit

The most important consistency check of our previous results is the reduction of M-Theory
to the heterotic string sector. As explained in section 2.3, the reduction is obtained by
first performing the standard reduction of M-theory to type IIA theory as described e.g.
in [9, 10], and then taking the limit πρ → 0 to move the two hyperplanes which are
supporting the gauge fields on top of each other. This procedure should eventually lead to
the results presented in the beginning of chapter 4.

We start by decomposing the eleven-dimensional metric as in (2.3.2) and then perform-
ing a compactification of the ten-dimensional space

ds2
11 = e−

2
3

Φds2
10 + e

4
3

Φ(dx11 + X1)2 = e2A′− 2
3

Φ(ds′4)2 + e−
2
3

Φ(ds′6)2 + e
4
3

Φ(dx11 + X1)2 .
(5.4.11)

Here, Φ is the ten-dimensional dilaton and A′ is the warp factor belonging to a com-
pactification of string theory to four dimensions. g′4 denotes the metric of the emerging
four-dimensional space, g′6 of the compact six-dimensional one, respectively, and X1 is
a one-form potential. Since we want to compare M-Theory compactifications to warped
Minkowski space, we take g′4 to be the Minkowski metric. Comparing (5.4.11) with the
previously defined metrics (2.4.1) and (2.4.5) we see that

2A′ = 2A+
2

3
Φ = 2A+ σ , ds2

7 = e−
2
3

Φ(ds′6)2 + e
4
3

Φ(dx11 + X1)2 , (5.4.12)

where we remind the reader that σ was the field used to describe the metric at the bound-
ary in section 2.4.1. This means that the seven-dimensional space M splits into a six-
dimensional base B and a one-dimensional fiber. Since locally every seven-dimensional
SU(3) manifold can be decomposed into a six and a one-dimensional part, and since this
one-dimensional piece is distinguished by v, we can also write

ds2
7 = ds2

6 + v ⊗ v . (5.4.13)

Thus the metric g6 that we used to construct the SU(3) structure and the metric g′6
appearing in (5.4.11) are related by g6 = e−2Φ/3g′6 which gives J = e−2Φ/3J ′ and Ω = e−ΦΩ′.
For the one-form v we get

v = e
2
3

Φ (dx11 + X1) . (5.4.14)
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From the SUSY conditions for v (5.2.4a) it follows that

dA +
1

3
dΦ = dA′ = 0 , dX1 = 0 (5.4.15)

as it should be for the heterotic string. We also see that dvyv = W0 = −2/3 dΦ⊥ = −dσ⊥,
which justifies the choice we made for σ in section 5.3.2.

Since (dAyv) is not zero, these equations also imply that the dilaton does depend on
the v-direction. This is not the case in the heterotic theory, and in order to see how
this dependence vanishes, it is necessary to analyze the behavior of the flux F when the
two hyperplanes are moved together. From equation (2.3.4) we know that the component
of G11 having no leg along the reduced dimension becomes zero when one performs the
dimensional reduction. But since we identify v with this direction, this means that F = 0
in this limit. For this reason, we conclude that we can also set (dAyv) ∼ A1 to zero, once
we go to the heterotic limit. A similar reasoning shows that dJ̃yv = dΩ̃yv = 0 for πρ→ 0.

The supersymmetry conditions of section 4.1 can then be re-derived from our results
(5.2.4)

e−4Ad
(
e4A J

)
= ∗G = − ∗

(
v ∧H

)
⇒ e−4A′+2Φd

(
e4A′−2Φ J ′

)
= ∗′6H , (5.4.16)

e−2Ad
(
e2A J ∧ J

)
= −2 v ∧G = 0 ⇒ e−2A′+2Φd

(
e2A′−2Φ J ′ ∧ J ′

)
= 0 ,

e−3Ad
(
e3AΩ

)
= 0 ⇒ e−3A′+2Φd

(
e3A′−2ΦΩ′

)
= 0 .

Note that in the first line one also has to rewrite the seven-dimensional Hodge star, ∗(v ∧
H) = −e−2/3Φ ∗′6 H. This shows that our SUSY conditions are indeed compatible with
the SUSY conditions found for string theory compactifications on six-dimensional SU(3)
structure manifolds in section 4.1.

Due to the restrictions dAyv = dJ̃yv = dΩ̃yv = 0 in the heterotic limit, the linear piece
(5.3.13) is identically zero and the bulk potential is simplified to

V0 =
1

4κ2
10

∫
B

dvol′6 e
4A′−2Φ

{
|dJ̃ ′ − ∗′6H|2 + |dΩ̃′|2 − 1

4

∣∣dΩ̃′yJ ′2
∣∣2 +

1

4
|dJ̃ ′2|2

−
∣∣∣1
4

dJ̃ ′2yJ ′2 − 1

2
Re(dΩ̃′yΩ

′
) + 4 dA′

∣∣∣2 + 2
∣∣dA′∣∣2} . (5.4.17)

All squares appearing in this formula are taken with respect to the metric g′6 in order to get
the right factors of eΦ, and we have absorbed the length of the eleventh dimension into the
ten-dimensional coupling κ2 = 2πρ κ2

10. This is indeed the action of heterotic supergravity
to lowest order in α′ that we presented in section 4.1.

The result for the boundary potential is even more easily obtained. Setting 3σ = 2Φ
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and adding the contributions of the two boundaries gives

Vb =
α′

8κ2
10

∫
B

dvol′6 e
4A′−2Φ

(
Tr|F (6)

E8×E8
yJ |2 + 2 Tr|(F (6)

E8×E8
)2,0|2

)
(5.4.18)

− α′

8κ2
10

∫
B

dvol′6 e
4A′−2Φ

(
Tr|R(6)′

+ yJ |2 + 2 Tr|(R(6)′

+ )2,0|2
)

− α′

8κ2
10

∫
B

dvol′6 e
4A′−2Φ

{
8 e−2A′ (∇i∇je

A′)(∇i∇jeA
′
)− 4

∣∣dA′yH∣∣2 − 12|dA′|4
}
.

This is the O(α′) result of section 4.1. We thus conclude that also in this limit our formulas
provide the right results, since we obtain exactly the scalar potential of the heterotic string
compactified on an SU(3) manifold.

We see therefore that the three limits that we considered in this section give evidence
that our results for the scalar potential (5.3.19) and (5.3.22) are indeed correct. What does
this then mean for the lift of DWSB vacua to M-theory?

5.5 DWSB in heterotic M-theory?

In this chapter we have shown so far that for a general compactification manifold with
SU(3) structure it is not possible to obtain a BPS-like form of the potential. As we argued
such a form would be mandatory in order to define a DWSB pattern also for heterotic M-
theory. However, we have also seen, that under certain circumstances a BPS-like potential
is achievable. As an example, we considered in the last section the case of a Calabi-Yau
manifold fibered over a line. What does this then mean for the kind of DWSB that we
discussed in chapter 4?

It should be clear from our analysis in section 5.3 that it is necessary for the BPS-
like form that at least the two torsion classes ReS and T2 are identically zero. On the
other hand, the existence of the (2, 2)-part of the flux component F is equally necessary
in Horava-Witten theory. By (5.2.8) this means that the torsion class ReE is not allowed
to vanish.

