-
Notifications
You must be signed in to change notification settings - Fork 74.3k
/
linear_operator_circulant.py
1073 lines (858 loc) · 39.8 KB
/
linear_operator_circulant.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""`LinearOperator` coming from a [[nested] block] circulant matrix."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from tensorflow.python.framework import dtypes
from tensorflow.python.framework import ops
from tensorflow.python.framework import tensor_shape
from tensorflow.python.ops import array_ops
from tensorflow.python.ops import check_ops
from tensorflow.python.ops import math_ops
from tensorflow.python.ops.distributions import util as distribution_util
from tensorflow.python.ops.linalg import linalg_impl as linalg
from tensorflow.python.ops.linalg import linear_operator
from tensorflow.python.ops.linalg import linear_operator_util
from tensorflow.python.ops.signal import fft_ops
from tensorflow.python.util.tf_export import tf_export
__all__ = [
"LinearOperatorCirculant",
"LinearOperatorCirculant2D",
"LinearOperatorCirculant3D",
]
# Different FFT Ops will be used for different block depths.
_FFT_OP = {1: fft_ops.fft, 2: fft_ops.fft2d, 3: fft_ops.fft3d}
_IFFT_OP = {1: fft_ops.ifft, 2: fft_ops.ifft2d, 3: fft_ops.ifft3d}
# TODO(langmore) Add transformations that create common spectrums, e.g.
# starting with the convolution kernel
# start with half a spectrum, and create a Hermitian one.
# common filters.
# TODO(langmore) Support rectangular Toeplitz matrices.
class _BaseLinearOperatorCirculant(linear_operator.LinearOperator):
"""Base class for circulant operators. Not user facing.
`LinearOperator` acting like a [batch] [[nested] block] circulant matrix.
"""
def __init__(self,
spectrum,
block_depth,
input_output_dtype=dtypes.complex64,
is_non_singular=None,
is_self_adjoint=None,
is_positive_definite=None,
is_square=True,
name="LinearOperatorCirculant"):
r"""Initialize an `_BaseLinearOperatorCirculant`.
Args:
spectrum: Shape `[B1,...,Bb, N]` `Tensor`. Allowed dtypes: `float16`,
`float32`, `float64`, `complex64`, `complex128`. Type can be different
than `input_output_dtype`
block_depth: Python integer, either 1, 2, or 3. Will be 1 for circulant,
2 for block circulant, and 3 for nested block circulant.
input_output_dtype: `dtype` for input/output.
is_non_singular: Expect that this operator is non-singular.
is_self_adjoint: Expect that this operator is equal to its hermitian
transpose. If `spectrum` is real, this will always be true.
is_positive_definite: Expect that this operator is positive definite,
meaning the quadratic form `x^H A x` has positive real part for all
nonzero `x`. Note that we do not require the operator to be
self-adjoint to be positive-definite. See:
https://en.wikipedia.org/wiki/Positive-definite_matrix\
#Extension_for_non_symmetric_matrices
is_square: Expect that this operator acts like square [batch] matrices.
name: A name to prepend to all ops created by this class.
Raises:
ValueError: If `block_depth` is not an allowed value.
TypeError: If `spectrum` is not an allowed type.
"""
allowed_block_depths = [1, 2, 3]
self._name = name
if block_depth not in allowed_block_depths:
raise ValueError("Expected block_depth to be in %s. Found: %s." %
(allowed_block_depths, block_depth))
self._block_depth = block_depth
with ops.name_scope(name, values=[spectrum]):
self._spectrum = self._check_spectrum_and_return_tensor(spectrum)
# Check and auto-set hints.
if not self.spectrum.dtype.is_complex:
if is_self_adjoint is False:
raise ValueError(
"A real spectrum always corresponds to a self-adjoint operator.")
is_self_adjoint = True
if is_square is False:
raise ValueError(
"A [[nested] block] circulant operator is always square.")
is_square = True
# If spectrum.shape = [s0, s1, s2], and block_depth = 2,
# block_shape = [s1, s2]
s_shape = array_ops.shape(self.spectrum)
self._block_shape_tensor = s_shape[-self.block_depth:]
# Add common variants of spectrum to the graph.
self._spectrum_complex = _to_complex(self.spectrum)
self._abs_spectrum = math_ops.abs(self.spectrum)
self._conj_spectrum = math_ops.conj(self._spectrum_complex)
super(_BaseLinearOperatorCirculant, self).__init__(
dtype=dtypes.as_dtype(input_output_dtype),
graph_parents=[self.spectrum],
is_non_singular=is_non_singular,
is_self_adjoint=is_self_adjoint,
is_positive_definite=is_positive_definite,
is_square=is_square,
name=name)
def _check_spectrum_and_return_tensor(self, spectrum):
"""Static check of spectrum. Then return `Tensor` version."""
spectrum = ops.convert_to_tensor(spectrum, name="spectrum")
if spectrum.shape.ndims is not None:
if spectrum.shape.ndims < self.block_depth:
raise ValueError(
"Argument spectrum must have at least %d dimensions. Found: %s" %
(self.block_depth, spectrum))
return spectrum
@property
def block_depth(self):
"""Depth of recursively defined circulant blocks defining this `Operator`.
