-
Notifications
You must be signed in to change notification settings - Fork 0
/
recognition.py
94 lines (69 loc) · 2.68 KB
/
recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import app
import cv2
import numpy as np
from PIL import Image
import os
import time
tempid="temp"
count=0
def recog(names):
recognizer = cv2.face.LBPHFaceRecognizer_create()
recognizer.read('trainer.yml')
cascadePath = "Cascades/haarcascade_frontalface_default.xml"
faceCascade = cv2.CascadeClassifier(cascadePath)
font = cv2.FONT_HERSHEY_SIMPLEX
# Initialize and start realtime video capture
cam = cv2.VideoCapture(0)
cam.set(3, 640) # set video widht
cam.set(4, 480) # set video height
# Define min window size to be recognized as a face
minW = 0.1*cam.get(3)
minH = 0.1*cam.get(4)
img_counter=0
while True:
ret, img =cam.read()
img = cv2.flip(img, 1) # Flip vertically
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = faceCascade.detectMultiScale(
gray,
scaleFactor = 1.2,
minNeighbors = 5,
minSize = (int(minW), int(minH)),
)
for(x,y,w,h) in faces:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 2)
id, confidence = recognizer.predict(gray[y:y+h,x:x+w])
# Check if confidence is less them 100 ==> "0" is perfect match
if (confidence < 70): #matched with recognised faces
if id - 1>= len(names):
id = names[-1]
else:
id = names[id - 1]
confidence = " {0}%".format(round(100 - confidence))
else:
id = "Unrecognised"
confidence = " {0}%".format(round(100 - confidence))
global tempid
tempid = id
cv2.putText(img, str(id), (x+5,y-5), font, 1, (255,255,255), 2)
cv2.putText(img, str(confidence), (x+5,y+h-5), font, 1, (255,255,0), 1)
if(tempid=="Unrecognised"):
global count
if(count < 1):
print(tempid)
img_name = "unknownPerson{}.jpg".format(img_counter)
cv2.imwrite(img_name, img)
img_counter+=1
app.send_email(img_name)
count=count+1
ret, buffer = cv2.imencode('.jpg', img)
img = buffer.tobytes()
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + img + b'\r\n') # concat frame one by one and show result
k = cv2.waitKey(40) & 0xff # Press 'ESC' for exiting video
if k == 27:
break
# Do a bit of cleanup
print("\n [INFO] Exiting Program and cleaning up stuff")
cam.release()
cv2.destroyAllWindows()