Realtime DNS Exfiltration Detection in Recursive
Resolvers

David Rodriguez ' Scott Sitar 2 Andrea Kaiser ! Brian
Somers ! Skyler Hawthorne !

ICisco Systems

2YeshID

DNS OARC 40

DNS Exfiltration & Tunneling Tools

. DNSExfiltrator - [1]
. lodine - [2]

. DNSCat2 - [3]

. dns2tcp - [4]

A WD =

Let's Exfiltrate

$ echo "Hello_DNS_Oarc_40_and_Cisco” \
| base32 \
| tr "[:upper:]’' '[:lower:]" \
| perl —pe "chomp;” \
"my_$n=length ;" \
"my_$i=0;"
"while ($i<$n){" \
"my_$s=substr_$_,_%i,_7;"
"printf . \"@{[($i)/7]}.%s.base32.mydomain.com.\n\";" \
" Si4+=7;}"
>> 0.jbswy3d.base32.mydomain.com.
>> 1.pebce4u.base32.mydomain.com.
>> 2.zaj5qxe.base32.mydomain.com.
>> 3.yzagqyc.base32.mydomain.com.
>> 4.aylomqq.base32.mydomain.com.
>> 5.eg2ltmn.base32. mydomain.com.
>> 6.xqu===-base32.mydomain.com.

DNS Exfiltration & Recursive Resolvers

Enroute a resolver checks the local cache and, if not expired,
record served from cache.

Resolver Caches

Bind [5] - tree

Knot [6] - trie, ranked arrays for rrsets

CoreDNS [7] - sharded maps

DJBDNS [8] - doubly-linked list, rrsets form linked list

Ll A

Cache Objectives

Some say read, write others additionally say update, delete

. Lookup gnames from DNS wire format 001a001b003com
2. Qtypes such as A, AAAA, TXT, NS,

3. TTLs defining record expiration

4. DNSSEC keys

[y

Cache Lookups

Question

iCacheiK

Authority

Figure: Cache misses force upstream lookups with answers placed in
cache

Realtime Blocklist + Tunneling Cache Lookups

Question

\)}unneling

i Cache

Perplexity
Filtering

Figure: Cache misses force upstream lookups with answers placed in
cache

With two caches we can asynchronously update the RBL cache
and isolate performance degradation of the Tunneling cache
updates and possibly wait to update until answers are given from
upstream name servers.

Perplexity Filter

Given a label walk the string and determine if the word is similar to
a known corpus (for example Wikipedia). [9]

1 n—1

n—1 > llog(pi-1) — log(pi—1./)]

i=1+1

Example: Let u, b denote a unigram and bigram count function,
respectively. Then, given the string xyz we see

Po = U(X)7p1 == u(y) and Po,1 = b(X7.y)7p1,2 = b(y,Z)

Fast Perplexity

abedefghijkimnoparstuvwxyz

1003 xyo i

Figure: Perplexity represented as a lookup table requiring only addition
and division by n — 1

Pseudo-Unique Counts

Let h: S — Z* be a 32-bit murmurhash function, with S the set
of all character strings. Then define a fingerprint function as:

f(x,n) =1<< (h(x) mod n)

Explanation: We want a pseudo-set with a fixed size n.
Example:

>>> def f(x, n):
return 1 << (mmh3. hash(x, signed=False) % n)

>>> for elem in list('abc’):
print('elem={},_value={},-binary={:b}'.format(elem, f(elem, 10), f(elem, 10)))

elem:a, value=1, binary=1
elem=b, value=32, binary=100000
elem=c, value=512, binary=1000000000

Detection Algorithm

for label IN gname do
if perplexity(label) > threshold then
label _fingerprint = fingerprint(label, n)
key = tunnel_cache_key(gqname)
tunnel_cache_update(key, label_fingerprint)
break
end if
end for

Operations

. Q Monitoring
: i Port

i P53
i Resolver :

Ignore-List Thresholds Debug
Queries

Figure: Operational and tuning of the algorithm occur through allow-lists,
thresholds, debugging tools, and monitoring

Challenges: Cache Fragmentation

Figure: Aggregating traffic per cache is slower than if all caches shared
counter states

Challenges: Cache Key-Pairs

Tunneling
Cache

RBL
Cache

Figure: Cache keys contain some non-obvious information to create
unique keys that may eat CPU resources so you don't want to construct
multiple times.

Then End!

Enjoy the rest of DNS QOarc

Bibliography

Y Y Y A 1 P

DNSExfiltrator https://github.com/ArnoOx/DNSExfiltrator
lodine https://github.com/yarrick/iodine

DNSCat2 https://github.com/iagox86/dnscat2

dns2tcp https://github.com/alex-sector/dns2tcp

Bind https://github.com/isc-projects/bind9

Knot https://github.com/CZ-NIC/knot-resolver

CoreDNS https://github.com/coredns/coredns

DJBDNS https://cr.yp.to/djbdns.html|

Perplexity and n-gram language models
https://web.stanford.edu/ jurafsky/slp3/3.pdf