With `A` the dense representation of this `Operator`,
`block_depth = 1` means `A` is symmetric circulant. For example,
```
A = |w z y x|
|x w z y|
|y x w z|
|z y x w|
```
`block_depth = 2` means `A` is block symmetric circulant with symemtric
circulant blocks. For example, with `W`, `X`, `Y`, `Z` symmetric circulant,
```
A = |W Z Y X|
|X W Z Y|
|Y X W Z|
|Z Y X W|
```
`block_depth = 3` means `A` is block symmetric circulant with block
symmetric circulant blocks.
Returns:
Python `integer`.
"""
return self._block_depth
def block_shape_tensor(self):
"""Shape of the block dimensions of `self.spectrum`."""
return self._block_shape_tensor
@property
def block_shape(self):
return self.spectrum.shape[-self.block_depth:]
@property
def spectrum(self):
return self._spectrum
def _vectorize_then_blockify(self, matrix):
"""Shape batch matrix to batch vector, then blockify trailing dimensions."""
# Suppose
# matrix.shape = [m0, m1, m2, m3],
# and matrix is a matrix because the final two dimensions are matrix dims.
# self.block_depth = 2,
# self.block_shape = [b0, b1] (note b0 * b1 = m2).
# We will reshape matrix to
# [m3, m0, m1, b0, b1].
# Vectorize: Reshape to batch vector.
# [m0, m1, m2, m3] --> [m3, m0, m1, m2]
# This is called "vectorize" because we have taken the final two matrix dims
# and turned this into a size m3 batch of vectors.
vec = distribution_util.rotate_transpose(matrix, shift=1)
# Blockify: Blockfy trailing dimensions.
# [m3, m0, m1, m2] --> [m3, m0, m1, b0, b1]
if (vec.shape.is_fully_defined() and
self.block_shape.is_fully_defined()):
# vec_leading_shape = [m3, m0, m1],
# the parts of vec that will not be blockified.
vec_leading_shape = vec.shape[:-1]
final_shape = vec_leading_shape.concatenate(self.block_shape)
else:
vec_leading_shape = array_ops.shape(vec)[:-1]
final_shape = array_ops.concat(
(vec_leading_shape, self.block_shape_tensor()), 0)
return array_ops.reshape(vec, final_shape)
def _unblockify_then_matricize(self, vec):
"""Flatten the block dimensions then reshape to a batch matrix."""
# Suppose
# vec.shape = [v0, v1, v2, v3],
# self.block_depth = 2.
# Then
# leading shape = [v0, v1]
# block shape = [v2, v3].
# We will reshape vec to
# [v1, v2*v3, v0].
# Un-blockify: Flatten block dimensions. Reshape
# [v0, v1, v2, v3] --> [v0, v1, v2*v3].
if vec.shape.is_fully_defined():
# vec_shape = [v0, v1, v2, v3]
vec_shape = vec.shape.as_list()
# vec_leading_shape = [v0, v1]
vec_leading_shape = vec_shape[:-self.block_depth]
# vec_block_shape = [v2, v3]
vec_block_shape = vec_shape[-self.block_depth:]
# flat_shape = [v0, v1, v2*v3]
flat_shape = vec_leading_shape + [np.prod(vec_block_shape)]
else:
vec_shape = array_ops.shape(vec)
vec_leading_shape = vec_shape[:-self.block_depth]
vec_block_shape = vec_shape[-self.block_depth:]
flat_shape = array_ops.concat(
(vec_leading_shape, [math_ops.reduce_prod(vec_block_shape)]), 0)
vec_flat = array_ops.reshape(vec, flat_shape)
# Matricize: Reshape to batch matrix.
# [v0, v1, v2*v3] --> [v1, v2*v3, v0],
# representing a shape [v1] batch of [v2*v3, v0] matrices.
matrix = distribution_util.rotate_transpose(vec_flat, shift=-1)
return matrix
def _fft(self, x):
"""FFT along the last self.block_depth dimensions of x.
Args:
x: `Tensor` with floating or complex `dtype`.
Should be in the form returned by self._vectorize_then_blockify.
Returns:
`Tensor` with `dtype` `complex64`.
