-
Notifications
You must be signed in to change notification settings - Fork 74.3k
/
data_utils.py
1014 lines (824 loc) · 31.4 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
# pylint: disable=g-import-not-at-top
"""Utilities for file download and caching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from abc import abstractmethod
from contextlib import closing
import errno
import functools
import gc
import hashlib
import multiprocessing
import multiprocessing.dummy
import os
import random
import shutil
import signal
import sys
import tarfile
import threading
import time
import weakref
import zipfile
import numpy as np
import six
from six.moves.urllib.error import HTTPError
from six.moves.urllib.error import URLError
from six.moves.urllib.request import urlopen
from tensorflow.python.framework import ops
from tensorflow.python.keras.utils.generic_utils import Progbar
from tensorflow.python.platform import tf_logging as logging
from tensorflow.python.util import tf_inspect
from tensorflow.python.util.tf_export import keras_export
try:
import queue
except ImportError:
import Queue as queue
try:
import typing
is_iterator = lambda x: isinstance(x, typing.Iterator)
except ImportError:
# Python2 uses next, and Python3 should have typing so __next__ is not needed.
is_iterator = lambda x: hasattr(x, '__iter__') and hasattr(x, 'next')
if sys.version_info[0] == 2:
def urlretrieve(url, filename, reporthook=None, data=None):
"""Replacement for `urlretrive` for Python 2.
Under Python 2, `urlretrieve` relies on `FancyURLopener` from legacy
`urllib` module, known to have issues with proxy management.
Arguments:
url: url to retrieve.
filename: where to store the retrieved data locally.
reporthook: a hook function that will be called once
on establishment of the network connection and once
after each block read thereafter.
The hook will be passed three arguments;
a count of blocks transferred so far,
a block size in bytes, and the total size of the file.
data: `data` argument passed to `urlopen`.
"""
def chunk_read(response, chunk_size=8192, reporthook=None):
content_type = response.info().get('Content-Length')
total_size = -1
if content_type is not None:
total_size = int(content_type.strip())
count = 0
while True:
chunk = response.read(chunk_size)
count += 1
if reporthook is not None:
reporthook(count, chunk_size, total_size)
if chunk:
yield chunk
else:
break
response = urlopen(url, data)
with open(filename, 'wb') as fd:
for chunk in chunk_read(response, reporthook=reporthook):
fd.write(chunk)
else:
from six.moves.urllib.request import urlretrieve
def is_generator_or_sequence(x):
"""Check if `x` is a Keras generator type."""
builtin_iterators = (str, list, tuple, dict, set, frozenset)
if isinstance(x, (ops.Tensor, np.ndarray) + builtin_iterators):
return False
return tf_inspect.isgenerator(x) or isinstance(x, Sequence) or is_iterator(x)
def _extract_archive(file_path, path='.', archive_format='auto'):
"""Extracts an archive if it matches tar, tar.gz, tar.bz, or zip formats.
Arguments:
file_path: path to the archive file
path: path to extract the archive file
archive_format: Archive format to try for extracting the file.
Options are 'auto', 'tar', 'zip', and None.
'tar' includes tar, tar.gz, and tar.bz files.
The default 'auto' is ['tar', 'zip'].
None or an empty list will return no matches found.
Returns:
True if a match was found and an archive extraction was completed,
False otherwise.
"""
if archive_format is None:
return False
if archive_format == 'auto':
archive_format = ['tar', 'zip']
if isinstance(archive_format, six.string_types):
archive_format = [archive_format]
for archive_type in archive_format:
if archive_type == 'tar':
open_fn = tarfile.open
is_match_fn = tarfile.is_tarfile
if archive_type == 'zip':
open_fn = zipfile.ZipFile
is_match_fn = zipfile.is_zipfile
if is_match_fn(file_path):
with open_fn(file_path) as archive:
try:
archive.extractall(path)
except (tarfile.TarError, RuntimeError, KeyboardInterrupt):
if os.path.exists(path):
if os.path.isfile(path):
os.remove(path)
else:
shutil.rmtree(path)
raise
return True
return False
@keras_export('keras.utils.get_file')
def get_file(fname,
origin,
untar=False,
md5_hash=None,
file_hash=None,
cache_subdir='datasets',
hash_algorithm='auto',
extract=False,
archive_format='auto',
cache_dir=None):
"""Downloads a file from a URL if it not already in the cache.
