[go: nahoru, domu]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A013662 Decimal expansion of zeta(4). 134

%I #150 Aug 25 2024 18:48:32

%S 1,0,8,2,3,2,3,2,3,3,7,1,1,1,3,8,1,9,1,5,1,6,0,0,3,6,9,6,5,4,1,1,6,7,

%T 9,0,2,7,7,4,7,5,0,9,5,1,9,1,8,7,2,6,9,0,7,6,8,2,9,7,6,2,1,5,4,4,4,1,

%U 2,0,6,1,6,1,8,6,9,6,8,8,4,6,5,5,6,9,0,9,6,3,5,9,4,1,6,9,9,9,1

%N Decimal expansion of zeta(4).

%D M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 811.

%D L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 89, Exercise.

%D Richard K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004, Section F17, Series associated with the zeta-function, p. 391.

%D L. D. Landau and E. M. Lifschitz, Band V, Statistische Physik, Akademie Verlag, 1966, pp. 172 and 180-181.

%D David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987, p. 33.

%H Harry J. Smith, <a href="/A013662/b013662.txt">Table of n, a(n) for n = 1..20000</a>

%H M. Abramowitz and I. A. Stegun, eds., <a href="http://www.convertit.com/Go/ConvertIt/Reference/AMS55.ASP?Res=150&amp;Page=807&amp;Submit=Go">Handbook of Mathematical Functions</a>, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

%H Peter Bala, <a href="/A013662/a013662.pdf">New series for old functions</a>.

%H D. H. Bailey, J. M. Borwein, and D. M. Bradley, <a href="https://arxiv.org/abs/math/0505270">Experimental determination of Apéry-like identities for zeta(4n+2)</a>, arXiv:math/0505270 [math.NT], 2005-2006.

%H D. Borwein and J. M. Borwein, <a href="http://dx.doi.org/10.1090/S0002-9939-1995-1231029-X">On an intriguing integral and some series related to zeta(4)</a> Proc. Amer. Math. Soc., Vol. 123, No.4, April 1995.

%H J. M. Borwein, D. J. Broadhurst, and J. Kamnitzer, <a href="http://arxiv.org/abs/hep-th/0004153">Central binomial sums, multiple Clausen values and zeta values</a> arXiv:hep-th/0004153, 2000.

%H Leonhard Euler, <a href="https://arxiv.org/abs/math/0506415">On the sums of series of reciprocals</a>, arXiv:math/0506415 [math.HO], 2005-2008.

%H Leonhard Euler, <a href="http://eulerarchive.maa.org/backup/E041.html">De summis serierum reciprocarum</a>, E41.

%H Raffaele Marcovecchio and Wadim Zudilin, <a href="https://arxiv.org/abs/1905.12579">Hypergeometric rational approximations to zeta(4)</a>, arXiv:1905.12579 [math.NT], 2019.

%H R. Mestrovic, <a href="http://arxiv.org/abs/1202.3670">Euclid's theorem on the infinitude of primes: a historical survey of its proofs (300 BC--2012) and another new proof</a>, arXiv:1202.3670 [math.HO], 2012. - From _N. J. A. Sloane_, Jun 13 2012

%H Jean-Christophe Pain, <a href="https://arxiv.org/abs/2309.00539">An integral representation for zeta(4)</a>, arXiv:2309.00539 [math.NT], 2023.

%H Michael Penn, <a href="https://www.youtube.com/watch?v=AxOZ1iqnIUY">Finding a closed form for zeta(4)</a>, YouTube video, 2022.

%H Simon Plouffe, <a href="http://www.plouffe.fr/simon/constants/zeta4.txt">Pi^4/90 to 100000 digits</a>.

%H Simon Plouffe, <a href="https://web.archive.org/web/20150912022617/www.worldwideschool.org/library/books/sci/math/MiscellaneousMathematicalConstants/chap98.html">Zeta(4) or Pi^4/90 to 10000 places</a>.

%H Simon Plouffe, <a href="/A293904/a293904_4096.gz">Zeta(2) to Zeta(4096) to 2048 digits each</a> (gzipped file).

%H Carsten Schneider and Wadim Zudilin, <a href="https://arxiv.org/abs/2004.08158">A case study for zeta(4)</a>, arXiv:2004.08158 [math.NT], 2020.

%H Chuanan Wei, <a href="https://arxiv.org/abs/2303.07887">Some fast convergent series for the mathematical constants zeta(4) and zeta(5)</a>, arXiv:2303.07887 [math.CO], 2023.

%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>.

%F zeta(4) = Pi^4/90. - _Harry J. Smith_, Apr 29 2009

%F From _Peter Bala_, Dec 03 2013: (Start)

%F Definition: zeta(4) := Sum_{n >= 1} 1/n^4.