If we furthermore do not want to restrict the torsion classes W1, . . . ,W5 that appear
also in ten-dimensional DWSB we are led to the following simple ansatz

dJ = dJ⊥ +
2

3
ReE v ∧ J , (5.5.1a)

dΩ = dΩ⊥ + ReE v ∧ Ω . (5.5.1b)

By this we allow only compactification manifolds for which the torsion classes ImE, V2,
T2, and S are identically zero. Therefore, terms in the potential containing one of these
classes will also vanish identically, and not only when SUSY is imposed. Note that for
non-broken SUSY this means that F has to be (2, 2) and non-primitive, while for H all
components are non-vanishing, as we had intended it.
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Next we have to uplift our DWSB ansatz (4.2.1) and (4.2.3). Using the relations (5.4.16)
obtained for the heterotic limit in the last section we consider the following uplift

e2Φd
(
e−2Φ J ′ ∧ J ′

)
= 0 −→ e−2Ad

(
e2AJ ∧ J

)
⊥ = 0 , (5.5.2a)

e2Φd
(
e−2Φ J ′

)
= ∗′6 H −→ e−4Ad

(
e4AJ

)
⊥ = − ∗(v ∧H) , (5.5.2b)

Ω
′
yd
(
e−2ΦΩ′

)
= 0 −→ Ωyd

(
e3AΩ

)
= 0 , (5.5.2c)

dA′ = 0 −→ d
(
e2Av

)
= 0 . (5.5.2d)

Here we adopted the same notation as in the last section, i.e. primed quantities are defined
with respect to the heterotic theory. One should also note that (5.5.2b) implies the standard
SUSY condition e−4Ad

(
e4AJ

)
= ∗G and that from (5.5.1b) and (5.5.2c) d(e3AΩ)yv = 0

follows.

Inserting all these conditions in the bulk potential (5.3.19) we find nearly the same
result as for the heterotic case (4.2.4) up to a term proportional to ImW1

V ′0 =
1

4κ2

∫
M

dvol7 e
4A
{∣∣dΩ̃⊥

∣∣2 − ∣∣dΩ̃⊥ ∧ J
∣∣2 − 4 ImW1

(
12 dAyv + 7 ReE

)}
. (5.5.3)

Again, this means that in the general case one can not simply lift the results of chapter 4
to M-theory. However, one should remember that we did also not try to solve the general
case in chapter 4, but restricted us to the class of 1

2
DWSB that was characterized by the

additional condition (4.4.1)

Im
[
eiϑd

(
e−2ΦΩ

)]
= 0 ,

with an arbitrary phase ϑ. This condition implies that Im(eiϑW1) = 0 and by further
restricting the 1

2
DWSB case to ϑ = 0 one gets ImW1 = 0. For this subclass we find the

result

V ′0 =
1

4κ2

∫
M

dvol7 e
4A
(∣∣dΩ̃⊥

∣∣2 − ∣∣dΩ̃⊥ ∧ J
∣∣2) , (5.5.4)

that has exactly the same form as (4.2.4). Therefore, a simple lift of the 1
2
DWSB examples

of section 4.5 is possible if one chooses ϑ = 0 in (4.4.1). The resulting seven-dimensional
manifold would then be an elliptically fibered four-dimensional Kähler space, that is fibered
in addition over a line such that (5.5.1) holds. However, developing the details of such
models, like e.g. the SUSY-breaking or compactification scales as was done for the heterotic
string in chapter 4, would go far beyond the scope of this thesis.



108 5. BPS-Potentials in M-Theory



Chapter 6

Conclusion

The supergravity ansatz to string theory is one of the most often used approaches to find
physically correct compactifications to four dimensions. Its strength is that it allows to
check the consistency of a given set of background fields explicitly. Therefore, it is possi-
ble to analyze a broad scope of phenomena with this approach, ranging from dualities to
moduli stabilization. In our works [1–4], which we presented in this thesis, we were mostly
concerned with the problem of supersymmetry breaking in heterotic E8 × E8 supergravity
and its lift to heterotic M-theory. We will end our presentation in this chapter by sum-
marizing once more our main results and by giving an outlook for possible research, which
could profit from our findings.

Summary of our results

We began this thesis by discussing the necessary supergravity theories in chapter 2. Al-
though most of the contents of this chapter are standard, we would like to emphasize here
again the non-trivial fact that it is possible to bring the action into the form of a four-
dimensional integral over a potential, whose variation gives the same equations of motion
as the variation of the full action. Only due to this fact it is feasible to consider only the
potential instead of the action, which simplified our discussion.

In chapter 4 it was therefore possible to analyze supersymmetry breaking in heterotic
E8×E8 supergravity starting from the effective potential. Furthermore, using G-structures
we could rewrite the potential as well as the SUSY conditions in terms of the invariant
forms J and Ω of the SU(3) structure of the compactification manifold. This showed
that the potential can be brought into a BPS-like form, being a sum of squares of the
SUSY conditions. Therefore, for a supersymmetric vacuum the potential vanishes and is
automatically extremized.

Having obtained the conditions for unbroken SUSY, the next step was to find a control-
lable pattern of SUSY breaking. There, we used the technique of domain wall supersym-
metry breaking (DWSB) that was developed in the context of type II supergravity theories.
For generic DWSB we found that NS5-branes which appear as domain walls in four di-
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mensions are not any longer BPS-objects, while those branes which fill all four space-time
dimensions, or which would appear as strings, still are BPS. This implied that it is still
possible to define gauge bundles on the internal manifold, although it is not complex in the
non-supersymmetric case. Furthermore, the potential is not automatically extremized once
SUSY is broken. This result led to an additional EoM, which constrains the internal space,
and restricts the SUSY breaking scale to lie below the compactification scale, respectively,
as is necessary in order to have spontaneous SUSY breaking in four dimensions.

Solutions to the residual equation of motion could be found by studying a subclass
of our vacua in section 4.4. Demanding an additional constraint we showed that for this
class only compactifications on fibered manifolds with a two-dimensional fiber and a four-
dimensional base are allowed. From a four-dimensional perspective these vacua can be
identified as no-scale models. In these models the potential does not depend on a given
set of fields. Therefore, these fields can develop SUSY breaking F-terms which will not
alter the minimum of the potential and thus do not endanger the stability of the solution.
On the other hand, moduli coming from these fields are not stabilized. For our ansatz we
showed that it are the pseudo-Kähler moduli of the base space which develop F-terms and
which are thus responsible for SUSY breaking.

Considering in this context elliptic fibrations of K3 as the simplest examples, we could
demonstrate that the dilaton gets stabilized by the Bianchi identity of H, and that the
size of the elliptic fiber gets fixed due to flux quantization.

Since gaugino condensation is the typical way to break SUSY in heterotic string theory,
we included a fermionic condensate in our discussion at the end of chapter 4. We were
particularly interested in the question whether one could restore SUSY by having both,
non-vanishing flux and a non-vanishing condensate, respectively. As it turned out this is
not possible, and it seems as if the two ways to break supersymmetry are orthogonal to
each other.

After the quite elaborate study of the weakly coupled heterotic string, we wanted to
discuss in chapter 5 the possibilities of lifting our solutions to the strongly coupled theory,
i.e. to eleven-dimensional supergravity with two ten-dimensional boundaries. Also for this
theory we could show in chapter 2 the equivalence of the EoM’s derived from the full action
and from an effective potential. Therefore, this potential provided again the right starting
point for the analysis.

However, it was very difficult to answer the question whether the potential could be
given in a BPS-like form as in the ten-dimensional case. After tedious calculations that
we presented in chapter 5, we came to the conclusion that this is not possible for a generic
seven-dimensional internal manifold, but only when certain torsion classes are identically
set to zero. Since this is quite surprising, we performed several crosschecks of our formulas
going to the limits of G2 holonomy, SU(3) holonomy, and the ten-dimensional limit. In all
these checks our equations provided the correct results.

Having no BPS-like potential seems at first sight like the end of DWSB in the strongly
coupled heterotic string. But considering only the explicit examples, which we constructed
in chapter 4, we found that these examples can be lifted to heterotic M-theory, and thus
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could provide controllable non-SUSY vacua for the strongly coupled heterotic string. Al-
though we could not analyze this in more detail in our works, it could definitively be a
viable direction of further research.

Further research

Although we think that we could give a compact picture of DWSB in the last chapters
there are of course several loose ends, that one could treat in future projects.

