[go: nahoru, domu]

Editing Cluster algebra

You are not logged in. Your IP address will be publicly visible if you make any edits. If you log in or create an account, your edits will be attributed to a username, among other benefits.
Content that violates any copyrights will be deleted. Encyclopedic content must be verifiable through citations to reliable sources.
Latest revision Your text
Line 7: Line 7:
A '''cluster''' of '''rank''' ''n'' consists of a set of ''n'' elements {''x'', ''y'', ...} of ''F'', usually assumed to be an [[Algebraic independence|algebraically independent]] set of generators of a [[field extension]] ''F''.
A '''cluster''' of '''rank''' ''n'' consists of a set of ''n'' elements {''x'', ''y'', ...} of ''F'', usually assumed to be an [[Algebraic independence|algebraically independent]] set of generators of a [[field extension]] ''F''.


A '''seed''' consists of a cluster {''x'', ''y'', ...} of ''F'', together with an '''exchange matrix''' ''B'' with integer entries ''b''<sub>''x'',''y''</sub> indexed by pairs of elements ''x'', ''y'' of the cluster. The matrix is sometimes assumed to be [[Skew-symmetric matrix|skew-symmetric]], so that ''b''<sub>''x'',''y''</sub> = –''b''<sub>''y'',''x''</sub> for all ''x'' and ''y''. More generally the matrix might be skew-symmetrizable, meaning there are positive integers ''d''<sub>''x''</sub> associated with the elements of the cluster such that ''d''<sub>''x''</sub>''b''<sub>''x'',''y''</sub> = –''d''<sub>''y''</sub>''b''<sub>''y'',''x''</sub> for all ''x'' and ''y''. It is common to picture a seed as a [[quiver (mathematics)|quiver]] whose vertices are the generating set, by drawing ''b''<sub>''x'',''y''</sub> arrows from ''x'' to ''y'' if this number is positive. When ''b''<sub>''x'',''y''</sub> is skew symmetrizable the quiver has no loops or 2-cycles.
A '''seed''' consists of a cluster {''x'', ''y'', ...} of ''F'', together with an '''exchange matrix''' ''B'' with integer entries ''b''<sub>''x'',''y''</sub> indexed by pairs of elements ''x'', ''y'' of the cluster. The matrix is sometimes assumed to be [[Skew-symmetric matrix|skew-symmetric]], so that ''b''<sub>''x'',''y''</sub> = –''b''<sub>''y'',''x''</sub> for all ''x'' and ''y''. More generally the matrix might be skew-symmetrizable, meaning there are positive integers ''d''<sub>''x''</sub> associated with the elements of the cluster such that ''d''<sub>''x''</sub>''b''<sub>''x'',''y''</sub> = –''d''<sub>''y''</sub>''b''<sub>''y'',''x''</sub> for all ''x'' and ''y''. It is common to picture a seed as a [[quiver (mathematics)|quiver]] with vertices the generating set, by drawing ''b''<sub>''x'',''y''</sub> arrows from ''x'' to ''y'' if this number is positive. When ''b''<sub>''x'',''y''</sub> is skew symmetrizable the quiver has no loops or 2-cycles.


A '''mutation''' of a seed, depending on a choice of vertex ''y'' of the cluster, is a new seed given by a generalization of [[Tilting theory|tilting]] as follows. Exchange the values of ''b''<sub>''x'',''y''</sub> and ''b''<sub>''y'',''x''</sub> for all ''x'' in the cluster. If ''b''<sub>''x'',''y''</sub> > 0 and ''b''<sub>''y'',''z''</sub> > 0 then replace ''b''<sub>''x'',''z''</sub> by ''b''<sub>''x'',''y''</sub>''b''<sub>''y'',''z''</sub> + ''b''<sub>''x'',''z''</sub>. If ''b''<sub>''x'',''y''</sub> < 0 and ''b''<sub>''y'',''z''</sub> < 0 then replace ''b''<sub>''x'',''z''</sub> by -''b''<sub>''x'',''y''</sub>''b''<sub>''y'',''z''</sub> + ''b''<sub>''x'',''z''</sub>. If ''b''<sub>''x'',''y''</sub> ''b''<sub>''y'',''z''</sub> ≤ 0 then do not change ''b''<sub>''x'',''z''</sub>. Finally replace ''y'' by a new generator ''w'', where
A '''mutation''' of a seed, depending on a choice of vertex ''y'' of the cluster, is a new seed given by a generalization of [[Tilting theory|tilting]] as follows. Exchange the values of ''b''<sub>''x'',''y''</sub> and ''b''<sub>''y'',''x''</sub> for all ''x'' in the cluster. If ''b''<sub>''x'',''y''</sub> > 0 and ''b''<sub>''y'',''z''</sub> > 0 then replace ''b''<sub>''x'',''z''</sub> by ''b''<sub>''x'',''y''</sub>''b''<sub>''y'',''z''</sub> + ''b''<sub>''x'',''z''</sub>. If ''b''<sub>''x'',''y''</sub> < 0 and ''b''<sub>''y'',''z''</sub> < 0 then replace ''b''<sub>''x'',''z''</sub> by -''b''<sub>''x'',''y''</sub>''b''<sub>''y'',''z''</sub> + ''b''<sub>''x'',''z''</sub>. If ''b''<sub>''x'',''y''</sub> ''b''<sub>''y'',''z''</sub> ≤ 0 then do not change ''b''<sub>''x'',''z''</sub>. Finally replace ''y'' by a new generator ''w'', where
By publishing changes, you agree to the Terms of Use, and you irrevocably agree to release your contribution under the CC BY-SA 4.0 License and the GFDL. You agree that a hyperlink or URL is sufficient attribution under the Creative Commons license.
Cancel Editing help (opens in new window)