%F zeta(4) = (4/17)*Sum_{n >= 1} ( (1 + 1/2 + ... + 1/n)/n )^2 and

%F zeta(4) = (16/45)*Sum_{n >= 1} ( (1 + 1/3 + ... + 1/(2*n-1))/n )^2 (see Borwein and Borwein).

%F zeta(4) = (256/90)*Sum_{n >= 1} n^2*(4*n^2 + 3)*(12*n^2 + 1)/(4*n^2 - 1)^5.

%F Series acceleration formulas:

%F zeta(4) = (36/17)*Sum_{n >= 1} 1/( n^4*binomial(2*n,n) ) (Comtet)

%F = (36/17)*Sum_{n >= 1} P(n)/( (2*n*(2*n - 1))^4*binomial(4*n,2*n) )

%F = (36/17)*Sum_{n >= 1} Q(n)/( (3*n*(3*n - 1)*(3*n - 2))^4*binomial(6*n,3*n) ),

%F where P(n) = 80*n^4 - 48*n^3 + 24*n^2 - 8*n + 1 and Q(n) = 137781*n^8 - 275562*n^7 + 240570*n^6 - 122472*n^5 + 41877*n^4 - 10908*n^3 + 2232*n^2 - 288*n + 16 (see section 8 in the Bala link). (End)

%F zeta(4) = 2/3*2^4/(2^4 - 1)*( Sum_{n even} n^2*p(n)/(n^2 - 1)^5 ), where p(n) = 3*n^4 + 10*n^2 + 3 is a row polynomial of A091043. See A013664, A013666, A013668 and A013670. - _Peter Bala_, Dec 05 2013

%F zeta(4) = Sum_{n >= 1} ((floor(sqrt(n))-floor(sqrt(n-1)))/n^2). - _Mikael Aaltonen_, Jan 18 2015

%F zeta(4) = Product_{k>=1} 1/(1 - 1/prime(k)^4). - _Vaclav Kotesovec_, May 02 2020

%F From _Wolfdieter Lang_, Sep 16 2020: (Start)

%F zeta(4) = (1/3!)*Integral_{x=0..oo} x^3/(exp(x) - 1) dx. See Abramowitz-Stegun, 23.2.7., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (4), for x=4. See also A231535.

%F zeta(4) = (4/21)*Integral_{x=0..oo} x^3/(exp(x) + 1) dx. See Abramowitz-Stegun, 23.2.8., for s=2, p. 807, and Landau-Lifschitz, Band V, p. 172, eq. (1), for x=4. See also A337711. (End)

%F zeta(4) = (72/17) * Integral_{x=0..Pi/3} x*(log(2*sin(x/2)))^2. See Richard K. Guy reference. - _Bernard Schott_, Jul 20 2022

%F From _Peter Bala_, Nov 12 2023: (Start)

%F zeta(4) = 1 + (4/3)*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)^4*(k + 2)) = 35053/32400 + 48*Sum_{k >= 1} (1 - 2*(-1)^k)/(k*(k + 1)*(k + 2)*(k + 3)^4*(k + 4)*(k + 5)*(k + 6)).

%F More generally, it appears that for n >= 0, zeta(4) = c(n) + (4/3)*(2*n + 1)!^2 * Sum_{k >= 1} (1 - 2*(-1)^k)/( (k + 2*n + 1)^3*Product_{i = 0..4*n+2} (k + i) ), where {c(n) : n >= 0} is a sequence of rational approximations to zeta(4) beginning [1, 35053/32400, 2061943067/ 1905120000, 18594731931460103/ 17180389306080000, 257946156103293544441/ 238326360453941760000, ...]. (End)

%e 1.082323233711138191516003696541167...

%p evalf(Pi^4/90,120); # _Muniru A Asiru_, Sep 19 2018

%t RealDigits[Zeta[4],10,120][[1]] (* _Harvey P. Dale_, Dec 18 2012 *)

%o (PARI) default(realprecision, 20080); x=Pi^4/90; for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b013662.txt", n, " ", d)); \\ _Harry J. Smith_, Apr 29 2009

%o (Maxima) ev(zeta(4),numer) ; /* _R. J. Mathar_, Feb 27 2012 */

%o (Magma) SetDefaultRealField(RealField(110)); L:=RiemannZeta(); Evaluate(L,4); // _G. C. Greubel_, May 30 2019

%o (Sage) numerical_approx(zeta(4), digits=100) # _G. C. Greubel_, May 30 2019

%Y Cf. A002117, A013661, A013664, A013666, A013668, A013670, A231535, A337711.

%Y See also the extensive crossref table in A308637.

%K nonn,cons,changed

%O 1,3

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 8 10:21 EDT 2024. Contains 375753 sequences. (Running on oeis4.)