One of them that we already alluded to in section 4.3 is the mathematical issue of
the pseudo-HYM condition on the field strength. In the complex case it can be shown
that this condition is equivalent to a bundle stability criterion. One important ingredient
of this theorem is that the space is at least balanced, which corresponds in our setting
to the possible presence of BPS-strings. Since we do preserve this condition also in the
non-supersymmetric case, it might be interesting to study this subject again from the
perspective of calibrated submanifolds, where one might hope to find generalizations of
the original Donaldson-Uhlenbeck-Yau theorem.

A more physical line of research should be concerned with the stabilization of the
remaining moduli of our examples. As we explained the no-scale structure of the model
intrinsically forbids that all moduli can be stabilized with fluxes. In this case, one normally
invokes non-perturbative effects to give masses to these moduli. But since we already
included such effects studying gaugino condensation, one should redo our four-dimensional
analysis in the presence of a condensate, and check whether one can stabilize the pseudo-
Kähler moduli of the base, too.

Otherwise, one could also leave our simple example class and search for totally new com-
pactification manifolds that satisfy the general DWSB conditions but not the restricted
1
2
DWSB constraints. Eventually, this could be achieved by considering toric varieties [246]

along the lines of [247]. The main difficulty here would be to translate our requirements
on torsion classes into the language of toric varieties that was used in [247]. But maybe
one could get by this method large enough samples of compactification manifolds to test
whether it is possible to obtain realistic four-dimensional physics, i.e. to stabilize the mod-
uli, to include a consistent gauge bundle, to satisfy the Bianchi identity and the flux
quantization, and to have the right SUSY breaking scale. From the viewpoint of four-
dimensional physics this would be essential, although we know that it is extremely hard to
satisfy all these conditions in one single model.

One should also notice that recently there have been attempts [203] to place the het-
erotic string in the broader context of doubled field theory [16,17] and generalized geome-
try [248,249]. It is of course interesting whether and how DWSB fits into this framework,
which provides a unified description of both T-dual heterotic theories.

Besides these topics, which are connected to the weakly coupled heterotic string, one
can of course also pursue the strongly coupled description. The question, which comes into
ones mind immediately, is of course how it is possible that one cannot obtain a BPS-like
form of the potential for a generic seven-dimensional SU(3) structure manifold. As we have



112 6. Conclusion

seen in section 5.4.3 this is not a problem for the weakly coupled string, since the correct
form of the potential and the SUSY conditions in ten dimension can be deduced from any
starting point in eleven dimensions. It seems therefore that the BPS-like structure vanishes
due to strong coupling effects, which definitively should be analyzed further.

Concentrating on the phenomenological aspects of heterotic M-theory one should ask
which implications the lift of our 1

2
DWSB examples to M-theory would have. First, one

should try to recapitulate all steps of section 4.4 and section 4.5 for the strongly coupled
theory and compare the results to the weakly coupled case. Moreover, it is expected
that on an intermediate energy scale the eleventh dimension is still non-compact while
six dimensions are already compactified. As this could be just in the range of the SUSY
breaking scale, and as strong coupling effects are still visible then, one should also study
the resulting effective five-dimensional theory. Then, one could also include a gaugino
condensate on the two four-dimensional boundaries of the five-dimensional theory and
analyze the interplay of the SUSY breaking coming from DWSB and the condensate.
Whether this could lead to four-dimensional physics that resembles the standard model is
of course the ultimate question.
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Appendix

A.1 Conventions

Indices

There are various sorts of indices appearing in the thesis. An underline will be used to
distinguish flat from curved indices when needed. We denote with M,N, . . . eleven dimen-
sions and with I, J, . . . ten dimensions (either the ten of heterotic supergravity, or the first
ten in M-theory). m,n, . . . will be used for seven internal dimensions and i, j, . . . for six,
respectively (either the six dimensions of an internal manifold of a heterotic compactifica-
tion, or the first six of an M-theory compactification). Letters from the beginning of the
alphabet A,B, . . . (a, b, . . .) will be used in formulas that hold in eleven (seven) as well
as in ten (six) dimensions. The Greek letters µ, ν . . . will stand for the four-dimensional
external space-time.

Gamma matrices of SO(1, 10)

Our conventions on gamma matrices in eleven dimensions are as follows. With ΓN we
denote gamma matrices of SO(1, 10) which are 32×32 matrices. We split the ΓN according
to

Γµ = γµ ⊗ 1 = e−Aγ̂µ ⊗ 1 , Γm = γ(4) ⊗ γm . (A.1.1)

The γµ are taken to be real and symmetric 4 × 4 matrices and represent the gamma
matrices of the warped four-dimensional external spacetime. The γm are purely imaginary,
antisymmetric, and 8 × 8, which implies that the ΓN are real and symmetric. The four-
dimensional chirality operator is defined as

γ(4) = iγ0 γ1 γ2 γ3 . (A.1.2)

From Γ10Γ10 = 1 and Γ10 = Γ0 · . . . · Γ9 it follows that

γ10γ10 = −i γ4 . . . γ10 = 1 . (A.1.3)



114 A. Appendix

An explicit representation of these gamma matrices can be found as in [23] and is given by

γ0 =

(
0 σ1

−σ1 0

)
, γ1 =

(
0 σ1

σ1 0

)
, γ2 =

(
σ3 0
0 σ3

)
, γ3 =

(
−σ1 0

0 σ1

)
,

(A.1.4)

γ4,5,6 =

(
α1,2,3 0

0 α1,2,3

)
, γ7,8,9 =

(
0 β1,2,3

β1,2,3 0

)
, γ10 =

(
0 −i14

i14 0

)
.

With σi the Pauli-matrices, the 4× 4 matrices αi, βj are given by

α1 =

(
0 i σ1

−i σ1 0

)
, α2 =

(
0 −i σ3

i σ3 0

)
, α3 =

(
−σ2 0

0 −σ2

)
,

(A.1.5)

β1 =

(
0 −σ2

−σ2 0

)
, β2 =

(
0 i1
−i1 0

)
, β3 =

(
σ2 0
0 −σ2

)
.

Defining γm1...mn = γ[m1 . . . γmn] the relation between the antisymmetrized product of
n and 7− n gamma matrices is

γm1...mn = i (−1)1+n(n−1)/2 1

(7− n)!
εm1...mn

mn+1...m7
γmn+1...m7 . (A.1.6)

Due to our manifestly real gamma matrices, the Majorana condition on an 11-dimensional
spinor ε simply reads

ε∗ = ε . (A.1.7)

Gamma matrices of SO(1, 9)

In ten dimensions we choose again a real representation for the SO(1, 9) gamma matrices
ΓI . Then we can split the 32 × 32 matrices ΓI in terms of real symmetric four- and
pure imaginary antisymmetric six-dimensional gamma matrices γ̂µ (associated with the
unwarped X4 metric) and γi, analogously to the SO(1, 10) case

Γµ = e−Aγ̂µ ⊗ 1 , Γi = γ(4) ⊗ γi . (A.1.8)

Since we use a real representation of the ten-dimensional gamma matrices ΓI , Majorana
spinors of SO(1, 9) will again be real. The ten-dimensional chirality operator is then defined
to be

Γ(10) = Γ0...9 . (A.1.9)

The heterotic ten-dimensional supersymmetry generator ε is Majorana-Weyl, meaning that
it is real and it satisfies the chirality condition Γ(10)ε = ε. The four- and six-dimensional
chiraltiy operators are defined by

Γ(10) = γ(4) ⊗ γ(6) , (A.1.10)
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and are given explicitly by

γ(4) = iγ0 γ1 γ2 γ3 , and γ(6) = −iγ4 γ5 γ6 γ7 γ8 γ9 . (A.1.11)

The relation between the antisymmetrized product of n SO(6) gamma matrices and (6−n)
matrices is given by

