[go: nahoru, domu]

Jump to content

Antimicrobial properties of copper

From Wikipedia, the free encyclopedia

This is an old revision of this page, as edited by 2604:2000:b0cc:a400:2453:a584:fefd:a4d (talk) at 03:09, 7 July 2020 (Typo). The present address (URL) is a permanent link to this revision, which may differ significantly from the current revision.

Sry I changed on accident bronzes, cupronickel, copper-nickel-zinc, and others) are natural antimicrobial materials. Ancient civilizations exploited the antimicrobial properties of copper long before the concept of microbes became understood in the nineteenth century.[1][2][3] In addition to several copper medicinal preparations, it was also observed centuries ago that water contained in copper vessels or transported in copper conveyance systems was of better quality (i.e., no or little visible slime or biofouling formation) than water contained or transported in other materials.[citation needed]

The antimicrobial properties of copper are still under active investigation. Molecular mechanisms responsible for the antibacterial action of copper have been a subject of intensive research. Scientists are also actively demonstrating the intrinsic efficacy of copper alloy "touch surfaces" to destroy a wide range of microorganisms that threaten public health.

Mechanisms of action

In 1852 Victor Burq discovered those working with copper had far fewer deaths to cholera than anyone else, and did extensive research confirming this. In 1867 he presented his findings to the French Academies of Science and Medicine, informing them that putting copper on the skin was effective at preventing someone from getting cholera.[4]

The oligodynamic effect was discovered in 1893 as a toxic effect of metal ions on living cells, algae, molds, spores, fungi, viruses, prokaryotic, and eukaryotic microorganisms, even in relatively low concentrations.[5] This antimicrobial effect is shown by ions of copper as well as mercury, silver, iron, lead, zinc, bismuth, gold, and aluminium.

In 1973, researchers at Battelle Columbus Laboratories[6] conducted a comprehensive literature, technology, and patent search that traced the history of understanding the "bacteriostatic and sanitizing properties of copper and copper alloy surfaces", which demonstrated that copper, in very small quantities, has the power to control a wide range of molds, fungi, algae, and harmful microbes. Of the 312 citations mentioned in the review across the time period 1892–1973, the observations below are noteworthy:

A subsequent paper[13] probed some of copper's antimicrobial mechanisms and cited no fewer than 120 investigations into the efficacy of copper's action on microbes. The authors noted that the antimicrobial mechanisms are very complex and take place in many ways, both inside cells and in the interstitial spaces between cells.

Examples of some of the molecular mechanisms noted by various researchers include the following:

  • The 3-dimensional structure of proteins can be altered by copper, so that the proteins can no longer perform their normal functions. The result is inactivation of bacteria or viruses.[13]
  • Copper complexes form radicals that inactivate viruses.[14][15]
  • Copper may disrupt enzyme structures, and functions by binding to sulfur- or carboxylate-containing groups and amino groups of proteins.[16]
  • Copper may interfere with other essential elements, such as zinc and iron.
  • Copper facilitates deleterious activity in superoxide radicals. Repeated redox reactions on site-specific macromolecules generate HO• radicals, thereby causing "multiple hit damage" at target sites.[17][18]
  • Copper can interact with lipids, causing their peroxidation and opening holes in the cell membranes, thereby compromising the integrity of cells.[19] This can cause leakage of essential solutes, which in turn, can have a desiccating effect.
  • Copper damages the respiratory chain in Escherichia coli cells.[20] and is associated with impaired cellular metabolism.[21]
  • Faster corrosion correlates with faster inactivation of microorganisms. This may be due to increased availability of cupric ion, Cu2+, which is believed to be responsible for the antimicrobial action.[22]
  • In inactivation experiments on the flu strain, H1N1, which is nearly identical to the H5N1 avian strain and the 2009 H1N1 (swine flu) strain, researchers hypothesized that copper's antimicrobial action probably attacks the overall structure of the virus and therefore has a broad-spectrum effect.[23]
  • Microbes require copper-containing enzymes to drive certain vital chemical reactions. Excess copper, however, can affect proteins and enzymes in microbes, thereby inhibiting their activities. Researchers believe that excess copper has the potential to disrupt cell function both inside cells and in the interstitial spaces between cells, probably acting on the outer envelope of cells.[24]

Currently, researchers believe that the most important antimicrobial mechanisms for copper are as follows:

  • Elevated copper levels inside a cell causes oxidative stress and the generation of hydrogen peroxide. Under these conditions, copper participates in the so-called Fenton-type reaction — a chemical reaction causing oxidative damage to cells.
  • Excess copper causes a decline in the membrane integrity of microbes, leading to leakage of specific essential cell nutrients, such as potassium and glutamate. This leads to desiccation and subsequent cell death.
  • While copper is needed for many protein functions, in an excess situation (as on a copper alloy surface), copper binds to proteins that do not require copper for their function. This "inappropriate" binding leads to loss-of-function of the protein, and/or breakdown of the protein into nonfunctional portions.

These potential mechanisms, as well as others, are the subject of continuing study by academic research laboratories around the world.

