
Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® OpenCL
Implicit Vectorization Module

Nadav Rotem

Software Developer, Intel®

November 2011

1

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel OpenCL Team

• Responsible for Intel® OpenCL SDK for Intel®
Architecture.

• Develop the LLVM-based OpenCL* compiler,
debugger, etc.

• Enable future architectures in LLVM.

• The group is centered in Haifa, Israel.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® OpenCL SDK 1.5

• Publicly Available Today

• Features:
– Conformant with the OpenCL* 1.1 specification.

– Supports 32/64-bit Microsoft Windows* operating systems and
64-bit Linux* operating systems.

– Unique Implicit Vectorization Module.

– Available at: www.intel.com/software/opencl

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/opencl

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® OpenCL SDK Offline Compiler

• The Intel® OpenCL SDK Offline Compiler exposes
LLVM-IR and enables users to examine the
vectorized OpenCL* kernel.

• Tool demo

LLVM-IR

OpenCL Code

http://software.intel.com/en-us/articles/optimization-notice/
http://software.intel.com/en-us/videos/channel/parallel/intel-opencl-sdk-offline-compiler-demo-at-siggraph-2011/1211396052001

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL*

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL*

• A framework for developing data-parallel programs
for multiple kinds of devices.

• An open standard by Khronos*.

• C-based language for compute shaders (called
kernels):

– Derived from ISO C99

– Few restrictions, e.g. recursion, function pointers

– Short vector types e.g., float4, short2, int16

– Built-in functions: math (e.g., sin), geometric, common
(e.g., min, clamp)

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

OpenCL* Kernels

void serial_mul(int n,

 const float *a,

 const float *b,

 float *result){

 int i;

 for (i=0; i<n; i++)

 result[i] = a[i] * b[i];

}

Serial

kernel void

cl_mul(global const float *a,

 global const float *b,

 global float *result) {

 int id = get_global_id(0);

 result[id] = a[id] * b[id];

}

Data Parallel

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

9

Iterations – the “work” that needs to be done.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

kernel void

cl_mul(global const float *a,

 global const float *b,

 global float *result) {

 int id = get_global_id(0);

 float k = sin(b[id]);

 result[id] = a[id] * k;

}

•The OpenCL runtime executes
the kernel on each one of the
work-items.

•A kernel processes a single
work-tem.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Iterations – the “work” that needs to be done.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

•Vectorized kernels process
multiple work-items at once.

•Less kernel invocations are
needed.

kernel void

cl_mul(global const float *a,

 global const float *b,

 global float *result) {

 int id = get_global_id(0);

 float k = sin(b[id]);

 result[id] = a[id] * k;

}

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

What is Data-Parallel Vectorization ?

kernel void

cl_mul(global const float *a,

 global const float *b,

 global float *result) {

 int id = get_global_id(0);

 float k = sin(b[id]);

 result[id] = a[id] * k;

}

Function Calls

Arithmetic

1. Input: LLVM-IR

2. Widen each instruction to make use of SSE4/AVX

3. Reduce the number of kernel invocations

Work-item 0 … Work-item 7

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization in LLVM-IR

%b = add i32 %a, %a

 becomes

%b = add <8 x i32> %a, %a

Vectorization factor

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

The OpenCL* Implicit Vectorization Module

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel® OpenCL SDK Structure

Clang
JIT / Code
Generation

OpenCL
Library

OpenCL
specific
passes

Vectorizer

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorizer

• Used in Intel® OpenCL SDK as well as other data-
parallel products.

• Generates code for multiple Intel devices.

• A sequence of LLVM transformation and analysis
passes.

Vectorizer

OpenCL

DirectX

Others

SSE4

AVX

AVX2, etc

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Portable Vectorizer

• The vectorizer has multiple data-parallel “users”.

• Language dependent information is provided by an
external analysis pass.

• For example:

– In OpenCL* get_global_id() returns a consecutive index.

– In Microsoft DirectX* API, „sync‟ is a synchronization function.

– List of built-in functions.

• LLVM allows high flexibility and enables vectorization
that is language and platform independent.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Packetization

• Widens a single element into a vector of elements.

• Many details are handled by the packetizer:

– Widening of arithmetic scalar LLVM instructions to vector
LLVM instructions.

– Replacing function calls with wide versions.

– For example: sin(float) -> sin4(float4)

– Optimized widening of load/stores.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Packetization of ‘Vector’ Code

• OpenCL* supports vector data types and some
users write vector code.

• We scalarize all incoming user vectors and re-
vectorize to make use of the wide instruction set.

• AOS -> SOA

x y w z

x x x x x x x x

y y y y y y y y

z z z z z z z z

w w w w w w w w

Work-item 0 … Work-item 7

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Predication

• When control-flow diverges, it is illegal to widen
instructions.

• Need to use masks (predicates) to make all of the
work-items execute the same control flow path.

• Need to handle diverging branches, loops, etc.