γi1...in = i (−1)1+n(n−1)/2 1

(6− n)!
εi1...inin+1...i6

γin+1...i6 γ(6) . (A.1.12)

Contractions

A slash will denote normalized antisymmetrized contraction of a p-form Ap with gamma
matrices

Ap� =
1

p!
γA1...Ap (Ap)A1...Ap , (A.1.13)

while y is used to contract p- and q-forms

ApyBq =
1

(p− q)! q!
AA1...AqB1...Bp−q B

A1...AqdxB1...Bp−q . (A.1.14)

|Ap|2 means total contraction of a p-form Ap with its complex conjugate

|Ap|2 =
1

p!
AA1...Ap A

A1...Ap
. (A.1.15)

Hodge star

We will be concerned with Hodge stars in several dimensions. These will always be defined
in the standard way

∗d Ap =

√
|gd|

p!(d− p)!
ε

Ad−p+1...Ad
A1...Ad−p

(Ap)Ad−p+1...Ad dxA1...Ad−p (A.1.16)

=
1

p!(d− p)!
ε

Ad−p+1...Ad
A1...Ad−p

(Ap)Ad−p+1...Ad
dxA1...Ad−p .

(A.1.17)

Most often we will encounter the Hodge star in six and seven (euclidean) dimensions.
There, one has the useful identities

∗2
6Ap = (−1)pAp , ∗2

7Ap = Ap , (A.1.18)

and

Ap ∧ ∗6Bp = (−1)pApyBp , Ap ∧ ∗7Bp = ApyBp . (A.1.19)
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Spinor decomposition

We will decompose the SO(1, 10) Majorana spinor ε11 of Horava-Witten theory as

ε11 = χ+ ⊗ η+ + χ− ⊗ η− = χ+ ⊗ η+ + c. c. . (A.1.20)

Here, χ+ is an anticommuting four-dimensional spinor of positive chirality, while η+ is a
commuting SO(7)-spinor, that reduces to a positive SO(6) spinor at the boundary and
after dimensional reduction to heterotic supergravity.

In the same sense the SO(1, 9) spinor ε10 of heterotic supergravity decomposes as

ε10 = ζ ⊗ η+ + c.c. . (A.1.21)

Again, ζ is an anticommuting four-dimensional spinor of positive chirality. The spinor η+

is a commuting SO(6)-spinor, also of positive chirality. We give the same name to the two
internal spinors of the eleven- and the ten-dimensional case for purpose, since they get
identified in the course of dimensional reduction.

The four-dimensional spinors are supposed to satisfy a Killing spinor equation in AdS-
space relating them to the AdS radius RAdS = 1

|w0| . For χ+ this reads

∇̂µχ+ =
1

2
w∗0γ̂µχ− , (A.1.22)

and analogously for ζ.

A.2 Dual formulation of heterotic supergravity

Here, we give a short introduction to the dual formulation of heterotic supergravity as
needed in chapter 4. The dual formulation of the heterotic theory is expressed in terms of
the seven-form flux Ĥ = e−2φ ∗H. In this formulation the six-form potential B̂, dB̂ = Ĥ,
plays the role of the fundamental field and couples electrically to the NS5-brane charge of
the background, and the BI (2.2.5) arises as the equation of motion of B̂. For this reason,
this frame is the natural one to describe the coupling of NS5-branes.

The complete dual formulation up to order α′ can be found in [200], and the dualization
procedure relating the two formulations is discussed in detail in [250]. Here, we just focus
on the bosonic sector. One starts with the action

S ′ = S − 1

2κ2
10

∫
X10

B̂ ∧
[
dH +

α′

4
(TrF ∧ F − TrR+ ∧R+)

]
, (A.2.1)

where S has the same form as in (2.2.1), and where H and B̂ should be considered as
elementary independent fields. By varying with respect to B̂ one gets the Bianchi identity
(2.2.5) and then, integrating out B̂ just produces the original action (2.2.1).

On the other hand, by extremizing S ′ with respect to H, one gets

Ĥ = e−2φ ∗H . (A.2.2)
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By plugging (A.2.2) into (A.2.1) and keeping only O(α′) terms, we arrive at the dual action

Ŝ =
1

2κ2
10

∫
d10x
√
−g e−2φ

[
R+ 4(dφ)2 − 1

2
e4φ Ĥ2 +

α′

4
(TrR2

+ − TrF 2)
]

− α′

8κ2

∫
X10

B̂ ∧ (TrF ∧ F − TrR+ ∧R+) . (A.2.3)

The supersymmetry transformations in the dual formulation are as in (2.2.6), up to terms
which vanish on-shell at order α′.

Let us also consider the duality transformation in presence of a non-vanishing gaugino
condensate. It is useful to introduce a three-form Σ defined by

ΣIJK =
α′

4
Tr χ̄ΓIJKχ . (A.2.4)

In the ordinary formulation which uses the 3-form H as fundamental, the relevant terms
in the action are now as in (4.6.1). By performing the duality transformation described
above we get

Ĥ = e−2φ ∗ T , with T = H − 1

2
Σ , (A.2.5)

and the dual action with non-vanishing gaugino terms reads

Ŝ ′ = Ŝ − α′

4κ2
10

∫
d10x
√
−g e−2φ χ̄( /D − 1

4
/T )χ . (A.2.6)

Now the supersymmetry transformations are modified at O(α′) by the presence of Σ 6= 0
and take the form (4.6.7).

A.3 Supersymmetry breaking in the presence of a

gaugino condensate

Here, we discuss how the supersymmetry breaking equations alter if one allows a gaugino
condensate. The supersymmetry variations of the gravitino (2.2.6a) and dilatino (2.2.6b)
get changed into

δψI =
(
∇I −

1

4
/HI +

1

16
/ΣΓI

)
ε , (A.3.1a)

δλ =
(
/∂φ − 1

2
/H − 1

8
/Σ
)
ε , (A.3.1b)

while the variation of the gaugino (2.2.6c) remains unchanged. For the external component
of (A.3.1a) one obtains then

δψµ =
1

2
eAγ̂µζ ⊗

(
/∂Aη+ + e−Aw0η

∗
+ −

1

8
/Ση+

)
+ c.c. . (A.3.2)
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This shows that after a gaugino condensate is added the condition δψµ = 0 no longer
forces the cosmological constant to be zero or the warp factor to be constant. Allowing for
additional violation of δψµ = 0 yields

/Ση+ = 8 /∂Aη+ − 16 ciγ
iη+ + 8 e−Aw0η

∗
+ − 16hη∗+ = 8 /∂Aη+ − 16 ciγ

iη+ + 8 e−Aσ0η
∗
+ ,

(A.3.3)
where h and ci measure the SUSY-breaking and σ0 = w0 − 2eAh. ci is restricted by
P j
i cj = 0. Below, we will impose that ci = 0, so that δψµ ∝ ζ ⊗ η∗+ + c.c., which is a

natural assumption if we want to interpret the SUSY-breaking in N = 1 four-dimensional
terms.

