
[SLP] SuperNode-SLP: Vectorizing Chains of Add/Subs
Vasileios Porpodas1, Rodrigo C. O. Rocha2, Evgueni Brevnov1,

Lúıs F. W. Góes3, and Timothy Mattson1

Intel Corporation1, University of Edinburgh2, PUC Minas3

SLP Auto-vectorization converts straight-line code into vector code. Super-Node SLP (SN-SLP) is an improvement on SLP trunk, optimized for expressions that include a
commutative operation (such as addition) and its corresponding inverse element (subtraction).
SN-SLP uses the algebraic properties of commutative operators and their inverse elements to enable aggressive operand reordering across groups of instructions, which we
refer to as Super-Nodes. Super-Nodes extend the Multi-Nodes of “Look-Ahead SLP”, presented in EuroLLVM’18. They form chains of both commutative operations and
their inverse operations and allow for legal operand reordering across them.

SLP vs LV

The Loop Vectorizer (LV) is vectorizing across iterations.

SLP is vectorizing across instructions.

A[i+1] = B[i+1]

A[i] = B[i]

A[i+2] = B[i+2]

A[i+3] = B[i+4]

for (i=0; i<N; i+=4)

Loop Vectorization (LV) with VF = 4
for (i=0; i<N; i+=16)

A[i+2,i+6,i+10,i+14] = B[i+2,i+6,i+10,i+14]

A[i+3,i+7,i+11,i+15] = B[i+3,i+7,i+11,i+15]

A[i, i+4,i+8, i+12] = B[i, i+4,i+8, i+12]

A[i+1,i+5,i+9, i+13] = B[i+1,i+5,i+9, i+13]

LV

SLP

}
SLP Vectorizer with VF = 4
for (i=0; i<N; i+=4)

A[i:i+3] = B[i:i+3]

SLP Can Fail on ADD/SUB Chains

SLP cannot reorder operands across chains of ADD/SUB (or MUL/DIV).

SN-SLP forms a “Super-Node” and reorders across them.

long A[],B[],C[],D[];

A[i+0]=B[i+0]−C[i+0]+D[i+0];
A[i+1]=D[i+1]−C[i+1]+B[i+1];

S

−

LL

L −

LL

S

−

LL

L −

L

S
N
−
S
L
P

S

A[i+0] A[i+1]

+

D[i+0]

B[i+0] C[i+0]

+

D[i+1]

C[i+1]

B[i+1]
L

C[i+1]

LL

L

D[i+1]D[i+1]

S

A[i+0] A[i+1]

+

D[i+0]

B[i+0] C[i+0]

+

D[i+1] C[i+1]

S
u
p
erN

od
e

S
u
p
erN

od
e

Reordering!

L

B[i+1] C[i+1]

LL

L
D[i+1]D[i+1]

SS −1

−1 − − L +2L

+2 L L

B[i]D[i+1]

L −1L

C[i:i+1]

D[i]B[i+1]

A[i:i+1]

−1+ +Cost = 0

SS −1

−1

−1

+ +

− −

L L

B[i:i+1]

−1 L −1L

D[i:i+1]

C[i:i+1]

L L −1

A[i:i+1]

Cost = −6

S
L
P

N
o

t
V

e
c
to

ri
z
e
d

V
e
c
to

ri
z
e
d

!

SN-SLP Can Reorder Internal Nodes of the Super-Node

When operands cannot be reordered, we can try reordering the internal nodes
of the Super-Node.

long A[],B[],C[],D[];

A[i+0]=B[i+0]−C[i+0]+D[i+0];
A[i+1]=B[i+1]+D[i+1]−C[i+1];

S

LL

L

L

S

LL

L−

L

S
N
−
S
L
P

S

A[i+0] A[i+1]

D[i+0]

B[i+0] C[i+0]

+

−

B[i+1]

L

LL L

L

D[i+1]

C[i+1]

S

A[i+0] A[i+1]

D[i+0]

B[i+0] C[i+0]

+

−

−+

C[i+1]B[i+1]

D[i+1]

L

LL L

L

SS −1

+ +1−

L L− ++1 +2

LLL L

D[i]C[i+1]

+2

C[i]D[i+1]B[i:i+1]

−1

A[i:i+1]

Cost = +4

SS −1

−1

−1

+ +

− −

L L−1

B[i:i+1]

L −1L

C[i:i+1]

D[i:i+1]

−1L L

A[i:i+1]

Cost = −6

−

+

S
L
P

N
o
t

V
e
c
to

ri
z
e
d

V
e
c
to

ri
z
e
d
!

Legality

Reordering operands (e.g., D and B) is legal if they have the same APO.

Even if the APO is not the same, we may still reorder the successors.

FE

I

K

J

+−

A 0

B 0 +

C

D

E

F

G

H

I 0 +

Sum

1 −

0 +

0 +

J

K 0 +

+2

0 +

1 −

1 −

Accumulated Path

A
+ +

C

− GH +

BD
− +

Operation (APO)

Linearized

+

+

−

−

+

A

B

C

D

E

F

+

+

−

+

+

H

I

J

K

G

+

−

−

+ +

Not always legal.

FE

I

K

J

+−

A
+ +

C

− GH +

BD
− +

A 0

B 0 +

C

D

E

F

G

H

I 0 +

Sum

1 −

0 +

0 +

J

K 0 +

+2

0 +

1 −

1 −

Accumulated Path

0

0

Operation (APO)

Linearized

+

+

−

−

+

A

B

C

D

E

F

+

+

−

+

+

H

I

J

K

G

+

−

−

+ +

Performance

Target: Intel R© CoreTM i5-6440HQ CPU

Compiler flags: -O3 -ffast-math -march=native -mtune=native, CPU2006

O3: Trunk LLVM with all vectorizers disabled.

LSLP: Trunk SLP + MultiNodes (patches under review).

SNSLP: Trunk SLP + SuperNodes (patches coming soon).

0.88x

0.90x

0.92x

0.94x

0.96x

0.98x

1.00x

1.02x

1.04x

433.milc
464.h264ref

435.gromacs

447.dealII

453.povray

454.calculix

GMean

LSLP SNSLP

0.80x

0.85x

0.90x

0.95x

1.00x

1.05x

1.10x

1.15x

1.20x

1.25x

1.30x

433-mult-su3-mat-hwvec

433-mult-su3-mat-vec

433-mult-su3-nn

453-minvers

454-solveSparseColumns

454-solveDenseSubColumns

motivation-leaf

motivation-trunk

GMean

O3 LSLP SNSLP

2.0x 2.0x

We are Upstreaming it!

[SLP] Patches for commutative instructions are out. They are adding support
for Multi-Nodes, i.e., chains of commutative operations.

Super-Node patches coming soon!

2.

3.

4.

1.
D59059

Checked in

Support for SuperNodes (ADD/SUB)

Operand reordering across MultiNodes

Refactor operand reordering functions

Code refactoring

Conclusion

SN-SLP improves SLP on code with ADD/SUB MUL/DIV chains.

It forms Super-Nodes of commutative operations and their inverse elements.

It performs legal operand reordering, guided by the Look-Ahead heuristic.

Please check out our CGO’19 paper:

“Super-Node SLP: Optimized Vectorization for Code Sequences Containing Op-
erators and Their Inverse Elements. Vasileios Porpodas, Rodrigo C. O. Rocha,
Evgueni Brevnov, Lúıs F. W. Góes, Timothy Mattson.”

http://vporpo.me/papers/snslp_cgo2019.pdf.

http://vporpo.me vasileios.porpodas@intel.com

http://vporpo.me/papers/snslp_cgo2019.pdf