"""
x_complex = _to_complex(x)
return _FFT_OP[self.block_depth](x_complex)
def _ifft(self, x):
"""IFFT along the last self.block_depth dimensions of x.
Args:
x: `Tensor` with floating or complex dtype. Should be in the form
returned by self._vectorize_then_blockify.
Returns:
`Tensor` with `dtype` `complex64`.
"""
x_complex = _to_complex(x)
return _IFFT_OP[self.block_depth](x_complex)
def convolution_kernel(self, name="convolution_kernel"):
"""Convolution kernel corresponding to `self.spectrum`.
The `D` dimensional DFT of this kernel is the frequency domain spectrum of
this operator.
Args:
name: A name to give this `Op`.
Returns:
`Tensor` with `dtype` `self.dtype`.
"""
with self._name_scope(name):
h = self._ifft(self._spectrum_complex)
return math_ops.cast(h, self.dtype)
def _shape(self):
s_shape = self._spectrum.shape
# Suppose spectrum.shape = [a, b, c, d]
# block_depth = 2
# Then:
# batch_shape = [a, b]
# N = c*d
# and we want to return
# [a, b, c*d, c*d]
batch_shape = s_shape[:-self.block_depth]
# trailing_dims = [c, d]
trailing_dims = s_shape[-self.block_depth:]
if trailing_dims.is_fully_defined():
n = np.prod(trailing_dims.as_list())
else:
n = None
n_x_n = tensor_shape.TensorShape([n, n])
return batch_shape.concatenate(n_x_n)
def _shape_tensor(self):
# See self.shape for explanation of steps
s_shape = array_ops.shape(self._spectrum)
batch_shape = s_shape[:-self.block_depth]
trailing_dims = s_shape[-self.block_depth:]
n = math_ops.reduce_prod(trailing_dims)
n_x_n = [n, n]
return array_ops.concat((batch_shape, n_x_n), 0)
def assert_hermitian_spectrum(self, name="assert_hermitian_spectrum"):
"""Returns an `Op` that asserts this operator has Hermitian spectrum.
This operator corresponds to a real-valued matrix if and only if its
spectrum is Hermitian.
Args:
name: A name to give this `Op`.
Returns:
An `Op` that asserts this operator has Hermitian spectrum.
"""
eps = np.finfo(self.dtype.real_dtype.as_numpy_dtype).eps
with self._name_scope(name):
# Assume linear accumulation of error.
max_err = eps * self.domain_dimension_tensor()
imag_convolution_kernel = math_ops.imag(self.convolution_kernel())
return check_ops.assert_less(
math_ops.abs(imag_convolution_kernel),
max_err,
message="Spectrum was not Hermitian")
def _assert_non_singular(self):
return linear_operator_util.assert_no_entries_with_modulus_zero(
self.spectrum,
message="Singular operator: Spectrum contained zero values.")
def _assert_positive_definite(self):
# This operator has the action Ax = F^H D F x,
# where D is the diagonal matrix with self.spectrum on the diag. Therefore,
# <x, Ax> = <Fx, DFx>,
# Since F is bijective, the condition for positive definite is the same as
# for a diagonal matrix, i.e. real part of spectrum is positive.
message = (
"Not positive definite: Real part of spectrum was not all positive.")
return check_ops.assert_positive(
math_ops.real(self.spectrum), message=message)
def _assert_self_adjoint(self):
# Recall correspondence between symmetry and real transforms. See docstring
return linear_operator_util.assert_zero_imag_part(
self.spectrum,
message=(
"Not self-adjoint: The spectrum contained non-zero imaginary part."
))
def _broadcast_batch_dims(self, x, spectrum):
"""Broadcast batch dims of batch matrix `x` and spectrum."""
# spectrum.shape = batch_shape + block_shape
# First make spectrum a batch matrix with
# spectrum.shape = batch_shape + [prod(block_shape), 1]
spec_mat = array_ops.reshape(
spectrum, array_ops.concat(
(self.batch_shape_tensor(), [-1, 1]), axis=0))
# Second, broadcast, possibly requiring an addition of array of zeros.
x, spec_mat = linear_operator_util.broadcast_matrix_batch_dims((x,
spec_mat))
# Third, put the block shape back into spectrum.
batch_shape = array_ops.shape(x)[:-2]
spectrum = array_ops.reshape(
spec_mat,
array_ops.concat((batch_shape, self.block_shape_tensor()), axis=0))
return x, spectrum
def _matmul(self, x, adjoint=False, adjoint_arg=False):