The internal component of the gravitino variation and the dilatino variation read

δψi = ζ ⊗
(
∇i −

1

4
/H i +

1

16
/ΣΓi

)
η+ + c.c , (A.3.4a)

δλ = ζ ⊗
(
/∂φ − 1

2
/H − 1

8
/Σ
)
η+ + c.c , (A.3.4b)

which can be decomposed in analogy with (4.2.12) as(
∇i −

1

4
/H i +

1

16
/ΣΓi

)
η+ = i p̃iη+ + q̃ijγ

jη∗+ , (A.3.5a)(
/∂φ − 1

2
/H − 1

8
/Σ
)
η+ = ũiγ

iη+ + r̃η∗+ , (A.3.5b)

where p̃i is real and q̃ij and ũi are restricted by the projector conditions P̄ k
j q̃ik = P k

i ũk = 0.
Hence, the violation of δψi = δλ = 0 can be expressed by the parameters p̃i, q̃ij, ũi and r̃.
The exterior derivatives of the SU(3) structure tensors J and Ω read then

e−2A+2φd
(
e2A−2φJ ∧ J

)
= 4 Re (v − ũ) ∧ J ∧ J − 8 Re (s̃∗ ∧ Ω) , (A.3.6a)

e−3A+2φd
(
e3A−2φΩ

)
= (2 i p̃ − 2u + 5 c) ∧ Ω

−
(
r̃ + e−Aw0 − 2h

)
J ∧ J + 8 i s̃ ∧ J , (A.3.6b)

e−4A+2φd
(
e4A−2φJ

)
− ∗T = Im

([
2 r̃∗ + 3 e−Aw̄0 − 6h∗

]
Ω
)

+

Re (14 c − 4 ũ′) ∧ J − 2 Im
(
t̃∗n ∧ ιnΩ

)
. (A.3.6c)

Here we used s̃ = 1
2
q̃ijdy

i ∧ dyj, t̃j = q̃i
jdyi, ũ = ũidy

i and p̃ = p̃idy
i. After setting

p̃i = q̃ij = ũi = ci = r̃ = h = 0 one obtains (4.6.17) and (4.6.18).

As in the gaugino-less case the parameters p̃i, q̃ij, ũi, ci, r̃, and h get severely restricted
by our SUSY-breaking ansatz. First, we impose c = 0, for the reason discussed above.
Then, by imposing (4.6.17a) and (4.6.18) one obtains ũ = 0, s̃2,0 = 0, r̃ − 3h = gijqij, and
q̃2,0 = 0. Furthermore, from (4.2.3) one gets p̃ = 0. Hence, the remaining SUSY-breaking
condition is

e−3A+2φd
(
e3A−2φΩ

)
= −

(
r̃ + e−Aσ0

)
J ∧ J + 8 i s̃∧ J = −r̂J ∧ J + 8 i s̃∧ J , (A.3.7)
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which is of the same form as (4.2.19). Thus, s̃ = − i
6
r̂J+sP and the comparison to (4.6.24)

gives

r̂ = 3W1 , , sP = − i
8
W2 . (A.3.8)

A.4 The scalar curvature of G2 structure manifolds

In this section we would like to show how to obtain (5.1.3) from the results of [210]. This
appendix is in no way self contained, and the reader should consult [210] for more details.
We start with equation (4.27) of [210], which reads R = 6φmnp T

mnp, and can be rewritten
as1

R = 6φmnp T
mnp = Aδτ1 +B τ 2

0 + C |τ1|2 +D |τ2|2 + E |τ3|2 . (A.4.1)

The only two quantities not given explicitly in [210] are Tmnp and δτ1. To obtain Tmnp
one has to calculate the covariant derivative of the torison τ using the formulas (4.9) and
(4.19) of [210]

Dτn = dτn + θ m
n ∧ τm − φ mp

n τp ∧ τm (A.4.2)

= (dT m
n ) ∧ ωm + T m

n dωm + θ m
n ∧ τm − φ mp

n τp ∧ τm
= (dT m

n − T p
n θ m

p + T m
p θ p

n ) ∧ ωm − (2φ mq
r T r

n T p
q + φ rq

n T p
q T m

r )ωp ∧ ωm
= (S mp

n − 2φ mq
r T r

n T p
q − φ rq

n T p
q T m

r )ωp ∧ ωm

=
1

2
T mp
n ωp ∧ ωm

and hence

Tmnp = −2Smnp − 4φqpr T
q

m T rn − 2φmqr T
q
p T

r
n . (A.4.3)

From this we obtain for R

R = −12φmnp(Smnp + 2φqpr T
q

m T rn + φmqr T
q
p T

r
n ) (A.4.4)

= −12φmnp Smnp + 36 (T n
n )2 + 12ψmnpq Tmn Tpq − 24Tmn Tmn − 12Tmn Tnm .

For δτ1 we get

δτ1 = − ∗ d ∗ τ1 = −φmnp Smnp − 2ψmnpq Tmn Tpq − 2Tmn(Tmn − Tnm) . (A.4.5)

The torsion classes, defined through

dφ = τ0 ψ + 3 τ1 ∧ φ+ ∗ τ3 , dψ = 4 τ1 ∧ ψ + τ2 ∧ φ , (A.4.6)

1We changed the ε-notation of [210] such that εmnp = φmnp and εmnpq = ψmnpq.
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are given by

τ0 =
1

7
dφyψ =

24

7
T n
n , (A.4.7)

τ1 = − 1

12
dφyφ =

1

12
dψyψ = φmnp Tmn ωp ,

τ2 =
1

2
(dψyφ− ∗ dψ)− 2 τ1yφ = − ∗ dψ + 4 τ1yφ = (−ψmnpq Tmn + 4T pq) ωp ∧ ωq ,

τ3 = ∗dφ− τ0 φ+ 3 τ1yψ =

(
3

7
T q
q φmnp − 3

2
φqnp(T m

q + Tmq )

)
ωm ∧ ωn ∧ ωp .

The squares of these are

τ 2
0 =

576

49
(T n

n )2 , (A.4.8)

|τ1|2 = ψmnpq TmnTpq + Tmn (Tmn − Tnm) ,

|τ2|2 = −12ψmnpqTmnTpq + 24Tmn (Tmn − Tnm) ,

|τ3|2 = −72

7
(T n

n )2 + 36Tmn (Tmn + Tnm) .

Comparing terms containing Smnp, (T n
n )2, ψmnpq Tmn Tpq, T

mn Tmn, and Tmn Tnm, respec-
tively, in (A.4.1) and (A.4.4) one gets equation (4.28) of [210]

R = 12 δτ1 +
21

8
τ 2

0 + 30 |τ1|2 −
1

2
|τ2|2 −

1

2
|τ3|2 . (A.4.9)

Using (4.16) of [210], dφ = ψmnpq τm ∧ ωn ∧ ωp ∧ ωq and dψ = −6τ p ∧ ωp ∧ φ, it is possible
to show that

|dφ|2 = 36
[
2 (T n

n )2 + 2Tmn Tmn + ψmnpq Tmn Tpq
]
, (A.4.10)

|dψ|2 = 36 [2Tmn (Tmn − Tnm) + ψmnpq Tmn Tpq] .

From these expressions we find

|τ2|2 = |dψ|2 − 48 |τ1|2 , (A.4.11)

|τ3|2 = |dφ|2 − 36 |τ1|2 − 7 |τ0|2 ,

leading to the final expression for the scalar curvature

R = 12 δτ1 +
49

8
τ 2

0 + 72 |τ1|2 −
1

2
|dφ|2 − 1

2
|dψ|2 (A.4.12)

= −∇m (dψyψ)m +
1

2
|dψyψ|2 +

1

8
|dφyψ|2 − 1

2
|dφ|2 − 1

2
|dψ|2 .
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A.5 SUSY constraints

In this section we give the full list of constraints coming from the external SUSY variation
(5.2.3a). In these tables ’Ext’ stands for equation (5.2.3a) and γ[n] denotes n antisym-
metrized gamma matrices. We found the mathematica package GAMMA [251] very useful
for the calculation.

Table A.1: Constraints from δΨµ = 0 coming from ηT+γ[n]Ext+ExtTγ[n]η+.

144e−Aw0Σ0 + (Σ̃4)l1l2l3l4G
l1l2l3l4 = 0

4iµ(Σ̃3)mnp + 12e−Aw0(Σ3)mnp = 12(Σ̃4)l1mnp∂
l1A+ 3(Σ̃3)a1a2[mG

a1a2
np]

2iµ(Σ̃4)mnpq + 6e−Aw0(Σ4)mnpq + 24(Σ̃3)[mnp∂q]A = 3(Σ̃4)l1l2[mnG
l1l2

pq]

6e−Aw0(Σ7)mnpqrst + 35(Σ̃3)[mnpGqrst] = 0

Table A.2: Constraints from δΨµ = 0 coming from ηT+γ[n]Ext-ExtTγ[n]η+.

