[go: nahoru, domu]

Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

memory leak when using tft.vocabulary with labels argument #181

Open
AnnKatrinBecker opened this issue Jun 18, 2020 · 2 comments
Open

memory leak when using tft.vocabulary with labels argument #181

AnnKatrinBecker opened this issue Jun 18, 2020 · 2 comments
Assignees

Comments

@AnnKatrinBecker
Copy link

Ubuntu 18.04
tensorflow 2.2.0
tfx 0.21.4

I am generating a vocabulary from my own dataset containing 28GB TFRecords with short description strings (up to 20 words) and integer labels from 1-100.

Generating the vocabulary without labels works fine.
But as soon as the labels argument is provided to tft.vocabulary memory usage increases dramatically >100GB until the processes gets killed due to running out of memory.

`def preprocessing_fn(inputs):
label = inputs['label']
desc = inputs['description']
desc = tf.strings.lower(desc.values)
# remove all numbers and punctuations
desc = tf.strings.regex_replace(desc, "[^a-zA-Z¿]+", " ")
tokens = tf.strings.split(desc)
ngrams = tf.strings.ngrams(tokens, [1,2])
ngrams = ngrams.to_sparse()

tft.vocabulary(ngrams, top_k=100000, labels=tf.sparse.to_dense(label),
               vocab_filename='ngrams_100k_labels')
return {'description': desc, 'label': label}`

`def main():
### Brings data into the pipeline
examples = external_input(
'directory with tfrecords')
example_gen = ImportExampleGen(input=examples)
examples = example_gen.outputs['examples']

# Import schema
schema_importer = ImporterNode(
    instance_name='imported_schema',
    source_uri='pipelines/test/SchemaGen/schema/3',
    artifact_type=Schema)

### Perform transformation
transform = Transform(examples=example_gen.outputs['examples'],
                      schema=schema_importer.outputs['result'],
                      module_file='preprocessing.py')

pipe = pipeline.Pipeline(
pipeline_name='test',
pipeline_root='pipelines/test',
components=[
example_gen,
schema_importer,
transform,
],
metadata_connection_config=metadata.sqlite_metadata_connection_config(
'test/metadata.db'),
enable_cache=True,
beam_pipeline_args=['--direct_num_workers=0'])

absl.logging.set_verbosity(absl.logging.INFO)
BeamDagRunner().run(pipe)`
@rmothukuru rmothukuru self-assigned this Jun 19, 2020
@rmothukuru rmothukuru transferred this issue from tensorflow/tfx Jun 19, 2020
@rmothukuru rmothukuru assigned zoyahav and unassigned rmothukuru Jun 19, 2020
@mrcolo
Copy link
mrcolo commented Oct 25, 2020

Any update on this? I'm getting a similar problem import a 38GB dataset using ImportExampleGen.

@arghyaganguly
Copy link

For large scale datasets it is recommended to use DataflowRunner (on GCP) or FlinkRunner or SparkRunner if it is a on-premises execution.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

6 participants