[go: nahoru, domu]

Jump to content

Equation: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
Jumbuck (talk | contribs)
m robot Adding: is:Jafna
mNo edit summary
(One intermediate revision by one other user not shown)
Line 2: Line 2:


An '''equation''' is a [[mathematics|mathematical]] [[Proposition|statement]], in [[table of mathematical symbols|symbols]], that two things are [[equality (mathematics)|the same]] (or equivalent). Equations are written with an [[equal sign]], as in
An '''equation''' is a [[mathematics|mathematical]] [[Proposition|statement]], in [[table of mathematical symbols|symbols]], that two things are [[equality (mathematics)|the same]] (or equivalent). Equations are written with an [[equal sign]], as in
:<math>2 + 3 = 5</math>.
:<math>2 + 3 = 5</math>


The equation above is an example of an [[equality (mathematics)|equality]]: a [[proposition]] which states that two [[constant]]s are equal. Equalities may be true or false.
The equation above is an example of an [[equality (mathematics)|equality]]: a [[proposition]] which states that two [[constant]]s are equal. Equalities may be true or false.


Equations are often used to state the equality of two [[expression (mathematics)|expressions]] containing one or more [[variable]]s. Taking the [[Real_number | Real numbers ]] we can say, for example, that given any value of <math>x</math>, it is always true that
Equations are often used to state the equality of two [[expression (mathematics)|expressions]] containing one or more [[variable]]s. In the [[Real_number |reals]] we can say, for example, that for any given value of <math>x</math> it is true that
:<math>x - x = 0</math>.
:<math>x (x-1) = x^2-x</math>


The equation above is an example of an [[identity (mathematics)|identity]]: an equation that is [[true (logic)|true]] regardless of the values of any variables that appear within them. The following equation is not an identity:
The equation above is an example of an [[identity (mathematics)|identity]]; an equation that is [[true (logic)|true]] regardless of the values of any variables that appear in it. The following equation is not an identity:
:<math>x + 1 = 2</math>.
:<math>x^2-x = 0</math>


The above equation is false for an infinite number of values of <math>x</math>, and true for only one; the unique [[root (mathematics)|root]] of the equation, '''<math>x=1</math>'''. Therefore, if the equation is known to be true, it carries information about the value of <math>x</math>. In general, the values of the variables for which the equation is true are called ''solutions''. To [[equation solving|solve an equation]] means to find its solutions.
It is false for an infinite number of values of <math>x</math>, and true for only two, the [[root (mathematics)|roots]] or '''solutions''' of the equation, <math>x=0</math> and <math>x=1</math>. Therefore, if the equation is known to be true, it carries information about the value of <math>x</math>. To [[equation solving|solve an equation]] means to find its solutions.


Many authors reserve the term '''equation''' for an equality which is not an identity. The distinction between the two concepts can be subtle; for example,
Many authors reserve the term '''equation''' for an equality which is not an identity. The distinction between the two concepts can be subtle; for example,
Line 20: Line 20:
is an equation, whose roots are <math>x=0</math> and <math>x=1</math>. Whether a statement is meant to be an identity or an equation, carrying information about its variables can usually be determined from its context.
is an equation, whose roots are <math>x=0</math> and <math>x=1</math>. Whether a statement is meant to be an identity or an equation, carrying information about its variables can usually be determined from its context.


Letters from the beginning of the alphabet like ''a'', ''b'', ''c'', ... are often considered [[constant]]s in the context of the discussion at hand, while letters from end of the alphabet, like ''x'', ''y'', ''z'', are usually considered [[variables]].
Letters from the beginning of the alphabet like ''a'', ''b'', ''c''... often denote [[constant]]s in the context of the discussion at hand, while letters from end of the alphabet, like ''x'', ''y'', ''z''..., are usually reserved for the [[variables]], a convention initiated by [[René Descartes|Descartes]].


==Properties==
==Properties==
Line 55: Line 55:


== External links ==
== External links ==
* [http://www.dessci.com Mathematical Equation Editor]: Create mathematical equations for in Microsoft Word, PowerPoint and Many other applications.
* [http://www.wessa.net/math.wasp Mathematical equation plotter]: Plots 2D mathematical equations, computes integrals, and finds solutions online.
* [http://www.wessa.net/math.wasp Mathematical equation plotter]: Plots 2D mathematical equations, computes integrals, and finds solutions online.
* [http://www.cs.cornell.edu/w8/~andru/relplot Equation plotter]: A web page that can plot general equations, not just functions.
* [http://www.cs.cornell.edu/w8/~andru/relplot Equation plotter]: A web page that can plot general equations, not just functions.

Revision as of 22:14, 3 January 2008

This article is about equations in mathematics. For the chemistry term, see chemical equation.

An equation is a mathematical statement, in symbols, that two things are the same (or equivalent). Equations are written with an equal sign, as in

The equation above is an example of an equality: a proposition which states that two constants are equal. Equalities may be true or false.

Equations are often used to state the equality of two expressions containing one or more variables. In the reals we can say, for example, that for any given value of it is true that

The equation above is an example of an identity; an equation that is true regardless of the values of any variables that appear in it. The following equation is not an identity:

It is false for an infinite number of values of , and true for only two, the roots or solutions of the equation, and . Therefore, if the equation is known to be true, it carries information about the value of . To solve an equation means to find its solutions.

Many authors reserve the term equation for an equality which is not an identity. The distinction between the two concepts can be subtle; for example,

is an identity, while

is an equation, whose roots are and . Whether a statement is meant to be an identity or an equation, carrying information about its variables can usually be determined from its context.

Letters from the beginning of the alphabet like a, b, c... often denote constants in the context of the discussion at hand, while letters from end of the alphabet, like x, y, z..., are usually reserved for the variables, a convention initiated by Descartes.

Properties

If an equation in algebra is known to be true, the following operations may be used to produce another true equation:

  1. Any quantity can be added to both sides.
  2. Any quantity can be subtracted from both sides.
  3. Any quantity can be multiplied to both sides.
  4. Any nonzero quantity can divide both sides.
  5. Generally, any function can be applied to both sides. (However, caution must be exercised to ensure that one does not encounter extraneous solutions.)

The algebraic properties (1-4) imply that equality is a congruence relation for a field; in fact, it is essentially the only one.

The most well known system of numbers which allows all of these operations is the real numbers, which is an example of a field. However, if the equation were based on the natural numbers for example, some of these operations (like division and subtraction) may not be valid as negative numbers and non-whole numbers are not allowed. The integers are an example of an integral domain which does not allow all divisions as, again, whole numbers are needed. However, subtraction is allowed, and is the inverse operator in that system.

If a function that is not injective is applied to both sides of a true equation, then the resulting equation will still be true, but it may be less useful. Formally, one has an implication, not an equivalence, so the solution set may get larger. The functions implied in properties (1), (2), and (4) are always injective, as is (3) if we do not multiply by zero. Some generalized products, such as a dot product, are never injective.

See also

External links