[go: nahoru, domu]

본문으로 이동

결합법칙: 두 판 사이의 차이

위키백과, 우리 모두의 백과사전.
내용 삭제됨 내용 추가됨
잔글 r2.7.3) (로봇이 더함: ml:സാഹചര്യനിയമം
TedBot (토론 | 기여)
잔글 봇: 전거 통제 틀 뒤 공백 정리
 
(사용자 16명의 중간 판 23개는 보이지 않습니다)
1번째 줄: 1번째 줄:
{{위키데이터 속성 추적}}
[[수학]]에서 '''결합법칙'''(結合 法則)은 [[이항연산]]이 만족하거나 만족하지 않는 성질이다. 한 식에서 [[연산 (수학)|연산]]이 두번 이상 연속될 때, 앞쪽의 연산을 먼저 계산한 값과 뒤쪽의 연산을 먼저 계산한 결과가 항상 같을 경우 그 연산은 '''결합법칙을 만족한다'''고 한다.
[[파일:Associativity of binary operations (without question marks).svg|thumb]]
[[수학]]에서 '''결합법칙'''(結合 法則, associative property)은 [[이항연산]]이 가질 있는 성질이다. 한 식에서 [[연산 (수학)|연산]]이 두 번 이상 연속될 때, 앞쪽의 연산을 먼저 계산한 값과 뒤쪽의 연산을 먼저 계산한 결과가 항상 같을 경우 그 연산은 '''결합법칙을 만족한다'''고 한다.


[[실수]]의 [[덧셈]]과 [[곱셈]]은 결합법칙을 만족한다. 예를 들어 다음 식은 참이다.
[[실수]]의 [[덧셈]]과 [[곱셈]]은 결합법칙을 만족한다. 예를 들어 다음 식은 참이다.
7번째 줄: 9번째 줄:
:(8 - 7) - 3 ≠ 8 - (7 - 3)
:(8 - 7) - 3 ≠ 8 - (7 - 3)
좌변과 우변의 결과값은 각각 -2와 4로 서로 다르다. 따라서 실수는 뺄셈에 대하여 결합법칙이 성립하지 않는다.
좌변과 우변의 결과값은 각각 -2와 4로 서로 다르다. 따라서 실수는 뺄셈에 대하여 결합법칙이 성립하지 않는다.

또한, [[실수]]의 [[나눗셈]]도 결합법칙이 성립하지 않는다. 다음 식에서,
:(8 ÷ 7) ÷ 3 ≠ 8 ÷ (7 ÷ 3)
: <math>{{8 \over 7} \over {3 \over 1}} \neq {{8 \over 1} \over {7 \over 3}}</math>
: <math>{{8 } \over {21}} \neq {{24} \over {7}} </math>
좌변과 우변의 결과값은 각각 0.38095...와 3.42857...로 서로 다르다. 따라서 실수는 나눗셈에 대하여도 결합법칙이 성립하지 않는다.


== 정의 ==
== 정의 ==
15번째 줄: 23번째 줄:


== 예시 ==
== 예시 ==
* [[실수]] [[복소수]], [[사원수]]의 [[덧셈]]과 [[곱셈]]은 결합법칙이 성립한다. [[팔원수]]의 덧셈도 결합법칙이 성립하지만 곱셈은 성립하지 않는다.
* [[자연수]], [[정수]], [[유리수]], [[실수]], [[복소수]], [[사원수]]의 [[덧셈]]과 [[곱셈]]은 결합법칙이 성립한다. [[팔원수]]의 덧셈도 결합법칙이 성립하지만 곱셈은 성립하지 않는다.
* [[최대공약수]]와 [[최소공배수]] 함수는 결합법칙을 만족한다.
* [[최대공약수]]와 [[최소공배수]] 함수는 결합법칙을 만족한다.
* [[행렬 곱셈]]은 결합법칙을 만족한다.
* [[행렬 곱셈]]은 결합법칙을 만족한다.
또한 [[선형 변환]]이 행렬의 곱셈으로 표현되므로 선형 변환 역시 결합법칙을 만족한다.
* [[선형 변환]]이 행렬의 곱셈으로 표현되므로 선형 변환 역시 결합법칙을 만족한다.
* [[집합]]의 [[교집합]]과 [[합집합]] 연산은 각각 결합법칙이 성립한다.
* [[집합]]의 [[교집합]]과 [[합집합]] 연산은 각각 결합법칙이 성립한다.
* [[진릿값]]의 [[논리곱]], [[논리합]], [[배타적 논리합]] 등 [[논리 연산]]은 각각 결합법칙이 성립한다.
* 각 함수의 정의역과 치역이 올바르게 정의된 [[함수 합성]]도 결합법칙을 만족한다. 즉 <math>h: M \to N, \ g: N \to P, \ f: P \to Q</math>인 세 함수가 있을 때,
* 각 함수의 정의역과 치역이 올바르게 정의된 [[함수의 합성| 합성함수]]도 결합법칙을 만족한다. 즉 <math>h: M \to N, \ g: N \to P, \ f: P \to Q</math>인 세 함수가 있을 때,
*: <math>(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h</math>
*: <math>(f \circ g) \circ h = f \circ (g \circ h) = f \circ g \circ h</math>