By default the file at the url `origin` is downloaded to the
cache_dir `~/.keras`, placed in the cache_subdir `datasets`,
and given the filename `fname`. The final location of a file
`example.txt` would therefore be `~/.keras/datasets/example.txt`.
Files in tar, tar.gz, tar.bz, and zip formats can also be extracted.
Passing a hash will verify the file after download. The command line
programs `shasum` and `sha256sum` can compute the hash.
Arguments:
fname: Name of the file. If an absolute path `/path/to/file.txt` is
specified the file will be saved at that location.
origin: Original URL of the file.
untar: Deprecated in favor of 'extract'.
boolean, whether the file should be decompressed
md5_hash: Deprecated in favor of 'file_hash'.
md5 hash of the file for verification
file_hash: The expected hash string of the file after download.
The sha256 and md5 hash algorithms are both supported.
cache_subdir: Subdirectory under the Keras cache dir where the file is
saved. If an absolute path `/path/to/folder` is
specified the file will be saved at that location.
hash_algorithm: Select the hash algorithm to verify the file.
options are 'md5', 'sha256', and 'auto'.
The default 'auto' detects the hash algorithm in use.
extract: True tries extracting the file as an Archive, like tar or zip.
archive_format: Archive format to try for extracting the file.
Options are 'auto', 'tar', 'zip', and None.
'tar' includes tar, tar.gz, and tar.bz files.
The default 'auto' is ['tar', 'zip'].
None or an empty list will return no matches found.
cache_dir: Location to store cached files, when None it
defaults to the [Keras
Directory](/faq/#where-is-the-keras-configuration-filed-stored).
Returns:
Path to the downloaded file
"""
if cache_dir is None:
cache_dir = os.path.join(os.path.expanduser('~'), '.keras')
if md5_hash is not None and file_hash is None:
file_hash = md5_hash
hash_algorithm = 'md5'
datadir_base = os.path.expanduser(cache_dir)
if not os.access(datadir_base, os.W_OK):
datadir_base = os.path.join('/tmp', '.keras')
datadir = os.path.join(datadir_base, cache_subdir)
_makedirs_exist_ok(datadir)
if untar:
untar_fpath = os.path.join(datadir, fname)
fpath = untar_fpath + '.tar.gz'
else:
fpath = os.path.join(datadir, fname)
download = False
if os.path.exists(fpath):
# File found; verify integrity if a hash was provided.
if file_hash is not None:
if not validate_file(fpath, file_hash, algorithm=hash_algorithm):
print('A local file was found, but it seems to be '
'incomplete or outdated because the ' + hash_algorithm +
' file hash does not match the original value of ' + file_hash +
' so we will re-download the data.')
download = True
else:
download = True
if download:
print('Downloading data from', origin)
class ProgressTracker(object):
# Maintain progbar for the lifetime of download.
# This design was chosen for Python 2.7 compatibility.
progbar = None
def dl_progress(count, block_size, total_size):
if ProgressTracker.progbar is None:
if total_size == -1:
total_size = None
ProgressTracker.progbar = Progbar(total_size)
else:
ProgressTracker.progbar.update(count * block_size)
error_msg = 'URL fetch failure on {}: {} -- {}'
try:
try:
urlretrieve(origin, fpath, dl_progress)
except HTTPError as e:
raise Exception(error_msg.format(origin, e.code, e.msg))
except URLError as e:
raise Exception(error_msg.format(origin, e.errno, e.reason))
except (Exception, KeyboardInterrupt) as e:
if os.path.exists(fpath):
os.remove(fpath)
raise
ProgressTracker.progbar = None
if untar:
if not os.path.exists(untar_fpath):
_extract_archive(fpath, datadir, archive_format='tar')
return untar_fpath
if extract:
_extract_archive(fpath, datadir, archive_format)
return fpath
def _makedirs_exist_ok(datadir):
if six.PY3:
os.makedirs(datadir, exist_ok=True) # pylint: disable=unexpected-keyword-arg
else:
# Python 2 doesn't have the exist_ok arg, so we try-except here.
try:
os.makedirs(datadir)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def _hash_file(fpath, algorithm='sha256', chunk_size=65535):
"""Calculates a file sha256 or md5 hash.