36e−Aw0(Σ1)m + (Σ̃3)l1l2l3Gl1l2l3m = 0

18(Σ̃3)l1mn∂
l1A+ (Σ̃4)l1l2l3[mG

l1l2l3
n] = 18e−Aw0(Σ2)mn

15(Σ̃4)[mnpq∂r]A+ 5(Σ̃3)l1[mnG
l1
pqr] = 3e−Aw0(Σ5)mnpqr

3e−Aw0(Σ6)mnpqrs + 10(Σ̃4)l1[mnpG
l1
qrs] = 0

Table A.3: Constraints from δΨµ = 0 coming from η†+γ[n]Ext+Ext†γ[n]η+.

144(Σ1)l1∂
l1A+ (Σ4)l1l2l3l4G

l1l2l3l4 = 0

144Σ0∂mA+ (Σ5)ml1l2l3l4G
l1l2l3l4 = 0

144(Σ3)mnl1∂
l1A+ (Σ6)mnl1l2l3l4G

l1l2l3l4 = 12Gmnl1l2(Σ2)l1l2

2e−Aw∗0(Σ̃∗3)mnp − 2e−Aw0(Σ̃3)mnp + 12(Σ2)[mn∂p]A+ 1
36

(Σ7)mnpl1l2l3l4G
l1l2l3l4

= (Σ3)l1l2[mGnp]l1l2

e−Aw0(Σ̃∗4)mnpq + e−Aw∗0(Σ̃4)mnpq + 2(Σ5)l1mnpq∂
l1A+ 1

3
GmnpqΣ0

= 1(Σ4)l1l2[mnG
l1l2

pq]

6(Σ4)[mnpq∂r]A+ (Σ1)[mGnpqr] = (Σ5)l1l2[mnpG
l1l2

qr]

5(Σ6)l1l2[mnpqG
l1l2

rs] = 4(Σ7)l1mnpqrs∂
l1A+ 10(Σ2)[mnGpqrs]

12(Σ6)[mnpqrs∂t]A+ 10(Σ3)[mnpGqrst] = 3(Σ7)l1l2[mnpqrG
l1l2

st]
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Table A.4: Constraints from δΨµ = 0 coming from η†+γ[n]Ext-Ext†γ[n]η+.

µΣ0 = 0
4
3
iµ(Σ1)m = 4(Σ2)l1m∂

l1A+ 1
9
(Σ3)l1l2l3Gl1l2l3m

6iµ(Σ2)mn + 36(Σ1)[m∂n]A+ (Σ4)l1l2l3[mG
l1l2l3

n] = 0

4iµ(Σ3)mnp + 2(Σ1)l1Gl1mnp

= 6e−Aw0(Σ̃∗3)mnp + 6e−Aw∗0(Σ̃3)mnp + 12(Σ4)l1mnp∂
l1A+ (Σ5)l1l2l3[mnG

l1l2l3
p]

9e−Aw0(Σ̃∗4)mnpq + 6iµ(Σ4)mnpq + 72(Σ3)[mnp∂q]A+ 2(Σ6)l1l2l3[mnpG
l1l2l3

q]

= 9e−Aw∗0(Σ̃4)mnpq + 12(Σ2)l1[mG
l1
npq]

12iµ(Σ5)mnpqr + 60(Σ3)l1[mnG
l1
pqr]

= 36(Σ6)l1mnpqr∂
l1A+ 5(Σ7)l1l2l3[mnpqG

l1l2l3
r]

iµ(Σ6)mnpqrs + 18(Σ5)[mnpqr∂s]A = 10(Σ4)l1[mnpG
l1
qrs]

2iµ(Σ7)mnpqrst + 35(Σ5)l1[mnpqG
l1
rst] = 0

A.6 SUSY conditions for eleven-dimensional SUGRA

without boundary

As we have mentioned in section 5.2 there are two ways to decompose the Majorana-spinor
ε of eleven-dimensional supergravity such that one obtains N = 1 SUSY compactifications
on SU(3) structure manifolds. One of these possibilities was associated to the case in
which boundaries are present, and which gives rise to the heterotic theory after dimensional
reduction. The other option has to be used if one wants to reach type IIA string theory
in ten dimensions, since only for this theory it is possible to have two internal spinors
of opposite chirality. We discuss in this appendix what results can be obtained for the
supersymmetry conditions in this case, and find agreement with [208], where the same
problem has been studied. Moreover, we give a classification in terms of torsion classes
and compare to the type IIA results after dimensional reduction, which has, up to our
knowledge, not been done in the literature so far.

Spinor decomposition

We begin by decomposing the Majorana spinor ε in an appropriate way in order to give a
non-chiral theory in the ten-dimensional limit. Along the lines of [208] the decomposition
is given by

ε = χ+ ⊗ ξ + χ− ⊗ ξ∗ = χ+ ⊗ (a′ η′+ + b′ η′−) + c. c. , (A.6.1)

with a′ 6= b′. The two spinors that appear in the reduction to type IIA string theory would
then be

η1 = a′ η′+, η2 = b′ η′− , (A.6.2)
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where η1 has positive chirality and η2 has negative chirality, respectively. The two spinors
η′+ and η′− can be used to define an invariant one-form v = vmdxm and a seven-dimensional
Majorana spinor η′ of unit length

η′+ =
1√
2
e
Z′
2 (1 + vmγ

m) η′ , (η′+)∗ = η′− =
1√
2
e
Z′
2 (1− vmγm) η′ . (A.6.3)

The scalars a′ = ei α
′ |a′| and b′ = ei β

′|b′|, appearing in (A.6.1) are in general complex
functions of the internal space and could be used to absorb the factors of eZ

′/2 appearing
in the definition of η′ such that also η′+ is of unit length ‖η′+‖2 = 1. On the other hand,by
defining η+ = a′ η′+ and b = b′/(a′)∗ one obtains a different form of (A.6.1)

ε = χ+ ⊗ ξ + χ− ⊗ ξ∗ = χ+ ⊗ (η+ + b η−) + c. c. , (A.6.4)

in which the spinor η+ appears that we used to construct the SU(3) structure forms in
section 3.3 and chapter 5. The Majorana spinor η′ is then related to the G2 structure
spinor η of section 3.3 by

η′ = (cosα′ − i sinα′ vmγ
m) η . (A.6.5)

This is consistent with the fact that one can express η+ in terms of the function eZ , the
form v, and the spinor η

η+ =
|a′|√

2
e(Z

′
2

+i α′)(1 + vmγ
m) η′ =

1√
2
e
Z
2 (1 + vmγ

m) η . (A.6.6)

Demanding ‖η′+‖2 = 1 leads then to ‖η+‖2 = eZ = |a′|2 as in section 3.3.

Then, there are two different sets of p-forms that one can define. On the one hand,
there are the forms (3.3.11) constructed from η+. On the other hand, one can build p-forms
in the same way with the spinor ξ

Ξp = ξ† γn1 ... np ξ dxn1 ... np , Ξ̃p = ξT γn1 ... np ξ dxn1 ... np . (A.6.7)

Due to (A.6.4) one can connect the Σ-forms to the Ξ-forms by

Ξp = Σp + (−1)p |b|2 Σ∗p + b∗ Σ̃p + (−1)p b Σ̃∗p , (A.6.8)

Ξ̃p = Σ̃p + (−1)p b2 Σ̃∗p + bΣp + (−1)p bΣ∗p .

