[go: nahoru, domu]

Jump to content

Editing Kernel (statistics)

You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to a username, among other benefits.
Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.
Latest revision Your text
Line 1: Line 1:
{{short description|Window function}}
{{other uses|Kernel (disambiguation)}}
{{other uses|Kernel (disambiguation)}}


Line 6: Line 5:


==Bayesian statistics==
==Bayesian statistics==
In statistics, especially in [[Bayesian statistics]], the kernel of a [[probability density function]] (pdf) or [[probability mass function]] (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted.<ref>{{cite journal |last1=Schuster |first1=Eugene |title=Estimation of a probability density function and its derivatives |journal=The Annals of Mathematical Statistics |date=August 1969 |volume=40 |issue=4 |page=1187-1195 |doi=10.1214/aoms/1177697495|doi-access=free }}</ref> Note that such factors may well be functions of the [[parameter]]s of the pdf or pmf. These factors form part of the [[normalization factor]] of the [[probability distribution]], and are unnecessary in many situations. For example, in [[pseudo-random number sampling]], most sampling algorithms ignore the normalization factor. In addition, in [[Bayesian analysis]] of [[conjugate prior]] distributions, the normalization factors are generally ignored during the calculations, and only the kernel considered. At the end, the form of the kernel is examined, and if it matches a known distribution, the normalization factor can be reinstated. Otherwise, it may be unnecessary (for example, if the distribution only needs to be sampled from).
In statistics, especially in [[Bayesian statistics]], the kernel of a [[probability density function]] (pdf) or [[probability mass function]] (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted.{{Citation needed|date=May 2012}} Note that such factors may well be functions of the [[parameter]]s of the pdf or pmf. These factors form part of the [[normalization factor]] of the [[probability distribution]], and are unnecessary in many situations. For example, in [[pseudo-random number sampling]], most sampling algorithms ignore the normalization factor. In addition, in [[Bayesian analysis]] of [[conjugate prior]] distributions, the normalization factors are generally ignored during the calculations, and only the kernel considered. At the end, the form of the kernel is examined, and if it matches a known distribution, the normalization factor can be reinstated. Otherwise, it may be unnecessary (for example, if the distribution only needs to be sampled from).


For many distributions, the kernel can be written in closed form, but not the normalization constant.
For many distributions, the kernel can be written in closed form, but not the normalization constant.
Line 24: Line 23:


==Nonparametric statistics==
==Nonparametric statistics==
{{further|Kernel smoothing}}

In [[nonparametric statistics]], a kernel is a weighting function used in [[non-parametric]] estimation techniques. Kernels are used in [[kernel density estimation]] to estimate [[random variable]]s' [[density function]]s, or in [[kernel regression]] to estimate the [[conditional expectation]] of a random variable. Kernels are also used in [[time-series]], in the use of the [[periodogram]] to estimate the [[spectral density]] where they are known as [[window functions]]. An additional use is in the estimation of a time-varying intensity for a [[point process]] where window functions (kernels) are convolved with time-series data.
In [[nonparametric statistics]], a kernel is a weighting function used in [[non-parametric]] estimation techniques. Kernels are used in [[kernel density estimation]] to estimate [[random variable]]s' [[density function]]s, or in [[kernel regression]] to estimate the [[conditional expectation]] of a random variable. Kernels are also used in [[time-series]], in the use of the [[periodogram]] to estimate the [[spectral density]] where they are known as [[window functions]]. An additional use is in the estimation of a time-varying intensity for a [[point process]] where window functions (kernels) are convolved with time-series data.


Line 46: Line 43:
[[File:Kernels.svg|thumb|500px|All of the kernels below in a common coordinate system.]]
[[File:Kernels.svg|thumb|500px|All of the kernels below in a common coordinate system.]]