Example:
```python
_hash_file('/path/to/file.zip')
'e3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855'
```
Arguments:
fpath: path to the file being validated
algorithm: hash algorithm, one of 'auto', 'sha256', or 'md5'.
The default 'auto' detects the hash algorithm in use.
chunk_size: Bytes to read at a time, important for large files.
Returns:
The file hash
"""
if (algorithm == 'sha256') or (algorithm == 'auto' and len(hash) == 64):
hasher = hashlib.sha256()
else:
hasher = hashlib.md5()
with open(fpath, 'rb') as fpath_file:
for chunk in iter(lambda: fpath_file.read(chunk_size), b''):
hasher.update(chunk)
return hasher.hexdigest()
def validate_file(fpath, file_hash, algorithm='auto', chunk_size=65535):
"""Validates a file against a sha256 or md5 hash.
Arguments:
fpath: path to the file being validated
file_hash: The expected hash string of the file.
The sha256 and md5 hash algorithms are both supported.
algorithm: Hash algorithm, one of 'auto', 'sha256', or 'md5'.
The default 'auto' detects the hash algorithm in use.
chunk_size: Bytes to read at a time, important for large files.
Returns:
Whether the file is valid
"""
if (algorithm == 'sha256') or (algorithm == 'auto' and len(file_hash) == 64):
hasher = 'sha256'
else:
hasher = 'md5'
if str(_hash_file(fpath, hasher, chunk_size)) == str(file_hash):
return True
else:
return False
class ThreadsafeIter(object):
"""Wrap an iterator with a lock and propagate exceptions to all threads."""
def __init__(self, it):
self.it = it
self.lock = threading.Lock()
# After a generator throws an exception all subsequent next() calls raise a
# StopIteration Exception. This, however, presents an issue when mixing
# generators and threading because it means the order of retrieval need not
# match the order in which the generator was called. This can make it appear
# that a generator exited normally when in fact the terminating exception is
# just in a different thread. In order to provide thread safety, once
# self.it has thrown an exception we continue to throw the same exception.
self._exception = None
def __iter__(self):
return self
def __next__(self):
return self.next()
def next(self):
with self.lock:
if self._exception:
raise self._exception # pylint: disable=raising-bad-type
try:
return next(self.it)
except Exception as e:
self._exception = e
raise
def threadsafe_generator(f):
@functools.wraps(f)
def g(*a, **kw):
return ThreadsafeIter(f(*a, **kw))
return g
@keras_export('keras.utils.Sequence')
class Sequence(object):
"""Base object for fitting to a sequence of data, such as a dataset.
Every `Sequence` must implement the `__getitem__` and the `__len__` methods.
If you want to modify your dataset between epochs you may implement
`on_epoch_end`.
The method `__getitem__` should return a complete batch.
Notes:
`Sequence` are a safer way to do multiprocessing. This structure guarantees
that the network will only train once
on each sample per epoch which is not the case with generators.
Examples:
```python
from skimage.io import imread
from skimage.transform import resize
import numpy as np
import math
# Here, `x_set` is list of path to the images
# and `y_set` are the associated classes.
class CIFAR10Sequence(Sequence):
def __init__(self, x_set, y_set, batch_size):
self.x, self.y = x_set, y_set
self.batch_size = batch_size
def __len__(self):
return math.ceil(len(self.x) / self.batch_size)
def __getitem__(self, idx):
batch_x = self.x[idx * self.batch_size:(idx + 1) *
self.batch_size]
batch_y = self.y[idx * self.batch_size:(idx + 1) *
self.batch_size]
return np.array([
resize(imread(file_name), (200, 200))
for file_name in batch_x]), np.array(batch_y)
```
"""
@abstractmethod
def __getitem__(self, index):
"""Gets batch at position `index`.
