[go: nahoru, domu]

Jump to content

Reaction Engines LAPCAT A2: Difference between revisions

From Wikipedia, the free encyclopedia
Content deleted Content added
→‎Capabilities: more is/could shenanigans
Line 32: Line 32:
===Capabilities===
===Capabilities===
[[Image:LAPCAT1.jpg|thumb|right|The LAPCAT A2 concept in the upper atmosphere]]
[[Image:LAPCAT1.jpg|thumb|right|The LAPCAT A2 concept in the upper atmosphere]]
According to [[Alan Bond (rocket developer)|Alan Bond]], the A2 is design could fly subsonically from [[Brussels Airport|Brussels International Airport]] into the [[North Atlantic]] then reaching Mach 5 across the [[North Pole]] and over the [[Pacific]] to [[Australia]]<ref>{{cite web |url=http://www.guardian.co.uk/business/2008/feb/05/theairlineindustry.travelnews |title=The hypersonic plane designed to reach Australia in under five hours |date=5 February 2008 |author=Steven Morris |publisher=The Guardian |accessdate=2009-07-03 }}</ref>
According to [[Alan Bond (rocket developer)|Alan Bond]], the A2 design could fly subsonically from [[Brussels Airport|Brussels International Airport]] into the [[North Atlantic]] then reaching Mach 5 across the [[North Pole]] and over the [[Pacific]] to [[Australia]]<ref>{{cite web |url=http://www.guardian.co.uk/business/2008/feb/05/theairlineindustry.travelnews |title=The hypersonic plane designed to reach Australia in under five hours |date=5 February 2008 |author=Steven Morris |publisher=The Guardian |accessdate=2009-07-03 }}</ref>


The [[great circle]] route is not used in this example because the route travels mostly over land. The [[sonic boom]] generated by travelling at supersonic speed can cause great discomfort for people on the ground, which was why Concorde was prohibited from flying supersonically over land.
The [[great circle]] route is not used in this example because the route travels mostly over land. The [[sonic boom]] generated by travelling at supersonic speed can cause great discomfort for people on the ground, which was why Concorde was prohibited from flying supersonically over land.

Revision as of 20:54, 22 July 2011

A2
Artist's concept of the Reaction Engines A2
Role Hypersonic Airliner
Manufacturer Unknown
Designer Reaction Engines Limited
Status Under design study

The Reaction Engines Limited A2 (called the A2) is a design study for a hypersonic airliner. The airliner is intended to provide environmentally-friendly, long range and high capacity commercial transportation. It is being examined as part of the LAPCAT programme of the European Union. The plane has not been commercially launched yet, but Reaction Engines Limited, the British design firm, says it could probably be developed into a working aircraft within 25 years, if there is market demand for it.

Development

Our work shows that it is possible technically; now it's up to the world to decide if it wants it.

— Alan Bond, managing director of Reaction Engines Limited

The vehicle is intended to have about 12,430 miles (20,000 km) range and good subsonic and supersonic fuel efficiency, thus avoiding the problems inherent in earlier supersonic aircraft. The top speed is projected to be Mach 5+. It calls for the use of liquid hydrogen as a fuel, which has twice the specific impulse of kerosene, and can be used to cool the vehicle and the air entering the engines via a precooler.

The developers say it would be able to fly from Brussels to Sydney in about 4.6 hours, compared to around a complete day of travel with normal aircraft. The cost of a ticket is intended to be roughly business class level.[1]

Design

Capabilities

The LAPCAT A2 concept in the upper atmosphere

According to Alan Bond, the A2 design could fly subsonically from Brussels International Airport into the North Atlantic then reaching Mach 5 across the North Pole and over the Pacific to Australia[2]

The great circle route is not used in this example because the route travels mostly over land. The sonic boom generated by travelling at supersonic speed can cause great discomfort for people on the ground, which was why Concorde was prohibited from flying supersonically over land.

Another advantage of the design is that, while the 143 metre-long A2 is much longer than conventional jets, it would be lighter than a Boeing 747 and could take off and land on current airport runways.

However, the A2 design does not have windows. The heat generated by traveling so quickly makes it difficult to install windows that are not too heavy. One solution Reaction Engines has proposed is to install flat panel displays, showing images of the scene outside.

Engines

The Scimitar engines use related technology to the company's earlier SABRE engine, which is intended for space launch, but here adapted for very long distance, very high speed travel.

Normally, as air enters a jet engine, it is compressed by the inlet, and thus heats up. This means that high speed engines need to be made of technologies and materials that can survive extremely high temperatures. In practice, this inevitably makes the engines heavier and also reduces the amount of fuel that can be burnt to avoid melting the gas turbine section of the engine, which in turn reduces thrust at high speed.

The key design feature for the Scimitar engines is the precooler, which is a heat exchanger that transfers the heat from the incoming air into the hydrogen fuel. This greatly cools the air, which allows the engines to burn more fuel even at very high speed, and allows the engines to be made of lighter, but more heat susceptible, materials such as light alloys. The engine inlet diffuser also has to slow the incoming air to subsonic speeds as if the air moved through the precooler and compressor at supersonic speeds, it would cause damage to them.

The rest of the engine is described as having high-bypass (4:1[3]) turbofan engine features to give it good efficiency and subsonic (quiet) exhaust velocity at low speeds. Unlike SABRE the A2's Scimitar engine would not have rocket engine features.

Specifications (LAPCAT A2)

Data from [4]

General characteristics

  • Capacity: 300 passengers
  • Fuel capacity:198 tonnes liquid hydrogen

Performance

See also

Aircraft of comparable role, configuration, and era

References

  1. ^ "Hypersonic passenger jet designed". BBC News. 5 February 2008. Retrieved 3 July 2009.
  2. ^ Steven Morris (5 February 2008). "The hypersonic plane designed to reach Australia in under five hours". The Guardian. Retrieved 3 July 2009.
  3. ^ Philip Butterworth-Hayes (June 2008). "Europe speeds up hypersonics" (PDF). Aerospace America. Retrieved 3 July 2009.
  4. ^ http://www.reactionengines.co.uk/lapcat_facts.html
  5. ^ a b "Long-Term Advanced Propulsion Concepts and Technologies". Reaction Engines. Retrieved 3 July 2009.
  6. ^ a b "LAPCAT A2 Facts and Figures" (PDF). Reaction Engines. 2008. Retrieved 3 July 2009.


Template:Giant aircraft