x = linalg.adjoint(x) if adjoint_arg else x
# With F the matrix of a DFT, and F^{-1}, F^H the inverse and Hermitian
# transpose, one can show that F^{-1} = F^{H} is the IDFT matrix. Therefore
# matmul(x) = F^{-1} diag(spectrum) F x,
# = F^{H} diag(spectrum) F x,
# so that
# matmul(x, adjoint=True) = F^{H} diag(conj(spectrum)) F x.
spectrum = self._conj_spectrum if adjoint else self._spectrum_complex
x = math_ops.cast(x, spectrum.dtype)
x, spectrum = self._broadcast_batch_dims(x, spectrum)
x_vb = self._vectorize_then_blockify(x)
fft_x_vb = self._fft(x_vb)
block_vector_result = self._ifft(spectrum * fft_x_vb)
y = self._unblockify_then_matricize(block_vector_result)
return math_ops.cast(y, self.dtype)
def _determinant(self):
axis = [-(i + 1) for i in range(self.block_depth)]
det = math_ops.reduce_prod(self.spectrum, axis=axis)
return math_ops.cast(det, self.dtype)
def _log_abs_determinant(self):
axis = [-(i + 1) for i in range(self.block_depth)]
lad = math_ops.reduce_sum(math_ops.log(self._abs_spectrum), axis=axis)
return math_ops.cast(lad, self.dtype)
def _solve(self, rhs, adjoint=False, adjoint_arg=False):
rhs = linalg.adjoint(rhs) if adjoint_arg else rhs
spectrum = self._conj_spectrum if adjoint else self._spectrum_complex
rhs, spectrum = self._broadcast_batch_dims(rhs, spectrum)
rhs_vb = self._vectorize_then_blockify(rhs)
fft_rhs_vb = self._fft(rhs_vb)
solution_vb = self._ifft(fft_rhs_vb / spectrum)
x = self._unblockify_then_matricize(solution_vb)
return math_ops.cast(x, self.dtype)
def _diag_part(self):
# Get ones in shape of diag, which is [B1,...,Bb, N]
# Also get the size of the diag, "N".
if self.shape.is_fully_defined():
diag_shape = self.shape[:-1]
diag_size = self.domain_dimension.value
else:
diag_shape = self.shape_tensor()[:-1]
diag_size = self.domain_dimension_tensor()
ones_diag = array_ops.ones(diag_shape, dtype=self.dtype)
# As proved in comments in self._trace, the value on the diag is constant,
# repeated N times. This value is the trace divided by N.
# The handling of self.shape = (0, 0) is tricky, and is the reason we choose
# to compute trace and use that to compute diag_part, rather than computing
# the value on the diagonal ("diag_value") directly. Both result in a 0/0,
# but in different places, and the current method gives the right result in
# the end.
# Here, if self.shape = (0, 0), then self.trace() = 0., and then
# diag_value = 0. / 0. = NaN.
diag_value = self.trace() / math_ops.cast(diag_size, self.dtype)
# If self.shape = (0, 0), then ones_diag = [] (empty tensor), and then
# the following line is NaN * [] = [], as needed.
return diag_value[..., array_ops.newaxis] * ones_diag
def _trace(self):
# The diagonal of the [[nested] block] circulant operator is the mean of
# the spectrum.
# Proof: For the [0,...,0] element, this follows from the IDFT formula.
# Then the result follows since all diagonal elements are the same.
# Therefore, the trace is the sum of the spectrum.
# Get shape of diag along with the axis over which to reduce the spectrum.
# We will reduce the spectrum over all block indices.
if self.spectrum.shape.is_fully_defined():
spec_rank = self.spectrum.shape.ndims
axis = np.arange(spec_rank - self.block_depth, spec_rank, dtype=np.int32)
else:
spec_rank = array_ops.rank(self.spectrum)
axis = math_ops.range(spec_rank - self.block_depth, spec_rank)
# Real diag part "re_d".
# Suppose spectrum.shape = [B1,...,Bb, N1, N2]
# self.shape = [B1,...,Bb, N, N], with N1 * N2 = N.
# re_d_value.shape = [B1,...,Bb]
re_d_value = math_ops.reduce_sum(math_ops.real(self.spectrum), axis=axis)
if not self.dtype.is_complex:
return math_ops.cast(re_d_value, self.dtype)
# Imaginary part, "im_d".
if self.is_self_adjoint:
im_d_value = array_ops.zeros_like(re_d_value)
else:
im_d_value = math_ops.reduce_sum(math_ops.imag(self.spectrum), axis=axis)
return math_ops.cast(math_ops.complex(re_d_value, im_d_value), self.dtype)
@tf_export("linalg.LinearOperatorCirculant")
class LinearOperatorCirculant(_BaseLinearOperatorCirculant):
"""`LinearOperator` acting like a circulant matrix.