Copy and paste: – — ° ′ ″ ≈ ≠ ≤ ≥ ± − × ÷ ← → · §   Cite your sources: <ref></ref>


{{}}   {{{}}}   |   []   [[]]   [[Category:]]   #REDIRECT [[]]   &nbsp;   <s></s>   <sup></sup>   <sub></sub>   <code></code>   <pre></pre>   <blockquote></blockquote>   <ref></ref> <ref name="" />   {{Reflist}}   <references />   <includeonly></includeonly>   <noinclude></noinclude>   {{DEFAULTSORT:}}   <nowiki></nowiki>   <!-- -->   <span class="plainlinks"></span>


Symbols: ~ | ¡ ¿ † ‡ ↔ ↑ ↓ • ¶   # ∞   ‹› «»   ¤ ₳ ฿ ₵ ¢ ₡ ₢ $ ₫ ₯ € ₠ ₣ ƒ ₴ ₭ ₤ ℳ ₥ ₦ № ₧ ₰ £ ៛ ₨ ₪ ৳ ₮ ₩ ¥   ♠ ♣ ♥ ♦   𝄫 ♭ ♮ ♯ 𝄪   © ® ™
Latin: A a Á á À à  â Ä ä Ǎ ǎ Ă ă Ā ā à ã Å å Ą ą Æ æ Ǣ ǣ   B b   C c Ć ć Ċ ċ Ĉ ĉ Č č Ç ç   D d Ď ď Đ đ Ḍ ḍ Ð ð   E e É é È è Ė ė Ê ê Ë ë Ě ě Ĕ ĕ Ē ē Ẽ ẽ Ę ę Ẹ ẹ Ɛ ɛ Ǝ ǝ Ə ə   F f   G g Ġ ġ Ĝ ĝ Ğ ğ Ģ ģ   H h Ĥ ĥ Ħ ħ Ḥ ḥ   I i İ ı Í í Ì ì Î î Ï ï Ǐ ǐ Ĭ ĭ Ī ī Ĩ ĩ Į į Ị ị   J j Ĵ ĵ   K k Ķ ķ   L l Ĺ ĺ Ŀ ŀ Ľ ľ Ļ ļ Ł ł Ḷ ḷ Ḹ ḹ   M m Ṃ ṃ   N n Ń ń Ň ň Ñ ñ Ņ ņ Ṇ ṇ Ŋ ŋ   O o Ó ó Ò ò Ô ô Ö ö Ǒ ǒ Ŏ ŏ Ō ō Õ õ Ǫ ǫ Ọ ọ Ő ő Ø ø Œ œ   Ɔ ɔ   P p   Q q   R r Ŕ ŕ Ř ř Ŗ ŗ Ṛ ṛ Ṝ ṝ   S s Ś ś Ŝ ŝ Š š Ş ş Ș ș Ṣ ṣ ß   T t Ť ť Ţ ţ Ț ț Ṭ ṭ Þ þ   U u Ú ú Ù ù Û û Ü ü Ǔ ǔ Ŭ ŭ Ū ū Ũ ũ Ů ů Ų ų Ụ ụ Ű ű Ǘ ǘ Ǜ ǜ Ǚ ǚ Ǖ ǖ   V v   W w Ŵ ŵ   X x   Y y Ý ý Ŷ ŷ Ÿ ÿ Ỹ ỹ Ȳ ȳ   Z z Ź ź Ż ż Ž ž   ß Ð ð Þ þ Ŋ ŋ Ə ə
Greek: Ά ά Έ έ Ή ή Ί ί Ό ό Ύ ύ Ώ ώ   Α α Β β Γ γ Δ δ   Ε ε Ζ ζ Η η Θ θ   Ι ι Κ κ Λ λ Μ μ   Ν ν Ξ ξ Ο ο Π π   Ρ ρ Σ σ ς Τ τ Υ υ   Φ φ Χ χ Ψ ψ Ω ω   {{Polytonic|}}
Cyrillic: А а Б б В в Г г   Ґ ґ Ѓ ѓ Д д Ђ ђ   Е е Ё ё Є є Ж ж   З з Ѕ ѕ И и І і   Ї ї Й й Ј ј К к   Ќ ќ Л л Љ љ М м   Н н Њ њ О о П п   Р р С с Т т Ћ ћ   У у Ў ў Ф ф Х х   Ц ц Ч ч Џ џ Ш ш   Щ щ Ъ ъ Ы ы Ь ь   Э э Ю ю Я я   ́
IPA: t̪ d̪ ʈ ɖ ɟ ɡ ɢ ʡ ʔ   ɸ β θ ð ʃ ʒ ɕ ʑ ʂ ʐ ç ʝ ɣ χ ʁ ħ ʕ ʜ ʢ ɦ   ɱ ɳ ɲ ŋ ɴ   ʋ ɹ ɻ ɰ   ʙ ⱱ ʀ ɾ ɽ   ɫ ɬ ɮ ɺ ɭ ʎ ʟ   ɥ ʍ ɧ   ʼ   ɓ ɗ ʄ ɠ ʛ   ʘ ǀ ǃ ǂ ǁ   ɨ ʉ ɯ   ɪ ʏ ʊ   ø ɘ ɵ ɤ   ə ɚ   ɛ œ ɜ ɝ ɞ ʌ ɔ   æ   ɐ ɶ ɑ ɒ   ʰ ʱ ʷ ʲ ˠ ˤ ⁿ ˡ   ˈ ˌ ː ˑ ̪   {{IPA|}}

Wikidata entities used in this page