__kernel void program(float* pos) {

 int idx = get_global_id(0);

 if (idx > 17) pos[idx] = 7;

}

Not all

work-items

store.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Flow

__kernel void program(float* pos) {

 int idx = get_global_id(0);

 if (idx > 17) pos[idx] = 7;
}

__kernel void program(float* pos) {

 int idx = get_global_id(0);

 bool p = (idx > 17);

 masked_store(p, pos+idx, 7);
}

Predicate

__kernel void program(float* pos) {

 int4 idx = get_global_id4(0);

 bool4 p = (idx > 17);

 masked_store4(p, pos+idx, 7);
}

Packetize

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Control Flow in ‘while’ Loops

• In loops, work-items enter at the same
time, but exit at different times.

• Work items need to wait for the last work
item to finish executing.

• Mask starts with all-one, and drops to
zero for each work-item leaving the loop.

1 1 1 1

Loop mask

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Masking of Functions and Memory Ops

• We mask: function calls, loads, stores, etc.

• LLVM does not support IR-level predication.

• Use Intrinsic functions:

– Each architecture requires a different set of intrinsics.

– Dedicated code to handle the widening of masked
functions.

– Dedicated code to implement unsupported memory ops,
scatter/gather, etc.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Partial Vector Utilization

• Predication flattens the CF and
execs both the „then‟ and „else‟.

• Diverging CF reduces the utilization
of vector instructions.

• Vectorization adds masking-
overhead.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vectorization Width Decision

• A heuristics pass is used to decide what is the ideal
vectorization width (1, 4, 8, etc.)

• Perform static-analysis to collect different
parameters of the program.

• We decide what vectorization-factor is best for the
program:
– Programs with low vector-utilizations do not get vectorized.

– Integer-heavy kernels usually run better on vectorization
factor of 4 because AVX is focused on floating-point types.

• Tuned using a large number of OpenCL* programs.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Typical Build Time

• The vectorizer is a fast pass.

• The vectorizer increases the codegen build time.

LLVM Passes

Vectorizer

Codegen

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Working with the LLVM community

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector-Select Codegen support

• Our vectorizer uses the vector-select instruction
extensively.

• Initially, we implemented a pass to lower vector-
compare and vector-select sequences to x86 (AVX
and SSE) intrinsics.

• Worked with the community on implementing
codegen support for vector-select.

%C = fcmp oeq <8 x float> %A, %B

%V = select <8 x i1> %C, <8 x float> %A, <8 x float> %B

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Vector Select and Type-Legalization

• Added a new kind of type-legalization:

“vector-promotion”

• Added support for vector-select on top:

– Added x86 optimized blend sequences for AVX, SSE4

– Implemented using XOR, AND, for other targets.

• Enabled in ToT.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

LLVM Wishlist

• Predicated instructions:

– Needed for vector architectures, which will likely to
dominate future processors

– Need IR changes

• Improved Microsoft Windows* operating systems
support:

– Calling Conventions, MC, etc.

• Backward compatibility of the IR:

– Use LLVM-IR as a cross-platform IR for OpenCL

– Ease migration between versions of LLVM

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Intel OpenCL Team and the Community

• We‟ve contributed bug fixes and features to LLVM.

• We‟ve developed our own AVX support on top of
LLVM 2.8.

– Started contributing our improvements.

• We plan to work on AVX2 together with the
community.

• We intend to work with the LLVM community on
improving LLVM for Intel Platforms.

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Questions ?

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners. 32

Intel Confidential

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Optimization Notice

33

Intel Confidential

Optimization Notice

Intel‟s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that

are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and

other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on

microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended

for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for

Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information

regarding the specific instruction sets covered by this notice.

Notice revision #20110804

http://software.intel.com/en-us/articles/optimization-notice/

Software & Services Group

Developer Products Division Copyright© 2011, Intel Corporation. All rights reserved.
*Other brands and names are the property of their respective owners.

Legal Disclaimer

34

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED,
BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS
OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR
INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Performance tests and ratings are measured using specific computer systems and/or components
and reflect the approximate performance of Intel products as measured by those tests. Any
difference in system hardware or software design or configuration may affect actual performance.
Buyers should consult other sources of information to evaluate the performance of systems or
components they are considering purchasing. For more information on performance tests and on
the performance of Intel products, reference www.intel.com/software/products.

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Atom, Centrino Atom Inside, Centrino
Inside, Centrino logo, Cilk, Core Inside, FlashFile, i960, InstantIP, Intel, the Intel logo, Intel386,
Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom Inside, Intel Core, Intel Inside,
Intel Inside logo, Intel. Leap ahead., Intel. Leap ahead. logo, Intel NetBurst, Intel NetMerge, Intel
NetStructure, Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel
XScale, Itanium, Itanium Inside, MCS, MMX, Oplus, OverDrive, PDCharm, Pentium, Pentium
Inside, skoool, Sound Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon
Inside are trademarks of Intel Corporation in the U.S. and other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2011. Intel Corporation.

http://intel.com/software/products

Intel Confidential

http://software.intel.com/en-us/articles/optimization-notice/
http://www.intel.com/software/products
http://intel.com/software/products