This operator acts like a circulant matrix `A` with
shape `[B1,...,Bb, N, N]` for some `b >= 0`. The first `b` indices index a
batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
an `N x N` matrix. This matrix `A` is not materialized, but for
purposes of broadcasting this shape will be relevant.
#### Description in terms of circulant matrices
Circulant means the entries of `A` are generated by a single vector, the
convolution kernel `h`: `A_{mn} := h_{m-n mod N}`. With `h = [w, x, y, z]`,
```
A = |w z y x|
|x w z y|
|y x w z|
|z y x w|
```
This means that the result of matrix multiplication `v = Au` has `Lth` column
given circular convolution between `h` with the `Lth` column of `u`.
See http://ee.stanford.edu/~gray/toeplitz.pdf
#### Description in terms of the frequency spectrum
There is an equivalent description in terms of the [batch] spectrum `H` and
Fourier transforms. Here we consider `A.shape = [N, N]` and ignore batch
dimensions. Define the discrete Fourier transform (DFT) and its inverse by
```
DFT[ h[n] ] = H[k] := sum_{n = 0}^{N - 1} h_n e^{-i 2pi k n / N}
IDFT[ H[k] ] = h[n] = N^{-1} sum_{k = 0}^{N - 1} H_k e^{i 2pi k n / N}
```
From these definitions, we see that
```
H[0] = sum_{n = 0}^{N - 1} h_n
H[1] = "the first positive frequency"
H[N - 1] = "the first negative frequency"
```
Loosely speaking, with `*` element-wise multiplication, matrix multiplication
is equal to the action of a Fourier multiplier: `A u = IDFT[ H * DFT[u] ]`.
Precisely speaking, given `[N, R]` matrix `u`, let `DFT[u]` be the `[N, R]`
matrix with `rth` column equal to the DFT of the `rth` column of `u`.
Define the `IDFT` similarly.
Matrix multiplication may be expressed columnwise:
```(A u)_r = IDFT[ H * (DFT[u])_r ]```
#### Operator properties deduced from the spectrum.
Letting `U` be the `kth` Euclidean basis vector, and `U = IDFT[u]`.
The above formulas show that`A U = H_k * U`. We conclude that the elements
of `H` are the eigenvalues of this operator. Therefore
* This operator is positive definite if and only if `Real{H} > 0`.
A general property of Fourier transforms is the correspondence between
Hermitian functions and real valued transforms.
Suppose `H.shape = [B1,...,Bb, N]`. We say that `H` is a Hermitian spectrum
if, with `%` meaning modulus division,
```H[..., n % N] = ComplexConjugate[ H[..., (-n) % N] ]```
* This operator corresponds to a real matrix if and only if `H` is Hermitian.
* This operator is self-adjoint if and only if `H` is real.
See e.g. "Discrete-Time Signal Processing", Oppenheim and Schafer.
#### Example of a self-adjoint positive definite operator
```python
# spectrum is real ==> operator is self-adjoint
# spectrum is positive ==> operator is positive definite
spectrum = [6., 4, 2]
operator = LinearOperatorCirculant(spectrum)
# IFFT[spectrum]
operator.convolution_kernel()
==> [4 + 0j, 1 + 0.58j, 1 - 0.58j]
operator.to_dense()
==> [[4 + 0.0j, 1 - 0.6j, 1 + 0.6j],
[1 + 0.6j, 4 + 0.0j, 1 - 0.6j],
[1 - 0.6j, 1 + 0.6j, 4 + 0.0j]]
```
#### Example of defining in terms of a real convolution kernel
```python
# convolution_kernel is real ==> spectrum is Hermitian.
convolution_kernel = [1., 2., 1.]]
spectrum = tf.signal.fft(tf.cast(convolution_kernel, tf.complex64))
# spectrum is Hermitian ==> operator is real.
# spectrum is shape [3] ==> operator is shape [3, 3]
# We force the input/output type to be real, which allows this to operate
# like a real matrix.
operator = LinearOperatorCirculant(spectrum, input_output_dtype=tf.float32)
operator.to_dense()
==> [[ 1, 1, 2],
[ 2, 1, 1],
[ 1, 2, 1]]
```
#### Example of Hermitian spectrum
```python
# spectrum is shape [3] ==> operator is shape [3, 3]
# spectrum is Hermitian ==> operator is real.
spectrum = [1, 1j, -1j]
operator = LinearOperatorCirculant(spectrum)
operator.to_dense()
==> [[ 0.33 + 0j, 0.91 + 0j, -0.24 + 0j],
[-0.24 + 0j, 0.33 + 0j, 0.91 + 0j],
[ 0.91 + 0j, -0.24 + 0j, 0.33 + 0j]
```
#### Example of forcing real `dtype` when spectrum is Hermitian
```python
# spectrum is shape [4] ==> operator is shape [4, 4]
# spectrum is real ==> operator is self-adjoint
# spectrum is Hermitian ==> operator is real
# spectrum has positive real part ==> operator is positive-definite.
spectrum = [6., 4, 2, 4]