Arguments:
index: position of the batch in the Sequence.
Returns:
A batch
"""
raise NotImplementedError
@abstractmethod
def __len__(self):
"""Number of batch in the Sequence.
Returns:
The number of batches in the Sequence.
"""
raise NotImplementedError
def on_epoch_end(self):
"""Method called at the end of every epoch.
"""
pass
def __iter__(self):
"""Create a generator that iterate over the Sequence."""
for item in (self[i] for i in range(len(self))):
yield item
def iter_sequence_infinite(seq):
"""Iterates indefinitely over a Sequence.
Arguments:
seq: Sequence instance.
Yields:
Batches of data from the Sequence.
"""
while True:
for item in seq:
yield item
# Global variables to be shared across processes
_SHARED_SEQUENCES = {}
# We use a Value to provide unique id to different processes.
_SEQUENCE_COUNTER = None
# Because multiprocessing pools are inherently unsafe, starting from a clean
# state can be essential to avoiding deadlocks. In order to accomplish this, we
# need to be able to check on the status of Pools that we create.
_DATA_POOLS = weakref.WeakSet()
_WORKER_ID_QUEUE = None # Only created if needed.
_WORKER_IDS = set()
_FORCE_THREADPOOL = False
_FORCE_THREADPOOL_LOCK = threading.RLock()
def dont_use_multiprocessing_pool(f):
@functools.wraps(f)
def wrapped(*args, **kwargs):
with _FORCE_THREADPOOL_LOCK:
global _FORCE_THREADPOOL
old_force_threadpool, _FORCE_THREADPOOL = _FORCE_THREADPOOL, True
out = f(*args, **kwargs)
_FORCE_THREADPOOL = old_force_threadpool
return out
return wrapped
def get_pool_class(use_multiprocessing):
global _FORCE_THREADPOOL
if not use_multiprocessing or _FORCE_THREADPOOL:
return multiprocessing.dummy.Pool # ThreadPool
logging.warning(
'multiprocessing can interact badly with TensorFlow, causing '
'nondeterministic deadlocks. For high performance data pipelines tf.data '
'is recommended.')
return multiprocessing.Pool
def get_worker_id_queue():
"""Lazily create the queue to track worker ids."""
global _WORKER_ID_QUEUE
if _WORKER_ID_QUEUE is None:
_WORKER_ID_QUEUE = multiprocessing.Queue()
return _WORKER_ID_QUEUE
def init_pool(seqs):
global _SHARED_SEQUENCES
_SHARED_SEQUENCES = seqs
@keras_export('keras.experimental.terminate_keras_multiprocessing_pools')
def terminate_keras_multiprocessing_pools(grace_period=0.1, use_sigkill=False):
"""Destroy Keras' multiprocessing pools to prevent deadlocks.
In general multiprocessing.Pool can interact quite badly with other, seemingly
unrelated, parts of a codebase due to Pool's reliance on fork. This method
cleans up all pools which are known to belong to Keras (and thus can be safely
terminated).
Args:
grace_period: Time (in seconds) to wait for process cleanup to propagate.
use_sigkill: Boolean of whether or not to perform a cleanup pass using
SIGKILL.
Returns:
A list of human readable strings describing all issues encountered. It is up
to the caller to decide whether to treat this as an error condition.