Inverting these equations one finds

Σp =
1

(1− |b|2)2

{
Ξp + (−1)p |b|2 Ξ∗p − b∗Ξ̃p − (−1)p b Ξ̃∗p

}
, (A.6.9)

Σ̃p =
1

(1− |b|2)2

{
Ξ̃p + (−1)p b2 Ξ̃∗p − bΞp − (−1)p b Ξ∗p

}
,

which will be useful later when we examine the SUSY conditions. However, one should
note that (A.6.9) is only valid for |b|2 6= 1. Therefore, one has to do a case-by-case analysis.
We will start by considering the case |b|2 = 1.
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The case |b|2 = 1

For b being a pure phase, b = eiβ, the forms Ξ1, Ξ2, Ξ5, Ξ6, Ξ̃1, Ξ̃2, Ξ̃5, and Ξ̃6 are zero, due
to the fact that the Σp’s are purely real or purely imaginary, respectively. Furthermore,
each of the remaining Ξp’s is related to Ξ̃p

Ξ0 = e−iβ Ξ̃0 = 2 Σ0 , (A.6.10)

Ξ3 = e−iβ Ξ̃3 = 2 Σ3 + 2 i Im(e−iβ Σ̃3) ,

Ξ4 = e−iβ Ξ̃4 = 2 Σ4 + 2 Re(e−iβ Σ̃4) ,

Ξ7 = e−iβ Ξ̃7 = 2 Σ7 .

This reminds one of the case of G2 structure, where also only the three-form, the four-form,
and the volume-form are non-zero, as is discussed in section 3.3. We will now show that
for a supersymmetric setting the case |b|2 = 1 reduces to a G2 structure.

Supersymmetry conditions

Plugging the compactification ansatz (2.4.1) – (2.4.3) into the SUSY variation of the grav-
itino (2.1.4) gives together with the spinor decomposition (A.6.1) the two equations

δΨµ = 0 ⇒ Ext = e−Aw0 ξ
∗ +

(
∂�A+

1

6
G�+

iµ

3

)
ξ = 0 , (A.6.11a)

δΨm = 0 ⇒ ∇m ξ =
1

288
(iµγm + 8Gmpqrγ

pqr −Gnpqrγ
npqr

m ) ξ , (A.6.11b)

where w0 is related to the AdS4 radius by R = 1/|w0| and comes from the AdS4 Killing
spinor equation ∇µχ+ = 1/2 w̄0 γ̂µ χ−, while w0 = 0 for Minkowski space time. The first of
these conditions will yield algebraic constraints on the flux, while the internal components
will give differential constraints on Ξp and Ξ̃p.

Combining the differential constraint on Ξ0 and Ξ̃0 gives

dΞ0 = 0 = d(e−iβ Ξ̃0) = e−iβ (−i dβ Ξ̃0 + dΞ̃0) = −i dβ Ξ0 − 2 dAΞ0 . (A.6.12)

Since both, dβ and dA are real functions, respectively, this can only be true if dβ = 0 as
well as dA = 0. But for constant β one can make a gauge transformation to bring ε to the
form

ε = χ+ ⊗ e
iβ
2 (η+ + η−) + c. c. = (e

iβ
2 χ+ + e−

iβ
2 χ−)⊗ η = χ̃⊗ η , (A.6.13)

where χ̃ as well as η are Majorana spinors. So we see that by SUSY the SU(3) ansatz
(A.6.1) with |a′|2 = |b′|2 (which is equivalent to |b|2 = 1) leads to the G2 structure ansatz
(A.6.13) and is therefore excluded from an SU(3) structure analysis. We hence turn to the
case |b| 6= 1.
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The case |b| 6= 1

In order to analyze the case |b| 6= 1, we use again the compactification ansatz (2.4.1) –
(2.4.3). The spinor decomposition A.6.4 leads again to the SUSY conditions (A.6.11a) and
(A.6.11b). But now Ξp and Ξ̃p do not take a form as easy as in the previous section, which
makes the analysis much more complicated.

For |b|2 6= 1 we can use equation (A.6.9) in order to express Σp and Σ̃p in terms of Ξp

and Ξ̃p, respectively. This is an advantage, since we are in the end not interested in the
exterior derivatives of Ξp, which we can get easily from (A.6.11b), but in the derivatives
of the SU(3) structure forms in seven dimensions v, J , and Ω which are given in terms of
Σ’s by

v = e−Z Σ1 , J = i e−ZΣ2 , Ω = i e−ZΣ̃3 . (A.6.14)

Again, v is perpendicular to J and Ω, and thus M looks locally like the direct product of
an SU(3) structure manifold and a line, while globally v gives the direction of the S1 that
shrinks to zero by going from M-theory to type IIA string theory.

Constraints for the flux

Before we consider the differential constraints from (A.6.11b) in more detail, we examine
which general conditions on the flux can be gained from (A.6.11a). Acting on this equation
with ξ† and ξT times n antisymmetrized gamma matrices yields the following restrictions
on G11

dA =
1

12

1− |b|2

1 + |b|2
Gy(v ∧ J2) (A.6.15)

=
1

2
(1− |b|2) e−A Re

(w0

b

)
v +

1

12
(1− |b|2)GyIm

(Ω

b

)
,

e−A Im
(w0

b

)
= − 1 + |b|2

6 |b|2
µ (A.6.16)

= − 1

6

1 + |b|2

1− |b|2
Gy
(
v ∧ Re

(Ω

b

))
,

HyJ =
1

2
(1 + |b|2)FyRe

(Ω

b

)
, (A.6.17)

where we used G = F − v ∧H. Using the decomposition (5.2.6)

F = A1 J ∧ J + A2 ∧ J + B ∧ Ω + B ∧ Ω , (A.6.18)

H = C1 Ω + C1 Ω + C2 ∧ J + C3 ,
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one finds

dAyv = (1− |b|2)
[1

2
e−A Re

(w0

b

)
+

2

3
Im
(C1

b

)]
(A.6.19)

=
1− |b|2

1 + |b|2
A1 ,

dA⊥ = − 2

3
(1− |b|2) Im

(B
b

)
(A.6.20)

= − 1

3

1− |b|2

1 + |b|2
C2yJ ,

e−A Im
(w0

b

)
= − 1 + |b|2

6 |b|2
µ (A.6.21)

=
4

3

1 + |b|2

1− |b|2
Re
(C1

b

)
.

So we see that dA and w0/b are fixed by the flux.

Differential constraints

The differential constraints for v, J , and Ω can be obtained in the following way. First,
calculate the exterior derivatives of Ξp and Ξ̃p and use (A.6.8) to transform them into
expressions depending on v, J , and Ω. Then, use (A.6.9) to express the exterior derivatives
of Σp or Σ̃p in terms of dΞp and dΞ̃p. Since this is quite laborious, we will only give the
main results. A special case is given by the derivative of Σ0 = eZ . It can be obtained
either by starting from Ξ0 or from Ξ̃0, and gives thus a consistency condition which reads

dZ = −d ln(1 + |b|2) + dA = − d ln b − 4 dA + (1− |b|2) e−A
w0

b

Σ1

Σ0

. (A.6.22)

Decomposing this equation into real and imaginary part gives one equation for the absolute
value and for the argument of b, respectively

d|b|2 = 2 (1 + |b|2) |b|2 e−A Re
(w0

b

)
v − 6 |b|2 1 + |b|2

1− |b|2
dA , (A.6.23)

dβ = − (1− |b|2) e−A Im
(w0

b

)
v .

