
Building a refactoring tool



With what?

● A compilation database for our project.

● Clang’s AST matchers.

● Clang’s libTooling.

● Clang’s libFormat.



Why?

● r194288 “If a linkonce_odr dtor/ctor is 
identical to another one, just rauw”.

● Implicit instantiations of class templates are 
linkonce_odr.

● Some of our code was using a declaration of 
templates, but it happened to link against an 
implicit instantiation.



Why?

● “using namespace common::base;” …
● common::base defines many things like 

Coord, Colour, etc…
● So does the rest of our code …
● Hence we get ambiguous name lookups in 

“void function(Colour c);”
● Need to remove the using directive.



Why?

● Can’t grep for it…
● Try removing it and fixing the compilation 

errors…
● An 8 hour day later, >700 files updated and 

the build is still broken…
● Turns out to be O(10,000) files to update!



Code! (v0)

Let’s:
● build a compilation database.

● write a program that uses it to open a C++ 
file and build up an AST in memory.



Code! (v1)

Let’s:
● try matching decls with AST matchers!

○ reference guide to AST matchers

● try issuing a replacement to edit the code!

http://clang.llvm.org/docs/LibASTMatchersReference.html
http://clang.llvm.org/docs/LibASTMatchersReference.html


Code! (v2)

Let’s:
● match DeclRefExpr’s.

● match TagType’s.

● try it on more than one file!



Code! (v3)

Let’s:
● make it not qualify names inside namespace 

common { namespace base { … } }



Code! (v4)

Let’s:
● make it not qualify already explicitly qualified 

names



Code! (v5)

Add debugging statements and refactor...



Code! (v6)

Let’s:
● skip matches inside templates



Code! (v7)

Let’s:
● respect explicit using declarations



Code! (v8)

Let’s:
● respect namespace aliases



Works well

● It’s easy to match pieces of the AST.

● Integration with build systems.

● Reformatting of changed lines for us!



Ideas for improvement

● Multiple times, we had to find the “best” 
name.
○ Why not make that an API?

● Making the AST follow the standard is 
critical.
○ We have to fix ElaboratedType. Any others?