Several types of kernel functions are commonly used: uniform, triangle, Epanechnikov,<ref>Named for {{cite journal |last=Epanechnikov |first=V. A. |year=1969 |title=Non-Parametric Estimation of a Multivariate Probability Density |journal=Theory Probab. Appl. |volume=14 |issue=1 |pages=153–158 |doi=10.1137/1114019 }}</ref> quartic (biweight), tricube,<ref>{{cite journal|author=Altman, N. S.|author-link=Naomi Altman|year=1992|title=An introduction to kernel and nearest neighbor nonparametric regression|journal=The American Statistician|volume=46|issue=3|pages=175–185|doi=10.1080/00031305.1992.10475879|hdl=1813/31637|hdl-access=free}}</ref> triweight, Gaussian, quadratic<ref>{{cite journal|author1=Cleveland, W. S.|author1-link= William S. Cleveland |author2=Devlin, S. J.|author2-link= Susan J. Devlin |year=1988|title=Locally weighted regression: An approach to regression analysis by local fitting|journal=Journal of the American Statistical Association|volume=83|issue=403|pages=596–610|doi=10.1080/01621459.1988.10478639}}</ref> and cosine.
Several types of kernel functions are commonly used: uniform, triangle, Epanechnikov,<ref>Named for {{cite journal |last=Epanechnikov |first=V. A. |year=1969 |title=Non-Parametric Estimation of a Multivariate Probability Density |journal=Theory Probab. Appl. |volume=14 |issue=1 |pages=153–158 |doi=10.1137/1114019 }}</ref> quartic (biweight), tricube,<ref>{{cite journal|author=Altman, N. S.|authorlink=Naomi Altman|year=1992|title=An introduction to kernel and nearest neighbor nonparametric regression|journal=The American Statistician|volume=46|issue=3|pages=175–185|doi=10.1080/00031305.1992.10475879|hdl=1813/31637}}</ref> triweight, Gaussian, quadratic<ref>{{cite journal|author1=Cleveland, W. S. |author2=Devlin, S. J.|year=1988|title=Locally weighted regression: An approach to regression analysis by local fitting|journal=Journal of the American Statistical Association|volume=83|issue=403|pages=596–610|doi=10.1080/01621459.1988.10478639}}</ref> and cosine.


In the table below, if <math>K</math> is given with a bounded [[Support (mathematics)|support]], then <math> K(u) = 0 </math> for values of ''u'' lying outside the support.
In the table below, if <math>K</math> is given with a bounded [[Support (mathematics)|support]], then <math> K(u) = 0 </math> for values of ''u'' lying outside the support.
Line 90: Line 87:
| 98.6%
| 98.6%
|-
|-
! [[Epanechnikov_distribution|Epanechnikov]]
! Epanechnikov
(parabolic)
(parabolic)
| <math>K(u) = \frac{3}{4}(1-u^2) </math>
| <math>K(u) = \frac{3}{4}(1-u^2) </math>
Line 159: Line 156:
|data-sort-value="0.26516504294495535"| &nbsp; <math>\frac{3\sqrt{2}}{16}</math>
|data-sort-value="0.26516504294495535"| &nbsp; <math>\frac{3\sqrt{2}}{16}</math>
| not applicable
| not applicable
|}
|}


==See also==
==See also==
Line 165: Line 162:
*[[Kernel smoother]]
*[[Kernel smoother]]
*[[Stochastic kernel]]
*[[Stochastic kernel]]
*[[Positive-definite kernel]]
*[[Density estimation]]
*[[Density estimation]]
*[[Multivariate kernel density estimation]]
*[[Multivariate kernel density estimation]]
*[[Kernel method]]


{{More footnotes|date=May 2012}}
{{More footnotes|date=May 2012}}
Line 178: Line 173:
| last = Li
| last = Li
| first = Qi
| first = Qi
| authorlink =
|author2=Racine, Jeffrey S.
|author2=Racine, Jeffrey S.
| title = Nonparametric Econometrics: Theory and Practice
| title = Nonparametric Econometrics: Theory and Practice
| publisher = Princeton University Press
| publisher = Princeton University Press
| year = 2007
| year = 2007
| location =
| pages =
| url =
| doi =
| id =
| isbn = 978-0-691-12161-1}}
| isbn = 978-0-691-12161-1}}


Line 188: Line 189:
|first=Walter
|first=Walter
|title=APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation
|title=APPLIED SMOOTHING TECHNIQUES Part 1: Kernel Density Estimation
|url=http://staff.ustc.edu.cn/~zwp/teach/Math-Stat/kernel.pdf|access-date=6 September 2018}}
|url=http://staff.ustc.edu.cn/~zwp/teach/Math-Stat/kernel.pdf|accessdate=6 September 2018}}


*{{cite journal|year=2002
*{{cite journal|year=2002
By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page

  • kernel: Sitelink, Title, Description: en

Pages transcluded onto the current version of this page (help):