These equations can be used to eliminate d|b|2 and dβ in the exterior derivatives of SU(3)
structure forms. After a tedious calculation one finds

dv = − 2
1 + 4|b|2 + |b|4

(1− |b|2)2
dA ∧ v , (A.6.24)
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dJ = −
[
4

1 + |b|2 + |b|4

(1− |b|2)2
dA + 2

|b|2

1− |b|2
e−A Re

(w0

b

)
v
]
∧ J (A.6.25)

− 3 |b|2 1 + |b|2

1− |b|2
e−A Re

(w0

b

)
Re
(Ω

b

)
− 3 |b|2 e−A Im

(w0

b

)
Im
(Ω

b

)
,

+
1 + |b|2

1− |b|2
∗G

dΩ

b
= −

[
3 dA + 2 i e−A Im

(w0

b

)
v + 6

|b|2

1− |b|2
e−A Re

(w0

b

)
v
]
∧ Re

(Ω
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−
[
3 i

(1 + |b|2)2

(1− |b|2)2
dA + 2 |b|2 2− |b|2

1 + |b|2
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(w0

b
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v
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∧ Im
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(A.6.26)

+
[
e−A Im

(w0

b

)
− i

1 + |b|2

1− |b|2
e−A Re

(w0

b

)]
J2

+ 12
1 + |b|2

(1− |b|2)2
dA ∧ v ∧ J

+
2

1− |b|2
v ∧ ∗G − 2 i

1− |b|2
G ,

dJ2 = −
[
2dA + 4
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1− |b|2
e−A Re

(w0
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∧ J2 (A.6.27)

+ 24 |b|2 1 + |b|2

(1− |b|2)2
dA ∧ v ∧ Im

(Ω

b

)
− 2

1 + |b|2

1− |b|2
v ∧G .

A further simplification can be obtained by demanding that the exterior derivative of
(A.6.23) has to be zero. Together with the fact that w0 is a constant this gives a consistency
condition on d|b|2 that can only be satisfied when dA⊥ = 0. This implies that Im(B/b) = 0,
but since B is a (1, 0)-form this can only be true for B = 0. Analogously one finds that
C2 = 0.

Torsion classes

One can also transform the constraints given in the last two sections into constraints on
the torsion classes of the manifold (3.3.17)

dv = RJ + V̄1yΩ + V1y Ω̄ + v ∧W0 + T1 , (A.6.28)

dJ = − 3

2
Im(W̄1 Ω) + W4 ∧ J + W3 + v ∧ (

2

3
ReE J + V̄2yΩ + V2y Ω̄ + T2) ,

dΩ = W1 J ∧ J + W2 ∧ J + W̄5 ∧ Ω + v ∧ (E Ω − 4V2 ∧ J + S) .
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For the scalar torison classes we find

R = 0 ,

Re
W1

b
= e−A Im

w0

b
,

Im
W1

b
= − 2

1

1− |b|2
A1 −

1 + |b|2

1− |b|2
e−A Re

w0

b
,

ReE = − 3
1 + |b|4

1− |b|4
A1 − 3

|b|2

1− |b|2
e−A Re

w0

b
, (A.6.29)

ImE = |b|2 1− 2|b|2

1 + |b|2
e−A Im

w0

b
,

Re
C1

b
=

3

4

1− |b|2

1 + |b|2
e−A Im

w0

b
,

Im
C1

b
=

3

2

1

1 + |b|2
A1 −

3

4
e−A Im

w0

b
,

while the vector torsion classes all have to vanish, due to B = C2 = 0

V1 = 0 ,

V2 = i
1 + |b|2

1− |b|2
B = 0 ,

W0 =
4

3

1 + 4|b|2 + |b|4

1− |b|2
Im
B

b
= 0 , (A.6.30)

W4 =
2

3
(1− |b|2) Im

B

b
= 0 ,

W5 = − i (1− |b|2)
B

b
= 0 ,

B = 0 ,

C2 = 0 .

The remaining torsion classes have to obey

W2 = − 2 i b

1− |b|2
A2 = − 2 i b

1 + |b|2
T2 (A.6.31)

S = − 2 b

1− |b|2
(1− |b|2

1 + |b|2
W3 − i C3

)
=

4 i b

1− |b|2
C2,1

3 ,

T1 = 0 .

Limits

We see that all scalar torsion classes depend on the (2, 2) component of G, A1, and the AdS
parameter w0. Setting w0 = 0, i.e. considering a compactification to warped Minkowski
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space time, allows only for non-zero Im(W1/b), ReE, and Re(C1/b), which depend all only
on A1. Reducing the theory now to type IIA supergravity sets the torsion classes governing
the fibration over v to zero. This means that E = V2 = T2 = S = 0. So we see that for a
supersymmetric reduction to type II SUGRA on Minkowski spacetime all flux components
and all torsion classes have to be zero. This is in accordance with [160]. There, it was
shown that for type IIA compactifications to Minkowski space fluxes can only be present
if b = 0 or if |b| = 1, which is excluded by our parametrization.

On the other hand, allowing for an AdS space-time a supersymmetric reduction to ten
dimensions sets Im(w0/b) = 0 and relates A1 and Re(w0/b). This allows only for flux of
the form G = F 2,2 + v ∧ (H3,0 + H0,3) and a non-vanishing torsion class W1, which all
depend only on e−ARe(w0/b).
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[183] G. Curio, A. Klemm, D. Lüst, and S. Theisen, “On the vacuum structure of type II string
compactifications on Calabi-Yau spaces with H fluxes,” Nucl.Phys. B609 (2001) 3–45,
arXiv:hep-th/0012213 [hep-th].

[184] M. Haack and J. Louis, “M theory compactified on Calabi-Yau fourfolds with background
flux,” Phys.Lett. B507 (2001) 296–304, arXiv:hep-th/0103068 [hep-th].

[185] K. Becker and M. Becker, “Supersymmetry breaking, M theory and fluxes,” JHEP 0107
(2001) 038, arXiv:hep-th/0107044 [hep-th].

[186] J. Louis and A. Micu, “Heterotic string theory with background fluxes,” Nucl.Phys. B626
(2002) 26–52, arXiv:hep-th/0110187 [hep-th].

[187] J. Louis and A. Micu, “Type 2 theories compactified on Calabi-Yau threefolds in the
presence of background fluxes,” Nucl.Phys. B635 (2002) 395–431,
arXiv:hep-th/0202168 [hep-th].

[188] K. Becker and K. Dasgupta, “Heterotic strings with torsion,” JHEP 0211 (2002) 006,
arXiv:hep-th/0209077 [hep-th].

[189] K. Becker, M. Becker, J.-X. Fu, L.-S. Tseng, and S.-T. Yau, “Anomaly cancellation and
smooth non-Kahler solutions in heterotic string theory,” Nucl.Phys. B751 (2006)
108–128, arXiv:hep-th/0604137 [hep-th].

[190] K. Becker, C. Bertinato, Y.-C. Chung, and G. Guo, “Supersymmetry breaking, heterotic
strings and fluxes,” Nucl.Phys. B823 (2009) 428–447, arXiv:0904.2932 [hep-th].

[191] R. Harvey and J. Lawson, H.B., “Calibrated geometries,” Acta Math. 148 (1982) 47.

[192] J. Gutowski and G. Papadopoulos, “AdS calibrations,” Phys.Lett. B462 (1999) 81–88,
arXiv:hep-th/9902034 [hep-th].

[193] J. Gutowski, G. Papadopoulos, and P. Townsend, “Supersymmetry and generalized
calibrations,” Phys.Rev. D60 (1999) 106006, arXiv:hep-th/9905156 [hep-th].

[194] J. Evslin and L. Martucci, “D-brane networks in flux vacua, generalized cycles and
calibrations,” JHEP 0707 (2007) 040, arXiv:hep-th/0703129 [HEP-TH].

[195] P. Koerber and L. Martucci, “Deformations of calibrated D-branes in flux generalized
complex manifolds,” JHEP 0612 (2006) 062, arXiv:hep-th/0610044 [hep-th].

[196] L. Martucci and P. Smyth, “Supersymmetric D-branes and calibrations on general N=1
backgrounds,” JHEP 0511 (2005) 048, arXiv:hep-th/0507099 [hep-th].
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