[go: nahoru, domu]

Skip to content

Latest commit

 

History

History

periodic_distribution_shift

Federated Learning from Periodically Shifting Distributions

This directory contains source code for training multi-branch neural networks using federated k-means augmented by temporal prior (or FedTKM). The code was developed for a paper, "Diurnal or Nocturnal? Federated Learning from Periodically Shifting Distributions".

File organization

main_trainer.py is the python binary, which controls the tasks, including the train/val/test splits, and the training loops.

Subfolder tasks defines the tasks. task_utils.py defines the flags for all tasks. We use it to choose and configure the tasks.dist_shift_task.py and dist_shift_task_data.py provide utilities for evaluating on different validation subsets (daytime and nighttime). The definition of the models and the validation/test sets for the three tasks are given in emnist_classification_tasks.py, cifar_classification_tasks.py and stackoverflow_nwp_tasks.py respectively.

The data processing are defined in subfolder datasets. emnist_preprocessing.py, cifar_classification_preprocessing.py and stackoverflow_nwp_preprocessing.py. datasets/client_sampling.py simulates the periodically shifting distribution during training, by defining the daytime and nighttime subsets for the tasks, and sampling clients from the two subsets according to a periodically shifting distribution. models/dual_branch_resnet_models.py defines the dual-branch resnet for CIFAR. For the other two tasks, the models are defined in the task files. keras_utils_dual_branch_kmeans.py and keras_utils_dual_branch_kmeans_lm.py define the forward pass with k-means.

fedavg_temporal_kmeans.py defines the local updates of FedTKM on clients, and aggregation for server updates. For the local updates, FedTKM first runs inference steps on training samples to select the branch through majority voting; then trains the model using the selected branch while optionally adds label smoothing regularization on the other branch. After that, with another loop of inference over the local training dataset, it computes the averaged feature while counting the votes for each cluster, then calculate the feature to update the cluster center with the most vote. The server will update the model parameters, k-means cluster centers and the distance scalar for temporial prior.

train_loop_kmeans.py defines the taining loop and federated_evaluation.py enables federated evaluation.

Usage

Simulating the distribution shift

Argument period is the period of the distribution shift. Set shift_fn to either linear or cosine to specify the function type of the periodical distribution shift. The argument shift_p controls the balance of the two modes in the periodic shifting distributions. If shift_p=1, the data distribution is balanced on the daytime and nighttime modes. Otherwise, the distribution will be biased towards one mode.

Hyperparameters for FedTKM

Set aggregated_kmeans=True to use FedTKM. label_smooth_w is the weight of the label smoothing regularization, while label_smooth_eps (0 to 1) is the smoothness. geo_lr sets the step size of the geometric update, typically within the range of [1e-2, 1e-1]. Optionally, we can set the function type for the prior through prior_fn, which can be either linear or cosine. We only included results with linear in the paper. Grid search of hyperparameters are given in the XManager scripts.

Example commands

# on EMNIST
bazel run main_trainer -- \
--task emnist_character --experiment_name test \
--client_optimizer sgd --client_learning_rate 1e-3 \
--server_optimizer adam --server_learning_rate 0.1 --server_adam_epsilon 1e-4 \
--clients_per_round 10 --client_epochs_per_round 1 \
--client_batch_size 20 \
--total_rounds 2049 \
--rounds_per_checkpoint 1 --client_datasets_random_seed 1 \
--rounds_per_eval 1 --max_elements_per_client 66666 \
--period 32 \
--label_smooth_eps 0.1 --label_smooth_w 0.5 \
--emnist_character_batch_majority_voting \
--feature_dim 128 \
--shift_fn linear --aggregated_kmeans

# on CIFAR
bazel run main_trainer -- \
--task cifar100_10 --experiment_name test \
--client_optimizer sgd --client_learning_rate 1e-3 \
--server_optimizer adam --server_learning_rate 0.1 --server_adam_epsilon 1e-4 \
--clients_per_round 10 --client_epochs_per_round 1 \
--client_batch_size 20 \
--total_rounds 2049 \
--rounds_per_checkpoint 1 --client_datasets_random_seed 1 \
--rounds_per_eval 8 --max_elements_per_client 20 \
--period 32 \
--label_smooth_w 0.1 --label_smooth_eps 0.5 \
--cifar100_10_batch_majority_voting \
--feature_dim 512 \
--shift_fn linear --aggregated_kmeans --rescale_eval --zero_mid \
--alsologtostderr

# on Stack Overflow
bazel run main_trainer -- \
--task stackoverflow_word  --experiment_name test \
--client_optimizer sgd --client_learning_rate 0.01 \
--server_optimizer adam --server_learning_rate 0.01 --server_adam_epsilon 1e-5 \
--clients_per_round 2 --client_epochs_per_round 1 --client_batch_size 2 \
--stackoverflow_word_vocab_size 10000 --stackoverflow_word_sequence_length 20 \
--total_rounds 2049 --rounds_per_checkpoint 1500 \
--client_datasets_random_seed=1 --rounds_per_eval 64 \
--max_elements_per_client 2 \
--period 256 --kmeans_k 2 \
--stackoverflow_word_batch_majority_voting --feature_dim 192 \
--aggregated_kmeans --label_smooth_w 0.25 \
--label_smooth_eps 0. \
--shift_fn linear --interp_power 1. \
--geo_lr 0.02 --stackoverflow_word_use_mixed --rescale_eval \
--clip_norm 1 --prior_fn linear --zero_mid \
--stackoverflow_word_num_val_samples 10 \

Citation

@article{zhu2021diurnal,
  title={Diurnal or Nocturnal? Federated Learning from Periodically Shifting Distributions},
  author={Zhu, Chen and Xu, Zheng and Chen, Mingqing and Kone{\v{c}}n{\`y}, Jakub and Hard, Andrew and Goldstein, Tom},
  year={2021}
}