# Force the input dtype to be float32.
# Cast the output to float32. This is fine because the operator will be
# real due to Hermitian spectrum.
operator = LinearOperatorCirculant(spectrum, input_output_dtype=tf.float32)
operator.shape
==> [4, 4]
operator.to_dense()
==> [[4, 1, 0, 1],
[1, 4, 1, 0],
[0, 1, 4, 1],
[1, 0, 1, 4]]
# convolution_kernel = tf.signal.ifft(spectrum)
operator.convolution_kernel()
==> [4, 1, 0, 1]
```
#### Performance
Suppose `operator` is a `LinearOperatorCirculant` of shape `[N, N]`,
and `x.shape = [N, R]`. Then
* `operator.matmul(x)` is `O(R*N*Log[N])`
* `operator.solve(x)` is `O(R*N*Log[N])`
* `operator.determinant()` involves a size `N` `reduce_prod`.
If instead `operator` and `x` have shape `[B1,...,Bb, N, N]` and
`[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`.
#### Matrix property hints
This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular, self_adjoint, positive_definite, square`.
These have the following meaning:
* If `is_X == True`, callers should expect the operator to have the
property `X`. This is a promise that should be fulfilled, but is *not* a
runtime assert. For example, finite floating point precision may result
in these promises being violated.
* If `is_X == False`, callers should expect the operator to not have `X`.
* If `is_X == None` (the default), callers should have no expectation either
way.
"""
def __init__(self,
spectrum,
input_output_dtype=dtypes.complex64,
is_non_singular=None,
is_self_adjoint=None,
is_positive_definite=None,
is_square=True,
name="LinearOperatorCirculant"):
r"""Initialize an `LinearOperatorCirculant`.
This `LinearOperator` is initialized to have shape `[B1,...,Bb, N, N]`
by providing `spectrum`, a `[B1,...,Bb, N]` `Tensor`.
If `input_output_dtype = DTYPE`:
* Arguments to methods such as `matmul` or `solve` must be `DTYPE`.
* Values returned by all methods, such as `matmul` or `determinant` will be
cast to `DTYPE`.
Note that if the spectrum is not Hermitian, then this operator corresponds
to a complex matrix with non-zero imaginary part. In this case, setting
`input_output_dtype` to a real type will forcibly cast the output to be
real, resulting in incorrect results!
If on the other hand the spectrum is Hermitian, then this operator
corresponds to a real-valued matrix, and setting `input_output_dtype` to
a real type is fine.
Args:
spectrum: Shape `[B1,...,Bb, N]` `Tensor`. Allowed dtypes: `float16`,
`float32`, `float64`, `complex64`, `complex128`. Type can be different
than `input_output_dtype`
input_output_dtype: `dtype` for input/output.
is_non_singular: Expect that this operator is non-singular.
is_self_adjoint: Expect that this operator is equal to its hermitian
transpose. If `spectrum` is real, this will always be true.
is_positive_definite: Expect that this operator is positive definite,
meaning the quadratic form `x^H A x` has positive real part for all
nonzero `x`. Note that we do not require the operator to be
self-adjoint to be positive-definite. See:
https://en.wikipedia.org/wiki/Positive-definite_matrix\
#Extension_for_non_symmetric_matrices
is_square: Expect that this operator acts like square [batch] matrices.
name: A name to prepend to all ops created by this class.
"""
super(LinearOperatorCirculant, self).__init__(
spectrum,
block_depth=1,
input_output_dtype=input_output_dtype,
is_non_singular=is_non_singular,
is_self_adjoint=is_self_adjoint,
is_positive_definite=is_positive_definite,
is_square=is_square,
name=name)
@tf_export("linalg.LinearOperatorCirculant2D")
class LinearOperatorCirculant2D(_BaseLinearOperatorCirculant):
"""`LinearOperator` acting like a block circulant matrix.
This operator acts like a block circulant matrix `A` with
shape `[B1,...,Bb, N, N]` for some `b >= 0`. The first `b` indices index a
batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
an `N x N` matrix. This matrix `A` is not materialized, but for
purposes of broadcasting this shape will be relevant.
#### Description in terms of block circulant matrices
If `A` is block circulant, with block sizes `N0, N1` (`N0 * N1 = N`):
`A` has a block circulant structure, composed of `N0 x N0` blocks, with each
block an `N1 x N1` circulant matrix.