"""
errors = []
# First cleanup the pools spawned by Keras. If we start killing workers and
# a parent pool is still alive it will just spawn replacements which we don't
# want.
gc.collect()
for pool in _DATA_POOLS:
pool.close()
pool.terminate()
# We do not join the pool, because that would wait forever if a worker
# refused to exit.
# Finally, delete our reference to the pool so that we do not block garbage
# collection.
del pool
# If there were any pools, sleep for a small grace period to allow everything
# to finalize.
if _DATA_POOLS:
time.sleep(grace_period)
# Now we kill any workers which are still alive. However we must compare
# the worker identifier to the set of identifiers which are known to have been
# spawned by pools belonging to Keras to avoid deleting unrelated workers.
# First we call the .terminate() method of a worker, and then if it still
# persists we directly send a signal to the process. Certain worker tasks may
# be able to gracefully handle shutdown, so we send a SIGTERM and then
# optionally follow up with a SIGKILL.
visited_workers = set()
cleanup_passes = ['.terminate', 'SIGTERM']
if use_sigkill:
cleanup_passes.append('SIGKILL')
cleanup_passes.append('log')
for cleanup_pass in cleanup_passes:
while True:
# In rare cases, queue.qsize() overestimates the number of elements. This
# loop is designed to be more robust.
try:
_WORKER_IDS.add(get_worker_id_queue().get_nowait())
except queue.Empty:
break
gc.collect()
workers_terminated_this_pass = False
for worker in multiprocessing.active_children():
ident = worker.ident
if ident in _WORKER_IDS and worker.is_alive():
try:
if cleanup_pass == '.terminate':
# First we ask nicely.
worker.terminate()
worker.join(timeout=grace_period)
visited_workers.add(ident)
workers_terminated_this_pass = True
elif cleanup_pass in ('SIGTERM', 'SIGKILL'):
# Then we ask increasingly tersely.
os.kill(worker.pid, signal.SIGKILL if cleanup_pass == 'SIGKILL'
else signal.SIGTERM)
workers_terminated_this_pass = True
elif cleanup_pass == 'log':
# And finally we give up and log the failure.
errors.append('worker still alive: {}, pid={}, hash={}'
.format(worker.name, worker.pid, hash(worker)))
except OSError:
# Worker exited since the start of this loop.
pass
if workers_terminated_this_pass:
# There can be a small propagation delay between worker destruction and
# workers reporting False for is_alive and no longer appearing in the
# list of active children. Once again, we sleep for a small grace period.
# This prevents false positives from workers which are simply still in the
# process of spinning down.
time.sleep(grace_period)
# Finally we remove the visited worker ids to handle the edge case that a
# pid is reused.
_WORKER_IDS.difference_update(visited_workers)
gc.collect()
for pool in _DATA_POOLS:
errors.append('pool still exists: {}, hash={}'.format(pool, hash(pool)))
return errors
def get_index(uid, i):
"""Get the value from the Sequence `uid` at index `i`.
To allow multiple Sequences to be used at the same time, we use `uid` to
get a specific one. A single Sequence would cause the validation to
overwrite the training Sequence.
Arguments:
uid: int, Sequence identifier
i: index
Returns:
The value at index `i`.
"""
return _SHARED_SEQUENCES[uid][i]
@keras_export('keras.utils.SequenceEnqueuer')
class SequenceEnqueuer(object):
"""Base class to enqueue inputs.
The task of an Enqueuer is to use parallelism to speed up preprocessing.
This is done with processes or threads.
Example:
```python
enqueuer = SequenceEnqueuer(...)
enqueuer.start()
datas = enqueuer.get()
for data in datas:
# Use the inputs; training, evaluating, predicting.
# ... stop sometime.
enqueuer.close()
```
The `enqueuer.get()` should be an infinite stream of datas.
"""
def __init__(self, sequence,
use_multiprocessing=False):
self.sequence = sequence
self.use_multiprocessing = use_multiprocessing
global _SEQUENCE_COUNTER
if _SEQUENCE_COUNTER is None:
try:
_SEQUENCE_COUNTER = multiprocessing.Value('i', 0)
except OSError:
# In this case the OS does not allow us to use
# multiprocessing. We resort to an int
# for enqueuer indexing.
_SEQUENCE_COUNTER = 0
if isinstance(_SEQUENCE_COUNTER, int):
self.uid = _SEQUENCE_COUNTER
_SEQUENCE_COUNTER += 1
else:
# Doing Multiprocessing.Value += x is not process-safe.
with _SEQUENCE_COUNTER.get_lock():
self.uid = _SEQUENCE_COUNTER.value
_SEQUENCE_COUNTER.value += 1
self.workers = 0
self.executor_fn = None
self.queue = None
self.run_thread = None
self.stop_signal = None
def is_running(self):
return self.stop_signal is not None and not self.stop_signal.is_set()
def start(self, workers=1, max_queue_size=10):
"""Starts the handler's workers.