I’m also gay

See also

References

  1. ^ Dollwet, H. H. A. and Sorenson, J. R. J. "Historic uses of copper compounds in medicine", Trace Elements in Medicine, Vol. 2, No. 2, 1985, pp. 80–87.
  2. ^ "Medical Uses of Copper in Antiquity"
  3. ^ "A Brief History of The Health Support Uses of Copper"
  4. ^ Love, Shayla (2020-03-18). "Copper Destroys Viruses and Bacteria. Why Isn't It Everywhere?". Vice. Retrieved 2020-03-18.
  5. ^ Nägeli, Karl Wilhelm (1893), "Über oligodynamische Erscheinungen in lebenden Zellen", Neue Denkschriften der Allgemeinen Schweizerischen Gesellschaft für die Gesamte Naturwissenschaft, XXXIII (1)
  6. ^ Dick, R. J.; Wray, J. A.; Johnston, H. N. (1973), "A Literature and Technology Search on the Bacteriostatic and Sanitizing Properties of Copper and Copper Alloy Surfaces", Phase 1 Final Report, INCRA Project No. 212, June 29, 1973, contracted to Battelle Columbus Laboratories, Columbus, Ohio
  7. ^ Chang, S. M. and Tien, M. (1969), Effects of Heavy Metal Ions on the Growth of Microorganisms, Bulletin of the Institute of Chemistry, Academia Sinica, Vol. 16, pp. 29–39.
  8. ^ Avakyan Z. A.; Rabotnova I. L. (1966). "Determination of the Copper Concentration Toxic to Micro-Organisms". Microbiology. 35: 682–687.
  9. ^ Feldt, A. (no year), Tubercle Bacillus and Copper, Munchener medizinische Wochenschrift, Vol. 61, pp. 1455–1456
  10. ^ Johnson, FH; Carver, CM; Harryman, WK (1942). "Luminous Bacterial Auxanograms in Relation to Heavy Metals and Narcotics, Self-Photographed in Color". Journal of Bacteriology. 44 (6): 703–15. doi:10.1128/jb.44.6.703-715.1942. PMC 374804. PMID 16560610.
  11. ^ Oĭvin, V. and Zolotukhina, T. (1939), Action Exerted From a Distance by Metals on Infusoria, Bulletin of Experimental Biology and Medicine USSR, Vol. 4, pp. 39–40.
  12. ^ Colobert, L (1962). "Sensitivity of poliomyelitis virus to catalytic systems generating free hydroxyl radicals". Revue de Pathologie Generale et de Physiologie Clinique. 62: 551–5. PMID 14041393.
  13. ^ a b Thurman R. B.; Gerba C. P. (1989). "The Molecular Mechanisms of Copper and Silver Ion Disinfection of Bacteria and Viruses". CRC Critical Reviews in Environmental Control. 18 (4): 295–315. doi:10.1080/10643388909388351.
  14. ^ Kuwahara, June; Suzuki, Tadashi; Funakoshi, Kyoko; Sugiura, Yukio (1986). "Photosensitive DNA cleavage and phage inactivation by copper(II)-camptothecin". Biochemistry. 25 (6): 1216–21. doi:10.1021/bi00354a004. PMID 3008823.
  15. ^ Vasudevachari, M; Antony, A (1982). "Inhibition of avian myeloblastosis virus reverse transcriptase and virus inactivation by metal complexes of isonicotinic acid hydrazide". Antiviral Research. 2 (5): 291–300. doi:10.1016/0166-3542(82)90052-3. PMID 6185090.
  16. ^ Sterritt, RM; Lester, JN (1980). "Interactions of heavy metals with bacteria". The Science of the Total Environment. 14 (1): 5–17. doi:10.1016/0048-9697(80)90122-9. PMID 6988964.
  17. ^ Samuni, A; Aronovitch, J; Godinger, D; Chevion, M; Czapski, G (1983). "On the cytotoxicity of vitamin C and metal ions. A site-specific Fenton mechanism". European Journal of Biochemistry / FEBS. 137 (1–2): 119–24. doi:10.1111/j.1432-1033.1983.tb07804.x. PMID 6317379.
  18. ^ Samuni, A.; Chevion, M.; Czapski, G. (1984). "Roles of Copper and Superoxide Anion Radicals in the Radiation-Induced Inactivation of T7 Bacteriophage". Radiat. Res. 99 (3): 562–572. doi:10.2307/3576330. JSTOR 3576330. PMID 6473714.
  19. ^ Manzl, C; Enrich, J; Ebner, H; Dallinger, R; Krumschnabel, G (2004). "Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes". Toxicology. 196 (1–2): 57–64. doi:10.1016/j.tox.2003.11.001. PMID 15036756.
  20. ^ Domek, MJ; Lechevallier, MW; Cameron, SC; McFeters, GA (1984). "Evidence for the role of copper in the injury process of coliform bacteria in drinking water" (PDF). Applied and Environmental Microbiology. 48 (2): 289–93. doi:10.1128/aem.48.2.289-293.1984. PMC 241505. PMID 6385846.
  21. ^ Domek, MJ; Robbins, JE; Anderson, ME; McFeters, GA (1987). "Metabolism of Escherichia coli injured by copper". Canadian Journal of Microbiology. 33 (1): 57–62. doi:10.1139/m87-010. PMID 3552166.
  22. ^ Michels, H. T.; Wilks, S. A.; Noyce, J. O.; Keevil, C. W. (2005), Copper Alloys for Human Infectious Disease Control Archived December 11, 2010, at the Wayback Machine, Presented at Materials Science and Technology Conference, September 25–28, 2005, Pittsburgh, PA; Copper for the 21st Century Symposium
  23. ^ Michels, Harold T. (October 2006), "Anti-Microbial Characteristics of Copper", ASTM Standardization News, 34 (10): 28–31, retrieved 2014-02-03
  24. ^ BioHealth Partnership Publication (2007): Lowering Infection Rates in Hospitals and Healthcare Facilities - The Role of Copper Alloys in Battling Infectious Organisms, Edition 1, March.