For example, with `W`, `X`, `Y`, `Z` each circulant,
```
A = |W Z Y X|
|X W Z Y|
|Y X W Z|
|Z Y X W|
```
Note that `A` itself will not in general be circulant.
#### Description in terms of the frequency spectrum
There is an equivalent description in terms of the [batch] spectrum `H` and
Fourier transforms. Here we consider `A.shape = [N, N]` and ignore batch
dimensions.
If `H.shape = [N0, N1]`, (`N0 * N1 = N`):
Loosely speaking, matrix multiplication is equal to the action of a
Fourier multiplier: `A u = IDFT2[ H DFT2[u] ]`.
Precisely speaking, given `[N, R]` matrix `u`, let `DFT2[u]` be the
`[N0, N1, R]` `Tensor` defined by re-shaping `u` to `[N0, N1, R]` and taking
a two dimensional DFT across the first two dimensions. Let `IDFT2` be the
inverse of `DFT2`. Matrix multiplication may be expressed columnwise:
```(A u)_r = IDFT2[ H * (DFT2[u])_r ]```
#### Operator properties deduced from the spectrum.
* This operator is positive definite if and only if `Real{H} > 0`.
A general property of Fourier transforms is the correspondence between
Hermitian functions and real valued transforms.
Suppose `H.shape = [B1,...,Bb, N0, N1]`, we say that `H` is a Hermitian
spectrum if, with `%` indicating modulus division,
```
H[..., n0 % N0, n1 % N1] = ComplexConjugate[ H[..., (-n0) % N0, (-n1) % N1 ].
```
* This operator corresponds to a real matrix if and only if `H` is Hermitian.
* This operator is self-adjoint if and only if `H` is real.
See e.g. "Discrete-Time Signal Processing", Oppenheim and Schafer.
### Example of a self-adjoint positive definite operator
```python
# spectrum is real ==> operator is self-adjoint
# spectrum is positive ==> operator is positive definite
spectrum = [[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]
operator = LinearOperatorCirculant2D(spectrum)
# IFFT[spectrum]
operator.convolution_kernel()
==> [[5.0+0.0j, -0.5-.3j, -0.5+.3j],
[-1.5-.9j, 0, 0],
[-1.5+.9j, 0, 0]]
operator.to_dense()
==> Complex self adjoint 9 x 9 matrix.
```
#### Example of defining in terms of a real convolution kernel,
```python
# convolution_kernel is real ==> spectrum is Hermitian.
convolution_kernel = [[1., 2., 1.], [5., -1., 1.]]
spectrum = tf.signal.fft2d(tf.cast(convolution_kernel, tf.complex64))
# spectrum is shape [2, 3] ==> operator is shape [6, 6]
# spectrum is Hermitian ==> operator is real.
operator = LinearOperatorCirculant2D(spectrum, input_output_dtype=tf.float32)
```
#### Performance
Suppose `operator` is a `LinearOperatorCirculant` of shape `[N, N]`,
and `x.shape = [N, R]`. Then
* `operator.matmul(x)` is `O(R*N*Log[N])`
* `operator.solve(x)` is `O(R*N*Log[N])`
* `operator.determinant()` involves a size `N` `reduce_prod`.
If instead `operator` and `x` have shape `[B1,...,Bb, N, N]` and
`[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`.
#### Matrix property hints
This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular, self_adjoint, positive_definite, square`.
These have the following meaning
* If `is_X == True`, callers should expect the operator to have the
property `X`. This is a promise that should be fulfilled, but is *not* a
runtime assert. For example, finite floating point precision may result
in these promises being violated.
* If `is_X == False`, callers should expect the operator to not have `X`.
* If `is_X == None` (the default), callers should have no expectation either
way.
"""
def __init__(self,
spectrum,
input_output_dtype=dtypes.complex64,
is_non_singular=None,
is_self_adjoint=None,
is_positive_definite=None,
is_square=True,
name="LinearOperatorCirculant2D"):
r"""Initialize an `LinearOperatorCirculant2D`.
This `LinearOperator` is initialized to have shape `[B1,...,Bb, N, N]`
by providing `spectrum`, a `[B1,...,Bb, N0, N1]` `Tensor` with `N0*N1 = N`.
If `input_output_dtype = DTYPE`:
* Arguments to methods such as `matmul` or `solve` must be `DTYPE`.
* Values returned by all methods, such as `matmul` or `determinant` will be
cast to `DTYPE`.
Note that if the spectrum is not Hermitian, then this operator corresponds
to a complex matrix with non-zero imaginary part. In this case, setting
`input_output_dtype` to a real type will forcibly cast the output to be
real, resulting in incorrect results!
If on the other hand the spectrum is Hermitian, then this operator
corresponds to a real-valued matrix, and setting `input_output_dtype` to
a real type is fine.
Args:
spectrum: Shape `[B1,...,Bb, N]` `Tensor`. Allowed dtypes: `float16`,
`float32`, `float64`, `complex64`, `complex128`. Type can be different
than `input_output_dtype`
input_output_dtype: `dtype` for input/output.
is_non_singular: Expect that this operator is non-singular.
is_self_adjoint: Expect that this operator is equal to its hermitian
transpose. If `spectrum` is real, this will always be true.
is_positive_definite: Expect that this operator is positive definite,
meaning the quadratic form `x^H A x` has positive real part for all
nonzero `x`. Note that we do not require the operator to be
self-adjoint to be positive-definite. See:
https://en.wikipedia.org/wiki/Positive-definite_matrix\
#Extension_for_non_symmetric_matrices
is_square: Expect that this operator acts like square [batch] matrices.
name: A name to prepend to all ops created by this class.
"""
super(LinearOperatorCirculant2D, self).__init__(
spectrum,
block_depth=2,
input_output_dtype=input_output_dtype,
is_non_singular=is_non_singular,
is_self_adjoint=is_self_adjoint,
is_positive_definite=is_positive_definite,
is_square=is_square,
name=name)
@tf_export("linalg.LinearOperatorCirculant3D")
class LinearOperatorCirculant3D(_BaseLinearOperatorCirculant):
"""`LinearOperator` acting like a nested block circulant matrix.
This operator acts like a block circulant matrix `A` with
shape `[B1,...,Bb, N, N]` for some `b >= 0`. The first `b` indices index a
batch member. For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
an `N x N` matrix. This matrix `A` is not materialized, but for
purposes of broadcasting this shape will be relevant.
#### Description in terms of block circulant matrices
If `A` is nested block circulant, with block sizes `N0, N1, N2`
(`N0 * N1 * N2 = N`):
`A` has a block structure, composed of `N0 x N0` blocks, with each
block an `N1 x N1` block circulant matrix.
For example, with `W`, `X`, `Y`, `Z` each block circulant,
```
A = |W Z Y X|
|X W Z Y|
|Y X W Z|
|Z Y X W|
```
Note that `A` itself will not in general be circulant.
#### Description in terms of the frequency spectrum
There is an equivalent description in terms of the [batch] spectrum `H` and
Fourier transforms. Here we consider `A.shape = [N, N]` and ignore batch
dimensions.
If `H.shape = [N0, N1, N2]`, (`N0 * N1 * N2 = N`):
Loosely speaking, matrix multiplication is equal to the action of a
Fourier multiplier: `A u = IDFT3[ H DFT3[u] ]`.
Precisely speaking, given `[N, R]` matrix `u`, let `DFT3[u]` be the
`[N0, N1, N2, R]` `Tensor` defined by re-shaping `u` to `[N0, N1, N2, R]` and
taking a three dimensional DFT across the first three dimensions. Let `IDFT3`
be the inverse of `DFT3`. Matrix multiplication may be expressed columnwise:
```(A u)_r = IDFT3[ H * (DFT3[u])_r ]```
#### Operator properties deduced from the spectrum.
* This operator is positive definite if and only if `Real{H} > 0`.
A general property of Fourier transforms is the correspondence between
Hermitian functions and real valued transforms.
Suppose `H.shape = [B1,...,Bb, N0, N1, N2]`, we say that `H` is a Hermitian
spectrum if, with `%` meaning modulus division,
```
H[..., n0 % N0, n1 % N1, n2 % N2]
= ComplexConjugate[ H[..., (-n0) % N0, (-n1) % N1, (-n2) % N2] ].
```
* This operator corresponds to a real matrix if and only if `H` is Hermitian.
* This operator is self-adjoint if and only if `H` is real.
See e.g. "Discrete-Time Signal Processing", Oppenheim and Schafer.
### Examples
See `LinearOperatorCirculant` and `LinearOperatorCirculant2D` for examples.
#### Performance
Suppose `operator` is a `LinearOperatorCirculant` of shape `[N, N]`,
and `x.shape = [N, R]`. Then
* `operator.matmul(x)` is `O(R*N*Log[N])`
* `operator.solve(x)` is `O(R*N*Log[N])`
* `operator.determinant()` involves a size `N` `reduce_prod`.
If instead `operator` and `x` have shape `[B1,...,Bb, N, N]` and
`[B1,...,Bb, N, R]`, every operation increases in complexity by `B1*...*Bb`.
#### Matrix property hints
This `LinearOperator` is initialized with boolean flags of the form `is_X`,
for `X = non_singular, self_adjoint, positive_definite, square`.
These have the following meaning