Arguments:
workers: Number of workers.
max_queue_size: queue size
(when full, workers could block on `put()`)
"""
if self.use_multiprocessing:
self.executor_fn = self._get_executor_init(workers)
else:
# We do not need the init since it's threads.
self.executor_fn = lambda _: get_pool_class(False)(workers)
self.workers = workers
self.queue = queue.Queue(max_queue_size)
self.stop_signal = threading.Event()
self.run_thread = threading.Thread(target=self._run)
self.run_thread.daemon = True
self.run_thread.start()
def _send_sequence(self):
"""Sends current Iterable to all workers."""
# For new processes that may spawn
_SHARED_SEQUENCES[self.uid] = self.sequence
def stop(self, timeout=None):
"""Stops running threads and wait for them to exit, if necessary.
Should be called by the same thread which called `start()`.
Arguments:
timeout: maximum time to wait on `thread.join()`
"""
self.stop_signal.set()
with self.queue.mutex:
self.queue.queue.clear()
self.queue.unfinished_tasks = 0
self.queue.not_full.notify()
self.run_thread.join(timeout)
_SHARED_SEQUENCES[self.uid] = None
def __del__(self):
if self.is_running():
self.stop()
@abstractmethod
def _run(self):
"""Submits request to the executor and queue the `Future` objects."""
raise NotImplementedError
@abstractmethod
def _get_executor_init(self, workers):
"""Gets the Pool initializer for multiprocessing.
Arguments:
workers: Number of workers.
Returns:
Function, a Function to initialize the pool
"""
raise NotImplementedError
@abstractmethod
def get(self):
"""Creates a generator to extract data from the queue.
Skip the data if it is `None`.
# Returns
Generator yielding tuples `(inputs, targets)`
or `(inputs, targets, sample_weights)`.
"""
raise NotImplementedError
@keras_export('keras.utils.OrderedEnqueuer')
class OrderedEnqueuer(SequenceEnqueuer):
"""Builds a Enqueuer from a Sequence.
Used in `fit_generator`, `evaluate_generator`, `predict_generator`.
Arguments:
sequence: A `tf.keras.utils.data_utils.Sequence` object.
use_multiprocessing: use multiprocessing if True, otherwise threading
shuffle: whether to shuffle the data at the beginning of each epoch
"""
def __init__(self, sequence, use_multiprocessing=False, shuffle=False):
super(OrderedEnqueuer, self).__init__(sequence, use_multiprocessing)
self.shuffle = shuffle
def _get_executor_init(self, workers):
"""Gets the Pool initializer for multiprocessing.
Arguments:
workers: Number of workers.
Returns:
Function, a Function to initialize the pool
"""
def pool_fn(seqs):
pool = get_pool_class(True)(
workers, initializer=init_pool_generator,
initargs=(seqs, None, get_worker_id_queue()))
_DATA_POOLS.add(pool)
return pool
return pool_fn
def _wait_queue(self):
"""Wait for the queue to be empty."""
while True:
time.sleep(0.1)
if self.queue.unfinished_tasks == 0 or self.stop_signal.is_set():
return
def _run(self):
"""Submits request to the executor and queue the `Future` objects."""
sequence = list(range(len(self.sequence)))
self._send_sequence() # Share the initial sequence
while True:
if self.shuffle:
random.shuffle(sequence)
with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor:
for i in sequence:
if self.stop_signal.is_set():
return
self.queue.put(
executor.apply_async(get_index, (self.uid, i)), block=True)
# Done with the current epoch, waiting for the final batches
self._wait_queue()
if self.stop_signal.is_set():
# We're done
return
# Call the internal on epoch end.
self.sequence.on_epoch_end()
self._send_sequence() # Update the pool
def get(self):
"""Creates a generator to extract data from the queue.