== 같이 보기 ==
[[분류:이항연산]]
* [[교환법칙]]
[[분류:대수학]]
* [[분배법칙]]


{{전거 통제}}
[[ar:عملية تجميعية]]

[[bg:Асоциативност]]
[[분류:추상대수학]]
[[bs:Asocijativnost]]
[[분류:이항연산]]
[[ca:Propietat associativa]]
[[분류:초등대수학]]
[[cs:Asociativita]]
[[분류:함수해석학]]
[[da:Associativitet]]
[[de:Assoziativgesetz]]
[[el:Προσεταιριστική ιδιότητα]]
[[en:Associative property]]
[[eo:Asocieco]]
[[es:Asociatividad (álgebra)]]
[[et:Assotsiatiivsus]]
[[fi:Liitännäisyys]]
[[fr:Associativité]]
[[gl:Asociatividade (álxebra)]]
[[he:פעולה אסוציאטיבית]]
[[hr:Asocijativnost]]
[[hu:Asszociativitás]]
[[is:Tengiregla]]
[[it:Associatività]]
[[ja:結合法則]]
[[kk:Ассоциативтік операция]]
[[lv:Asociativitāte]]
[[ml:സാഹചര്യനിയമം]]
[[ms:Kalis sekutuan]]
[[nl:Associativiteit (wiskunde)]]
[[nn:Assosiativitet]]
[[pl:Łączność (matematyka)]]
[[pt:Associatividade]]
[[ro:Asociativitate]]
[[ru:Ассоциативная операция]]
[[sh:Asocijativnost]]
[[simple:Associativity]]
[[sk:Asociatívna operácia]]
[[sl:Asociativnost]]
[[sr:Асоцијативност]]
[[sv:Associativitet]]
[[ta:சேர்ப்புப் பண்பு]]
[[th:สมบัติการเปลี่ยนหมู่]]
[[tr:Birleşme özelliği]]
[[uk:Асоціативність]]
[[ur:Associativity]]
[[vi:Kết hợp]]
[[zh:结合律]]

2024년 5월 2일 (목) 19:53 기준 최신판

수학에서 결합법칙(結合 法則, associative property)은 이항연산이 가질 수 있는 성질이다. 한 식에서 연산이 두 번 이상 연속될 때, 앞쪽의 연산을 먼저 계산한 값과 뒤쪽의 연산을 먼저 계산한 결과가 항상 같을 경우 그 연산은 결합법칙을 만족한다고 한다.

실수덧셈곱셈은 결합법칙을 만족한다. 예를 들어 다음 식은 참이다.

(2 + 3) + 5 = 2 + (3 + 5)

결합법칙이 성립하지 않는 가장 쉬운 예는 실수뺄셈일 것이다. 다음 식에서,

(8 - 7) - 3 ≠ 8 - (7 - 3)

좌변과 우변의 결과값은 각각 -2와 4로 서로 다르다. 따라서 실수는 뺄셈에 대하여 결합법칙이 성립하지 않는다.

또한, 실수나눗셈도 결합법칙이 성립하지 않는다. 다음 식에서,

(8 ÷ 7) ÷ 3 ≠ 8 ÷ (7 ÷ 3)

좌변과 우변의 결과값은 각각 0.38095...와 3.42857...로 서로 다르다. 따라서 실수는 나눗셈에 대하여도 결합법칙이 성립하지 않는다.

정의[편집]

집합 S에 대해 정의된 이항 연산 이 결합법칙을 만족하면 다음 식이 성립한다.

이 때 좌변과 우변의 값은 연산을 수행하는 순서에 영향을 받지 않는다. 이 법칙은 연산이 세 번 이상 나타날 때에도 확장해서 적용할 수 있으며, 따라서 가 결합법칙을 만족하면 연산 순서를 따로 지정하지 않아도 모호함 없이 수식의 값이 결정된다. 따라서 보통 위의 수식을 괄호 없이 다음과 같이 쓴다.

예시[편집]

같이 보기[편집]