Skip the data if it is `None`.
Yields:
The next element in the queue, i.e. a tuple
`(inputs, targets)` or
`(inputs, targets, sample_weights)`.
"""
try:
while self.is_running():
inputs = self.queue.get(block=True).get()
self.queue.task_done()
if inputs is not None:
yield inputs
except Exception: # pylint: disable=broad-except
self.stop()
six.reraise(*sys.exc_info())
def init_pool_generator(gens, random_seed=None, id_queue=None):
"""Initializer function for pool workers.
Args:
gens: State which should be made available to worker processes.
random_seed: An optional value with which to seed child processes.
id_queue: A multiprocessing Queue of worker ids. This is used to indicate
that a worker process was created by Keras and can be terminated using
the cleanup_all_keras_forkpools utility.
"""
global _SHARED_SEQUENCES
_SHARED_SEQUENCES = gens
worker_proc = multiprocessing.current_process()
# name isn't used for anything, but setting a more descriptive name is helpful
# when diagnosing orphaned processes.
worker_proc.name = 'Keras_worker_{}'.format(worker_proc.name)
if random_seed is not None:
np.random.seed(random_seed + worker_proc.ident)
if id_queue is not None:
# If a worker dies during init, the pool will just create a replacement.
id_queue.put(worker_proc.ident, block=True, timeout=0.1)
def next_sample(uid):
"""Gets the next value from the generator `uid`.
To allow multiple generators to be used at the same time, we use `uid` to
get a specific one. A single generator would cause the validation to
overwrite the training generator.
Arguments:
uid: int, generator identifier
Returns:
The next value of generator `uid`.
"""
return six.next(_SHARED_SEQUENCES[uid])
@keras_export('keras.utils.GeneratorEnqueuer')
class GeneratorEnqueuer(SequenceEnqueuer):
"""Builds a queue out of a data generator.
The provided generator can be finite in which case the class will throw
a `StopIteration` exception.
Used in `fit_generator`, `evaluate_generator`, `predict_generator`.
Arguments:
generator: a generator function which yields data
use_multiprocessing: use multiprocessing if True, otherwise threading
wait_time: time to sleep in-between calls to `put()`
random_seed: Initial seed for workers,
will be incremented by one for each worker.
"""
def __init__(self, sequence,
use_multiprocessing=False,
random_seed=None):
super(GeneratorEnqueuer, self).__init__(sequence, use_multiprocessing)
self.random_seed = random_seed
def _get_executor_init(self, workers):
"""Gets the Pool initializer for multiprocessing.
Arguments:
workers: Number of works.
Returns:
A Function to initialize the pool
"""
def pool_fn(seqs):
pool = get_pool_class(True)(
workers, initializer=init_pool_generator,
initargs=(seqs, self.random_seed, get_worker_id_queue()))
_DATA_POOLS.add(pool)
return pool
return pool_fn
def _run(self):
"""Submits request to the executor and queue the `Future` objects."""
self._send_sequence() # Share the initial generator
with closing(self.executor_fn(_SHARED_SEQUENCES)) as executor:
while True:
if self.stop_signal.is_set():
return
self.queue.put(
executor.apply_async(next_sample, (self.uid,)), block=True)
def get(self):
"""Creates a generator to extract data from the queue.
Skip the data if it is `None`.
Yields:
The next element in the queue, i.e. a tuple
`(inputs, targets)` or
`(inputs, targets, sample_weights)`.
"""
try:
while self.is_running():
inputs = self.queue.get(block=True).get()
self.queue.task_done()
if inputs is not None:
yield inputs
except StopIteration:
# Special case for finite generators
last_ones = []
while self.queue.qsize() > 0:
last_ones.append(self.queue.get(block=True))
# Wait for them to complete
for f in last_ones: